USRE42682E1 - RF coupled, implantable medical device with rechargeable back-up power source - Google Patents

RF coupled, implantable medical device with rechargeable back-up power source Download PDF

Info

Publication number
USRE42682E1
USRE42682E1 US09/541,351 US54135100A USRE42682E US RE42682 E1 USRE42682 E1 US RE42682E1 US 54135100 A US54135100 A US 54135100A US RE42682 E USRE42682 E US RE42682E
Authority
US
United States
Prior art keywords
rf
means
rf energy
transmitting
system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/541,351
Inventor
Francisco Jose Barreras, Sr.
Oscar Jimenez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US08/690,968 priority Critical patent/US5733313A/en
Application filed by Medtronic Inc filed Critical Medtronic Inc
Priority to US09/541,351 priority patent/USRE42682E1/en
Application granted granted Critical
Publication of USRE42682E1 publication Critical patent/USRE42682E1/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/08Arrangements or circuits for monitoring, protecting, controlling or indicating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/378Electrical supply
    • A61N1/3787Electrical supply from an external energy source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/903Radio telemetry

Abstract

The implantable, electrically operated medical device system comprises an implanted radio frequency (RF) receiving unit (receiver) incorporating a back-up rechargeable power supply and an implanted, electrically operated device, and an external RF transmitting unit (transmitter). RF energy is transmitted by the transmitter and is coupled into the receiver which is used to power the implanted medical device and/or recharge the back-up power supply. The back-up power supply within the receiver has enough capacity to be able to, by itself, power the implanted device coupled to the receiver for at least 24 hours during continual delivery of medical therapy. The receiver is surgically implanted within the patient and the transmitter is worn externally by the patient. The transmitter can be powered by either a rechargeable or non-rechargeable battery. In a first mode of operation, the transmitter will supply power, via RF coupled energy, to operate the receiver and simultaneously recharge the back-up power supply. In a second mode of operation, the receiver can, automatically or upon external command from the transmitter, acquire its supply of power exclusively from the back-up power supply. Yet, in a third mode of operation, the receiver can, automatically or upon command from the transmitter, alternatively acquire its supply of power from either, RF energy coupled into the receiver or the internal back-up power supply.

Description

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an implantable medical device including a rechargeable back-up power source and a charging unit for recharging the back-up power source via RF coupling.

2. Description of the Related Art Including Information Disclosed Under 37 CFR §§1.97-1.99

The concept of using an implantable, electrically operated medical device for treating specific diseases or physical disorders is well known. Examples of implantable, electrically operated medical devices are: cardiac pacemakers which restore a sick human heart to a normal rhythm, neural simulators which control nerve or brain response (such as pain or epileptic seizures), infusion pumps for subcutaneously drug delivery (such as insulin pump), and diagnostic devices for monitoring a patient's condition.

With respect to all of these implantable, electrically operated devices, it is necessary to provide power to the device implanted below the skin. Since the medical device is subcutaneously implanted in the patient, the power source must supply electrical energy for a reasonable period of time in order to reduce further surgical trauma to the patient and financial cost to the medical provider.

Implantable, electrically operated medical devices can be classified in three general areas: radio frequency (RF) coupled and partially powered implanted devices, non-rechargeable battery powered totally implanted devices, and devices which combine RF coupling and battery powered systems.

The RF coupled and powered devices do not carry or contain an independent power source. Therefore, the RF coupled device requires an external RF transmitter and a surgically implanted receiver. Such a device is an RF coupled neural stimulator. The RF link transfers stimulation pulses percutaneously through the skin and adjacent tissue layers of the patient from the external RF transmitter to the surgically implanted RF receiver and stimulator device. The transmitter sends, on a real-time basis, stimulation pulses to be applied ultimately to the implanted electrodes plus programming data defining the polarity of each electrode relative to each other to the implanted stimulation device. The implanted receiver obtains these stimulation pulses and programming data, converts pulses as necessary, delivers the energy contained in each transmitted stimulation pulse to the implanted electrodes as defined in the real-time programming data. The stimulation energy for each stimulation pulse is inductively coupled on a real-time basis from the external transmitter to the implanted receiver.

The common disadvantage of the RF coupled and powered stimulator is that the patient must always wear the external transmitter and antenna (even during sleep) in order for the implanted receiver to deliver stimulation pulses to the targeted tissue. Stimulation therapy ceases the moment the transmitter antenna is withdrawn just a few inches away from the implanted receiver. Although the RF coupled stimulator has this disadvantage, the service life of such an RF coupled and powered stimulator is not limited to the life of a battery contained within a fully implantable stimulation unit. Accordingly, the long term cost of the RF coupled and powered simulators is less than the non-rechargeable battery powered simulators because the service life of the former is much longer than that of the latter. RF coupled and powered simulators have been commercially marketed by Medtronic of Minneapolis, Avery Laboratories of New York and Neuromed of Dallas, Tex.

The battery powered stimulator utilizes a primary, non-rechargeable battery to power the implanted stimulator. The battery provides sole and exclusive power to the implanted stimulator continually while the stimulator generates one or more electric stimulation pulses, in a controlled manner, to the targeted tissue. Of course, the stimulation pulses are delivered to the targeted tissue via implanted leads. An external programmer may be used to non-invasively adjust the stimulation parameters, such as amplitude, pulse width or rate, or to control the duration of stimulation therapy each day. Programming may be provided through an RF telemetry link. After programming, the stimulator remembers the parameter values (the values are stored in an electronic memory) as long as the battery voltage remains above a minimum voltage level required by the electronics. Unfortunately, the service life of these battery powered implantable simulators is limited to the battery life. Accordingly, it is necessary to surgically remove and then replace the battery powered implantable simulators upon depletion of the electrochemically active materials in the battery. This disadvantage (i.e. surgical replacement) increases its long term cost to the medical provider relative to the aforementioned RF coupled and powered simulators. The battery powered implantable simulators do not require an external transmitter to deliver the stimulating electrical pulses. Accordingly, the battery powered implantable simulators are less complicated to use and more comfortable to wear than the RF coupled and powered simulators. Battery powered simulators have been marketed by Medtronic of Minneapolis and Exonix of Miami.

