USRE44332E1 - Electrically variable beam tilt antenna - Google Patents

Electrically variable beam tilt antenna Download PDF

Info

Publication number
USRE44332E1
USRE44332E1 US10/747,818 US74781803A USRE44332E US RE44332 E1 USRE44332 E1 US RE44332E1 US 74781803 A US74781803 A US 74781803A US RE44332 E USRE44332 E US RE44332E
Authority
US
United States
Prior art keywords
antenna
antenna assembly
phase adjustment
downtilt
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US10/747,818
Inventor
Peter Mailandt
Tan Huynh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commscope Technologies LLC
Original Assignee
Andrew LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/747,818 priority Critical patent/USRE44332E1/en
Application filed by Andrew LLC filed Critical Andrew LLC
Assigned to BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT reassignment BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT SECURITY AGREEMENT Assignors: ALLEN TELECOM, LLC, ANDREW CORPORATION, COMMSCOPE, INC. OF NORTH CAROLINA
Assigned to ALLEN TELECOM LLC, COMMSCOPE, INC. OF NORTH CAROLINA, ANDREW LLC (F/K/A ANDREW CORPORATION) reassignment ALLEN TELECOM LLC PATENT RELEASE Assignors: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT
Assigned to JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: ALLEN TELECOM LLC, A DELAWARE LLC, ANDREW LLC, A DELAWARE LLC, COMMSCOPE, INC. OF NORTH CAROLINA, A NORTH CAROLINA CORPORATION
Assigned to JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: ALLEN TELECOM LLC, A DELAWARE LLC, ANDREW LLC, A DELAWARE LLC, COMMSCOPE, INC OF NORTH CAROLINA, A NORTH CAROLINA CORPORATION
Publication of USRE44332E1 publication Critical patent/USRE44332E1/en
Application granted granted Critical
Assigned to COMMSCOPE TECHNOLOGIES LLC reassignment COMMSCOPE TECHNOLOGIES LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ANDREW LLC
Assigned to WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT reassignment WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALLEN TELECOM LLC, COMMSCOPE TECHNOLOGIES LLC, COMMSCOPE, INC. OF NORTH CAROLINA, REDWOOD SYSTEMS, INC.
Anticipated expiration legal-status Critical
Assigned to COMMSCOPE, INC. OF NORTH CAROLINA, ALLEN TELECOM LLC, REDWOOD SYSTEMS, INC., COMMSCOPE TECHNOLOGIES LLC reassignment COMMSCOPE, INC. OF NORTH CAROLINA RELEASE OF SECURITY INTEREST PATENTS (RELEASES RF 036201/0283) Assignors: WILMINGTON TRUST, NATIONAL ASSOCIATION
Assigned to ALLEN TELECOM LLC, COMMSCOPE, INC. OF NORTH CAROLINA, COMMSCOPE TECHNOLOGIES LLC, REDWOOD SYSTEMS, INC., ANDREW LLC reassignment ALLEN TELECOM LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A.
Assigned to COMMSCOPE, INC. OF NORTH CAROLINA, ANDREW LLC, REDWOOD SYSTEMS, INC., COMMSCOPE TECHNOLOGIES LLC, ALLEN TELECOM LLC reassignment COMMSCOPE, INC. OF NORTH CAROLINA RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A.
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/10Logperiodic antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/32Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by mechanical means

