USRE44316E1 - Informing network about amount of data to be transferred - Google Patents

Informing network about amount of data to be transferred Download PDF

Info

Publication number
USRE44316E1
USRE44316E1 US12/774,916 US77491603A USRE44316E US RE44316 E1 USRE44316 E1 US RE44316E1 US 77491603 A US77491603 A US 77491603A US RE44316 E USRE44316 E US RE44316E
Authority
US
United States
Prior art keywords
countdown value
bearer
transmission
data
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime, expires
Application number
US12/774,916
Inventor
Janne Parantainen
Guillaume Sebire
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intellectual Ventures I LLC
Original Assignee
Intellectual Ventures I LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intellectual Ventures I LLC filed Critical Intellectual Ventures I LLC
Priority to US12/774,916 priority Critical patent/USRE44316E1/en
Assigned to SPYDER NAVIGATIONS L.L.C. reassignment SPYDER NAVIGATIONS L.L.C. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NOKIA CORPORATION
Assigned to INTELLECTUAL VENTURES I LLC reassignment INTELLECTUAL VENTURES I LLC MERGER (SEE DOCUMENT FOR DETAILS). Assignors: SPYDER NAVIGATIONS L.L.C.
Application granted granted Critical
Publication of USRE44316E1 publication Critical patent/USRE44316E1/en
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present invention relates to informing a network about the amount of data to be transferred on an uplink layer 2 link used for transferring signalling data and user data, and more particularly to informing a network on the amount of data to be transferred on an uplink layer 2 link established for a user plane radio bearer, the layer 2 link being also used for sending data blocks of signalling radio bearers in a mobile communication system.
  • the mobile communication system generally refers to any telecommunication system, which enables wireless communication when a user is located within the service area of the system.
  • cellular mobile communication systems such as the GSM (Global System for Mobile communications), or corresponding systems, such as the PCS (Personal Communication System) or the DCS 1800 (Digital Cellular System for 1800 MHz), third-generation mobile systems, such as the UMTS (Universal Mobile Communication System) and systems based on the above-mentioned systems, such as GSM 2+ systems and the future 4 th generation systems.
  • GSM Global System for Mobile communications
  • PCS Personal Communication System
  • DCS 1800 Digital Cellular System for 1800 MHz
  • third-generation mobile systems such as the UMTS (Universal Mobile Communication System)
  • GSM 2+ systems Global System for Mobile Communications
  • future 4 th generation systems such as GSM 2+ systems and the future 4 th generation systems.
  • PLMN public land mobile network
  • GSM 2+ systems While the standardization of the UMTS is maturing, the GSM 2+ systems are also evolving towards the UMTS. This means that features of the UMTS, which were not originally planned to be embedded in the GSM 2+, are added to GSM 2+ systems or services, such as GPRS (General Packet Radio Service) or GERAN (GSM/EDGE (Enhanced Data rates for Global Evolution) Radio Access Network).
  • GSM/EDGE Enhanced Data rates for Global Evolution
  • One example of such an added feature is having several signalling radio bearers for one mobile station between the mobile station and the radio access network.
  • CCCH Common Control Channel
  • PCCCH Packet Common Control Channel
  • the data of the other four signalling radio bearers may be multiplexed into a layer 2 link established for a user data bearer.
  • the layer 2 link is called a Temporary Block Flow TBF in the GPRS and the GERAN.
  • the layer 2 link hereinafter called a TBF, is a carrier (i.e. allocated radio resource) that supports the unidirectional transfer of packet data units.
  • the TBF is temporary and it is maintained usually only for the duration of the data transfer.
  • the protocol architecture of the air interface of a GERAN lu comprises a physical layer L 1 and a network layer L 3 .
  • the lu means that mobile stations are connected to a radio access network GERAN with lu interfaces towards the core network providing the data transfer.
  • the data link layer L 2 of the GERAN lu comprises a radio link control RLC sublayer and a medium access control MAC sublayer, which are common for a user plane (i.e. for user data) and for a signalling plane (i.e. for signalling data).
  • the layers above the RLC are a PDCP (Packet Data Convergence Protocol) for the user plane and an RRC (Radio Resource Control) for the signalling plane.
  • Each radio bearer has an RLC instance transmitting the radio bearer data for peer-to-peer information change.
  • the RLC instance transmits information by means of data blocks called packet data units over the air interface on the TBF using e.g. ARQ procedures. Each data block originates from a certain RLC instance.
  • the RLC instance forms RLC packet data units by segmenting the upper layer data into data blocks, to which layer 2 control information is added.
  • the RLC instance reassembles the RLC data blocks into upper layer data.
  • a countdown procedure In the GPRS, there is a procedure called a countdown procedure, with which the mobile station informs the network side about how many data blocks are to be sent on the TBF.
  • the mobile station sends a countdown value in each uplink data block to indicate the current number of remaining data blocks for the uplink TBF.
  • the network schedules resources for this TBF on the basis of the QoS (quality of service) parameters of the user data bearer and the amount of data to be sent on the user data bearer, for example.
  • the QoS parameters indicate the properties that the user data bearer needs, such as delay requirements.
  • One of the problems associated with the above arrangement is that when one or more radio bearer(s) (and hence RLC instances) can be stealing capacity from a user radio bearer A, i.e. are multiplexed to a TBF established for the user radio bearer A, there is no mechanism to take into account the amount of data of other bearers transmitting data blocks on the TBF of the user radio bearer A. Therefore the network does not know how much resources and how frequently it should allocate for the TBF.
  • An object of the present invention is thus to provide a method and an apparatus for implementing the method so as to overcome the above problem.
  • the object of the invention is achieved by a method, a network node and a mobile station, which are characterized by what is stated in the independent claims.
  • the preferred embodiments of the invention are disclosed in the dependent claims.
  • the invention is based on realizing the problem and solving it by modifying the way to define a countdown value for a TBF such that all the data blocks multiplexed to the TBF are also taken into account.
  • one TBF will have as many countdown values as there are radio bearers (and hence RLC instances) using the TBF.
  • there are two countdown values i.e. one for the radio bearer the TBF was established for and the other for all other radio bearers using the TBF.
  • one countdown value is calculated from data blocks of all radio bearers using the TBF.
  • An advantage of the invention is that the network will be provided with enough information for resource allocation. Another advantage of the invention is that when there is still something waiting for to be sent on a TBF, the release of the TBF can be avoided.
  • FIG. 1 illustrates basic parts of a communication system
  • FIG. 2 illustrates data blocks of different radio bearers sharing the same TBF
  • FIG. 3 illustrates the functionality of an RLC/MAC entity in the network side in a first preferred embodiment of the invention
  • FIG. 4 illustrates the functionality of an RLC/MAC entity in the network side in a second preferred embodiment of the invention.
  • the present invention can be applied to any communication system providing data transfer over the air interface.
  • Such systems include the above-mentioned systems, for example.
  • the invention will be described by using a GERAN lu system as an example, without restricting the invention thereto.
  • FIG. 1 shows a very simplified network architecture illustrating only basic parts of the communication system 1 . It is obvious to a person skilled in the art that the system 1 comprises network nodes, functions and structures, which need not be described in greater detail herein.
  • a mobile station MS comprises an actual terminal and a detachably connected identification card SIM, also called a subscriber identity module.
  • SIM also called a subscriber identity module.
  • the mobile station of the invention calculates countdown value(s) at least according to one of the preferred embodiments of the invention described later.
  • the mobile station generally means the entity formed by the subscriber identity module and the actual terminal.
  • the SIM is a smart card, which comprises subscriber identity, performs authentication algorithms and stores authentication and cipher keys and subscription information necessary for the user equipment.
  • the actual terminal of the invention can be any equipment capable of communicating in a mobile communication system and supporting multicarrier access.
  • the terminal can thus be a simple terminal intended only for speech, or it can be a terminal for various services, operating as a service platform and supporting the loading and carrying out of different service-related functions.
  • the terminal can also be a combination of various devices, for example a multimedia computer with a Nokia card phone connected to it to provide a mobile connection.
  • the system 1 comprises a core network CN and a radio access network GERAN.
  • the GERAN is formed of a group of radio network subsystems (not shown in FIG. 1 ), such as base station sub-systems of GSM, which are connected to the core network CN via a so-called lu-interface 2 .
  • the GERAN may be a GSM/EDGE Radio Access Network and the CN may be a GSM/UMTS core network.
  • RLC/MAC entities in the network side locate typically in network nodes of the GERAN, but they can also locate in a serving network node of the CN, such as SGSN (Serving GPRS Support Node).