A third category of implantable, electrically operated devices include neural simulators which combine the RF coupled/powered systems with the battery powered implantable stimulator technology. These types of simulators enable the patient to obtain therapy without the necessity of having an external RF coupled unit proximate to the implant at all times. However, the stimulator must be surgically replaced after the battery is depleted if use of the external RF transmitter is not desired. This type of stimulator allows RF coupled stimulation at times when wearing the external transmitter is not objectionable, thereby extending battery life. Also, this type of stimulator may allow for continuing RF coupled stimulation after the internal rower source is depleted, although some of these RF coupled and battery powered implantable simulators do not operate if the battery is completely depleted in the implanted stimulator.

Several examples of such previously proposed implantable devices are disclosed in the following U.S. patents:

U.S. Pat. No. Patentee
4,408,607 Maurer
4,793,353 Borkan
5,279,292 Baumann et al.
5,314,453 Jeutter

U.S. Pat. No. 5,314,453 to Jeutter describes and claims an implant “locator” means to aid in locating an implanted device. The locator means comprises a reed switch affixed to the center of a transmitting coil and a magnet affixed within the implanted device. Transmission of high frequency RF energy is possible only when the reed switch is closed by the magnet within the implanted device, thus insuring some degree of good coupling between the transmitter and receiver. However, this patent describes a full wave rectifier along with rechargeable batteries. Accordingly, it incorporates a rechargeable battery. The present invention differs from the teachings of the Jeutter patent in the following respects:

    • 1) Charging current is controlled by battery temperature to prevent gas generation by the battery and loss of battery electrolyte,
    • 2) A real-time feedback system is provided between the receiver and the transmitter for real-time adjustment of the RF energy generated by the transmitter, thereby extending the service time of the transmitter's battery.
    • 3) A low frequency RF coupling method (10 to 500,000 Hertz) is provided which allows RF coupling through a titanium encased receiver. The RF coupling system described by Jeutter operates at a very high frequency of 2,000,000 Hertz which is greatly attenuated by any metal enclosure. Jeutter describe an epoxy potted receiver which differs from a titanium encased receiver housing.
    • 4) The receiver is capable of automatic switching the supply of power between RF coupled power upon sensing RF energy or battery power upon sensing loss of RF coupled power.

U.S. Pat. No. 5,279,292 to Joachim Baumann et al. teaches a series resonant circuit in an implantable device. The device disclosed hereinafter uses a parallel resonant circuit which can be tuned at low frequencies, 60 Hz to 500 kHz, such as, for example 8 kHz, which couples well through a titanium enclosure. Further this patent does not teach adjusting charging current as a function of battery temperature or controlling the charging current with the current output from a D/A converter.

U.S. Pat. No. 4,793,353 to William Borkan discloses a non-invasive multiprogramable tissue stimulator which utilizes RF coupling to charge and recharge a capacitor or other rechargeable voltage source. The Borkan circuit differs from the circuit disclosed hereinafter in several respects:

    • 1) First of al in the Borkan circuit, while in the RF stimulation mode, each stimulation pulse must be generated and transmitted by the transmitter, on a real time basis, to the implanted receiver (in contrast, the receiver disclosed hereinafter incorporates all the elements required to autonomously generate and regulate the stimulation pulses);
    • 2) Borkan teaches that a non-rechargeable battery can be used as an alternative power source to RF coupled stimulation, while the circuit disclosed hereinafter uses a rechargeable battery which can be “fast” or “trickle” recharged via low to medium frequency (10 to 500,000 Hertz) RF coupling while Borkan uses a much higher RF coupling (2,000,000 Hertz).

U.S. Pat. No. 4,408,607 to Donald Maurer teaches a capacitive energy source and associated circuitry for powering a medical apparatus. The Maurer circuitry differs from our the circuitry disclosed hereinafter in that:

    • 1) The Maurer battery is non-rechargeable and only is used to power the implanted receiver during charging of the capacitor (the main power source);
    • 2) Maurer provides no means for non-invasively recharging the battery;
    • 3) Maurer does not control the charging current to a battery relative to the temperature of the battery to prevent gas generation by the battery and loss of battery electrolyte.

Moreover, Maurer does not teach the capability to switch automatically between RF coupled (power upon detection of RF energy) and battery power (upon sensing absence of RF energy).

SUMMARY OF THE INVENTION

According to the present invention there is provided an implantable, electrically operated medical device comprising an implanted radio frequency (RF) receiver incorporating a rechargeable back-up power source and an external RF transmitter. RF transmissions are coupled into the implanted receiver for powering delivery of medical therapy and simultaneous recharging of the back-up power source within the receiver. The back-up power source has enough capacity to be able to autonomously power the receiver for at least seven days during continual delivery of medical therapy. The receiver is surgically implanted within the patient and the transmitter is worn externally by the patient. The transmitter can be powered by either a rechargeable or non-rechargeable battery.

In a first mode of operation, the supply of power to operate the receiver, recharge the back-up power source and deliver therapy is acquired primarily from the RF energy coupled into the receiver, until the receiver senses a loss of RF power at which point it will automatically switch to the back-up power source in order to continue delivery of medical therapy. In this first mode of operation, the transmitter will transmit lower energy RF waves since the back-up power source is recharged at a slower rate.