Definitions

  • This invention relates generally to antennas and in particular to antennas having variable radiation patterns, and is more particularly directed toward an antenna in which the vertical radiation pattern downtilt angle is electrically variable.
  • RF (radio frequency) communication systems that act to maximize spectrum efficiency through frequency reuse include cellular radiotelephone systems, some types of trunked communication systems, among others.
  • a common feature that these systems generally share is the division of a service area into smaller areas known as “cells.”
  • a group of relatively low power base stations provides RF communication services to subscribers within that cell over a group of RF channels. Because of the low power, the same group of RF channels may be reused only a short distance away to provide communication services to subscribers in another (although not generally adjacent) cell.
  • each cell is further divided into sectors, multiplying at least the receive antenna requirement for the cell by the number of sectors selected.
  • each cell is divided into six equal sectors, with each sector having its own directional receive antenna with a radiation pattern closely approximating the sector shape.
  • a single transmit antenna having an omnidirectional radiation pattern is used for transmission into all sectors of the cell.
  • the cell may be divided into sectors for transmitting, as well.
  • This type of system is useful for dealing with cells having irregular boundaries caused, for example, by natural or man-made obstructions.
  • Omnidirectional transmit patterns in contrast, are most often employed where the desired coverage pattern is approximately circular in shape.
  • antenna systems used in sectored cells are directional antennas. Although the radiation patterns of these antennas are selected to approximate the sector shape, the patterns are not generally easy to alter after installation. A need to alter the radiation pattern may arise based upon studies of system performance, newly constructed obstacles to RF propagation, altering of the shapes of adjacent cells, or for a variety of other reasons.
  • overlapping coverage areas can be created by extending the radiation patterns of the antennas slightly into adjacent cells. This increases the number of channels available to users in the overlap areas, and minimizes the need for hand-offs, but it also increases the likelihood that co-channel interference may occur.
  • peak periods when many channels are in use providing service to a relatively large number of users, the radiation patterns should be restored to a state that minimizes adjacent cell overlap.
  • extension of radiation patterns can be done with power control, but increasing the power of the RF signals transmitted by the antenna directly impacts the likelihood of undesired interference.
  • Another way of altering antenna radiation patterns is to physically move the antennas themselves, but this is difficult to do after initial installation. It is possible, of course, to provide a mechanism to alter an antenna's azimuth and elevation, much the same way a radar antenna is moved, but such mechanisms are expensive, and the mechanical linkages required to support such movement would degrade the structural integrity of the antenna mounting system.
  • the antenna assembly of the present invention having an operating frequency and a vertical radiation pattern with a main lobe axis defining a downtilt angle with respect to the earth's surface.
  • the antenna assembly comprises a plurality of antenna means in first, second, and third antenna groups disposed along a backplane, the backplane having a longitudinal axis along which the antenna means are disposed, and a phase adjustment means disposed electrically connected between the second first and third antenna groups, such that adjustment of the phase adjustment means results in variation of the vertical radiation pattern downtilt angle.
  • the second and third antenna groups each comprise a plurality of antenna means.
  • the first antenna group comprises one antenna means
  • the second and third antenna groups each comprises two antenna means.
  • each of the antenna means comprises a log-periodic dipole array.
  • Each of the log-periodic dipole array antennas comprises generally complementary front and rear dipole sections wherein one arm of each dipole is provided by the front dipole section, and the opposing arm of each dipole is provided by the rear dipole section.
  • the backplane may be a plate of conductive material, substantially perpendicular to the earth's surface.
  • the phase adjustment means comprises input coupling means, movable coupling means having a pivotally mounted first end electromagnetically coupled to the input coupling means, and transmission line means electromagnetically coupled to a second end of the movable coupling means.
  • Drive means which may comprise an electric motor, may be coupled to the movable coupling element.
  • the drive means may be operable from a remote location, and may include means for transmitting position information relating to the phase adjustment means to the remote location.
  • the transmission line means may be a semicircular, air-substrated transmission line section having opposing ends coupled to antenna feeder cables.
  • the input coupling means may comprise an input coupling element formed in a T-shape from a plate of conductive material, and coupled to an antenna assembly cable, and the antenna feeder cables may be coupled to power dividers.
  • Each of the power dividers may be a microstrip transformer fabricated on a substrate of low-loss dielectric material.
  • a first power divider is coupled to the input coupling element of the phase adjusting means and to a second power divider having a plurality of outputs, each output coupled to an antenna means of the second antenna group.
  • the phase adjustment means has a range of adjustment including a minimum downtilt position, a mid-point, and a maximum downtilt position, and electrical path lengths at the operating frequency, from the input coupling element to each of the antenna means, are selected to define a progressive phase shift between each of the antenna means such that, with the phase adjustment means set at its mid-point, the vertical radiation pattern downtilt angle is approximately 7 degrees.
  • the vertical radiation pattern downtilt angle is approximately zero degrees with the phase adjustment means set at the minimum downtilt position, and the vertical radiation pattern downtilt angle is approximately 14 degrees with the phase adjustment means set at the maximum downtilt position.
  • FIG. 1 is a side view of an antenna assembly in accordance with the present invention
  • FIG. 2 is a front plan view of the antenna assembly of FIG. 1 ;
  • FIG. 3 is a front view of a phase adjustment mechanism in accordance with the present invention.
  • FIG. 4 is a section view taken along section lines 4 - 4 of FIG. 3 ;
  • FIG. 5 is a side view of the phase adjustment mechanism of FIG. 3 ;
  • FIGS. 6a and 6b depict front and rear log-periodic dipole array sections
  • FIG. 7 is a side view of the dipole array sections of FIGS. 6a and 6b in confronting relationship;
  • FIG. 8a is a side view of an antenna assembly in accordance with the present invention with a radome in place;
  • FIG. 8b is an end view of the antenna assembly of FIG. 8a ;
  • FIG. 9 is a plan view of a dielectric-substrated microstrip transformer
  • FIG. 10 is a vertical radiation pattern of the antenna assembly in accordance with the present invention.
  • FIG. 11 is a schematic representation of the antenna assembly of FIG. 1 ;
  • FIG. 12 is a further vertical radiation pattern of the antenna assembly of FIG. 1 ;
  • FIG. 13 is another vertical radiation pattern of the antenna assembly of FIG. 1 ;
  • FIG. 14 is a schematic representation of a control system for use with the antenna assembly of FIG. 1 ;
  • FIG. 15 depicts a plurality of antenna assemblies of FIG. 1 disposed on an antenna support structure
  • FIG. 16 is a top view of FIG. 15 .
  • an electrically variable beam tilt antenna is described that provides distinct advantages when compared to systems of the prior art.
  • the invention can best be understood with reference to the accompanying drawing figures.
  • FIGS. 1 and 2 are side and front views, respectively, of an antenna assembly 100 in accordance with the present invention.
  • the antenna assembly 100 comprises a plurality of antenna means such as antennas 101 - 105 arranged as first, second, and third antenna groups 115 , 116 , and 117 .
  • Antenna 101 alone forms the first antenna group 115
  • antennas 102 and 103 form the second antenna group 116
  • antennas 104 and 105 form the third antenna group 117 .
  • Phase adjustment means such as a phase adjustment mechanism 108 , is disposed between the second first and third antenna groups 116 115, 117 . Operation and effect of the phase adjustment mechanism 108 will be discussed in detail subsequently.
  • each of the antennas 101 - 105 is mounted along the longitudinal axis 110 of a conductive backplane 111 .
  • the conductive backplane is an aluminum extrusion, although any conductive plate of sufficient strength to provide support for the antennas 101 - 105 would serve.
  • the material selected should be relatively light in weight, however, so that the completed antenna assembly will not be unwieldy.
  • the backplane 111 also provides a mounting surface for an RF connector 109 , the phase adjustment mechanism 108 , and a plurality of dielectric-substrated microstrip transformers 112 - 114 used as power dividers, and the transmission lines that interconnect the antenna assembly components ( 1105 - 1110 in FIG. 11 ). These elements will be discussed in more detail below.
