USRE42710E1 - Apparatus compensating a scanned object for optical characteristics according to light sources of different wavelengths - Google Patents

Apparatus compensating a scanned object for optical characteristics according to light sources of different wavelengths Download PDF

Info

Publication number
USRE42710E1
USRE42710E1 US11/283,479 US28347905A USRE42710E US RE42710 E1 USRE42710 E1 US RE42710E1 US 28347905 A US28347905 A US 28347905A US RE42710 E USRE42710 E US RE42710E
Authority
US
United States
Prior art keywords
light source
module
light sources
lens
location
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime, expires
Application number
US11/283,479
Inventor
Wen-Yuan Chang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intellectual Ventures I LLC
Original Assignee
Transpacific Systems LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Transpacific Systems LLC filed Critical Transpacific Systems LLC
Priority to US11/283,479 priority Critical patent/USRE42710E1/en
Application granted granted Critical
Publication of USRE42710E1 publication Critical patent/USRE42710E1/en
Assigned to TITUSVILLE CANAVERAL LLC reassignment TITUSVILLE CANAVERAL LLC MERGER (SEE DOCUMENT FOR DETAILS). Assignors: TRANSPACIFIC SYSTEMS, LLC
Assigned to INTELLECTUAL VENTURES I LLC reassignment INTELLECTUAL VENTURES I LLC MERGER (SEE DOCUMENT FOR DETAILS). Assignors: TITUSVILLE CANAVERAL LLC
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00795Reading arrangements
    • H04N1/00798Circuits or arrangements for the control thereof, e.g. using a programmed control device or according to a measured quantity
    • H04N1/00801Circuits or arrangements for the control thereof, e.g. using a programmed control device or according to a measured quantity according to characteristics of the original
    • H04N1/00806According to type of the original, e.g. colour paper or transparency, or reading a plurality of different types of original
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00795Reading arrangements