In a second mode of operation, the receiver can, automatically or upon external command from the transmitter, acquire its supply of power exclusively from the back-up power source. In the second mode of operation, the transmitter will transmit high energy RF waves in order to recharge the back-up power source at a faster rate and will terminate the RF transmission upon receiving from the receiver a “termination command” which indicates that the back-up power source is fully charged.

Yet, in a third mode of operation the receiver can, automatically or upon command from the transmitter, alternatively acquire its supply of power from either or both, RF energy coupled into the receiver and/or the internal back-up power source. This third mode of operation is useful in patients where it is desirable to power the receiver from RF coupled energy during periods of awakeness, but switch to the back-up power source during sleep for greater comfort. In this third mode of operation, a real time clock within the receiver can be programmed by the transmitter with different start/stop times for RF coupled power than for back-up battery power. In this fashion, the switching is done automatically and the external transmitter unit will alert the patient which is the source of power for the receiver at all times.

The receiver includes a mechanism for alerting the patient when the back-up power source is nearing depletion and needs to be recharged. The mechanism can include: 1) a vibrating device within the receiver; 2) an audible tone generating device within the receiver; or, 3) a specific message shown in the transmitter's display combined with a specific audible tone generated by the transmitter.

The transmitter incorporates a transmitting antenna which generates RF wave-fronts which are coupled into an inductor within the implanted receiver. This RF coupled power, which is alternating current or AC in nature, is rectified, filtered and converted into a high DC voltage within the receiver. Further, a voltage regulator within the receiver converts the high DC voltage into a lower precise DC voltage from which the receiver operates.

It is the objective of the present invention to provide an implantable, electrically operated medical device (receiver) capable of obtaining its source of electrical power from either, an external battery coupled via low level RF transmissions (transmitter), or a back-up rechargeable battery contained within the implanted receiver.

According to one aspect of the present invention, there is provided a method of supplying power, on an exclusive basis, from externally low energy RF coupled power (transmitter), to an implanted receiver during continual delivery of medical therapy.

According to another aspect of the present invention, there is provided circuitry for programming into the receiver the times of day (meaning a continuous 24 hour period) in which the receiver automatically switches it's supply of power from RF coupled energy to the back-up power source, and vice-versa.

According to still another aspect of the present invention, there is provided a method for recording into a non-volatile memory contained within the implanted receiver the stimulation values and other critical data, so that it will not be erased if the back-up power source is depleted and to eliminate the need for the transmitter to generate and regulate, on a real time basis, the delivery of medical therapy.

According to still another aspect of the present invention, there is provided a method of supplying power, on an exclusive basis, during at least a seven day cycle of substantially continual delivery of medical therapy utilizing a rechargeable power source.

According to still another aspect of the present invention, there is provided a method for non-invasively recharging the power source within the receiver, whereby the electrical energy contained in the battery powering the external transmitter is transferred into the rechargeable power source within the receiver utilizing an inductive RF power link between the external transmitter (recharging unit) and the implanted receiver (unit being recharged).

According to still another aspect of the present invention, there is provided a method for regulating the rate of recharging the back-up power source contained within the implanted receiver as a function of temperature of the back-up power source, in order to inhibit the power source from generating harmful gases and to prevent electrolyte loss, thereby enhancing the service life of the back-up power source and increasing the possible number of recharge cycles.

According to still another aspect of the present invention, there is provided a method, interactive between the transmitter and receiver, for regulating the RF energy generated by the external RF transmitter as a function of distance between the transmitting and receiving inductors.

With these methods, the level of RF energy coupled into the receiver antenna is monitored by the receiver which telemeters specific commands to the RF transmitter to adjust the RF energy level being generated. This real-time feedback system allows generation of just the minimum RF power needed at the receiver, thereby extending the service time of the battery powering the RF transmitter.

According to still another aspect of the present invention, there is provided in transmitter for the patient to select between RF powered operation only, back-up power source operation only, or a combination of both. If “RF power” is selected, the implanted receiver will only operate when the transmitter unit is proximate to the implanted receiver, and the transmitter will generate low level RF energy. If “back-up power” is selected, the implanted receiver will draw it's operating power exclusively from the back-up power source, and the transmitter will generate higher level RF energy when used to quickly recharge the back-up power source. If “combination power” is selected, the implanted receiver will draw it's operating power from the transmitter via low level RF coupled energy, but will automatically switch to draw it's operating power from the internal back-up power source when the transmitter is removed or turned off. The patient may select one of these options via a specific menu shown in the transmitter's display.

According to still another aspect of the present invention, there is provided a method for the receiver to automatically terminate the recharge cycle upon sensing a fully charged back-up battery by the transmission of a specific telemetry command to the transmitter, thereby enhancing the service life of the battery powering the RF transmitter.

According to still another aspect of the present invention, there is provided several receiver-initiated commands for alerting the patient when the rechargeable power source is nearing depletion and needs to be recharged. Some alerting signals are generated by the receiver itself and other alerting signals are generated by the transmitter.

According to still another aspect of the present invention, power sources and methods are utilized for non-invasively coupling energy and recharging the implanted battery, in combination with an implantable tissue stimulator.

According to still another aspect of the present invention, there is provided an implantable drug delivery system utilizing these power sources and methods for non-invasively coupling electric energy into the implanted drug delivery system and recharging its battery.

According to still another aspect of the present invention, there is provided an implantable monitor and diagnostic system utilizing these power sources and methods for non-invasively coupling electrical energy into the implanted monitor which is used to collect vital physical data from the patient which can be interrogated by a receiver external to the patient.

According to still another aspect of the present invention, there is provided an implantable cardiac pacemaker utilizing these power sources and methods for non-invasively coupling electrical energy into the implanted pacemaker and recharging its battery.