  • the antenna assembly 100 includes five individual, log-periodic dipole array (LPDA) antennas 101 - 105 , the design of which is generally well-known in the art.
  • the particular configuration used in the preferred embodiment of the invention is illustrated in FIGS. 6a , 6 b, and 7 .
  • the LPDA antennas 101 - 105 are formed from two confronting conductive sections 201 , 202 .
  • the sections are generally complementary in shape, with the shorter front section 201 having one arm 203 A of a particular dipole antenna, and the somewhat taller rear section 202 having the other arm 203 B of the same dipole.
  • the two sections 201 , 202 are mounted in confronting relationship, with the upper portions of each section bent over at a 9 degree angle. This allows a coaxial cable 701 to be connected to the appropriate elements of the completed LPDA.
  • the shield 702 is soldered to the front section 201 , while the center conductor of the coaxial cable 701 is soldered to the rear section 202 .
  • FIGS. 8a and 8b illustrate an antenna assembly 100 of the present invention with a protective radome 801 attached.
  • the radome 801 may be of plastic or fiberglass construction, for example.
  • the phase adjustment mechanism 108 illustrated in FIGS. 3 through 5 , includes input coupling means such as an input coupling element 301 formed in a T-shape from a plate of conductive material.
  • input coupling element 301 is formed from a sheet of 0.062 inch half-hard brass.
  • the input coupling element 301 is electromagnetically coupled to movable coupling means, such as a movable coupling section 302 , which is fixed near a first end to a pivot point 303 .
  • the movable coupling section 302 is also preferably formed from a sheet of 0.062 inch half-hard brass.
  • the second end of the movable coupling section 302 terminates in a conductive plate 304 that is electromagnetically coupled to transmission line means, such as a semicircular, air-substrated transmission line section 305 .
  • the conductive plate 304 is an integrally formed part of the movable coupling section 302 .
  • the semicircular transmission line section 305 which is also preferably formed from 0.062 inch half-hard brass sheet stock, has first and second opposed end portions 306 , 307 from which antenna feeder cables ( 1109 , 1110 in FIG. 11 ) direct RF signals, having a desired phase relationship, to the first and third antenna groups 115 , 117 of the antenna assembly 100 .
  • the second antenna group 116 is fed from a transformer 113 that divides the antenna input signal between the input coupling element 1101 of the phase adjustment mechanism 108 and the second antenna group 116 .
  • Ground connection brackets 308 , 309 are provided near the respective opposed end portions 306 , 307 for attachment of the shield portions of the antenna feeder cables.
  • a similar ground bracket 310 is provided near the input coupling element 301 for attachment of the shield of an antenna assembly cable ( 1102 in FIG. 11 ).
  • a first antenna feeder cable ( 1109 in FIG. 11 ) couples RF signals to the first antenna group 115 . Since there is only one antenna 101 in this group in the preferred embodiment, no transformer or power divider is necessary.
  • a power divider 113 divides input power between the input coupling element 1101 of the phase adjustment mechanism and a power divider 114 that feed the second antenna group 116 .
  • a third power divider 112 has two outputs; one for each of the antennas 104 , 105 in the third antenna group 117 .
  • Each of the antennas 101 - 105 has a fifty ohm input impedance.
  • An antenna output cable ( 1105 - 1108 in FIG. 11 ) couples RF power to each of the antennas 102 - 105 ).
  • Power divider 112 illustrated in FIG. 9 , is a dielectric-substrated microstrip transformer, formed by etching unwanted copper from a copper coated substrate 901 of low-loss dielectric material to leave microstrip transmission line sections 902 terminated in contact pads 903 to accommodate coaxial transmission lines.
  • the vertical radiation pattern 1000 illustrated in FIG. 10 , has a main lobe 1001 with a main lobe axis coincident with the 0 degree reference line.
  • the illustrated pattern 1000 has a downtilt angle of 0 degrees because that is the angle that the main lobe axis makes with the 0 degree reference line.
  • the radiation pattern 1000 can be tilted down with respect to the earth's surface (the 0 degree reference line) by feeding the individual antennas 101 - 105 slightly out of phase with one another.
  • the phase shift is ordinarily made progressive.
  • one of the antennas or antenna groups in the antenna assembly 100 (the first antenna group 115 , in the preferred embodiment) is chosen as the reference group for phase purposes.
  • the RF signal applied to the next antenna 102 is then phase shifted by some amount X with respect to the reference antenna 101 .
  • the RF signal applied to the third antenna 103 is phase shifted by X degrees with respect to the second antenna 102 (2X degrees with respect to the first antenna 101 ). This progressive phase shift is continued for all of the antennas 101 - 105 in the antenna assembly 100 .
  • the progressive phase shift is approximately equal to one inch (each of the transmission paths to the individual antennas differs in electrical length, at the design operating frequency, by one inch, resulting in a phase shift of about 30 degrees at the operating frequency) and the vertical pattern tilts down five degrees.
  • FIG. 11 illustrates schematically the way in which the progressive phase shift is implemented with the phase adjustment mechanism 108 set at mid-range 1101 .
  • an antenna feeder cable 1109 couples a first end of the semicircular, air-substrated transmission line section 305 of the phase adjustment mechanism 108 to a first antenna group 115 , which comprises a single antenna 101 in the preferred embodiment.
  • the overall electrical path length, measured from the output of power divider 113 , where the input signal splits, to the point where the antenna cable 1109 couples to the first antenna 101 , is approximately 20 inches, with the phase adjustment mechanism 305 at its mid-point 1101 . This means, of course, that approximately one-half of the semicircular, air-substrated transmission line section 305 is included in the electrical path length for antennas of the first antenna group 115 and antennas of the third antenna group 117 .
  • the overall electrical path length from the divider 113 output point to the second antenna 102 is 21 inches, to the third antenna 103 is 22 inches, to the fourth antenna 104 is 23 inches, and to the fifth antenna 105 is 24 inches, all with the phase adjustment mechanism 108 set at its mid-point 1101 .
  • phase adjustment mechanism 108 set at its mid-point 1101 , a true progressive phase shift of approximately 30 degrees has been established between the antennas 101 - 105 of the antenna assembly. With the phase adjustment mechanism 108 set at this mid-point 1101 position, the radiation pattern of the antenna exhibits a 5 degree downtilt as illustrated in FIG. 12 .
  • FIG. 12 shows the vertical radiation pattern 1200 of the antenna assembly 100 with the phase adjustment mechanism set at its mid-point 1101 .
  • the axis 1202 of the main lobe 1201 is now coincident with the ⁇ 7 degree reference line, indicating that the main lobe axis is now tilted down 7 degrees with respect to the earth's surface.
  • the effective electrical path length to the first antenna group 101 is now about 18 inches, to the fourth antenna 104 about 25 inches, and to the fifth antenna 105 about 26 inches.
  • phase adjustment mechanism set at its minimum downtilt position 1113 , at least some of the phase relationships among the antennas of the first and second antenna groups 106 , 107 are effectively reversed.
  • the electrical path length to the first antenna 101 is now lengthened to 22 inches.
  • the electrical path length to the fourth antenna is about 21 inches, and the path to the fifth antenna is about 22 inches.
  • the effect on the vertical radiation pattern of the antenna assembly 100 with the phase adjustment mechanism 108 set at this minimum downtilt position 1113 is to restore the downtilt angle to zero degrees, as illustrated in FIG. 10 .
  • FIG. 14 depicts a remote control configuration for vertical radiation pattern downtilt adjustment.
  • drive means such as a drive mechanism 1401 is provided, mechanically connected to the movable coupling element of the phase adjustment mechanism 108 .
  • the drive mechanism may be an electric motor, a resolver or servomotor, a stepping motor, or any of a number of known positioning devices.
  • Control inputs 1403 for the drive mechanism 1401 may be provided from a remote location, such as a maintenance facility of the local service provider.
  • Position information 1404 is provided to the remote location by a position detector 1402 .
  • the position detector may be implemented by Hall effect sensors, optical encoders, a synchro/servo system, or any of a number of other known position detection devices.
  • FIGS. 15 and 16 illustrate a plurality of antenna assemblies 100 (three) in accordance with the present invention supported in normal operating position by an antenna support structure 1501 , such as a tower.
  • the antenna assemblies 100 are positioned such that the longitudinal axis of each antenna assembly 100 is substantially perpendicular to the earth's surface 1502 .
  • Each assembly 100 is designed to cover a 120 degree sector of a cell and is adapted to be adjusted as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