Definitions

  • the present invention generally relates to an apparatus for scanning objects of various types, and more particularly to a scanner which can compensate for optical characteristics according to using different wavelength light sources.
  • Optical scanning apparatuses are currently in great demand as a result of the rapid development of high speed, low cost imaging devices and the ever decreasing cost of personal computers.
  • Optical scanners in general, are capable of reflective and/or transmissive scanning of documents, photographs and the like, whereby reflective scanning is used with opaque objects such as photographs and transmissive scanning is used with transparent objects, such as slides and the like.
  • Reflective scanners project light onto the side of the object to be scanned. The reflected light is viewed by an optical sensor which converts the reflected light into digital code. The code is then transmitted to the operator's computer for further processing.
  • Transmissive scanners operate on the same principle except that light is projected through the transparent object being scanned.
  • a great demand exists for high quality, low cost, low maintenance, easy to calibrate, versatile optical scanners capable of both high and low resolution reflective and transmissive scanning.
  • a conventional scanner typically comprises a control module 110 , a light source 111 , a power module 112 , a image capture module 113 , a loading platform module 114 , and a translation module 115 .
  • the control module 110 comprises a host unit for image processing and a plurality of control circuits for scanning process.
  • the light source 111 is for use while an object is scanned.
  • the power module 112 comprises power units for supporting scanning process.
  • the image capture module 113 comprises a plurality of lenses and optical sensors. The lenses are for performing optical pathways and the optical sensors, such as charge-coupled devices, are for sensing lights from the lenses and convert light signals into electric signals.
  • a translation module is for translating the light source 111 and the image capture module in a main-scanning direction when the object is scanned.
  • a high-quality output image depends on the imaging system of a scanner for different types of objects.
  • factors related to the good imaging system such as wavelength of light source, optical characteristics of optical devices and optical pathway, and so on. That is, the high-quality output images can't be satisfied for objects of various types if there is only one imaging system in a scanner.
  • an apparatus for scanning images comprises an image capture module having at least a lens and a sensors array for capturing light after scanning the object.
  • a plurality of light sources comprise a visible light source and an infrared light source.
  • a key module of the present invention is a first translation module connected with the lens and the sensors array of the image capture module.
  • the first translation module is used for changing a first location of the lens and a second location of the sensors array according to using different the light sources so as to improve some optical characteristics, such as aberration resulting from different wavelengths of light sources.
  • a power module connects with the first translation module and the light sources for supporting energy to the first translation module and the light sources.
  • a second translation module connects with the light sources and the image capture module, and the second translation driven by the power module.
  • a control module connects to the power module and the image capture module, and a loading platform module has a platform and therein all the modules and the light sources are placed.
  • FIG. 1 is a system diagram for a conventional scanning apparatus
  • FIG. 2 is a system diagram for a scanning apparatus of the present invention
  • FIGS. 3A-3B are the schematic diagrams of devices in one preferred embodiment of the present invention.
  • FIGS. 4A-4B are the schematic diagrams of devices in other one preferred embodiment of the present invention.
  • an a scanner for scanning an object comprises an image capture module having at least a lens and a sensors array for capturing light after scanning the object.
  • a plurality of light sources comprise a visible light source and an infrared light source.
  • a key module of the present invention is a first translation module connected with the lens and the sensors array.
  • the first translation module is used for changing a first location of the lens and a second location of the sensors array according to using different the light sources so as to improve some optical characteristics, such as aberration resulting from different wavelengths of light sources.
  • a power module connects with the first translation module and the light sources for supporting energy to the first translation module and the light sources.
  • a second translation module connects with the light sources and the image capture module, and the second translation driven by the power module.
  • a control module connects to the power module and the image capture module, and a loading platform module has a platform and therein all the modules and the light sources are placed.
  • a scanning apparatus comprises a control module 10 , light sources 11 , a power module 12 , an image capture module 13 , a loading platform module 14 , a first translation module 15 , and a second translation module 16 , as shown in FIG. 2 .
  • the control module 10 comprises a host unit for data processing, and a plurality of control circuits for scanning process.
  • the light sources 11 have at least two light sources with different wavelengths. In the present invention, one light source is a visible light source and the other is an infrared light source.
  • the loading platform module 14 comprises a housing wherein all modules are placed.
  • the image capture module 13 has at least a lens and a sensors array wherein sensors can be charge-coupled devices.
  • the lens is for converging light from any object onto the sensors array.
  • the sensors array is for transforming the light into corresponding image electric signals.
  • the power module 12 comprises power supplies, motors, gears and belts for supporting energies to any scanning process.
  • the first translation module 15 comprises a plurality of feeding devices, such as feeding rods and feeding screws.
  • the first translation module 15 can be driven by the power module 12 and changing locations of the lens or the sensors array.
  • the first translation module 15 can adjust the locations of the lens or the sensors array to compensating some optical defeats such as aberration that results from switching different light sources.
  • the second translation module 16 also comprises a plurality of feeding devices and feeds the light sources 11 and the image capture module 13 in any scanning motion.
  • FIG. 3A and FIG. 3B One preferred embodiment is described in FIG. 3A and FIG. 3B .
  • the other one is described in FIG. 4A and FIG. 4B .
  • FIG. 3A is a schematic diagram showing the correlative locations for the devices in some modules.
  • Dash line 30 represents running light of a pathway for any scanning motion.
  • a visible light source 31 is used for the first-time scanning motion of an object (not shown).
  • a first lens 33 and a second lens 34 both on a feeding screw 36 driven by a motor 38 , are lens of the image capture 13 with different optical properties, such as focus and magnification.
  • the second lens 34 is used when the visible light source 31 is as light source for scanning.
  • a sensors array 35 of the image capture module 13 fed by a feeding screw 37 driven by a motor 39 , is at a first suitable location for using the visible light source 31 such that a first image length for the first-time scanning motion is made.
  • the first lens 33 is fed to a second suitable location such that a first object length for the second-time scanning motion is made.
  • the sensors array 35 is also fed to a third location that is different from the location 40 of the sensors array 35 for the first-time scanning motion, so that a second image length for the second-time scanning motion is made.
  • FIG. 4A is a schematic diagram showing correlative locations for the devices in some modules.
  • Dash line 41 50 represents a running light pathway for a scanning motion.
  • a visible light source 41 is used for the first-time scanning motion of an object (not shown).
  • a lens 43 on a feeding screw 46 driven by a motor 48 , is fed a fourth suitable location for using the visible light source 41 as light source.
  • a sensors array 45 of the image capture module 13 fed by a feeding screw 47 driven by a motor 49 , is at a fifth suitable location for the visible light source 41 as light source.
  • the lens 43 is fed to a sixth suitable location that is different from the first location 44 .
  • the sensors array 45 is also fed to a seventh location different from the second location 51 of the sensors array 45 for the first-time scanning motion.