According to still another aspect of the present invention, there is provided an implantable cardioverter/defibrillator utilizing these power sources and methods for non-invasively coupling electrical energy into the implanted cardioverter/defibrillator and recharging its battery.

According to still another aspect of the present invention, there is provided a method for recharging power via an inductive RF power link between the recharging unit and the implant and through the hermetic titanium encasement of the implant.

According to still another aspect of the present invention, a patient is permitted to vary the delivery schedule and/or quantities of the medical therapy via the external RF transmitter/recharger unit.

According to still another aspect of the present invention, a medical physician, nurse or technician is allowed to program into the implanted medical device, via the external RF transmitter/recharger unit, the delivery schedule, values or quantifies of the medical therapy and to set the limit for these schedules, values or quantities within which the patient may safely adjust them later on.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block electrical, schematic circuit diagram of the overall system including a transmitting unit and an implanted receiver unit configured for an implantable, rechargeable tissue stimulator system.

FIG. 2A is a block electrical schematic circuit of a digital to analog converter in the receiver unit

FIG. 2B is a detailed electrical schematic circuit diagram of the digital to analog converter with current output shown in FIG. 2A which is used, under control of a micro controller, to regulate the constant current rate for recharging the back-up power source within the implanted receiver unit.

FIG. 3 is a block electrical schematic circuit diagram of the overall system as configured for an implantable, rechargeable drug delivery system.

FIG. 4 is a block electrical schematic circuit diagram of the overall system as configured for an implantable, rechargeable cardiac pacemaker system.

FIG. 5 is a block electrical schematic circuit diagram of the overall system as configured for an implantable, rechargeable cardioverter/defibrillator.

FIG. 6 is a block electrical schematic circuit diagram of the overall system as configured for an implantable, rechargeable monitor and diagnostic system.

DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

Referring to the drawings in greater detail, there is illustrated in FIG. 1 a block electrical schematic circuit diagram of an implantable, rechargeable tissue stimulator system 10. The system 10 includes a transmitter 12 and a receiver 14, the latter being surgically implanted beneath a patient's skin 16. The receiver 14 is connected, via lead connector 18, to an implanted medical device, which in this embodiment, is an implanted lead 19 which contains, at it's distal end 20, stimulating electrodes 21-24. These electrodes 21-24 are implanted adjacent to the target tissue to be stimulated (i.e., a specific nerve or a nerve bundle, a specific area of the brain or a specific muscle within the human body). The implanted receiver 14 receives therapy values, transmitted by the transmitter 12 via RF signals, which are decoded by decoder 25 and then stored in a non-volatile memory (EPROM) 27.

Referring again to FIG. 1, the major components of the transmitter 12 are a micro controller 26 which is used, via software, to: 1) control the output of a programmable DC to DC converter 28 in order to regulate the amount of RF energy to be coupled into the receiver 14; 2) read data and command inputs inputted via a keyboard 30, display messages and menus via a display 32, transmit therapy parameter values, via a programming encoder 34, a transmit drive 36 and an antenna 38, to the implanted receiver 14; 3) and receive commands and patient's diagnostic data, transmitted from the implanted receiver 14, via the antenna 38, an amplifier 39 and a decoder 40. Transmitter 12 has a self contained power supply, such as a battery, whereby said transmitting unit is portable and not dependant upon an a.c. power source.

As shown in FIG. 1, when the transmitter 12 is powered up via a switch 41 and a “start therapy” key 42 on the keyboard 30 is pressed, the transmitter 12 will transmit the “start” command to the receiver 14 which will initiate delivery of therapy by the receiver 14. Likewise, if a “stop therapy” key 43 on the keyboard 30 is pressed, the transmitter 12 will transmit the “stop” command to the receiver 14 which will cease delivery of therapy.

The implanted receiver 14 of FIG. 1 can be programmed by the physician or patient to obtain it's operating power from one of three sources: 1) RF coupled energy only; 2) back-up rechargeable power supply/source 44 only; or 3) a combination of both whereby the implanted receiver 14 alternates automatically from one to the other according to a preset schedule programmed via the transmitter 12.

When “RF only” is selected from a menu displayed by the display 32 of the transmitter 12, an output port 45 of a micro controller 46 in the receiver 14 is switched to a “0” and a port 47 is switched to a “1” which places pmos transistor P2 in a conducting state and pmos transistor P1 in a non-conducting state. This effectively connects a line conductor 50 to a line conductor 52, making VDD equal to the output of a voltage regulator 54 which is at +3.0 vdc.

When “battery only” is selected from the same menu, the output port 47 is switched to a “0” and the port 45 is switched to a “1”, thus effectively connecting line conductor 56 to line conductor 52 and making VDD equal to the voltage level at the rechargeable power source 44.

As shown in FIG. 1, when “combination” is selected from the same menu, the system 10 will automatically switch the source of VDD to the output of the voltage regulator 54 (line conductor 50) when the transmitter 12 is proximal to the receiver 14, or to the rechargeable power source 44 when the transmitter 12 is removed away from the receiver 14. The automatic switching is performed by the micro controller 46 in response to the state of line conductor 50 which is at +3.0 volts when RF energy is being coupled into an inductor 60 (the transmitter 12 is proximal to the receiver 14) or is 0 volts in the absence of RF energy (the transmitter 12 is away from the receiver 14).