An antenna assembly having an operating frequency and a vertical radiation pattern with a main lobe axis defining a downtilt angle with respect to the earth's surface. The antenna assembly comprises a plurality of antennas in first, second, and third antenna groups physically disposed along a backplane, the backplane having a longitudinal axis along which the antennas are disposed, and a phase adjustment mechanism disposed electrically connected between the second first and third antenna groups, such that adjustment of the phase adjustment mechanism results in variation of the vertical radiation pattern downtilt angle.

Description

FIELD OF THE INVENTION
This invention relates generally to antennas and in particular to antennas having variable radiation patterns, and is more particularly directed toward an antenna in which the vertical radiation pattern downtilt angle is electrically variable.
BACKGROUND OF THE INVENTION
RF (radio frequency) communication systems that act to maximize spectrum efficiency through frequency reuse include cellular radiotelephone systems, some types of trunked communication systems, among others. A common feature that these systems generally share is the division of a service area into smaller areas known as “cells.”
Within each cell, a group of relatively low power base stations provides RF communication services to subscribers within that cell over a group of RF channels. Because of the low power, the same group of RF channels may be reused only a short distance away to provide communication services to subscribers in another (although not generally adjacent) cell.
Although offering distinct advantages in terms of spectrum efficiency, a system of the type just described demands considerable investment in infrastructure. Because of the relatively small cell size, a large number of cells may be required to provide adequate service over a large coverage area, and each cell requires a number of base stations, a controller, and an antenna system.
The type of antenna system selected for use within a cell is important both for maximizing system efficiency and for effectively tailoring system operation for particular categories of users. In many systems, each cell is further divided into sectors, multiplying at least the receive antenna requirement for the cell by the number of sectors selected. In a commonly used configuration, each cell is divided into six equal sectors, with each sector having its own directional receive antenna with a radiation pattern closely approximating the sector shape. A single transmit antenna having an omnidirectional radiation pattern is used for transmission into all sectors of the cell.
In other cell configurations, the cell may be divided into sectors for transmitting, as well. This type of system is useful for dealing with cells having irregular boundaries caused, for example, by natural or man-made obstructions. Omnidirectional transmit patterns, in contrast, are most often employed where the desired coverage pattern is approximately circular in shape.
Naturally, antenna systems used in sectored cells are directional antennas. Although the radiation patterns of these antennas are selected to approximate the sector shape, the patterns are not generally easy to alter after installation. A need to alter the radiation pattern may arise based upon studies of system performance, newly constructed obstacles to RF propagation, altering of the shapes of adjacent cells, or for a variety of other reasons.
It may even be required that cell boundaries be altered as a function of time. During periods of relatively low usage, in the evenings and on weekends and holidays, for example, overlapping coverage areas can be created by extending the radiation patterns of the antennas slightly into adjacent cells. This increases the number of channels available to users in the overlap areas, and minimizes the need for hand-offs, but it also increases the likelihood that co-channel interference may occur. During peak periods, when many channels are in use providing service to a relatively large number of users, the radiation patterns should be restored to a state that minimizes adjacent cell overlap.
Of course, extension of radiation patterns can be done with power control, but increasing the power of the RF signals transmitted by the antenna directly impacts the likelihood of undesired interference. Another way of altering antenna radiation patterns is to physically move the antennas themselves, but this is difficult to do after initial installation. It is possible, of course, to provide a mechanism to alter an antenna's azimuth and elevation, much the same way a radar antenna is moved, but such mechanisms are expensive, and the mechanical linkages required to support such movement would degrade the structural integrity of the antenna mounting system.
Accordingly, a need arises for an antenna system that provides an economical and easily manipulated adjustment to its radiation pattern without compromising the integrity of its mechanical mounting structure.
SUMMARY OF THE INVENTION
These needs and others are satisfied by the antenna assembly of the present invention, having an operating frequency and a vertical radiation pattern with a main lobe axis defining a downtilt angle with respect to the earth's surface. The antenna assembly comprises a plurality of antenna means in first, second, and third antenna groups disposed along a backplane, the backplane having a longitudinal axis along which the antenna means are disposed, and a phase adjustment means disposed electrically connected between the second first and third antenna groups, such that adjustment of the phase adjustment means results in variation of the vertical radiation pattern downtilt angle. The second and third antenna groups each comprise a plurality of antenna means. The first antenna group comprises one antenna means, and the second and third antenna groups each comprises two antenna means.
In one form of the invention, each of the antenna means comprises a log-periodic dipole array. Each of the log-periodic dipole array antennas comprises generally complementary front and rear dipole sections wherein one arm of each dipole is provided by the front dipole section, and the opposing arm of each dipole is provided by the rear dipole section. The backplane may be a plate of conductive material, substantially perpendicular to the earth's surface.
In another aspect of the invention, the phase adjustment means comprises input coupling means, movable coupling means having a pivotally mounted first end electromagnetically coupled to the input coupling means, and transmission line means electromagnetically coupled to a second end of the movable coupling means. Drive means, which may comprise an electric motor, may be coupled to the movable coupling element. The drive means may be operable from a remote location, and may include means for transmitting position information relating to the phase adjustment means to the remote location.
The transmission line means may be a semicircular, air-substrated transmission line section having opposing ends coupled to antenna feeder cables. The input coupling means may comprise an input coupling element formed in a T-shape from a plate of conductive material, and coupled to an antenna assembly cable, and the antenna feeder cables may be coupled to power dividers. Each of the power dividers may be a microstrip transformer fabricated on a substrate of low-loss dielectric material.
A first power divider is coupled to the input coupling element of the phase adjusting means and to a second power divider having a plurality of outputs, each output coupled to an antenna means of the second antenna group. The phase adjustment means has a range of adjustment including a minimum downtilt position, a mid-point, and a maximum downtilt position, and electrical path lengths at the operating frequency, from the input coupling element to each of the antenna means, are selected to define a progressive phase shift between each of the antenna means such that, with the phase adjustment means set at its mid-point, the vertical radiation pattern downtilt angle is approximately 7 degrees.
The vertical radiation pattern downtilt angle is approximately zero degrees with the phase adjustment means set at the minimum downtilt position, and the vertical radiation pattern downtilt angle is approximately 14 degrees with the phase adjustment means set at the maximum downtilt position.
Further objects, features, and advantages of the present invention will become apparent from the following description and drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a side view of an antenna assembly in accordance with the present invention;
FIG. 2 is a front plan view of the antenna assembly of FIG. 1;
FIG. 3 is a front view of a phase adjustment mechanism in accordance with the present invention;
FIG. 4 is a section view taken along section lines 4-4 of FIG. 3;
FIG. 5 is a side view of the phase adjustment mechanism of FIG. 3;
FIGS. 6a and 6b depict front and rear log-periodic dipole array sections;
FIG. 7 is a side view of the dipole array sections of FIGS. 6a and 6b in confronting relationship;
FIG. 8a is a side view of an antenna assembly in accordance with the present invention with a radome in place;
FIG. 8b is an end view of the antenna assembly of FIG. 8a;
FIG. 9 is a plan view of a dielectric-substrated microstrip transformer;
FIG. 10 is a vertical radiation pattern of the antenna assembly in accordance with the present invention;
FIG. 11 is a schematic representation of the antenna assembly of FIG. 1;
FIG. 12 is a further vertical radiation pattern of the antenna assembly of FIG. 1;
FIG. 13 is another vertical radiation pattern of the antenna assembly of FIG. 1;
FIG. 14 is a schematic representation of a control system for use with the antenna assembly of FIG. 1;
FIG. 15 depicts a plurality of antenna assemblies of FIG. 1 disposed on an antenna support structure; and
FIG. 16 is a top view of FIG. 15.
DETAILED DESCRIPTION OF THE INVENTION
In accordance with the present invention, an electrically variable beam tilt antenna is described that provides distinct advantages when compared to systems of the prior art. The invention can best be understood with reference to the accompanying drawing figures.
FIGS. 1 and 2 are side and front views, respectively, of an antenna assembly 100 in accordance with the present invention. The antenna assembly 100 comprises a plurality of antenna means such as antennas 101-105 arranged as first, second, and third antenna groups 115, 116, and 117. Antenna 101 alone forms the first antenna group 115, while antennas 102 and 103 form the second antenna group 116, and antennas 104 and 105 form the third antenna group 117. Phase adjustment means, such as a phase adjustment mechanism 108, is disposed between the second first and third antenna groups 116 115, 117. Operation and effect of the phase adjustment mechanism 108 will be discussed in detail subsequently.
As can be appreciated more readily from an examination of the side view of FIG. 1 in conjunction with FIG. 2, each of the antennas 101-105 is mounted along the longitudinal axis 110 of a conductive backplane 111. Preferably, the conductive backplane is an aluminum extrusion, although any conductive plate of sufficient strength to provide support for the antennas 101-105 would serve. The material selected should be relatively light in weight, however, so that the completed antenna assembly will not be unwieldy.