  • the RLC/MAC entities in the network may be modified to interpret the countdown value field of data blocks as disclosed later.
  • the mobile stations and the network nodes of this system comprise means for performing at least one of the modified countdown value definitions disclosed below. More precisely, the mobile station comprises a calculator for implementing at least one of the ways described below to calculate countdown values, and the network nodes may comprise means for interpreting different countdown values and means for maintaining information on countdown values for each TBF.
  • the current network nodes and mobile stations comprise processors and memory, which can be utilized in the functions according to the invention. All changes necessary for implementing the invention can be made by added or updated software routines, and/or by routines included in application-specific integrated circuits (ASIC) and/or programmable circuits, such as EPLD, FPGA.
  • ASIC application-specific integrated circuits
  • EPLD programmable circuits
  • FIG. 2 shows an example of different radio bearers having data blocks waiting for scheduling and transmittance on one TBF.
  • FIG. 2 is used below to elucidate the three different ways to calculate countdown values according to the invention.
  • the payload type of the RLC/MAC data block indicates whether the data block belongs to the radio bearer the TBF was established for or to one of the radio bearers multiplexed to the TBF.
  • the payload type to distinguish the multiplexed data from the original data.
  • some other indicator than the payload type may be used for the same purpose.
  • data from different RLC instances are distinguished preferably on the basis of some field (or fields) in the RLC/MAC header. If there are several stealing radio bearers, they are distinguished from one another by their radio bearer identity included in the RLC/MAC block itself.
  • a ‘multiplexed radio bearer’ means a radio bearer for which no own TBF is established, i.e. it means the same as a stealing radio bearer.
  • TBC total number of RLC data blocks that will be transmitted in the active period of the RLC instance
  • BSN′ absolute BSN (Block Sequence Number) of the RLC data block, with a range from 0 to (TBC ⁇ 1),
  • NTS number of timeslots assigned to the uplink TBF in the assignment message, with a range from 1 to 8,
  • BS 13 CV_MAX is a parameter broadcast in the system information and represents the round-trip delay between peer RLC entities
  • the mobile station calculates the countdown value and adds it to the data block, as if the RLC instance the data block belongs to were the only one using the TBF. All the data blocks will have the same TBF identifier called TFI so that the network can recognize over which TBF the data block was sent.
  • the payload type is used in this example to distuinguish data from different RLC instances.
  • the countdown value CV for the User Radio Bearer URB would be 3 and the pay-load type “00” indicating that this radio bearer is the one the TBF was established for;
  • the countdown value CV for the Signalling Radio Bearer SRB1 would be 2 and the payload type “11” to indicate that this radio bearer is multiplexed to another radio bearer;
  • the countdown value CV for the Signalling Radio Bearer SRB 2 would be in this example also 2 and the payload type “11”.
  • the functionality of an RLC/MAC entity in the network side in the first preferred embodiment of the invention is illustrated in more detail in FIG. 3 .
  • the RLC/MAC entity maintains information on each separate countdown value and associates them with their radio bearers RBs.
  • FIG. 3 it is assumed for the sake of clarity that the data blocks sent on TBF ‘a’ are either user data blocks or multiplexed blocks, i.e. the payload type PT is either ‘00’ or ‘11’. It is obvious for one skilled in the art how the RLC/MAC entity handles RLC/MAC blocks with other payload types.
  • the payload type is ‘00’, i.e. whether this data block belongs to the user radio bearer the TBF was established for. If it does not, the payload type is
  • step 302 If the payload type was ‘00’ (step 302 ), the countdown value CV and possible some other information of the user radio bearer the TBF was established for is updated in step 304 and the data block is forwarded in step 305 .
  • the information on radio bearers using this TBF i.e. RBinfo
  • RBinfo is updated in step 304 .
  • a new radio bearer is added to the RBinfo and at least its countdown value is associated with it.
  • the RBinfo comprises information on all the radio bearers using the TBF.
  • the RBinfo comprises information only on multiplexed radio bearers.
  • the network uses the RBinfo to modify the uplink resource allocation of the TBF.
  • the RBinfo is updated in response to countdown value zero by removing the radio bearer the countdown value belongs to from the RBinfo regardless of the payload type of the radio bearer.
  • the RLC/MAC entity has to check countdown values in order to find those TBFs that may be released.
  • Separate CVs provide the network with good knowledge of the resources required by each separate radio bearer using the TBF, and thus the network may schedule the uplink resources (i.e. modify the uplink resource allocation) by taking into account not only the amount of data to be transmitted but also the different RLC instances and their Quality of Service (QoS) class. For example, the network may allocate more resources for the TBF, if needed.
  • QoS Quality of Service
  • a first countdown value CV is calculated for the user data of the user radio bearer the TBF was established for
  • a second countdown value CV is calculated for other radio bearers using the TBF.
  • the second countdown value i.e. SRB_CV
  • SRB_CV The second countdown value
  • the first countdown value, URB_CV which is the CV of the user radio bearer (URB), for which the TBF is established for, is calculated by using the following prior art formula:
  • the mobile station calculates the second countdown value and adds it to the data block belonging either to any signalling radio bearer using this TBF or to some user radio bearer using the TBF not established for it. In other words, if the data block belongs to a multiplexed (stealing) radio bearer, the second countdown value is added to it. If the data block to be sent belongs to the user radio bearer the TBF was established for, the mobile station calculates the URB_CV and adds it to the data block. In other words, the mobile station checks, before calculating the countdown value, to which radio bearer the data block belongs to, and on the basis of the radio bearer selects the used formula. All the data blocks will still have the same TBF identifier called TFI, so that the network can recognize over which TBF the data block was sent.
  • TFI TBF identifier
  • the countdown value URB_CV for the User Radio Bearer URB in the example of FIG. 2 would be 3 and the payload type “00” indicating that this radio bearer is the one the TBF was established for;
  • the second countdown value SRB_CV for the Signalling Radio Bearers SRB1 and SRB2 would be 4 and the payload type “11” to indicate that this countdown value indicates the amount of data to be transmitted on radio bearers multiplexed to the TBF.
  • the second countdown value reflects the total radio resource needs for these multiplexed radio bearers.
  • the functionality of an RLC/MAC entity in the network side in the second preferred embodiment of the invention is illustrated in more detail in FIG. 4 .
  • FIG. 4 it is assumed for the sake of clarity that the data blocks sent on TBF ‘a’ are either user data blocks or multiplexed blocks, i.e. the payload type PT is either ‘00’ or ‘11’. It is obvious for one skilled in the art how the RLC/MAC entity handles data blocks with other payload types.
  • step 402 If the payload type is ‘00’ (step 402 ), the first countdown value URB_CV is updated in step 405 and the data block is forwarded in step 404 . In step 405 , some other information relating to the user data bearer the TBF was established for may also be updated
  • the second countdown value indicates the amount of signalling data.
  • the network may schedule the uplink resources taking into account not only the amount of data to be transmitted but also both the user data RLC instance with its QoS class and signalling data instances with so similar QoSs that for allocation purposes a common QoS can be used for signalling radio bearers.
  • the second countdown value is calculated from data blocks of signalling radio bearers, and a third countdown value corresponding to the second countdown value is calculated from data blocks of user data bearers using the TBF not established for them.
  • the second countdown value is calculated from data blocks of signalling radio bearers, and a separate countdown value disclosed in the first preferred embodiment of the invention is calculated for user data bearers.
  • a common countdown value CV is calculated for all radio bearers using the TBF and included in each RLC data block.
  • the formula to be used is:
  • the mobile station calculates the common countdown value and adds it to the data block regardless of whether it belongs either to the user radio bearer the TBF was established for or to some other radio bearer multiplexed to the TBF.
  • the common countdown value for all radio bearers i.e. the User Radio Bearer URB and Signalling Radio Bearers SRB 1 and SRB 2
  • the network does not have to be informed about whether the countdown value belongs to the radio bearer the TBF was established for or to a radio bearer multiplexed to the TBF.
  • the payload type “00” may be used to indicate that this data block belongs to the radio bearer the TBF was established for, and the payload type “11” to indicate that this data block belongs to a radio bearer multiplexed to the TBF.
  • the network side can be the prior art network side.
  • the countdown value indicates the number of data blocks to be sent
  • the countdown value may indicate something else, which can be used when the amount of data to be transferred is estimated.
  • the actual amount of data can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Prepayment Telephone Systems (AREA)