Abstract

The present invention is about an apparatus for scanning an object. The apparatus comprises an image capture module having a lens and a sensors array for capturing light after scanning the object. There are light sources comprising a visible light source and an infrared light source. Next, a key module of the present invention is a first translation module connected with the lens and the sensors array. The first translation module is-used for changing a first location of the lens and a second location of the sensors array according to using different the light sources so as to improve some optical characteristics, such as aberration resulting from different wavelengths of light sources. A power module connects with the first translation module and the light sources for supporting energy to the first translation module and the light sources. Moreover, a second translation module connects with the light sources and the image capture module, and the second translation driven by the power module. A control module connects to the power module and the image capture module, and a loading platform module has a platform and therein all the modules and the light sources are placed.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to an apparatus for scanning objects of various types, and more particularly to a scanner which can compensate for optical characteristics according to using different wavelength light sources.
2. Description of the Prior Art
Optical scanning apparatuses are currently in great demand as a result of the rapid development of high speed, low cost imaging devices and the ever decreasing cost of personal computers. Optical scanners, in general, are capable of reflective and/or transmissive scanning of documents, photographs and the like, whereby reflective scanning is used with opaque objects such as photographs and transmissive scanning is used with transparent objects, such as slides and the like. Reflective scanners project light onto the side of the object to be scanned. The reflected light is viewed by an optical sensor which converts the reflected light into digital code. The code is then transmitted to the operator's computer for further processing. Transmissive scanners operate on the same principle except that light is projected through the transparent object being scanned. A great demand exists for high quality, low cost, low maintenance, easy to calibrate, versatile optical scanners capable of both high and low resolution reflective and transmissive scanning.
As shown on FIG. 1, a conventional scanner typically comprises a control module 110, a light source 111, a power module 112, a image capture module 113, a loading platform module 114, and a translation module 115. The control module 110 comprises a host unit for image processing and a plurality of control circuits for scanning process. The light source 111 is for use while an object is scanned. The power module 112 comprises power units for supporting scanning process. The image capture module 113 comprises a plurality of lenses and optical sensors. The lenses are for performing optical pathways and the optical sensors, such as charge-coupled devices, are for sensing lights from the lenses and convert light signals into electric signals. A translation module is for translating the light source 111 and the image capture module in a main-scanning direction when the object is scanned.
Generally, there are many different types for scanned objects, such as paper document, transparent slide, and so on. A high-quality output image depends on the imaging system of a scanner for different types of objects. However, there are many factors related to the good imaging system, such as wavelength of light source, optical characteristics of optical devices and optical pathway, and so on. That is, the high-quality output images can't be satisfied for objects of various types if there is only one imaging system in a scanner.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide an apparatus of scanning which has different light sources to fit the scanned objects of various types.
It is further object of the invention to provide a scanner which can adjust the location of a lens and a sensors array of the scanner according to using the light sources of different wavelengths.
It is another object of the invention to provide a scanner which can compensate for the optical characteristics of different light sources to improve the qualities of an output image.
In the present invention, an apparatus for scanning images comprises an image capture module having at least a lens and a sensors array for capturing light after scanning the object. A plurality of light sources comprise a visible light source and an infrared light source. Next, a key module of the present invention is a first translation module connected with the lens and the sensors array of the image capture module. To be specific, the first translation module is used for changing a first location of the lens and a second location of the sensors array according to using different the light sources so as to improve some optical characteristics, such as aberration resulting from different wavelengths of light sources. A power module connects with the first translation module and the light sources for supporting energy to the first translation module and the light sources. Moreover, a second translation module connects with the light sources and the image capture module, and the second translation driven by the power module. A control module connects to the power module and the image capture module, and a loading platform module has a platform and therein all the modules and the light sources are placed.
BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
FIG. 1 is a system diagram for a conventional scanning apparatus;
FIG. 2 is a system diagram for a scanning apparatus of the present invention;
FIGS. 3A-3B are the schematic diagrams of devices in one preferred embodiment of the present invention; and
FIGS. 4A-4B are the schematic diagrams of devices in other one preferred embodiment of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT
There is shown a representative portion of a scanner structure of the present invention in enlarged, cross-sections of two dimensional views for a scanner. The drawings are not necessarily to scale, as the size of the various devices are shown for clarify of illustration and should not be interpreted in a limiting sense. Accordingly, these regions will have dimensions, including length, width and depth, when fabricated in an actual device.
In the present invention, an a scanner for scanning an object comprises an image capture module having at least a lens and a sensors array for capturing light after scanning the object. A plurality of light sources comprise a visible light source and an infrared light source. Next, a key module of the present invention is a first translation module connected with the lens and the sensors array. To be specific, the first translation module is used for changing a first location of the lens and a second location of the sensors array according to using different the light sources so as to improve some optical characteristics, such as aberration resulting from different wavelengths of light sources. A power module connects with the first translation module and the light sources for supporting energy to the first translation module and the light sources. Moreover, a second translation module connects with the light sources and the image capture module, and the second translation driven by the power module. A control module connects to the power module and the image capture module, and a loading platform module has a platform and therein all the modules and the light sources are placed.
The embodiments of the present invention are described in detail hereinafter with reference to the accompanying drawings.
In the present invention, a scanning apparatus comprises a control module 10, light sources 11, a power module 12, an image capture module 13, a loading platform module 14, a first translation module 15, and a second translation module 16, as shown in FIG. 2. The control module 10 comprises a host unit for data processing, and a plurality of control circuits for scanning process. The light sources 11 have at least two light sources with different wavelengths. In the present invention, one light source is a visible light source and the other is an infrared light source. The loading platform module 14 comprises a housing wherein all modules are placed.
Next, the image capture module 13 has at least a lens and a sensors array wherein sensors can be charge-coupled devices. The lens is for converging light from any object onto the sensors array. The sensors array is for transforming the light into corresponding image electric signals. The power module 12 comprises power supplies, motors, gears and belts for supporting energies to any scanning process.
Next, the first translation module 15 comprises a plurality of feeding devices, such as feeding rods and feeding screws. The first translation module 15 can be driven by the power module 12 and changing locations of the lens or the sensors array. In the present invention, the first translation module 15 can adjust the locations of the lens or the sensors array to compensating some optical defeats such as aberration that results from switching different light sources. Moreover, the second translation module 16 also comprises a plurality of feeding devices and feeds the light sources 11 and the image capture module 13 in any scanning motion.
Following, one preferred embodiment is described in FIG. 3A and FIG. 3B. The other one is described in FIG. 4A and FIG. 4B.
FIG. 3A is a schematic diagram showing the correlative locations for the devices in some modules. Dash line 30 represents running light of a pathway for any scanning motion. A visible light source 31 is used for the first-time scanning motion of an object (not shown). A first lens 33 and a second lens 34, both on a feeding screw 36 driven by a motor 38, are lens of the image capture 13 with different optical properties, such as focus and magnification. The second lens 34 is used when the visible light source 31 is as light source for scanning. A sensors array 35 of the image capture module 13, fed by a feeding screw 37 driven by a motor 39, is at a first suitable location for using the visible light source 31 such that a first image length for the first-time scanning motion is made.
As shown in FIG. 3B, when an infrared light source 32 is used for the second-time scanning motion of the object (not shown), the first lens 33 is fed to a second suitable location such that a first object length for the second-time scanning motion is made. Moreover, the sensors array 35 is also fed to a third location that is different from the location 40 of the sensors array 35 for the first-time scanning motion, so that a second image length for the second-time scanning motion is made.
The other one preferred embodiment is shown as FIG. 4A and FIG. 4B. FIG. 4A is a schematic diagram showing correlative locations for the devices in some modules. Dash line 41 50 represents a running light pathway for a scanning motion. A visible light source 41 is used for the first-time scanning motion of an object (not shown). A lens 43, on a feeding screw 46 driven by a motor 48, is fed a fourth suitable location for using the visible light source 41 as light source. A sensors array 45 of the image capture module 13, fed by a feeding screw 47 driven by a motor 49, is at a fifth suitable location for the visible light source 41 as light source.
As shown in FIG. 4B, when an infrared light source 42 is used for the second-time scanning motion of an object (not shown), the lens 43 is fed to a sixth suitable location that is different from the first location 44. Moreover, the sensors array 45 is also fed to a seventh location different from the second location 51 of the sensors array 45 for the first-time scanning motion.
Accordingly, with adjusting the distance between the object and the lens or the sensors array, some optical defeats resulting from using different light sources can be compensated for getting better scanning images.
While the present invention has been described herein in terms of preferred embodiments, numerous modifications and variations will occur to a person the spirit and scope of the present invention. It is intended that the appended claims encompass those modifications and variations.