The backplane 111 also provides a mounting surface for an RF connector 109, the phase adjustment mechanism 108, and a plurality of dielectric-substrated microstrip transformers 112-114 used as power dividers, and the transmission lines that interconnect the antenna assembly components (1105-1110 in FIG. 11). These elements will be discussed in more detail below.
The antenna assembly 100 includes five individual, log-periodic dipole array (LPDA) antennas 101-105, the design of which is generally well-known in the art. The particular configuration used in the preferred embodiment of the invention is illustrated in FIGS. 6a, 6b, and 7. The LPDA antennas 101-105 are formed from two confronting conductive sections 201, 202. The sections are generally complementary in shape, with the shorter front section 201 having one arm 203A of a particular dipole antenna, and the somewhat taller rear section 202 having the other arm 203B of the same dipole.
As can be appreciated from an examination of FIG. 7, the two sections 201, 202 are mounted in confronting relationship, with the upper portions of each section bent over at a 9 degree angle. This allows a coaxial cable 701 to be connected to the appropriate elements of the completed LPDA. The shield 702 is soldered to the front section 201, while the center conductor of the coaxial cable 701 is soldered to the rear section 202.
FIGS. 8a and 8b illustrate an antenna assembly 100 of the present invention with a protective radome 801 attached. The radome 801 may be of plastic or fiberglass construction, for example.
The phase adjustment mechanism 108, illustrated in FIGS. 3 through 5, includes input coupling means such as an input coupling element 301 formed in a T-shape from a plate of conductive material. Preferably, the input coupling element 301 is formed from a sheet of 0.062 inch half-hard brass.
The input coupling element 301 is electromagnetically coupled to movable coupling means, such as a movable coupling section 302, which is fixed near a first end to a pivot point 303. The movable coupling section 302 is also preferably formed from a sheet of 0.062 inch half-hard brass. The second end of the movable coupling section 302 terminates in a conductive plate 304 that is electromagnetically coupled to transmission line means, such as a semicircular, air-substrated transmission line section 305. Preferably, the conductive plate 304 is an integrally formed part of the movable coupling section 302.
The semicircular transmission line section 305, which is also preferably formed from 0.062 inch half-hard brass sheet stock, has first and second opposed end portions 306, 307 from which antenna feeder cables (1109, 1110 in FIG. 11) direct RF signals, having a desired phase relationship, to the first and third antenna groups 115, 117 of the antenna assembly 100. The second antenna group 116 is fed from a transformer 113 that divides the antenna input signal between the input coupling element 1101 of the phase adjustment mechanism 108 and the second antenna group 116.
Ground connection brackets 308, 309 are provided near the respective opposed end portions 306, 307 for attachment of the shield portions of the antenna feeder cables. A similar ground bracket 310 is provided near the input coupling element 301 for attachment of the shield of an antenna assembly cable (1102 in FIG. 11).
From one of the opposing ends 307 of the semicircular transmission line section 305, a first antenna feeder cable (1109 in FIG. 11) couples RF signals to the first antenna group 115. Since there is only one antenna 101 in this group in the preferred embodiment, no transformer or power divider is necessary. A power divider 113 divides input power between the input coupling element 1101 of the phase adjustment mechanism and a power divider 114 that feed the second antenna group 116. A third power divider 112 has two outputs; one for each of the antennas 104, 105 in the third antenna group 117. Each of the antennas 101-105 has a fifty ohm input impedance. An antenna output cable (1105-1108 in FIG. 11) couples RF power to each of the antennas 102-105).
Power divider 112, illustrated in FIG. 9, is a dielectric-substrated microstrip transformer, formed by etching unwanted copper from a copper coated substrate 901 of low-loss dielectric material to leave microstrip transmission line sections 902 terminated in contact pads 903 to accommodate coaxial transmission lines.
The vertical radiation pattern 1000, illustrated in FIG. 10, has a main lobe 1001 with a main lobe axis coincident with the 0 degree reference line. The illustrated pattern 1000 has a downtilt angle of 0 degrees because that is the angle that the main lobe axis makes with the 0 degree reference line.
The radiation pattern 1000 can be tilted down with respect to the earth's surface (the 0 degree reference line) by feeding the individual antennas 101-105 slightly out of phase with one another. In order to avoid significant side lobe (1001, 1002, for example) distortion in the radiation pattern 1000, the phase shift is ordinarily made progressive. In other words, one of the antennas or antenna groups in the antenna assembly 100 (the first antenna group 115, in the preferred embodiment) is chosen as the reference group for phase purposes.
The RF signal applied to the next antenna 102 is then phase shifted by some amount X with respect to the reference antenna 101. The RF signal applied to the third antenna 103 is phase shifted by X degrees with respect to the second antenna 102 (2X degrees with respect to the first antenna 101). This progressive phase shift is continued for all of the antennas 101-105 in the antenna assembly 100.
For the antenna assembly 100 of the present invention, with the phase adjustment mechanism 108 positioned at its mid-point, the progressive phase shift is approximately equal to one inch (each of the transmission paths to the individual antennas differs in electrical length, at the design operating frequency, by one inch, resulting in a phase shift of about 30 degrees at the operating frequency) and the vertical pattern tilts down five degrees.
FIG. 11 illustrates schematically the way in which the progressive phase shift is implemented with the phase adjustment mechanism 108 set at mid-range 1101. As described above, an antenna feeder cable 1109 couples a first end of the semicircular, air-substrated transmission line section 305 of the phase adjustment mechanism 108 to a first antenna group 115, which comprises a single antenna 101 in the preferred embodiment.
The overall electrical path length, measured from the output of power divider 113, where the input signal splits, to the point where the antenna cable 1109 couples to the first antenna 101, is approximately 20 inches, with the phase adjustment mechanism 305 at its mid-point 1101. This means, of course, that approximately one-half of the semicircular, air-substrated transmission line section 305 is included in the electrical path length for antennas of the first antenna group 115 and antennas of the third antenna group 117.
Similarly, the overall electrical path length from the divider 113 output point to the second antenna 102 is 21 inches, to the third antenna 103 is 22 inches, to the fourth antenna 104 is 23 inches, and to the fifth antenna 105 is 24 inches, all with the phase adjustment mechanism 108 set at its mid-point 1101.
Thus, with the phase adjustment mechanism 108 set at its mid-point 1101, a true progressive phase shift of approximately 30 degrees has been established between the antennas 101-105 of the antenna assembly. With the phase adjustment mechanism 108 set at this mid-point 1101 position, the radiation pattern of the antenna exhibits a 5 degree downtilt as illustrated in FIG. 12.
FIG. 12 shows the vertical radiation pattern 1200 of the antenna assembly 100 with the phase adjustment mechanism set at its mid-point 1101. The axis 1202 of the main lobe 1201 is now coincident with the −7 degree reference line, indicating that the main lobe axis is now tilted down 7 degrees with respect to the earth's surface.
Moving the phase adjustment mechanism to its maximum downtilt position 1112 shortens the effective electrical path lengths from the phase adjustment mechanism input point 1103 to the first antenna group 115, while lengthening the paths to the antennas 104-105 of the third antenna group 117. Of course, since the second antenna group is not fed through the phase adjustment mechanism, the path length to the second antenna group does not change.
In the preferred embodiment, the effective electrical path length to the first antenna group 101 is now about 18 inches, to the fourth antenna 104 about 25 inches, and to the fifth antenna 105 about 26 inches.
The relative phase relationships induced as a result of these electrical path lengths causes a vertical radiation pattern downtilt of about 14 degrees, as shown in FIG. 13. As will be appreciated from an inspection of FIG. 13, the main lobe 1301 of the vertical radiation pattern 1300 now has an axis 1302 substantially coincident with the −14 degree reference line, indicating a vertical radiation pattern downtilt of 14 degrees.
With the phase adjustment mechanism set at its minimum downtilt position 1113, at least some of the phase relationships among the antennas of the first and second antenna groups 106, 107 are effectively reversed. The electrical path length to the first antenna 101 is now lengthened to 22 inches. The electrical path length to the fourth antenna is about 21 inches, and the path to the fifth antenna is about 22 inches.
The effect on the vertical radiation pattern of the antenna assembly 100 with the phase adjustment mechanism 108 set at this minimum downtilt position 1113 is to restore the downtilt angle to zero degrees, as illustrated in FIG. 10.
Of course, adjusting the phase adjustment mechanism directly, by climbing an associated antenna support structure, would be nearly as inconvenient as adjusting the antenna mounting assembly to tilt the antenna. FIG. 14 depicts a remote control configuration for vertical radiation pattern downtilt adjustment.
With the antenna assembly 100 mounted in its normal operation position on a support structure, drive means, such as a drive mechanism 1401 is provided, mechanically connected to the movable coupling element of the phase adjustment mechanism 108. The drive mechanism may be an electric motor, a resolver or servomotor, a stepping motor, or any of a number of known positioning devices. Control inputs 1403 for the drive mechanism 1401 may be provided from a remote location, such as a maintenance facility of the local service provider.
Position information 1404 is provided to the remote location by a position detector 1402. The position detector may be implemented by Hall effect sensors, optical encoders, a synchro/servo system, or any of a number of other known position detection devices.
FIGS. 15 and 16 illustrate a plurality of antenna assemblies 100 (three) in accordance with the present invention supported in normal operating position by an antenna support structure 1501, such as a tower. The antenna assemblies 100 are positioned such that the longitudinal axis of each antenna assembly 100 is substantially perpendicular to the earth's surface 1502. Each assembly 100 is designed to cover a 120 degree sector of a cell and is adapted to be adjusted as described above.
There has been described herein an electrically variable beam tilt antenna that is relatively free from the shortcomings of prior art antenna systems. It will be apparent to those skilled in the art that modifications may be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited except as may be necessary in view of the appended claims.