Abstract

When uplink signalling radio bearers steal capacity from a user bearer, at least the amount of data waiting for transmission on a TBF established for the user bearer should be informed to the network. This can be done by using separate countdown values for each radio bearer, using a first countdown value for the bearer the TBF was established for and a second countdown value which indicates the total amount of data on stealing bearers, or by calculating a common countdown value indicating the total amount of data on all bearers using the TBF.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
The present application is a reissue of U.S. patent application Ser. No. 10/450,141 (now U.S. Pat. No. 7,369,508), filed Aug. 25, 2003, which is a national stage entry of International Pat. App. No. PCT/FI01/00900, filed Oct. 17, 2001.
FIELD OF THE INVENTION
The present invention relates to informing a network about the amount of data to be transferred on an uplink layer 2 link used for transferring signalling data and user data, and more particularly to informing a network on the amount of data to be transferred on an uplink layer 2 link established for a user plane radio bearer, the layer 2 link being also used for sending data blocks of signalling radio bearers in a mobile communication system.
BACKGROUND OF THE INVENTION
The mobile communication system generally refers to any telecommunication system, which enables wireless communication when a user is located within the service area of the system. Examples of such systems are cellular mobile communication systems, such as the GSM (Global System for Mobile communications), or corresponding systems, such as the PCS (Personal Communication System) or the DCS 1800 (Digital Cellular System for 1800 MHz), third-generation mobile systems, such as the UMTS (Universal Mobile Communication System) and systems based on the above-mentioned systems, such as GSM 2+ systems and the future 4th generation systems. One typical example of a mobile communication system is the public land mobile network PLMN.
While the standardization of the UMTS is maturing, the GSM 2+ systems are also evolving towards the UMTS. This means that features of the UMTS, which were not originally planned to be embedded in the GSM 2+, are added to GSM 2+ systems or services, such as GPRS (General Packet Radio Service) or GERAN (GSM/EDGE (Enhanced Data rates for Global Evolution) Radio Access Network). One example of such an added feature is having several signalling radio bearers for one mobile station between the mobile station and the radio access network. In the GERAN, release 5 lu, it has been agreed that the mobile station will have 5 uplink signalling radio bearers, one of which is transmitted over a CCCH (Common Control Channel) or a PCCCH (Packet Common Control Channel). The data of the other four signalling radio bearers may be multiplexed into a layer 2 link established for a user data bearer. The layer 2 link is called a Temporary Block Flow TBF in the GPRS and the GERAN. The layer 2 link, hereinafter called a TBF, is a carrier (i.e. allocated radio resource) that supports the unidirectional transfer of packet data units. The TBF is temporary and it is maintained usually only for the duration of the data transfer.
Besides layer 2, also called a data link layer L2, the protocol architecture of the air interface of a GERAN lu, called a Um-interface, comprises a physical layer L1 and a network layer L3. The lu means that mobile stations are connected to a radio access network GERAN with lu interfaces towards the core network providing the data transfer. The data link layer L2 of the GERAN lu comprises a radio link control RLC sublayer and a medium access control MAC sublayer, which are common for a user plane (i.e. for user data) and for a signalling plane (i.e. for signalling data). The layers above the RLC are a PDCP (Packet Data Convergence Protocol) for the user plane and an RRC (Radio Resource Control) for the signalling plane. Each radio bearer has an RLC instance transmitting the radio bearer data for peer-to-peer information change. The RLC instance transmits information by means of data blocks called packet data units over the air interface on the TBF using e.g. ARQ procedures. Each data block originates from a certain RLC instance. At a transmitting site, the RLC instance forms RLC packet data units by segmenting the upper layer data into data blocks, to which layer 2 control information is added. At a receiving site the RLC instance reassembles the RLC data blocks into upper layer data.
In the GPRS, there is a procedure called a countdown procedure, with which the mobile station informs the network side about how many data blocks are to be sent on the TBF. The mobile station sends a countdown value in each uplink data block to indicate the current number of remaining data blocks for the uplink TBF. The network schedules resources for this TBF on the basis of the QoS (quality of service) parameters of the user data bearer and the amount of data to be sent on the user data bearer, for example. The QoS parameters indicate the properties that the user data bearer needs, such as delay requirements.
One of the problems associated with the above arrangement is that when one or more radio bearer(s) (and hence RLC instances) can be stealing capacity from a user radio bearer A, i.e. are multiplexed to a TBF established for the user radio bearer A, there is no mechanism to take into account the amount of data of other bearers transmitting data blocks on the TBF of the user radio bearer A. Therefore the network does not know how much resources and how frequently it should allocate for the TBF.
BRIEF DESCRIPTION OF THE INVENTION
An object of the present invention is thus to provide a method and an apparatus for implementing the method so as to overcome the above problem. The object of the invention is achieved by a method, a network node and a mobile station, which are characterized by what is stated in the independent claims. The preferred embodiments of the invention are disclosed in the dependent claims.
The invention is based on realizing the problem and solving it by modifying the way to define a countdown value for a TBF such that all the data blocks multiplexed to the TBF are also taken into account. In an embodiment of the invention, one TBF will have as many countdown values as there are radio bearers (and hence RLC instances) using the TBF. In another embodiment of the invention, there are two countdown values, i.e. one for the radio bearer the TBF was established for and the other for all other radio bearers using the TBF. Yet in another embodiment of the invention, one countdown value is calculated from data blocks of all radio bearers using the TBF.
An advantage of the invention is that the network will be provided with enough information for resource allocation. Another advantage of the invention is that when there is still something waiting for to be sent on a TBF, the release of the TBF can be avoided.
BRIEF DESCRIPTION OF THE DRAWINGS
In the following the invention will be described in greater detail by means of preferred embodiments with reference to the attached drawings, in which
FIG. 1 illustrates basic parts of a communication system;
FIG. 2 illustrates data blocks of different radio bearers sharing the same TBF;
FIG. 3 illustrates the functionality of an RLC/MAC entity in the network side in a first preferred embodiment of the invention; and
FIG. 4 illustrates the functionality of an RLC/MAC entity in the network side in a second preferred embodiment of the invention.
DETAILED DESCRIPTION OF THE INVENTION
The present invention can be applied to any communication system providing data transfer over the air interface. Such systems include the above-mentioned systems, for example. In the following the invention will be described by using a GERAN lu system as an example, without restricting the invention thereto.
FIG. 1 shows a very simplified network architecture illustrating only basic parts of the communication system 1. It is obvious to a person skilled in the art that the system 1 comprises network nodes, functions and structures, which need not be described in greater detail herein.