Claims (31)

1. Apparatus for scanning an object An apparatus comprising:
an image capture module having at least including a lens and a sensors array for capturing an image sensor configured to capture light after in response to scanning said an object;
a plurality of light sources with different wavelengths for projecting said object through configured to transmit said light to said image capture module, wherein one of said light sources is selected for scanning said object; and
a first translation module connected with said lens and said sensors array of said image capture module, and said first translation module for changing configured to change a first location of said lens and a second location of said sensors array according to using different said light sources; and
a power module connected with said first translation module and said light sources for supporting energy to said first translation module and said light sources image sensor with respect to said selected light source.
2. The apparatus of claim 1, wherein said light sources comprise a visible light source and an infrared light source.
3. The apparatus of claim 1, wherein said first location is in a light pathway between said object and said lens.
4. The apparatus of claim 1, wherein said second location is in the a light pathway between said lens and said sensors array image sensor.
5. The apparatus of claim 1, wherein said first translation module comprises a plurality of feeding screws and feeding rods.
6. The apparatus of claim 1, further comprising a power module operably connected with said translation module and configured to provide energy to said translation module and said light sources, wherein said power module comprises a plurality of power supplies, motors, gears, and belts.
7. The apparatus of claim 1 further comprising:
a second translation module connected with said light sources and said image capture module, and said second translation driven by said power module;
a control module connected with said power module and said image capture module; and
a loading platform module having a platform and therein all said modules and said light sources placed.
8. The apparatus of claim 7, wherein said control module comprises a plurality of host units for data processing and circuits for executing scanning process.
9. A scanner comprising:
an image capture module having at least a lens and a sensors array for capturing light after scanning an object;
a plurality of light sources comprising a visible light source and an infrared light source;
a first translation module connected with said lens and said sensors array of said image capture module, and said first translation module for changing a first location of said lens and a second location of said sensors array according to using different said light sources;
a power module connected with said first translation module and said light sources for supporting energy to said first translation module and said light sources;
a second translation module connected with said light sources and said image capture module, and said second translation driven by said power module;
a control module connected to said power module and said image capture module; and
a loading platform module having a platform and therein all said modules and said light sources placed.
10. The scanner of claim 9, wherein the a distance between said first location and said object is an object length in a light pathway.
11. The scanner of claim 9, wherein the a distance between said second location and said lens is an image length in said a light pathway.
12. The scanner of claim 9, wherein said first translation module comprises a plurality of feeding screws and feeding rods.
13. The scanner of claim 9, wherein said power module comprises a plurality of power supplies, motors, gears, and belts.
14. A method of scanning by a scanner comprising:
usingselecting a light source from a plurality of light sources of a scanner configured to scan an object with different wavelengths, wherein said scanner comprises a lens and an image sensor;
changing, with a translation module, a first location of a said lens according to the selection of said light source; and
changing a second location of a sensors array said image sensor according to the selection of said light source.
15. The method according to of claim 14, wherein said light sources are comprise a visible light source and an infrared light source.
16. The method according to of claim 14, wherein the a distance between said first location and said object is an object length in an imaging system and is changed by a plurality of first translation devices device.
17. The method according to of claim 14 16, wherein the a distance between said second location and said lens is an image length in said imaging system and is changed by a plurality of second translation devices device.
18. A scanning apparatus, comprising:
an image capture module including an image sensor;
a first light source having a first range of wavelengths;
a second light source having a second range of wavelengths;
a control module configured to select one light source from a group consisting of said first and second light sources; and
a translation module configured to change a location of said image sensor with respect to said one light source in response to a selection of said one light source.
19. The apparatus of claim 18, wherein said image capture module further includes a lens, and wherein said translation module is further configured to change a location of said lens in response to the selection of said one light source.
20. The apparatus of claim 18, wherein said first light source comprises a light source configured to generate visible light.
21. The apparatus of claim 20, wherein said second light source comprises a light source configured to generate infrared light.
22. The apparatus of claim 18, wherein said control module is configured to select said one light source based, at least in part, on a type of object to be scanned.
23. A method comprising:
selecting one light source from a plurality of light sources based, at least in part, on a type of object to be scanned; and
changing, with a translation module, a location of a sensor array with respect to said one light source, at least in part, in response to the selection of said one light source, wherein said location of said sensor array is changed prior to said object being scanned.
24. The method of claim 23, wherein said selecting said one light source comprises selecting said one light source from a group of light sources consisting of a visible light source and an infrared light source.
25. The method of claim 23, further comprising changing a location of a lens, at least in part, in response to the selection of said one light source.
26. The method of claim 23, wherein said plurality of light sources comprises:
a first light source configured for a first document type; and
a second light source configured for a second document type.
27. The method of claim 26, wherein said first light source comprises a first range of wavelengths, and wherein said second light source comprises a second range of wavelengths different than said first range of wavelengths.
28. The method of claim 26, wherein said first document type comprises an opaque object, and wherein said second document type comprises a transparent object.
29. The method of claim 26, wherein said plurality of light sources comprises an infrared light source.
30. The apparatus of claim 18, wherein said first light source is selected when said type of object comprises an opaque object, and wherein said second light source is selected when said type of object comprises a transparent document.
31. The method of claim 23, wherein said plurality of light sources are associated with different wavelengths.
US11/283,479 2000-09-19 2005-11-18 Apparatus compensating a scanned object for optical characteristics according to light sources of different wavelengths Expired - Lifetime USRE42710E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/283,479 USRE42710E1 (en) 2000-09-19 2005-11-18 Apparatus compensating a scanned object for optical characteristics according to light sources of different wavelengths