Claims (56)

What is claimed is:
1. An A base station array antenna assembly having an operating frequency and a vertical radiation pattern with a main lobe axis defining a downtilt angle with respect to the earth's surface, the antenna assembly comprising:
a plurality of antenna means in first, second, and third antenna groups physically disposed along a backplane, the backplane having a longitudinal axis along which the antenna means are disposed;
differential phase adjustment means disposedelectrically connected on a path of transmission line means between the secondfirst and third antenna groups configured to simultaneously advance a phase angle of a signal to one of said secondfirst and third antenna groups and delay the phase angle of said signal to the other of said secondfirst and third antenna groups;
such that adjustment of the phase adjustment means results in variation of the vertical radiation pattern downtilt angle between a first fixed position and a second fixed position;
said differential phase adjustment means including coupling means arcuately moveable along an arcuate section of said transmission line means to cause said simultaneous advance of a phase angle of a signal to one of said first and third antenna groups and a delay of the phase angle of said signal to the other of said first and third antenna groups.
2. The antenna assembly of claim 1, wherein the second and third antenna groups each comprise a plurality of antenna means.
3. The antenna assembly of claim 2, wherein the first antenna group comprises one antenna means.
4. The antenna assembly of claim 2, wherein the second and third antenna groups each comprises two antenna means.
5. The antenna assembly of claim 2, wherein each of the antenna means comprises a log-periodic dipole array.
6. The antenna assembly of claim 5, wherein each of the log-periodic dipole array antennas comprises generally complementary front and rear dipole sections wherein one arm of each dipole is provided by the front dipole section, and the opposing arm of each dipole is provided by the rear dipole section.
7. The antenna assembly of claim 1, wherein the backplane is a plate of conductive material.
8. The antenna assembly of claim 1, wherein the backplane is substantially perpendicular to the earth's surface.
9. The antenna assembly of claim 1, wherein the phase adjustment means comprises:
input coupling means;
movable coupling means having a pivotally mounted first end electromagnetically coupled to the input coupling means; and
transmission line means electromagnetically coupled to a second end of the movable coupling means.
10. The antenna assembly of claim 9, further comprising drive means coupled to the movable coupling element.
11. The antenna assembly of claim 10, wherein the drive means comprises an electric motor.
12. The antenna assembly of claim 10, wherein the drive means is operable from a remote location.
13. The antenna assembly of claim 12, wherein the drive means further includes means for transmitting position information relating to the phase adjustment means to the remote location.
14. The antenna assembly of claim 9, wherein the input coupling means comprises an input coupling element formed in a T-shape from a plate of conductive material, and the input coupling element is coupled to an antenna assembly cable.
15. The antenna assembly of claim 9, wherein the transmission line means comprises a semicircular, air-substrated transmission line section having opposing ends coupled to antenna feeder cables.
16. The antenna assembly of claim 15, wherein the antenna feeder cables are coupled to power dividers.
17. The antenna assembly of claim 16, wherein each of the power dividers is a microstrip transformer fabricated on a substrate of relatively low-loss dielectric material.
18. The antenna assembly of claim 16, further comprising a first power divider coupled to the input coupling element of the phase adjusting means and to a second power divider having a plurality of outputs, each output coupled to an antenna means of the second antenna group.
19. The antenna assembly of claim 18, wherein:
the phase adjustment means has a range of adjustment including a minimum downtilt position, a mid-point, and a maximum downtilt position; and
electrical path lengths at the operating frequency, from the input coupling means to each of the antenna means, are selected to define a progressive phase shift between each of the antenna means such that, with the phase adjustment means set at its mid-point, the vertical radiation pattern downtilt angle is approximately 7 degrees.
20. The antenna assembly of claim 19, wherein the vertical radiation pattern downtilt angle is approximately zero degrees with the phase adjustment means set at the minimum downtilt position.
21. The antenna assembly of claim 19, wherein the vertical radiation pattern downtilt angle is approximately 14 degrees with the phase adjustment means set at the maximum downtilt position.
22. The antenna assembly of claim 1, wherein said antenna assembly further comprises an input coupling means, said phase adjustment means providing a continuously variable electrical path length between said input coupling means and said second first and third antenna groups.
23. The antenna assembly of claim 22 wherein said phase adjustment means comprises transmission line means having first and second ends, and movable coupling means adjustably coupling the input coupling means to the transmission line means, whereby adjustment of said movable coupling means simultaneously decreases the electrical path length between said input coupling means and one of the first and second ends of said transmission line means and increases the electrical path length between the input coupling means and the other of said first and second ends of said transmission line means.
24. An A base station array antenna assembly having an operating frequency and a vertical radiation pattern with a main lobe axis defining a downtilt angle with respect to the earth's surface, the antenna assembly comprising:
a plurality of antennas in first, second, and third antenna groups physically disposed along a backplane, the backplane having a longitudinal axis along which the antennas are disposed;
a phase adjustment mechanism disposed electrically connected between the second first and third antenna groups, the phase adjustment mechanism including:
an input coupling element;
a movable coupling section having a pivotally mounted first end electromagnetically coupled to the input coupling element; and
a semicircular, air-substrated transmission line section electromagnetically coupled to a second end of the movable coupling section;
such that pivotal position adjustment of the phase adjustment mechanism results in variation of the vertical radiation pattern downtilt angle between a first fixed position and a second fixed position.
25. The antenna assembly of claim 24, further comprising a drive mechanism coupled to the movable coupling element.
26. The antenna assembly of claim 25, wherein the drive mechanism is an electric motor.
27. The antenna assembly of claim 25, wherein the drive mechanism is operable from a remote location.
28. The antenna assembly of claim 27, wherein the drive mechanism transmits position information relating to the phase adjustment mechanism to the remote location.
29. The antenna assembly of claim 24, wherein:
the phase adjustment mechanism has a range of adjustment including a minimum downtilt position, a mid-point, and a maximum downtilt position; and
electrical path lengths at the operating frequency, from the input coupling element to each of the antennas, are selected to define a progressive phase shift between each of the antennas such that, with the phase adjustment mechanism set at its mid-point, the vertical radiation pattern downtilt angle is approximately 7 degrees.
30. The antenna assembly of claim 29, wherein the vertical radiation pattern downtilt angle is approximately zero degrees with the phase adjustment mechanism set at the minimum downtilt position.
31. The antenna assembly of claim 29, wherein the vertical radiation pattern downtilt angle is approximately 14 degrees with the phase adjustment mechanism set at the maximum downtilt position.
32. An A base station array antenna assembly having an operating frequency and a vertical radiation pattern with a main lobe axis defining a downtilt angle with respect to the earth's surface, the antenna assembly comprising:
a plurality of antennas in first, second, and third antenna groups physically disposed along a backplane, the backplane having a longitudinal axis along which the antennas are disposed;
a phase adjustment mechanism disposed electrically connected between the second first and third antenna groups, the phase adjustment mechanism including:
an input coupling element;
a movable coupling section having a pivotally mounted first end electromagnetically coupled to the input coupling element; and
a semicircular, air-substrated transmission line section electromagnetically coupled to a second end of the movable coupling section;
the phase adjustment mechanism having a range of adjustment including a minimum downtilt position, a mid-point, and a maximum downtilt position;
a drive mechanism coupled to the movable coupling section;
electrical path lengths at the operating frequency, from the input coupling element to each of the antennas, are selected to define a progressive phase shift between each of the antennas such that, with the phase adjustment mechanism set at its mid-point, the vertical radiation pattern downtilt angle is approximately 7 degrees;
such that adjustment of the phase adjustment mechanism results in variation of the vertical radiation pattern downtilt angle.
33. The antenna assembly of claim 32, wherein the drive mechanism comprises an electric motor drive capable of activation from a remote location, and transmitting position information relating to the phase adjustment mechanism to the remote location.
34. The antenna assembly of claim 1 wherein the coupling means is capacitively coupled to the transmission line means.
35. The antenna assembly of claim 1 wherein the coupling means includes a pivotally mounted, electrically conductive section.
36. The antenna assembly of claim 1 further comprising drive means coupled to the coupling means.
37. The antenna assembly of claim 36 wherein the drive means comprises an electric motor.
38. The antenna assembly of claim 36 wherein the drive means receives control inputs from a remote location.
39. The antenna assembly of claim 38 wherein the drive means further includes means configured to transmit position information relating to the phase adjustment means to the remote location.
40. The antenna assembly of claim 39 wherein said means configured to transmit position information includes a position detector.
41. The antenna assembly of claim 40 wherein said position detector comprises a Hall effect sensor, an optical encoder, a synchro servo system or other position detection device.
42. The antenna assembly of claim 36 wherein said drive mechanism is a resolver, or servomotor, or stepping motor or other electric motor, or other positioning device.
43. The antenna assembly of claim 1 wherein at least one of said antenna groups includes in a feed comprising a dielectric-substrated microstrip transformer.
44. The antenna assembly of claim 1 wherein said arcuate section of said transmission line means comprises an air-substrated metal conductor.
45. The antenna assembly of claim 24 wherein the second end of the movable coupling section is capacitively coupled to the transmission line section.
46. The antenna assembly of claim 24 wherein at least one of said antenna groups includes in a feed comprising a dielectric-substrated microstrip transformer.
47. The antenna assembly of claim 25 wherein said drive mechanism comprises a resolver, or servomotor or stepping motor or other electric motor, or other positioning device.
48. The antenna assembly of claim 28 wherein the drive mechanism includes a position detector.
49. The antenna assembly of claim 48 wherein said position detector comprises a Hall effect sensor, an optical encoder, a synchro servo system or other position detection device.
50. A plurality of antenna assemblies each as defined in claim 1, supported by a tower or other common support structure.
51. The assemblies of claim 50 designed such that each assembly covers a sector of a cell.
52. The assemblies of claim 51 comprising three in number, wherein each of the assemblies covers a 120 degree sector of a cell.
53. The assemblies of claim 50, wherein each assembly is coupled to a drive mechanism receiving control inputs provided from a remote location.
54. The assemblies of claim 53, wherein each assembly provides beam position information to the remote location.
55. The assemblies of claim 54, wherein the position information is provided in each assembly by a position detector.
56. The assemblies of claim 55 wherein the position detector comprises a Hall effect sensor, a synchro/servo system, or optical encoder.
US10/747,818 1996-11-13 2003-12-29 Electrically variable beam tilt antenna Expired - Lifetime USRE44332E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/747,818 USRE44332E1 (en) 1996-11-13 2003-12-29 Electrically variable beam tilt antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/747,627 US5917455A (en) 1996-11-13 1996-11-13 Electrically variable beam tilt antenna
US10/747,818 USRE44332E1 (en) 1996-11-13 2003-12-29 Electrically variable beam tilt antenna