A mobile station MS comprises an actual terminal and a detachably connected identification card SIM, also called a subscriber identity module. The mobile station of the invention, and more precisely the RLC/MAC entity in the mobile station, calculates countdown value(s) at least according to one of the preferred embodiments of the invention described later. In this context, the mobile station generally means the entity formed by the subscriber identity module and the actual terminal. The SIM is a smart card, which comprises subscriber identity, performs authentication algorithms and stores authentication and cipher keys and subscription information necessary for the user equipment. The actual terminal of the invention can be any equipment capable of communicating in a mobile communication system and supporting multicarrier access. The terminal can thus be a simple terminal intended only for speech, or it can be a terminal for various services, operating as a service platform and supporting the loading and carrying out of different service-related functions. The terminal can also be a combination of various devices, for example a multimedia computer with a Nokia card phone connected to it to provide a mobile connection.
In the example of FIG. 1, the system 1 comprises a core network CN and a radio access network GERAN. The GERAN is formed of a group of radio network subsystems (not shown in FIG. 1), such as base station sub-systems of GSM, which are connected to the core network CN via a so-called lu-interface 2. The GERAN may be a GSM/EDGE Radio Access Network and the CN may be a GSM/UMTS core network. RLC/MAC entities in the network side locate typically in network nodes of the GERAN, but they can also locate in a serving network node of the CN, such as SGSN (Serving GPRS Support Node). The RLC/MAC entities in the network may be modified to interpret the countdown value field of data blocks as disclosed later.
In addition to prior art means, the system implementing the functions of the present invention, the mobile stations and the network nodes of this system comprise means for performing at least one of the modified countdown value definitions disclosed below. More precisely, the mobile station comprises a calculator for implementing at least one of the ways described below to calculate countdown values, and the network nodes may comprise means for interpreting different countdown values and means for maintaining information on countdown values for each TBF. The current network nodes and mobile stations comprise processors and memory, which can be utilized in the functions according to the invention. All changes necessary for implementing the invention can be made by added or updated software routines, and/or by routines included in application-specific integrated circuits (ASIC) and/or programmable circuits, such as EPLD, FPGA.
FIG. 2 shows an example of different radio bearers having data blocks waiting for scheduling and transmittance on one TBF. FIG. 2 is used below to elucidate the three different ways to calculate countdown values according to the invention.
In the following, it is assumed that the payload type of the RLC/MAC data block indicates whether the data block belongs to the radio bearer the TBF was established for or to one of the radio bearers multiplexed to the TBF. In other words, to inform the network side the mobile station uses in the first, the second and the third preferred embodiment of the invention the payload type to distinguish the multiplexed data from the original data. It is obvious to one skilled in the art that also some other indicator than the payload type may be used for the same purpose. In other words, data from different RLC instances are distinguished preferably on the basis of some field (or fields) in the RLC/MAC header. If there are several stealing radio bearers, they are distinguished from one another by their radio bearer identity included in the RLC/MAC block itself. In the following, it is also assumed that the MS schedules different data blocks and the network only allocates capacity for the TBF. Usually the signalling data has a higher priority than the user data.
In the following, a ‘multiplexed radio bearer’ means a radio bearer for which no own TBF is established, i.e. it means the same as a stealing radio bearer.
Abbreviations and Assumptions Used in the Formulas:
TBC=total number of RLC data blocks that will be transmitted in the active period of the RLC instance
BSN′=absolute BSN (Block Sequence Number) of the RLC data block, with a range from 0 to (TBC−1),
NTS=number of timeslots assigned to the uplink TBF in the assignment message, with a range from 1 to 8,
BS13 CV_MAX is a parameter broadcast in the system information and represents the round-trip delay between peer RLC entities,
function round( ) rounds upwards to the nearest integer,
division operation is a non-integer and results in zero only when the dividend is zero,
there are altogether n RLC instances.
First Way to Define a Countdown Value
In the first preferred embodiment of the invention, a separate CV is preferably calculated for each RLC instance (RLC instance i, i=1 . . . n) using a TBF as if there were only one RLC instance using the TBF, i.e. using the following prior art formula:
Let  integer   x i   =  round ( TBC i - BSN i - 1 NTS ) Then , CV i = { x i , if   x i   ≤   BS_CV _MAX 15 , otherwise
With separate CVs the mobile station calculates the countdown value and adds it to the data block, as if the RLC instance the data block belongs to were the only one using the TBF. All the data blocks will have the same TBF identifier called TFI so that the network can recognize over which TBF the data block was sent.
As stated earlier, the payload type is used in this example to distuinguish data from different RLC instances. In the example of FIG. 2, the countdown value CV for the User Radio Bearer URB would be 3 and the pay-load type “00” indicating that this radio bearer is the one the TBF was established for; the countdown value CV for the Signalling Radio Bearer SRB1 would be 2 and the payload type “11” to indicate that this radio bearer is multiplexed to another radio bearer; and the countdown value CV for the Signalling Radio Bearer SRB2 would be in this example also 2 and the payload type “11”.
When separate CVs are used, the network side preferably maintains information on how many RLC instances (that is radio bearers) are using the TBF, and the TBF may be released preferably only in response to the last RLC instance informing that it has nothing to send (i.e. countdown value CV=0). The functionality of an RLC/MAC entity in the network side in the first preferred embodiment of the invention is illustrated in more detail in FIG. 3. In the first preferred embodiment of the invention, it is assumed that the RLC/MAC entity maintains information on each separate countdown value and associates them with their radio bearers RBs. In FIG. 3, it is assumed for the sake of clarity that the data blocks sent on TBF ‘a’ are either user data blocks or multiplexed blocks, i.e. the payload type PT is either ‘00’ or ‘11’. It is obvious for one skilled in the art how the RLC/MAC entity handles RLC/MAC blocks with other payload types.
FIG. 3 starts when a data block with TFI=a is received on TBF ‘a’ in step 301. It is checked in step 302 whether the payload type is ‘00’, i.e. whether this data block belongs to the user radio bearer the TBF was established for. If it does not, the payload type is ‘11’ and it is checked in step 303, whether this data block belongs to a known radio bearer RB, i.e. a radio bearer for which blocks have been sent and received on the TBF. In other words, it is checked whether the RLC/MAC entity already has a countdown value for this RB. The header of the data block contains in one field the radio bearer identity. If there already exists information on that RB, the countdown value CV and possible some other information is updated in step 304 and the data block is forwarded in step 305.
If the payload type was ‘00’ (step 302), the countdown value CV and possible some other information of the user radio bearer the TBF was established for is updated in step 304 and the data block is forwarded in step 305.
If the RB was not known (step 303), the information on radio bearers using this TBF, i.e. RBinfo, is updated in step 304. In other words, a new radio bearer is added to the RBinfo and at least its countdown value is associated with it. In the first preferred embodiment of the invention the RBinfo comprises information on all the radio bearers using the TBF. In another embodiment of the invention, the RBinfo comprises information only on multiplexed radio bearers.