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/665,444 US6650444B1 (en) 2000-09-19 2000-09-19 Apparatus compensating a scanned object for optical characteristics according to light sources of different wavelengths
US11/283,479 USRE42710E1 (en) 2000-09-19 2005-11-18 Apparatus compensating a scanned object for optical characteristics according to light sources of different wavelengths

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/665,444 Reissue US6650444B1 (en) 2000-09-19 2000-09-19 Apparatus compensating a scanned object for optical characteristics according to light sources of different wavelengths

Publications (1)

Publication Number Publication Date
USRE42710E1 true USRE42710E1 (en) 2011-09-20

Family

ID=29420817

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/665,444 Ceased US6650444B1 (en) 2000-09-19 2000-09-19 Apparatus compensating a scanned object for optical characteristics according to light sources of different wavelengths
US11/283,479 Expired - Lifetime USRE42710E1 (en) 2000-09-19 2005-11-18 Apparatus compensating a scanned object for optical characteristics according to light sources of different wavelengths

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/665,444 Ceased US6650444B1 (en) 2000-09-19 2000-09-19 Apparatus compensating a scanned object for optical characteristics according to light sources of different wavelengths

Country Status (1)

Country Link
US (2) US6650444B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7508497B2 (en) * 2003-11-26 2009-03-24 Meade Instruments Corporation Rangefinder with reduced noise receiver

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751376A (en) * 1985-04-12 1988-06-14 Minolta Camera Kabushiki Kaisha Image reader with focus and magnification detection control
US5153636A (en) * 1990-04-17 1992-10-06 Canon Kabushiki Kaisha Reader printer
US5381245A (en) * 1990-01-18 1995-01-10 X-Ray Scanner Corporation X-ray film scanning and digitizing apparatus
US5566006A (en) * 1993-07-08 1996-10-15 Canon Kabushiki Kaisha Image reading apparatus for selectively illuminating a first object and a second object by the same light beam and selectively detecting imaged image information therefrom
US5724173A (en) * 1996-11-25 1998-03-03 Chuan; Tsai Shui Optical scanning device
US5845019A (en) * 1992-08-20 1998-12-01 Nikon Corporation Image reader
US6151419A (en) * 1997-03-27 2000-11-21 Seiko Epson Corporation Image reading method and image reading apparatus
US6188465B1 (en) * 1997-01-21 2001-02-13 Xerox Corporation Dual depth of focus imaging system
US6233063B1 (en) * 1995-06-29 2001-05-15 Agfa Corporation Two lens converging device in a dual plane flat-bed scanning system
US6252684B1 (en) * 1998-11-13 2001-06-26 Umax Data Systems Inc. Automatic paper feeder including an upper light source
US6553154B1 (en) * 1998-11-05 2003-04-22 Acer Peripherals, Inc. Image reading apparatus
US6639694B1 (en) * 2000-09-05 2003-10-28 Umax Data Systems Inc. Imaging apparatus with divers resolution
US7034967B2 (en) * 1997-04-14 2006-04-25 Nikon Corporation Image reading apparatus and transparent original adapter