When the receiver 14 is programmed to “battery only” power acquisition mode, it's exclusive source of operating power becomes the rechargeable power source 44. After prolonged use, the rechargeable power source 44 will reach a near depleted level, at which point the receiver 14 will transmit, via an RF communication link 61, a “recharge” command to the transmitter 12. This will cause the transmitter 12 to generate, via the battery 62, the DC/DC converter 28 and an output inductor 64, high energy RF waves which are coupled into the inductor 60 contained within the receiver 14. The actual level of RF energy generated by the inductor 64 is regulated by an output port 70 of the micro controller 26 as a real-time response to data transmitted by the receiver 14 via the micro controller 46, the data representing the voltage level E1 at the output of the rectifier 74 in the receiver 14 which is measured via an attenuator 76 and an analog to digital converter 78. This feedback system extends the life of the battery 62 within the transmitter 12, by adjusting, as a function of distance between the inductors 64 and 60, the RF energy required to quickly recharge the rechargeable power source 44. A close proximity requires much less RF energy to recharge the rechargeable power source 44 than a longer distance would, in the same time. During this recharging operation, the micro controller regulates, as a function of temperature, the current level used to recharge the rechargeable power source 44. The temperature is measured by a thermistor 80 which is adhered to the rechargeable power source 44 during manufacturing. The junction between the thermistor 80 and a resistor 82 form a voltage divider which is fed through an analog switch 84 to an analog to digital converter 86 and, via a line conductor 88, to the micro controller 46. As the voltage rises, the ohmic value of the thermistor 80 drops proportionally to the temperature, thus reducing the voltage at the line conductor 88 to the micro controller 46. This loop forms a temperature-controlled, current-regulated charging system which restricts the temperature rise of the rechargeable power source 44 during recharging, thus preventing the power source 44 from suffering electrolyte starvation and gas generation. Both of these phenomena will, if left unchecked, dramatically reduce the reliability and service life of the power source 44. Also, during recharging of the power source 44, the micro controller 46 will monitor the voltage level of the power source 44 via a line conductor 90, analog switch 92, the A/D converter 86 and, finally, the line conductor 88. Upon sensing a fully charged state, the micro controller 46 will telemeter to transmitter 12, via the RF communications link 61, a “stop” recharging command and simultaneously will turn off a D/A converter 94 which will cut off the current needed to charge the rechargeable power source 44. In this manner, the power source 44 cannot be overcharged, even if the “stop” command was not received by the transmitter 12 due to electromagnetic interference.

Referring to FIG. 1, when the receiver 14 is programmed to “RF only”, the power acquisition mode, it's exclusive source of operating power is the low level RF energy generated by transmitter 12 and coupled into the inductor 60 within the receiver 14. The actual level of RF energy generated by the inductor 64 is regulated by the output port 70 of the micro controller 26 to the minimum level required to operate the receiver 14 and the rechargeable power source 44 is trickle charged, as a real-time response to data transmitted by the receiver 14 via the micro controller 26, i.e., the data representing the voltage level E1 at the output of the rectifier 74 which is measured via the attenuator 76 and the analog to digital converter 78. This feedback system extends the life of the battery 62 within the transmitter 12, by adjusting the RF energy required to operate the receiver 14 and maintain a trickle charge to the rechargeable power source 44, as a function of the distance between the inductors 64 and 60. At close proximity, much less RF energy is required to accomplish these functions than at a longer distance.

During trickle charging, the micro controller 46 regulates, as a function of temperature, the current level used to trickle charge the power source 46, by the same method already explained in the previous paragraph. Again, this prevents electrolyte starvation and gas generation within the rechargeable power source 44. Also, during trickle charging, the micro controller 46 will monitor the charge level of the power source 44, and upon sensing a fully charged state, the receiver 14 will telemeter to the transmitter 12 the “stop” recharging command and simultaneously will turn off the D/A converter 94 which will cut off the current needed to charge the power source 44. In this manner, the power source 44 cannot be overcharged, even if the “stop” command was not received by the transmitter 12 due to electromagnetic interference.

When the receiver 14 is programmed to “combination” power acquisition mode, the micro controller 46 will automatically switch delivery of operating power to the receiver 14 to RF coupled energy upon detection of RF induced voltage at E1. Likewise, the micro controller 46 will switch delivery of operating power to the rechargeable power source 44 upon loss of RF induced voltage at E1. The patient may select, via a menu shown in the transmitter's display 32, fast or trickle charge to the rechargeable power source

Upon sensing that the charge in the rechargeable power source 44 is below a predetermined level, the micro controller 46 signals the patient, via an audible alarm 96 and/or a vibrating alarm 98, that the rechargeable power source should be recharged.

Referring to FIG. 2B, a detailed electrical schematic of the digital to analog (D/A) converter 94 is provided. The D/A converter 94 is software programmable, precision current source whose output is regulated by the micro controller 46. It should be noted that this type of D/A converter is best implemented into an integrated circuit where the electrical characteristics of the transistors can be precisely matched.

Referring again to FIG. 2B, resistor R1 is used to set the base bias current for the converter 94. Transistors N17 and N1 form a 1:1 current mirror where the current into the transistor N17 equals the current through the transistor N1, since both transistors have equal channel width and length. However, the channel width for the transistors N2 through N8 are binary weighted, so that the transistor N2 has twice the width of the transistors N1, N3 has twice the width of N2, and so forth. This binary scaling results in transistor N2 conducting twice the current of transistor N1 (assuming equal bias current), the transistor N3 conducting twice the current of the transistor N2, and so forth. The transistors N9 through N16 are used as pass devices to allow the current available at the transistor N1 through the transistor N8 to pass to the current sum line 1. The on-off state for the transistors N9 through N16 is governed by inputs i1 through i8 which, in one embodiment, are output ports from the micro controller 46 (bus line 100 in FIG. 1). In this manner, the micro controller 46 is able to select any value of current between 1 and 256 times that of the current flowing through the resistor R1 (bias current) to pass to the current sum line 1.

Input line “enable.n” is used to turn on and off the D/A converter. When “enable.n” is a “0”, the transistor P1 conducts connecting VDD to the sources of the transistors P2 and P3 which form a 1:1 current mirror. Therefore, the current sourced by the transistor P3 equals the current flowing through the transistors P2, P3 being the output current device (“iSOURCE”) for this D/A converter 94.