The network uses the RBinfo to modify the uplink resource allocation of the TBF.
Although not shown in FIG. 3, in the first preferred embodiment of the invention the RBinfo is updated in response to countdown value zero by removing the radio bearer the countdown value belongs to from the RBinfo regardless of the payload type of the radio bearer. Thus, when the need to release the TBF exists, it is easy to find the TBFs, whose RBinfo is empty, i.e. those TBFs that may be released. In another embodiment of the invention, in which an RB is not removed from the RBinfo in response to countdown value zero, the RLC/MAC entity has to check countdown values in order to find those TBFs that may be released.
Separate CVs provide the network with good knowledge of the resources required by each separate radio bearer using the TBF, and thus the network may schedule the uplink resources (i.e. modify the uplink resource allocation) by taking into account not only the amount of data to be transmitted but also the different RLC instances and their Quality of Service (QoS) class. For example, the network may allocate more resources for the TBF, if needed.
Second Way to Define a Countdown Value
In the second preferred embodiment of the invention, two different kinds of countdown values are used: a first countdown value CV is calculated for the user data of the user radio bearer the TBF was established for, and a second countdown value CV is calculated for other radio bearers using the TBF.
The second countdown value, i.e. SRB_CV, can be calculated by using the following formula based on the prior art formula:
Let  integer  x  =  round ( n - 1 i = 1 TBC i - BSN i - 1 NTS ) Then,  SRB_CV = { x , if  x  ≤   BS_CV _MAX 15 , otherwise
The first countdown value, URB_CV, which is the CV of the user radio bearer (URB), for which the TBF is established for, is calculated by using the following prior art formula:
Let  integer   x URB   =  round ( TBC URB - BSN URB - 1 NTS ) Then , URB_ CV = { x URB , if   x URB   ≤   BS_CV _MAX 15 , otherwise
In the second preferred embodiment of the invention, the mobile station calculates the second countdown value and adds it to the data block belonging either to any signalling radio bearer using this TBF or to some user radio bearer using the TBF not established for it. In other words, if the data block belongs to a multiplexed (stealing) radio bearer, the second countdown value is added to it. If the data block to be sent belongs to the user radio bearer the TBF was established for, the mobile station calculates the URB_CV and adds it to the data block. In other words, the mobile station checks, before calculating the countdown value, to which radio bearer the data block belongs to, and on the basis of the radio bearer selects the used formula. All the data blocks will still have the same TBF identifier called TFI, so that the network can recognize over which TBF the data block was sent.
According to the second preferred embodiment of the invention, the countdown value URB_CV for the User Radio Bearer URB in the example of FIG. 2 would be 3 and the payload type “00” indicating that this radio bearer is the one the TBF was established for; the second countdown value SRB_CV for the Signalling Radio Bearers SRB1 and SRB2 would be 4 and the payload type “11” to indicate that this countdown value indicates the amount of data to be transmitted on radio bearers multiplexed to the TBF. Thus the second countdown value reflects the total radio resource needs for these multiplexed radio bearers.
When two CVs are used, the network side preferably maintains information on both countdown values and only after both have informed that there is nothing to be sent (i.e. countdown value CV=0), the TBF may be released. The functionality of an RLC/MAC entity in the network side in the second preferred embodiment of the invention is illustrated in more detail in FIG. 4. In FIG. 4, it is assumed for the sake of clarity that the data blocks sent on TBF ‘a’ are either user data blocks or multiplexed blocks, i.e. the payload type PT is either ‘00’ or ‘11’. It is obvious for one skilled in the art how the RLC/MAC entity handles data blocks with other payload types.
FIG. 4 starts when a data block with TFI=a is received on TBF ‘a’ in step 401. It is checked in step 402 whether the payload type is ‘00’, i.e. whether this data block belongs to the user radio bearer the TBF was established for. If it does not, the payload type is ‘11’ and the second countdown value SRB_CV is updated in step 403 and the data block is forwarded in step 404. In step 403, some other information may also be updated or stored.
If the payload type is ‘00’ (step 402), the first countdown value URB_CV is updated in step 405 and the data block is forwarded in step 404. In step 405, some other information relating to the user data bearer the TBF was established for may also be updated
In one embodiment of the invention where only signalling radio bearers can be multiplexed, the second countdown value indicates the amount of signalling data. In the embodiment, the network may schedule the uplink resources taking into account not only the amount of data to be transmitted but also both the user data RLC instance with its QoS class and signalling data instances with so similar QoSs that for allocation purposes a common QoS can be used for signalling radio bearers.
In another embodiment of the invention, the second countdown value is calculated from data blocks of signalling radio bearers, and a third countdown value corresponding to the second countdown value is calculated from data blocks of user data bearers using the TBF not established for them.
Yet in another embodiment of the invention the second countdown value is calculated from data blocks of signalling radio bearers, and a separate countdown value disclosed in the first preferred embodiment of the invention is calculated for user data bearers.
Third Way to Define a Countdown Value
In the third preferred embodiment of the invention, only one countdown value, called a common countdown value CV, is calculated for all radio bearers using the TBF and included in each RLC data block. The formula to be used is:
Let  integer  x  =  round ( n i = 1 TBC i - BSN i - 1 NTS ) Then,  Common_CV = { x , if  x  ≤   BS_CV _MAX 15 , otherwise
In the third preferred embodiment of the invention, the mobile station calculates the common countdown value and adds it to the data block regardless of whether it belongs either to the user radio bearer the TBF was established for or to some other radio bearer multiplexed to the TBF.
According to the third preferred embodiment of the invention, the common countdown value for all radio bearers, i.e. the User Radio Bearer URB and Signalling Radio Bearers SRB1 and SRB2, would be 7 in the example of FIG. 2 assuming that the BS_CV_MAX exceeds 7. When using one common countdown value, the network does not have to be informed about whether the countdown value belongs to the radio bearer the TBF was established for or to a radio bearer multiplexed to the TBF. However, the payload type “00” may be used to indicate that this data block belongs to the radio bearer the TBF was established for, and the payload type “11” to indicate that this data block belongs to a radio bearer multiplexed to the TBF.
In the third preferred embodiment of the invention, the network side can be the prior art network side.
Although the invention has been described above by assuming that the countdown value indicates the number of data blocks to be sent, it is obvious for one skilled in the art that the countdown value may indicate something else, which can be used when the amount of data to be transferred is estimated. For example, the actual amount of data can be used.
It is also obvious for one skilled in the art that the formulas disclosed above are only exemplary and disclose only one way of calculating countdown values according to the invention.
It will be obvious for one skilled in the art that as the technology advances the inventive concept can be implemented in various ways. The invention and its embodiments are not limited to the examples described above but may vary within the scope of the claims.