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/747,627 Reissue US5917455A (en) 1996-11-13 1996-11-13 Electrically variable beam tilt antenna

Publications (1)

Publication Number Publication Date
USRE44332E1 true USRE44332E1 (en) 2013-07-02

Family

ID=25005941

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/747,627 Ceased US5917455A (en) 1996-11-13 1996-11-13 Electrically variable beam tilt antenna
US10/747,818 Expired - Lifetime USRE44332E1 (en) 1996-11-13 2003-12-29 Electrically variable beam tilt antenna

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/747,627 Ceased US5917455A (en) 1996-11-13 1996-11-13 Electrically variable beam tilt antenna

Country Status (4)

Country Link
US (2) US5917455A (en)
AU (1) AU7182098A (en)
TW (1) TW382834B (en)
WO (1) WO1998021779A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10177456B2 (en) 2014-07-31 2019-01-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives Log-periodic antenna with wide frequency band

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2787654A1 (en) * 1998-12-21 2000-06-23 Valeo Securite Habitacle LOW FREQUENCY COMMUNICATION DEVICE BY MAGNETIC COUPLING
FR2790142A1 (en) * 1999-02-24 2000-08-25 France Telecom ADJUSTABLE TILT ANTENNA
FR2794290B1 (en) * 1999-05-10 2007-04-20 Cit Alcatel VERTICAL POLARIZATION ANTENNA
DE19938862C1 (en) * 1999-08-17 2001-03-15 Kathrein Werke Kg High frequency phase shifter assembly
CN1370338A (en) * 1999-08-24 2002-09-18 帕拉泰克微波公司 Voltage tunable copolanar phase shifters
EP1212809B1 (en) 1999-09-14 2004-03-31 Paratek Microwave, Inc. Serially-fed phased array antennas with dielectric phase shifters
US6310585B1 (en) * 1999-09-29 2001-10-30 Radio Frequency Systems, Inc. Isolation improvement mechanism for dual polarization scanning antennas
AU2001259372A1 (en) 2000-05-02 2001-11-12 Paratek Microwave, Inc. Microstrip phase shifter
US6667714B1 (en) * 2000-05-03 2003-12-23 Lucent Technologies Inc. Downtilt control for multiple antenna arrays
US6351248B1 (en) * 2000-06-28 2002-02-26 Bellsouth Intellectual Property Management Corp. Directional antenna
DE10034911A1 (en) * 2000-07-18 2002-02-07 Kathrein Werke Kg Antenna for multi-frequency operation
US6538603B1 (en) 2000-07-21 2003-03-25 Paratek Microwave, Inc. Phased array antennas incorporating voltage-tunable phase shifters
KR100374175B1 (en) * 2000-12-29 2003-03-03 주식회사 에이스테크놀로지 A variable down-tilting array antenna
DE10104564C1 (en) * 2001-02-01 2002-09-19 Kathrein Werke Kg Control device for setting a different drop angle, in particular of mobile radio antennas belonging to a base station, and an associated antenna and method for changing a drop angle
US6573875B2 (en) * 2001-02-19 2003-06-03 Andrew Corporation Antenna system
DE20216431U1 (en) 2001-02-19 2003-03-13 Andrew Corp., Orland Park, Ill. Cellular base station antenna has radiators interconnected by transmission line and electromechanical phase adjustment system
US6717555B2 (en) * 2001-03-20 2004-04-06 Andrew Corporation Antenna array
US7233217B2 (en) * 2001-08-23 2007-06-19 Andrew Corporation Microstrip phase shifter
DE10150150B4 (en) * 2001-10-11 2006-10-05 Kathrein-Werke Kg Dual polarized antenna array
GB0125349D0 (en) * 2001-10-22 2001-12-12 Qinetiq Ltd Antenna system
EP1509969A4 (en) * 2002-03-26 2005-08-31 Andrew Corp Multiband dual polarized adjustable beamtilt base station antenna
US6885350B2 (en) * 2002-03-29 2005-04-26 Arc Wireless Solutions, Inc. Microstrip fed log periodic antenna
EP1568097A4 (en) * 2002-11-08 2006-08-23 Ems Technologies Inc Variable power divider
US7221239B2 (en) * 2002-11-08 2007-05-22 Andrew Corporation Variable power divider
US6924776B2 (en) * 2003-07-03 2005-08-02 Andrew Corporation Wideband dual polarized base station antenna offering optimized horizontal beam radiation patterns and variable vertical beam tilt
US7358922B2 (en) * 2002-12-13 2008-04-15 Commscope, Inc. Of North Carolina Directed dipole antenna
FR2851694B1 (en) * 2003-02-24 2005-05-20 Jaybeam Ltd ELECTRICALLY CONTROLLED ANTENNA FOR DETACHING
DE10316788B3 (en) * 2003-04-11 2004-10-21 Kathrein-Werke Kg Connection device for connecting at least two radiator devices of an antenna arrangement arranged offset to one another
US8018390B2 (en) * 2003-06-16 2011-09-13 Andrew Llc Cellular antenna and systems and methods therefor
US7170466B2 (en) * 2003-08-28 2007-01-30 Ems Technologies, Inc. Wiper-type phase shifter with cantilever shoe and dual-polarization antenna with commonly driven phase shifters
BRPI0318559B1 (en) * 2003-10-23 2018-09-18 Pirelli & C Spa method for configuring the radiating characteristics of an antenna, antenna with configurable irradiation characteristics, apparatus comprising an antenna, and base station
US20050219133A1 (en) * 2004-04-06 2005-10-06 Elliot Robert D Phase shifting network
US7868843B2 (en) 2004-08-31 2011-01-11 Fractus, S.A. Slim multi-band antenna array for cellular base stations
US7298233B2 (en) * 2004-10-13 2007-11-20 Andrew Corporation Panel antenna with variable phase shifter
SE528018C2 (en) * 2004-11-26 2006-08-08 Powerwave Technologies Sweden antenna control system
GB0426319D0 (en) * 2004-12-01 2005-01-05 Finglas Technologies Ltd Remote control of antenna line device
US20060202900A1 (en) * 2005-03-08 2006-09-14 Ems Technologies, Inc. Capacitively coupled log periodic dipole antenna
US7557675B2 (en) * 2005-03-22 2009-07-07 Radiacion Y Microondas, S.A. Broad band mechanical phase shifter
WO2006130084A1 (en) 2005-05-31 2006-12-07 Powerwave Technologies Sweden Ab Beam adjusting device
CN2812316Y (en) * 2005-06-02 2006-08-30 京信通信技术(广州)有限公司 Adjuster for mobile communication antenna phase shifter
FI20055285A (en) 2005-06-03 2006-12-04 Filtronic Comtek Oy Arrangements for controlling a base station antenna
WO2007042938A2 (en) 2005-10-14 2007-04-19 Fractus, Sa Slim triple band antenna array for cellular base stations
US20090061941A1 (en) * 2006-03-17 2009-03-05 Steve Clark Telecommunications antenna monitoring system
US7429960B2 (en) * 2006-04-27 2008-09-30 Agc Automotive Americas R & D, Inc. Log-periodic antenna
JP5209641B2 (en) * 2006-12-22 2013-06-12 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Antenna device
US7830307B2 (en) * 2007-04-13 2010-11-09 Andrew Llc Array antenna and a method of determining an antenna beam attribute
US20100053008A1 (en) * 2008-08-27 2010-03-04 Pc-Tel, Inc. Antenna having distributed phase shift mechanism
DE102009019557A1 (en) 2009-04-30 2010-11-11 Kathrein-Werke Kg A method of operating a phased array antenna and a phase shifter assembly and associated phased array antenna
KR101567882B1 (en) 2009-05-11 2015-11-12 주식회사 케이엠더블유 Multi line phase shifterforadjustable vertical beam tilt antenna
US9190715B2 (en) * 2010-01-19 2015-11-17 Quintel Technology Limited Method and apparatus for antenna radiation pattern sweeping
US8674788B2 (en) * 2010-03-31 2014-03-18 Andrew Llc Phase shifter having an accelerometer disposed on a movable circuit board
JP5729184B2 (en) * 2011-07-11 2015-06-03 住友電気工業株式会社 Broadcast antenna system
US20160301141A1 (en) * 2013-05-01 2016-10-13 Byron del Castillo Radio Communication System With Antenna Array
US10170831B2 (en) * 2015-08-25 2019-01-01 Elwha Llc Systems, methods and devices for mechanically producing patterns of electromagnetic energy
CN107579330A (en) * 2017-08-31 2018-01-12 华桂星 A kind of antenna assembly and its apply the signal coverage method in elevator hoistways
CN111883929B (en) * 2020-05-28 2022-07-05 上海民航华东空管工程技术有限公司 Debugging method for reducing downward sliding angle of M-type downward sliding antenna
CN115632228B (en) * 2022-09-29 2023-09-29 湖南迈克森伟电子科技有限公司 Antenna unit, antenna array and electronic equipment

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2968808A (en) 1954-08-24 1961-01-17 Alford Andrew Steerable antenna array
US3110030A (en) 1961-05-25 1963-11-05 Martin Marietta Corp Cone mounted logarithmic dipole array antenna
US3193831A (en) 1961-11-22 1965-07-06 Andrew Corp Logarithmic periodic antenna
US4203118A (en) 1978-04-10 1980-05-13 Andrew Alford Antenna for cross polarized waves
US4241352A (en) 1976-09-15 1980-12-23 Ball Brothers Research Corporation Feed network scanning antenna employing rotating directional coupler
JPS636906A (en) 1986-06-27 1988-01-12 Toshiba Corp Variable directional array antenna system
US4788515A (en) 1988-02-19 1988-11-29 Hughes Aircraft Company Dielectric loaded adjustable phase shifting apparatus
US5184140A (en) 1990-02-26 1993-02-02 Mitsubishi Denki Kabushiki Kaisha Antenna system
US5187455A (en) 1990-06-13 1993-02-16 Murata Manufacturing Co., Ltd. Delay line device with adjustable time delay
JPH05121915A (en) 1991-10-25 1993-05-18 Sumitomo Electric Ind Ltd Distribution phase shifter
AU4162593A (en) 1992-07-17 1994-01-20 Radio Frequency Systems Pty Limited Phase shifter
US5281974A (en) 1988-01-11 1994-01-25 Nec Corporation Antenna device capable of reducing a phase noise
JPH06326501A (en) 1993-05-12 1994-11-25 Sumitomo Electric Ind Ltd Distribution variable phase shifter
US5440318A (en) 1990-08-22 1995-08-08 Butland; Roger J. Panel antenna having groups of dipoles fed with insertable delay lines for electrical beam tilting and a mechanically tiltable ground plane
US5488737A (en) 1992-11-17 1996-01-30 Southwestern Bell Technology Resources, Inc. Land-based wireless communications system having a scanned directional antenna
JPH0847043A (en) 1994-08-01 1996-02-16 N T T Ido Tsushinmo Kk Zone revision system in mobile communication
US5512914A (en) 1992-06-08 1996-04-30 Orion Industries, Inc. Adjustable beam tilt antenna
US5551060A (en) 1991-09-03 1996-08-27 Nippon Telegraph And Telephone Corporation Structure of cells within a mobile communication system
US5617103A (en) 1995-07-19 1997-04-01 The United States Of America As Represented By The Secretary Of The Army Ferroelectric phase shifting antenna array
US5801600A (en) 1993-10-14 1998-09-01 Deltec New Zealand Limited Variable differential phase shifter providing phase variation of two output signals relative to one input signal
US5805996A (en) 1991-12-13 1998-09-08 Nokia Telecommunications Oy Base station with antenna coverage directed into neighboring cells based on traffic load
US5818385A (en) 1994-06-10 1998-10-06 Bartholomew; Darin E. Antenna system and method
US6198458B1 (en) 1994-11-04 2001-03-06 Deltec Telesystems International Limited Antenna control system
US20020126059A1 (en) * 2001-02-19 2002-09-12 Zimmerman Martin L. Cellular base station antenna
JP5121915B2 (en) 2010-12-07 2013-01-16 中国電力株式会社 Method and apparatus for treating jellyfish at water intake of power plant

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1599654A (en) * 1977-08-05 1981-10-07 Holman R R Automatic lancet