In FIG. 3 is shown a block diagram for an implantable, rechargeable drug delivery system. The block diagram for the transmitter 12 is the same as for the transmitter 12 shown in FIG. 1.

The block diagram for the receiver 14 contains the same power supply system, supply switching means and method for recharging the rechargeable power solace 44 that has been already described above in connection with the description of FIG. 1, but has been modified to incorporate the components required to assemble an implantable drug delivery system. These components are: 1) a drug reservoir 104 which contains the drug to be delivered by the receiver 14; 2) a refill septum 106 used to percutaneously, via a hypodermic needle, refill the drug reservoir 104; 3) a portioning pump 108 used to dispense a precise volume of drug to a catheter 110 by making one or more small injections (portions); 4) a pump inlet tube 112; 5) a pump outlet tube 114; 6) the drug delivery catheter 110 which is used to carry and deliver to the target tissue the drug volume dispensed by the pump 108; and 7) a multi-wire cable 118 which carries the electrical signals for driving the pump 108.

Referring again to FIG. 3, the wire conductors 121-123 are used to drive the pump 108 and the wire conductors 131-133 are used to sense when a portion has been delivered. The micro controller 46 measures the time required for delivering each drug portion, and based on this time determines if the pump 108 is empty or contains fluid, since the former condition results is a faster time than the latter. Upon sensing a “pump empty” condition, the micro controller 46 signals the patient, via an audible alarm 140 and/or a vibrating alarm 142, that the reservoir 104 is empty. It should be noted that the titanium housing 150 of the receiver 14 should be in close proximity to the audible alarm 140 in order to transmit the sound waves to outside the human body.

FIG. 4 is a block diagram of an implantable, rechargeable cardiac pacemaker system. The block diagram for the transmitter 12 is the same as for the block diagram of the transmitter 12 shown in FIG. 1.

The block diagram for the receiver 14 contains the same power supply system, supply switching means and method for recharging the rechargeable power source 44 that already have been described above in connection with the description of FIG. 1, but has been modified to incorporate the components required to assemble an implantable, rechargeable cardiac pacemaker system. These components are: 1) a pulse amplitude D/A converter 202 which is used to regulate, under command of the micro controller 46, the amplitude of the stimulating pulses delivered to the human heart; 2) a bus 204 which carries the binary value for the amplitude from the micro controller 46 to the D/A converter 202; 3) an amplifier and filter 206 which detects and amplifies the cardiac depolarization waves (such as R or P waves) and filters out other signal frequencies not related to cardiac activity; 4) an implanted lead 210 containing electrodes 211-212 which is used to deliver stimulating pulses to the heart in order to regulate the heart's rhythm, but which is used also to pick-up and carry the cardiac depolarization waves to the amplifier/filter 206. These cardiac waves are used by the micro controller 46 to measure the intrinsic rate of the heart. The measurement is utilized to determine if electrical stimulation pulses are needed to speed-up the heart.

Upon sensing that the charge in the rechargeable power source 44 is below a predetermined level, the micro controller 46 signals the patient, via an audible alarm 220 and/or a vibrating alarm 222, that the rechargeable power source 44 should be recharged.

In FIG. 5 is illustrated a block diagram of an implantable, rechargeable cardioverter/defibrillator. The block diagram for the transmitter 12 is the same as the block diagram for the transmitter 12 shown in FIG. 1.

The block diagram for the receiver 14 contains the same power supply system, supply switching means and method for recharging the rechargeable power source 44 that already have been described above in connection with the description of FIG. 1, but has been modified to incorporate the components required to assemble an implantable, rechargeable cardioverter/defibrillator system. These components are: 1) a high voltage output, DC to DC converter 302 used to convert the low voltage available at the rechargeable power source 44 to a relatively higher voltage required to cardiovert a fibrillating human heart; 2) a bus 304 which carries the binary value for the voltage amplitude from the micro controller 46 to the D/A converter 302; 3) an amplifier/filter 306 used to detect the presence of a cardiac arrhythmia such as fibrillation or tachycardia; and, 4) an implanted cardioverting lead 310 containing cardioverting electrodes 311-312.

As shown in FIG. 5, the DC/DC converter 302 is used to generate either low voltage pulses to pace the human heart when needed or high voltage pulses to shock a large number of cardiac cells into synchrony, thereby restoring a normal cardiac rhythm. The micro controller 46, via the bus 304, regulates the timing and amplitude of low voltage pulses or high voltage shocks, depending if an arrhythmia is detected or not. Upon sensing that the charge in the rechargeable power source 44 is below a predetermined level, the micro controller 46 signals the patient, via an audible alarm 320 and/or a vibrating alarm 322, that the rechargeable power source 44 should be recharged.

In FIG. 6 there is illustrated a block diagram of an implantable, rechargeable monitor and diagnostic system. The block diagram for the transmitter 12 is the same as the block diagram for the transmitter 12 shown in FIG. 1.

The block diagram for the receiver 14 contains the same power supply system, supply switching means and method for recharging the rechargeable power source 44 that already have been described in connection with the description of FIG. 1, but has been modified to incorporate the components required to assemble an implantable, rechargeable monitor and diagnostic system. These components are: 1) an amplifier/filter 406 used to amplify the desired biological signals and to filter out other undesirable signals; 2) an analog to digital converter 408 which is used to convert the biological signal into a digital value representative of frequency and amplitude of the biological signal; 3) a monitoring lead 410 containing electrodes 411-412 which are used to pick-up and carry the biological signals to the amplifier/filter 406.