Claims (34)

The invention claimed is:
1. A method for informing a network side about an amount of data to be transferred by means of data blocks in a wireless communication system, the method comprising:
allocating, at a mobile station, a first wireless uplink bearer for a connection between a mobile station and a network, the first wireless uplink bearer being allocated for user data transfer;
establishing, at the mobile station, a first temporary block flow (TBF) for the first wireless uplink bearer for data block transfer;
allocating, at the mobile station, a second wireless uplink bearer for a connection between the mobile station and the network, the second wireless uplink bearer being a bearer using the first TBF for data block transfer;
adding to a data block, at the mobile station, a countdown value indicating the amount of data waiting for transmission using the first TBF for both the first wireless uplink bearer and the second wireless uplink bearer.
2. The method of claim 1, wherein the first wireless uplink bearer is a user radio bearer and the second wireless uplink bearer is a signalling radio bearer, the method further comprising scheduling a resource allocation of the first TBF at least on the basis of countdown value defined for the different kinds of bearers.
3. The method of claim 1, wherein the countdown value comprises a first countdown value indicating a first amount of data waiting for transmission on the first bearer and a second countdown value indicating a second amount of data waiting for transmission on the second bearer.
4. The method of claim 3, wherein the second countdown value includes data waiting for transmission on a plurality of second bearers.
5. The method of claim 1, wherein the countdown value comprises a sum of a first countdown value and a second countdown value, the first countdown value indicating a first amount of data waiting for transmission on the first bearer, and the second countdown value indicating a second amount of data waiting for transmission on the second bearer.
6. The method of claim 5, wherein the second countdown value includes data waiting for transmission on a plurality of second bearers.
7. A mobile station in a wireless communication system where data is transmitted by means of data blocks on radio bearers, the mobile station comprising:
a communication interface, the communication interface configured to send a data block;
a non-transitory computer-readable medium having computer-readable instructions stored therein which are programmed to allocate a first radio bearer for a connection between a mobile station and a network; establish a first temporary block flow (TBF) for the first radio bearer; allocate a second bearer for the connection, the second bearer being a bearer using the first TBF for data block transfer; calculate a countdown value, the countdown value indicating an amount of data waiting for transmission on the first radio bearer and the second bearer using the first TBF; add the calculated countdown value to the data block; and
a processor, the processor coupled to the communication interface and to the computer-readable medium and configured to execute the instructions.
8. The mobile station of claim 7, wherein the countdown value comprises a first countdown value indicating a first amount of data waiting for transmission on the first bearer and a second countdown value indicating a second amount of data waiting for transmission on the second bearer.
9. The mobile station of claim 8, wherein the second countdown value includes data waiting for transmission on a plurality of second bearers.
10. The mobile station of claim 7, wherein the countdown value comprises a sum of a first countdown value and a second countdown value, the first countdown value indicating a first amount of data waiting for transmission on the first bearer, and the second countdown value indicating a second amount of data waiting for transmission on the second bearer.
11. The mobile station of claim 10, wherein the second countdown value includes data waiting for transmission on a plurality of second bearers.
12. A network node in a wireless communication system where data is transmitted by means of data blocks on radio bearers, the network node comprising:
a communication interface, the communication interface configured to receive a data block;
a non-transitory computer-readable medium having computer-readable instructions stored therein which are programmed to receive the data block on a first temporary block flow (TBF) established for a first radio bearer and allocated to a second bearer, the data block comprising a countdown value indicating an amount of data waiting for transmission on the first bearer and the second bearer; identify the radio bearer the data block belongs to and maintain information on the countdown value.
13. The network node of claim 12, further comprising instructions programmed to modify a resource allocation of the first TBF at least on the basis of the countdown value of the first TBF.
14. The network node of claim 12, wherein the countdown value comprises a first countdown value indicating a first amount of data waiting for transmission on the first bearer and a second countdown value indicating a second amount of data waiting for transmission on the second bearer.
15. The network node of claim 14, wherein the second countdown value includes data waiting for transmission on a plurality of second bearers.
16. The network node of claim 12, wherein the countdown value comprises a sum of a first countdown value and a second countdown value, the first countdown value indicating a first amount of data waiting for transmission on the first bearer, and the second countdown value indicating a second amount of data waiting for transmission on the second bearer.
17. The network node of claim 16, wherein the second countdown value includes data waiting for transmission on a plurality of second bearers.
18. A method for a network node, comprising:
receiving, at a network node, a data block on a first temporary block flow (TBF) established for a first radio bearer and allocated to a second bearer, the data block comprising a countdown value indicating an amount of data waiting for transmission on the first bearer and the second bearer; and
identifying, at the network node, the radio bearer to which the data block belongs and maintaining information on the countdown value.
19. The method of claim 18, further comprising modifying a resource allocation of the first TBF at least on the basis of the countdown value of the first TBF.
20. The method of claim 18, wherein the countdown value comprises a first countdown value indicating a first amount of data waiting for transmission on the first bearer and a second countdown value indicating a second amount of data waiting for transmission on the second bearer.
21. The method of claim 20, wherein the second countdown value includes data waiting for transmission on a plurality of second bearers.
22. The method of claim 18, wherein the countdown value comprises a sum of a first countdown value and a second countdown value, the first countdown value indicating a first amount of data waiting for transmission on the first bearer, and the second countdown value indicating a second amount of data waiting for transmission on the second bearer.
23. The method of claim 22, wherein the second countdown value includes data waiting for transmission on a plurality of second bearers.
24. A non-transitory computer-readable medium having computer-readable instructions stored thereon, which, upon execution by a processor, cause the implementation of a set of operations for a mobile station, the operations comprising:
allocating a first radio bearer for a connection between the mobile station and a network;
establishing a first temporary block flow (TBF) for the first radio bearer, to transfer data blocks;
allocating a second bearer for the connection, the second bearer using the first TBF for data block transfer;
calculating a countdown value indicating an amount of data waiting for transmission on the first radio bearer and the second bearer using the TBF; and
adding the countdown value to a data block to be transmitted.
25. The non-transitory computer-readable medium of claim 24, wherein the countdown value comprises a first countdown value indicating a first amount of data waiting for transmission on the first bearer and a second countdown value indicating a second amount of data waiting for transmission on the second bearer.
26. The non-transitory computer-readable medium of claim 25, wherein the second countdown value includes data waiting for transmission on a plurality of second bearers.
27. The non-transitory computer-readable medium of claim 24, wherein the countdown value comprises a sum of a first countdown value and a second countdown value, the first countdown value indicating a first amount of data waiting for transmission on the first bearer, and the second countdown value indicating a second amount of data waiting for transmission on the second bearer.
28. The non-transitory computer-readable medium of claim 27, wherein the second countdown value includes data waiting for transmission on a plurality of second bearers.
29. A non-transitory computer-readable medium having computer-readable instructions stored thereon, which, upon execution by a processor, cause the implementation of operations for a network node of a communication system, the operations comprising:
receiving a data block on a first temporary block flow (TBF) established for a first radio bearer and allocated to a second bearer, the data block comprising a countdown value indicating an amount of data waiting for transmission on the first bearer and the second bearer; and
identifying the radio bearer to which the data block belongs and maintaining information on the countdown value.
30. The non-transitory computer-readable medium of claim 29, wherein the operations further comprise modifying a resource allocation of the first TBF at least on the basis of the countdown value of the first TBF.
31. The non-transitory computer-readable medium of claim 29, wherein the countdown value comprises a first countdown value indicating a first amount of data waiting for transmission on the first bearer and a second countdown value indicating a second amount of data waiting for transmission on the second bearer.
32. The non-transitory computer-readable medium of claim 31, wherein the second countdown value includes data waiting for transmission on a plurality of second bearers.
33. The non-transitory computer-readable medium of claim 29, wherein the countdown value comprises a sum of a first countdown value and a second countdown value, the first countdown value indicating a first amount of data waiting for transmission on the first bearer, and the second countdown value indicating a second amount of data waiting for transmission on the second bearer.
34. The non-transitory computer-readable medium of claim 33, wherein the second countdown value includes data waiting for transmission on a plurality of second bearers.
US12/774,916 2001-10-17 2001-10-17 Informing network about amount of data to be transferred Expired - Lifetime USRE44316E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/774,916 USRE44316E1 (en) 2001-10-17 2001-10-17 Informing network about amount of data to be transferred

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/774,916 USRE44316E1 (en) 2001-10-17 2001-10-17 Informing network about amount of data to be transferred
US10/450,141 US7369508B2 (en) 2001-10-17 2001-10-17 Informing network about amount of data to be transferred
PCT/FI2001/000900 WO2003034757A1 (en) 2001-10-17 2001-10-17 Informing network about amount of data to be transferred

Publications (1)

Publication Number Publication Date
USRE44316E1 true USRE44316E1 (en) 2013-06-25

Family

ID=8555923

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/450,141 Ceased US7369508B2 (en) 2001-10-17 2001-10-17 Informing network about amount of data to be transferred
US12/774,916 Expired - Lifetime USRE44316E1 (en) 2001-10-17 2001-10-17 Informing network about amount of data to be transferred

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/450,141 Ceased US7369508B2 (en) 2001-10-17 2001-10-17 Informing network about amount of data to be transferred

Country Status (13)