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751376A (en) * 1985-04-12 1988-06-14 Minolta Camera Kabushiki Kaisha Image reader with focus and magnification detection control
US5381245A (en) * 1990-01-18 1995-01-10 X-Ray Scanner Corporation X-ray film scanning and digitizing apparatus
US5153636A (en) * 1990-04-17 1992-10-06 Canon Kabushiki Kaisha Reader printer
US5845019A (en) * 1992-08-20 1998-12-01 Nikon Corporation Image reader
US5566006A (en) * 1993-07-08 1996-10-15 Canon Kabushiki Kaisha Image reading apparatus for selectively illuminating a first object and a second object by the same light beam and selectively detecting imaged image information therefrom
US6233063B1 (en) * 1995-06-29 2001-05-15 Agfa Corporation Two lens converging device in a dual plane flat-bed scanning system
US5724173A (en) * 1996-11-25 1998-03-03 Chuan; Tsai Shui Optical scanning device
US6188465B1 (en) * 1997-01-21 2001-02-13 Xerox Corporation Dual depth of focus imaging system
US6151419A (en) * 1997-03-27 2000-11-21 Seiko Epson Corporation Image reading method and image reading apparatus
US7034967B2 (en) * 1997-04-14 2006-04-25 Nikon Corporation Image reading apparatus and transparent original adapter
US6553154B1 (en) * 1998-11-05 2003-04-22 Acer Peripherals, Inc. Image reading apparatus
US6252684B1 (en) * 1998-11-13 2001-06-26 Umax Data Systems Inc. Automatic paper feeder including an upper light source
US6639694B1 (en) * 2000-09-05 2003-10-28 Umax Data Systems Inc. Imaging apparatus with divers resolution

Also Published As

Publication number Publication date
US6650444B1 (en) 2003-11-18

Similar Documents

Publication Publication Date Title
US7268345B2 (en) Optical scanner and method for 3-dimensional scanning
US7633656B2 (en) Image reading unit and image reading apparatus having the same
US5206501A (en) Image-reading device having a photoelectric transducer
CN1414400A (en) Ultrathin optical image sensor and its make-up method
JPH04245767A (en) Image input device
EP0115366A2 (en) Device for optically scanning a document
USRE42710E1 (en) Apparatus compensating a scanned object for optical characteristics according to light sources of different wavelengths
US20050111060A1 (en) Transparency media adapter and methods of use thereof
US20090021804A1 (en) Image processing apparatus and control method thereof
US7055743B2 (en) End-of-travel focus shift in an optical image scanner
US6522428B1 (en) Structure of foldable optical path
US20030137751A1 (en) Original illuminating apparatus and image reader having the same
US20070013971A1 (en) Imaging System Utilizing Illumination and Optical Modules Contained within Rotating Optical Platens
JP3086210B2 (en) Scanner image input method
TW509801B (en) Device to compensate for the optical property of scanned object according to different wavelengths
US6226107B1 (en) Multi-resolution scanners
JP2003037713A (en) Image reader
US6474554B2 (en) Multiple light sensor module position scanning method
JPH09261419A (en) Image inputting device
US11683433B1 (en) Image reading apparatus
US20070059042A1 (en) Image forming apparatus and image forming method
US7298529B2 (en) Method and system for imaging a transparent media object
US7706041B2 (en) Scanning module of image scanner
JP4806938B2 (en) Image reading device
US20030128407A1 (en) Method and apparatus for increasing scanning resolution

Legal Events

Date Code Title Description
CC Certificate of correction
AS Assignment

Owner name: TITUSVILLE CANAVERAL LLC, DELAWARE

Free format text: MERGER;ASSIGNOR:TRANSPACIFIC SYSTEMS, LLC;REEL/FRAME:030628/0681

Effective date: 20130213

AS Assignment

Owner name: INTELLECTUAL VENTURES I LLC, DELAWARE

Free format text: MERGER;ASSIGNOR:TITUSVILLE CANAVERAL LLC;REEL/FRAME:030639/0330

Effective date: 20130214

FPAY Fee payment

Year of fee payment: 12