The mission of the monitor and diagnostic system shown in FIG. 6 is to monitor and record, in a non-volatile memory 414 27, specific biological signals and events occurring adjacent to the monitoring electrodes 411-412. Later, at a convenient time, these recordings can be telemetered to the transmitter 12 which will produce, via a graphic recorder 416, a hard copy of the biological signals for the physician's examination and eventual diagnosis. Any time biological signals occur, they are scrutinized by the micro controller 46 for specific morphology which would cause the event to be stored into the memory 27 for later examination by the physician. An example of a typical use, would be to record dysfunctional endocardiac signals which, when inspected by a trained physician, may reveal the origin of a cardiac dysfunction not detected by conventional means, such as a surface EKG.

From the foregoing description, it will be apparent that the RF coupled, implantable medical system 10 with the rechargeable back-up power supply/source 44 of the present invention has a number of advantages, some of which have been described above and others of which are inherent in the invention. Also it will be understood that modifications can be made to the RF coupled, implantable medical system including the rechargeable back-up power supply/source 44 described above without departing from the teachings of the present invention. Accordingly, the scope of the invention is only to be limited as necessitated by the accompanying claims.

Claims (32)

1. An RF coupled implantable medical system comprising:
a transmitting unit;
a receiving unit including an implantable, electrically operated, medical device, RF energy receiving means, RF signal transmitting means and a rechargeable battery;
said transmitting unit including a power source, RF energy transmitting means, RF signal receiving means and first control means coupled to said RF energy transmitting means and to said RF signal receiving means for controlling the amount of RF energy transmitted to said receiving unit thereby to conserve on the amount of power obtained from said power source; and,
second control means coupled to said RF energy receiving means, to said rechargeable battery, to said RF signal transmitting means and to said implantable medical device, for adjusting the charging current flowing into said rechargeable battery, as a function of (a) the charge level of said rechargeable battery, (b) selected charging rate, and (c) selected power supply for the implantable medical device.
2. The system of claim 1 wherein said receiving unit includes a titanium housing enclosing said RF energy receiving means, said RF signal transmitting means, said rechargeable battery and said second control means.
3. The system of claim 1 wherein said RF energy transmitting means of said transmitting unit is constructed to transmit energy at a frequency as low as 10 Hz and up to at least 20,000 Hz.
4. The system of claim 1 wherein said rechargeable battery has a temperature sensor which is mounted closely adjacent thereto and which is coupled via said RF signal transmitting means to said first control means of said transmitting unit whereby the level of transmitted RF energy can be reduced proportionally to the reduction in charging rate of the rechargeable battery in said receiving unit, in order to reduce the power consumption from said power source powering said transmitting unit.
5. The system of claim 1 wherein said RF energy transmitting means of said transmitting unit includes mode selection means for recharging said rechargeable battery at a “fast” (high energy), high energy rate or at a “trickle” (low to medium energy), low to medium energy rate.
6. The system of claim 1 wherein said transmitting unit includes power source selection means for setting said receiving unit to obtain its operating power from (1) RF coupled energy (“RF only” mode) in a “RF only” mode, (2) said rechargeable battery (“battery only” mode) in a “battery only” mode or (3) automatically switch to “RF only” upon detection of said RF energy field, or “battery only” when said RF energy field is not detected (“combination” mode) in a “combination” mode.
7. The system of claim 6 wherein said receiving unit includes: (a) means for rectifying said RF energy into a relatively high D.C. voltage, (b) means for regulating said high D.C. voltage into a lower D.C. voltage, and (c) means for detecting the presence of said RF energy field,
said receiving unit, when set to operate in said “RF coupled energy” mode, is operable to supply regulated electrical energy to said implantable device so long as said transmitting unit is located proximate to said receiving unit and said receiving unit is sensing transmitted RF energy.
8. The system of claim 6 wherein said receiving unit, when said transmitting unit is set to operate in said “battery only” mode, is operable, periodically, to supply electrical energy to said implantable device from said rechargeable power supply for a period of at least 24 hours.
9. The system of claim 6 wherein said receiving unit, when set to operate in said “combination” mode, is operable to supply regulated D.C. electrical energy to said implantable device, so long as said transmitting unit is located proximate to said receiving unit, and, separately, to “trickle charge” said rechargeable battery to maintain same fully charged.
10. The system of claim 1 wherein said first control means of said transmitting unit includes means for controlling the level of RF energy transfer from the transmitting unit to the receiving unit relative to one or more of one or more of the following parameters: (a) the charge level of said rechargeable battery, (b) selected charging rate, and (c) the selected power supply for said receiving unit.
11. The system of claim 1 wherein said receiving unit comprises means for measuring the charge level of said rechargeable battery and, upon sensing a fully charged battery, automatically up-links a coded signal which commands said transmitting unit to “stop” transmitting RF energy.
12. The system of claim 1 wherein said transmitting unit includes a visual display coupled to said first control means.
13. The system of claim 1 wherein said transmitting unit includes a keyboard coupled to said first control means.
14. The system of claim 13 wherein said keyboard includes keys to start and stop recharging of said rechargeable battery within the implantable medical device.
15. The system of claim 1 wherein said implanted medical device is a tissue stimulator.
16. The system of claim 1 wherein said implanted medical device is a drug delivery system.
17. The system of claim 1 wherein said implanted medical device is a cardiac pacemaker system.
18. The system of claim 1 wherein said implanted medical device is a cardioverter/defibrillator.
19. The system of claim 1 wherein said transmitting unit includes a battery, whereby said transmitting unit is portable and not dependant dependent upon an a.c. power source.
20. The system of claim 19 wherein said battery can be a rechargeable battery or a non-rechargeable battery.
21. The system of claim 1 wherein said RF energy transmitting means of said transmitting unit includes mode selection means for setting said transmitting unit to operate in one of the following modes: “RF only”, “battery only” or a “combination of both”.
22. The system of claim 21 wherein said RF energy transmitting means of said transmitting unit controls the amount of RF energy transmitted and,