Country Link
US (2) US7369508B2 (en)
EP (1) EP1437016B1 (en)
JP (1) JP3880963B2 (en)
KR (1) KR100684397B1 (en)
CN (1) CN1208980C (en)
AT (1) ATE392099T1 (en)
AU (1) AU2002210600B2 (en)
BR (1) BR0116241A (en)
CA (1) CA2431123C (en)
DE (1) DE60133589T2 (en)
ES (1) ES2305114T3 (en)
MX (1) MXPA03005391A (en)
WO (1) WO2003034757A1 (en)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7426380B2 (en) * 2002-03-28 2008-09-16 Telecommunication Systems, Inc. Location derived presence information
US8290505B2 (en) * 2006-08-29 2012-10-16 Telecommunications Systems, Inc. Consequential location derived information
US9154906B2 (en) 2002-03-28 2015-10-06 Telecommunication Systems, Inc. Area watcher for wireless network
US8918073B2 (en) 2002-03-28 2014-12-23 Telecommunication Systems, Inc. Wireless telecommunications location based services scheme selection
US20070238455A1 (en) * 2006-04-07 2007-10-11 Yinjun Zhu Mobile based area event handling when currently visited network doe not cover area
US8666397B2 (en) 2002-12-13 2014-03-04 Telecommunication Systems, Inc. Area event handling when current network does not cover target area
GB0323246D0 (en) * 2003-10-03 2003-11-05 Fujitsu Ltd Virtually centralized uplink scheduling
US20080126535A1 (en) 2006-11-28 2008-05-29 Yinjun Zhu User plane location services over session initiation protocol (SIP)
US20080090546A1 (en) 2006-10-17 2008-04-17 Richard Dickinson Enhanced E911 network access for a call center using session initiation protocol (SIP) messaging
US7353034B2 (en) 2005-04-04 2008-04-01 X One, Inc. Location sharing and tracking using mobile phones or other wireless devices
EP1715625A1 (en) * 2005-04-22 2006-10-25 Alcatel Apparatuses for controlling service delivery using access-dependent information in a system comprising a core network subsystem
US8103242B2 (en) * 2005-05-26 2012-01-24 Telecommunication Systems, Inc. E911 call blocking for non-initialized wireless telephones
EP1734703A1 (en) * 2005-06-15 2006-12-20 Matsushita Electric Industrial Co., Ltd. Fast time slot allocation in GPRS networks
US8660573B2 (en) 2005-07-19 2014-02-25 Telecommunications Systems, Inc. Location service requests throttling
US7933385B2 (en) 2005-08-26 2011-04-26 Telecommunication Systems, Inc. Emergency alert for voice over internet protocol (VoIP)
US9282451B2 (en) * 2005-09-26 2016-03-08 Telecommunication Systems, Inc. Automatic location identification (ALI) service requests steering, connection sharing and protocol translation
US8467320B2 (en) * 2005-10-06 2013-06-18 Telecommunication Systems, Inc. Voice over internet protocol (VoIP) multi-user conferencing
US7907551B2 (en) * 2005-10-06 2011-03-15 Telecommunication Systems, Inc. Voice over internet protocol (VoIP) location based 911 conferencing
US7626951B2 (en) * 2005-10-06 2009-12-01 Telecommunication Systems, Inc. Voice Over Internet Protocol (VoIP) location based conferencing
US20070121798A1 (en) * 2005-10-20 2007-05-31 Jon Croy Public service answering point (PSAP) proxy
US8150363B2 (en) 2006-02-16 2012-04-03 Telecommunication Systems, Inc. Enhanced E911 network access for call centers
US8059789B2 (en) 2006-02-24 2011-11-15 Telecommunication Systems, Inc. Automatic location identification (ALI) emergency services pseudo key (ESPK)
US8532266B2 (en) 2006-05-04 2013-09-10 Telecommunication Systems, Inc. Efficient usage of emergency services keys
US8208605B2 (en) 2006-05-04 2012-06-26 Telecommunication Systems, Inc. Extended efficient usage of emergency services keys
CN101132220B (en) * 2006-08-22 2011-11-30 上海贝尔阿尔卡特股份有限公司 Method and device for reporting ascending scheduling request or emergency in wireless network
US7966013B2 (en) 2006-11-03 2011-06-21 Telecommunication Systems, Inc. Roaming gateway enabling location based services (LBS) roaming for user plane in CDMA networks without requiring use of a mobile positioning center (MPC)
EP2116029A4 (en) * 2007-02-06 2012-04-25 Telecomm Systems Inc Voice over internet protocol (voip) location based commercial prospect conferencing
US8050386B2 (en) 2007-02-12 2011-11-01 Telecommunication Systems, Inc. Mobile automatic location identification (ALI) for first responders
US20090077077A1 (en) * 2007-09-18 2009-03-19 Gerhard Geldenbott Optimal selection of MSAG address for valid civic/postal address
KR101782759B1 (en) * 2008-02-01 2017-09-27 옵티스 와이어리스 테크놀로지, 엘엘씨 Communication terminal and method with prioritized control information
US8576991B2 (en) 2008-03-19 2013-11-05 Telecommunication Systems, Inc. End-to-end logic tracing of complex call flows in a distributed call system
US8068587B2 (en) * 2008-08-22 2011-11-29 Telecommunication Systems, Inc. Nationwide table routing of voice over internet protocol (VOIP) emergency calls
US8254410B2 (en) 2009-04-30 2012-08-28 Telefonaktiebolaget L M Ericsson (Publ) Systems and methods for transmitting radio link control (RLC) data blocks
US9301191B2 (en) 2013-09-20 2016-03-29 Telecommunication Systems, Inc. Quality of service to over the top applications used with VPN
MX2012001679A (en) 2009-08-28 2012-03-07 Ericsson Telefon Ab L M Enhanced multiplexing for single rlc entity.
US8942743B2 (en) 2010-12-17 2015-01-27 Telecommunication Systems, Inc. iALERT enhanced alert manager
US8688087B2 (en) 2010-12-17 2014-04-01 Telecommunication Systems, Inc. N-dimensional affinity confluencer
WO2012141762A1 (en) 2011-02-25 2012-10-18 Telecommunication Systems, Inc. Mobile internet protocol (ip) location
US9479344B2 (en) 2011-09-16 2016-10-25 Telecommunication Systems, Inc. Anonymous voice conversation
WO2013048551A1 (en) 2011-09-30 2013-04-04 Telecommunication Systems, Inc. Unique global identifier for minimizing prank 911 calls
US9313637B2 (en) 2011-12-05 2016-04-12 Telecommunication Systems, Inc. Wireless emergency caller profile data delivery over a legacy interface
US8984591B2 (en) 2011-12-16 2015-03-17 Telecommunications Systems, Inc. Authentication via motion of wireless device movement
US9384339B2 (en) 2012-01-13 2016-07-05 Telecommunication Systems, Inc. Authenticating cloud computing enabling secure services
US9544260B2 (en) 2012-03-26 2017-01-10 Telecommunication Systems, Inc. Rapid assignment dynamic ownership queue
US9307372B2 (en) 2012-03-26 2016-04-05 Telecommunication Systems, Inc. No responders online
US9338153B2 (en) 2012-04-11 2016-05-10 Telecommunication Systems, Inc. Secure distribution of non-privileged authentication credentials
WO2014028712A1 (en) 2012-08-15 2014-02-20 Telecommunication Systems, Inc. Device independent caller data access for emergency calls
US9208346B2 (en) 2012-09-05 2015-12-08 Telecommunication Systems, Inc. Persona-notitia intellection codifier
US9456301B2 (en) 2012-12-11 2016-09-27 Telecommunication Systems, Inc. Efficient prisoner tracking
US8983047B2 (en) 2013-03-20 2015-03-17 Telecommunication Systems, Inc. Index of suspicion determination for communications request
US9408034B2 (en) 2013-09-09 2016-08-02 Telecommunication Systems, Inc. Extended area event for network based proximity discovery
US9516104B2 (en) 2013-09-11 2016-12-06 Telecommunication Systems, Inc. Intelligent load balancer enhanced routing
US9479897B2 (en) 2013-10-03 2016-10-25 Telecommunication Systems, Inc. SUPL-WiFi access point controller location based services for WiFi enabled mobile devices
US10039112B2 (en) 2014-10-10 2018-07-31 Huawei Technologies Co., Ltd Methods and systems for provisioning a virtual network in software defined networks
US10313887B2 (en) 2015-06-01 2019-06-04 Huawei Technologies Co., Ltd. System and method for provision and distribution of spectrum resources
WO2016192636A1 (en) 2015-06-01 2016-12-08 Huawei Technologies Co., Ltd. System and method for virtualized functions in control and data planes
US10212589B2 (en) 2015-06-02 2019-02-19 Huawei Technologies Co., Ltd. Method and apparatus to use infra-structure or network connectivity services provided by 3rd parties
US10700936B2 (en) 2015-06-02 2020-06-30 Huawei Technologies Co., Ltd. System and methods for virtual infrastructure management between operator networks
US10862818B2 (en) * 2015-09-23 2020-12-08 Huawei Technologies Co., Ltd. Systems and methods for distributing network resources to network service providers
US10212097B2 (en) 2015-10-09 2019-02-19 Huawei Technologies Co., Ltd. Method and apparatus for admission control of virtual networks in a backhaul-limited communication network