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2968808A (en) 1954-08-24 1961-01-17 Alford Andrew Steerable antenna array
US3110030A (en) 1961-05-25 1963-11-05 Martin Marietta Corp Cone mounted logarithmic dipole array antenna
US3193831A (en) 1961-11-22 1965-07-06 Andrew Corp Logarithmic periodic antenna
US4241352A (en) 1976-09-15 1980-12-23 Ball Brothers Research Corporation Feed network scanning antenna employing rotating directional coupler
US4203118A (en) 1978-04-10 1980-05-13 Andrew Alford Antenna for cross polarized waves
JPS636906A (en) 1986-06-27 1988-01-12 Toshiba Corp Variable directional array antenna system
US5281974A (en) 1988-01-11 1994-01-25 Nec Corporation Antenna device capable of reducing a phase noise
US4788515A (en) 1988-02-19 1988-11-29 Hughes Aircraft Company Dielectric loaded adjustable phase shifting apparatus
US5184140A (en) 1990-02-26 1993-02-02 Mitsubishi Denki Kabushiki Kaisha Antenna system
US5187455A (en) 1990-06-13 1993-02-16 Murata Manufacturing Co., Ltd. Delay line device with adjustable time delay
US5440318A (en) 1990-08-22 1995-08-08 Butland; Roger J. Panel antenna having groups of dipoles fed with insertable delay lines for electrical beam tilting and a mechanically tiltable ground plane
US5551060A (en) 1991-09-03 1996-08-27 Nippon Telegraph And Telephone Corporation Structure of cells within a mobile communication system
JPH05121915A (en) 1991-10-25 1993-05-18 Sumitomo Electric Ind Ltd Distribution phase shifter
US5805996A (en) 1991-12-13 1998-09-08 Nokia Telecommunications Oy Base station with antenna coverage directed into neighboring cells based on traffic load
US5512914A (en) 1992-06-08 1996-04-30 Orion Industries, Inc. Adjustable beam tilt antenna
AU4162593A (en) 1992-07-17 1994-01-20 Radio Frequency Systems Pty Limited Phase shifter
US5488737A (en) 1992-11-17 1996-01-30 Southwestern Bell Technology Resources, Inc. Land-based wireless communications system having a scanned directional antenna
JPH06326501A (en) 1993-05-12 1994-11-25 Sumitomo Electric Ind Ltd Distribution variable phase shifter
US5801600A (en) 1993-10-14 1998-09-01 Deltec New Zealand Limited Variable differential phase shifter providing phase variation of two output signals relative to one input signal
US5818385A (en) 1994-06-10 1998-10-06 Bartholomew; Darin E. Antenna system and method
JPH0847043A (en) 1994-08-01 1996-02-16 N T T Ido Tsushinmo Kk Zone revision system in mobile communication
US6198458B1 (en) 1994-11-04 2001-03-06 Deltec Telesystems International Limited Antenna control system
US5617103A (en) 1995-07-19 1997-04-01 The United States Of America As Represented By The Secretary Of The Army Ferroelectric phase shifting antenna array
US20020126059A1 (en) * 2001-02-19 2002-09-12 Zimmerman Martin L. Cellular base station antenna
US20020135524A1 (en) * 2001-02-19 2002-09-26 Andrew Corporation Orland Park Il Antenna system
US6573875B2 (en) * 2001-02-19 2003-06-03 Andrew Corporation Antenna system
US6987487B2 (en) * 2001-02-19 2006-01-17 Andrew Corporation Antenna system
JP5121915B2 (en) 2010-12-07 2013-01-16 中国電力株式会社 Method and apparatus for treating jellyfish at water intake of power plant

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Variable Electron Beam-Aerial System for 1½ meters, Journal IEEE, Part IIIA, vol. 93,1946, Bacon, G. E.
Variable Electron Beam—Aerial System for 1½ meters, Journal IEEE, Part IIIA, vol. 93,1946, Bacon, G. E.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10177456B2 (en) 2014-07-31 2019-01-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives Log-periodic antenna with wide frequency band

Also Published As

Publication number Publication date
US5917455A (en) 1999-06-29
WO1998021779A1 (en) 1998-05-22
TW382834B (en) 2000-02-21
AU7182098A (en) 1998-06-03

Similar Documents

Publication Publication Date Title
USRE44332E1 (en) Electrically variable beam tilt antenna
US5629713A (en) Horizontally polarized antenna array having extended E-plane beam width and method for accomplishing beam width extension
CN106450690B (en) Low profile overlay antenna
JP3302442B2 (en) Adjustable beam tilt antenna
EP1751821B1 (en) Directive dipole antenna
US7365698B2 (en) Dipole antenna
US7196674B2 (en) Dual polarized three-sector base station antenna with variable beam tilt
AU770240B2 (en) Mechanically adjustable phase-shifting parasitic antenna element
US6037912A (en) Low profile bi-directional antenna
CN1169387C (en) Collapsible dipole antenna
US6339406B1 (en) Circular polarized planar printed antenna concept with shaped radiation pattern
US20040061653A1 (en) Dynamically variable beamwidth and variable azimuth scanning antenna
US20040246175A1 (en) Apparatus for steering an antenna system
US6563399B2 (en) Adjustable azimuth and phase shift antenna
EP0976171B1 (en) A method for improving antenna performance parameters and an antenna arrangement
EP0920075B1 (en) Wide-angle circular polarization antenna
US7006053B2 (en) Adjustable reflector system for fixed dipole antenna
US6917346B2 (en) Wide bandwidth base station antenna and antenna array
WO2000001031A9 (en) Antenna exhibiting azimuth and elevation beam shaping characteristics
GB2291271A (en) Communications antenna structure
US5969690A (en) Mobile radio antenna
US20220247067A1 (en) Base station antenna
EP0618637B1 (en) Antenna structure
EP0601576B1 (en) Antenna system for mobile communication
US6175340B1 (en) Hybrid geostationary and low earth orbit satellite ground station antenna

Legal Events

Date Code Title Description
AS Assignment

Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, CA

Free format text: SECURITY AGREEMENT;ASSIGNORS:COMMSCOPE, INC. OF NORTH CAROLINA;ALLEN TELECOM, LLC;ANDREW CORPORATION;REEL/FRAME:020362/0241

Effective date: 20071227

AS Assignment

Owner name: ANDREW LLC (F/K/A ANDREW CORPORATION), NORTH CAROL

Free format text: PATENT RELEASE;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:026039/0005

Effective date: 20110114

Owner name: ALLEN TELECOM LLC, NORTH CAROLINA

Free format text: PATENT RELEASE;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:026039/0005

Effective date: 20110114

Owner name: COMMSCOPE, INC. OF NORTH CAROLINA, NORTH CAROLINA

Free format text: PATENT RELEASE;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:026039/0005

Effective date: 20110114

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, NE

Free format text: SECURITY AGREEMENT;ASSIGNORS:ALLEN TELECOM LLC, A DELAWARE LLC;ANDREW LLC, A DELAWARE LLC;COMMSCOPE, INC. OF NORTH CAROLINA, A NORTH CAROLINA CORPORATION;REEL/FRAME:026276/0363

Effective date: 20110114

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, NE

Free format text: SECURITY AGREEMENT;ASSIGNORS:ALLEN TELECOM LLC, A DELAWARE LLC;ANDREW LLC, A DELAWARE LLC;COMMSCOPE, INC OF NORTH CAROLINA, A NORTH CAROLINA CORPORATION;REEL/FRAME:026272/0543

Effective date: 20110114

AS Assignment

Owner name: COMMSCOPE TECHNOLOGIES LLC, NORTH CAROLINA

Free format text: CHANGE OF NAME;ASSIGNOR:ANDREW LLC;REEL/FRAME:035293/0311

Effective date: 20150301

AS Assignment

Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CONNECTICUT

Free format text: SECURITY INTEREST;ASSIGNORS:ALLEN TELECOM LLC;COMMSCOPE TECHNOLOGIES LLC;COMMSCOPE, INC. OF NORTH CAROLINA;AND OTHERS;REEL/FRAME:036201/0283

Effective date: 20150611

Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATE

Free format text: SECURITY INTEREST;ASSIGNORS:ALLEN TELECOM LLC;COMMSCOPE TECHNOLOGIES LLC;COMMSCOPE, INC. OF NORTH CAROLINA;AND OTHERS;REEL/FRAME:036201/0283

Effective date: 20150611

AS Assignment

Owner name: COMMSCOPE TECHNOLOGIES LLC, NORTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST PATENTS (RELEASES RF 036201/0283);ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:042126/0434

Effective date: 20170317

Owner name: REDWOOD SYSTEMS, INC., NORTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST PATENTS (RELEASES RF 036201/0283);ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:042126/0434

Effective date: 20170317

Owner name: ALLEN TELECOM LLC, NORTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST PATENTS (RELEASES RF 036201/0283);ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:042126/0434

Effective date: 20170317

Owner name: COMMSCOPE, INC. OF NORTH CAROLINA, NORTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST PATENTS (RELEASES RF 036201/0283);ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:042126/0434

Effective date: 20170317

AS Assignment

Owner name: COMMSCOPE, INC. OF NORTH CAROLINA, NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:048840/0001

Effective date: 20190404

Owner name: ALLEN TELECOM LLC, ILLINOIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:048840/0001

Effective date: 20190404

Owner name: REDWOOD SYSTEMS, INC., NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:048840/0001

Effective date: 20190404

Owner name: COMMSCOPE TECHNOLOGIES LLC, NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:048840/0001

Effective date: 20190404

Owner name: ANDREW LLC, NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:048840/0001

Effective date: 20190404

Owner name: COMMSCOPE TECHNOLOGIES LLC, NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:049260/0001

Effective date: 20190404

Owner name: ANDREW LLC, NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:049260/0001

Effective date: 20190404

Owner name: REDWOOD SYSTEMS, INC., NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:049260/0001

Effective date: 20190404

Owner name: COMMSCOPE, INC. OF NORTH CAROLINA, NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:049260/0001

Effective date: 20190404

Owner name: ALLEN TELECOM LLC, ILLINOIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:049260/0001

Effective date: 20190404