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5598417A (en) 1995-04-28 1997-01-28 Motorola, Inc. Dynamic control of a data channel in a TDM wireless communication system
WO2000002401A2 (en) 1998-06-30 2000-01-13 Siemens Aktiengesellschaft Air interface for telecommunications systems with cordless telecommunications between mobile and/or stationary transmitting/receiving devices
US6115362A (en) 1997-03-28 2000-09-05 Cabletron Systems, Inc. Method and apparatus for determining frame relay connections
WO2001041472A1 (en) 1999-12-02 2001-06-07 Nokia Corporation Data transmission method and apparatus
US6718179B1 (en) 1999-01-11 2004-04-06 Nokia Mobile Phones Ltd. Method and devices for implementing a continued packet-switched radio connection
US6901060B1 (en) * 2000-05-17 2005-05-31 Nokia Corporation Method and apparatus for multiplexing a plurality of data connections onto one temporary block flow
US7054268B1 (en) 2000-02-04 2006-05-30 Nokia Mobile Phones, Inc. Method and arrangement for transferring information in a packet radio service with application-based choice of release mode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI108203B (en) * 1998-11-27 2001-11-30 Nokia Mobile Phones Ltd Method and apparatus for transmitting information in a packet radio service
FI114768B (en) * 1999-03-11 2004-12-15 Nokia Corp An improved method and arrangement for transmitting information in a packet radio service

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5598417A (en) 1995-04-28 1997-01-28 Motorola, Inc. Dynamic control of a data channel in a TDM wireless communication system
US6115362A (en) 1997-03-28 2000-09-05 Cabletron Systems, Inc. Method and apparatus for determining frame relay connections
WO2000002401A2 (en) 1998-06-30 2000-01-13 Siemens Aktiengesellschaft Air interface for telecommunications systems with cordless telecommunications between mobile and/or stationary transmitting/receiving devices
US6718179B1 (en) 1999-01-11 2004-04-06 Nokia Mobile Phones Ltd. Method and devices for implementing a continued packet-switched radio connection
WO2001041472A1 (en) 1999-12-02 2001-06-07 Nokia Corporation Data transmission method and apparatus
US7054268B1 (en) 2000-02-04 2006-05-30 Nokia Mobile Phones, Inc. Method and arrangement for transferring information in a packet radio service with application-based choice of release mode
US6901060B1 (en) * 2000-05-17 2005-05-31 Nokia Corporation Method and apparatus for multiplexing a plurality of data connections onto one temporary block flow

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"GPRS Radio Interface-Radio Link control Details in GPRS," Advanced Topics in Telecommunications Report, Apr. 7, 2000.
3GPP TSG Geran Adhoc, "RLC and MAC Multiplexing for GERAN", Oct. 9-13, 2000.
3GPP TSG Geran Adhoc. "RLC and MAC Multiplexing for Geran," Oct. 9-13, 2000.
Examination Report for EP Application 01978488.3, dated Oct. 10, 2006.
International Search Report for PCT/FI/01/00900, mailed Jun. 6, 2002.

Also Published As

Publication number Publication date
MXPA03005391A (en) 2003-09-22
ATE392099T1 (en) 2008-04-15
CA2431123A1 (en) 2003-04-24
EP1437016B1 (en) 2008-04-09
JP2004522390A (en) 2004-07-22
BR0116241A (en) 2004-02-25
AU2002210600B2 (en) 2007-12-20
KR20040017803A (en) 2004-02-27
CN1208980C (en) 2005-06-29
CN1481649A (en) 2004-03-10
KR100684397B1 (en) 2007-02-22
ES2305114T3 (en) 2008-11-01
DE60133589D1 (en) 2008-05-21
JP3880963B2 (en) 2007-02-14
WO2003034757A1 (en) 2003-04-24
CA2431123C (en) 2009-07-14
US20040146036A1 (en) 2004-07-29
AU2002210600A1 (en) 2003-04-28
US7369508B2 (en) 2008-05-06
DE60133589T2 (en) 2009-06-10
EP1437016A1 (en) 2004-07-14

Similar Documents

Publication Publication Date Title
USRE44316E1 (en) Informing network about amount of data to be transferred
EP1956773B1 (en) Method and arrangement for resource allocation in a packet radio service
KR100856248B1 (en) METHOD FOR SCHEDULING UPLINK IN VoIP
US7295514B2 (en) Method of controlling call admission in a mobile communication system
EP2517518B1 (en) Method and apparatus for ensuring access in a communication system for a plurality of groups
CN117651306A (en) Method and device for establishing GBR QoS flow in session
EP3493581B1 (en) Method for signal transmission and terminal
US20050026623A1 (en) Method for implementing fast-dynamic channel allocation call admission control for radio link reconfiguration in radio resource management
EP1900146B1 (en) Resource allocation method, communication system, network element, module, computer program product and computer program distribution medium
US20200059901A1 (en) Allocating radio resources in backhaul and access link
CN112333835A (en) Carrier resource scheduling method and device
EP3777425B1 (en) Methods, infrastructure equipment and communications device
CN106385696A (en) Business processing method, related equipment, and system
CN112469132A (en) Carrier resource scheduling method and device
CN111418177A (en) Reliable transmission method and related product
CN113115376A (en) Downlink resource block reservation method and device
US20220182980A1 (en) User equipment, method of user equipment, network node, and method of network node
KR100747757B1 (en) Informing network about amount of data to be transferred
US20050113105A1 (en) Method and a controller for controlling a connection
RU2274960C2 (en) Method for informing network about amount of data subject to transfer
CN111294980A (en) Method and device for establishing radio bearer
CN100466847C (en) Method for processing service occupation
KR100446501B1 (en) Method and apparatus for call admission control according to quality of service in mobile telecommunication base transceiver system
WO2020223861A1 (en) User equipment strategy configuration method and apparatus, user equipment, base station, and storage medium
WO2021007713A1 (en) Data sending method and data receiving method for sidelink, and apparatuses, terminal and medium

Legal Events

Date Code Title Description
AS Assignment

Owner name: SPYDER NAVIGATIONS L.L.C., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOKIA CORPORATION;REEL/FRAME:025592/0445

Effective date: 20070322

AS Assignment

Owner name: INTELLECTUAL VENTURES I LLC, DELAWARE

Free format text: MERGER;ASSIGNOR:SPYDER NAVIGATIONS L.L.C.;REEL/FRAME:026637/0611

Effective date: 20110718

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12