(a) when said implanted receiving unit is set to operate in said “RF only” mode, said transmitted RF energy is automatically adjusted to the amount of RF energy required (i) to operate said implanted device and (ii) to maintain said rechargeable battery, which is powering said implanted device, in a fully charged state;
(b) when said implanted receiving unit is set to operate in said “battery only” mode, said transmitted RF energy is automatically adjusted to the amount of RF energy required (i) to operate said implanted device and (ii) to recharge quickly said rechargeable battery which is powering said implanted device; and,
(c) when said implanted receiving unit is set to operate in said “combination of both” mode, said receiving unit is set to switch automatically to either said “RF only” mode upon detecting said transmitted RF energy, or to said “battery only” mode upon detecting a loss of said transmitted RF energy.
23. An RF coupled implantable medical system comprising:
a transmitting unit;
a receiving unit including an implantable, electrically operated, medical device;
said transmitting unit including RF energy transmitting means, RF signal receiving means and first control means coupled to said RF energy transmitting means and to said RF signal receiving means for controlling the amount of RF energy transmitted to said receiving unit;
said receiving unit including RF energy receiving means, RF signal transmitting means, a rechargeable power supply coupled to said RF energy receiving means and second control means for adjusting the charging current flowing into said rechargeable battery coupled to said rechargeable power supply means, to said RF energy receiving means, to said RF signal transmitting means and to said implanted medical device, and
mode selection means for setting said receiving unit to operate in one of the following modes: (1) “RF only”, (2) “battery only” or (3) “combination of both”.
24. The system of claim 23 wherein said receiving unit, when said transmitting unit is set to operate in said “RF only” mode, is operable to supply electrical energy to said implantable device, so long as said transmitting unit is located proximate to said receiving unit and said receiving unit is sensing transmitted RF energy.
25. The system of claim 23 wherein said receiving unit, when said transmitting unit is set to operate in said “battery only” mode, is operable. periodically, to supply electrical energy to said implantable device from said rechargeable power supply for a period of at least 7 days.
26. The system of claim 23 wherein said receiving unit, when said transmitting unit is set to operate in said “battery only” mode, is operable, periodically, to supply electrical energy to said implantable device from said rechargeable power supply for a period of at least 24 hours.
27. The system of claim 23 wherein said receiving unit, when said transmitting unit is set to operate in said “combination” mode, is operable to supply electrical energy to said implantable device through a rectifier directly to said implanted medical device, so long as said transmitting unit is located proximate to said receiving unit, and, separately, to “trickle charge” said rechargeable power supply.
28. An RF coupled implantable medical system comprising:
a transmitting unit;
a receiving unit including an implantable, electrically operated, medical device;
said transmitting unit including RF energy transmitting means, RF signal receiving means and first control means coupled to said RF energy transmitting means and to said RF signal receiving means for controlling the amount of RF energy transmitted to said receiving unit;
said receiving unit including RF energy receiving means, RF signal transmitting means, a rechargeable power supply coupled to said RF energy receiving means and second control means for adjusting the charging current flowing into said rechargeable battery coupled to said rechargeable power supply means, the current to said RF energy receiving means, the current to said RF signal transmitting means and to output signals from an output of said implanted medical device; and,
said receiving unit comprising means for measuring the charge level of said rechargeable battery power supply and, upon sensing a fully charged battery power supply, automatically up-linking a coded signal which commands said transmitting unit to “stop” stop transmitting RF energy; and,
mode selection means for controlling the supply of power in one of several modes of operation selected from one of: a) simultaneously operate the implanted medical device and recharge the rechargeable power supply from the transmitted RF energy, b) operate the implanted medical device exclusively exclusively from the rechargeable power supply, or c) operate the implanted medical device from the transmitted RF energy.
29. An RF coupled implantable medical system comprising:
a transmitting unit;
a receiving unit including an implantable, electrically operated, medical device, RF energy receiving means, and a rechargeable power supply;
said transmitting unit including a power source and an RF energy transmitting means;
said receiving unit including control means coupled to said rechargeable power supply and to said implantable medical device for adjusting the charging current flowing into said rechargeable power supply; and,
mode selection means for controlling the supply of power in one of several modes of operation selected from one of: a) simultaneously operate the implanted medical device and recharge the rechargeable power supply from the transmitted RF energy, b) operate the implanted medical device exclusively from the rechargeable power supply, or c) operate the implanted medical device from the transmitted RF energy.
30. An RF coupled implantable medical system of claim 29 further comprising memory means coupled to said control means for storing information for controlling an output signal from said implantable medical device.
31. An RF coupled implantable medical system comprising:
a transmitting unit;
a receiving unit including an implantable, electrically operated, medical device, RF energy receiving means, and a rechargeable power supply;
said transmitting unit including a power source, RF energy transmitting means, and transmitting control means coupled to said RF energy transmitting means for controlling the amount of RF energy transmitted to said receiving unit thereby to conserve on the amount of power obtained from said power source;
said receiving unit including second control means coupled to said rechargeable power supply and to said implantable medical device for adjusting the charging current flowing into said rechargeable power supply; and,
mode selection means for controlling the supply of power in one of several modes of operation selected from one of: a) simultaneously operate the implanted medical device and recharge the rechargeable power supply from the transmitted RF energy, b) operate the implanted medical device exclusively from the rechargeable power supply, or c) operate the implanted medical device from the transmitted RF energy.
32. An RF coupled implantable medical system of claim 31 further comprising memory means coupled to said second control means for storing information for controlling an output signal from said implantable medical device.
US09/541,351 1996-08-01 2000-03-31 RF coupled, implantable medical device with rechargeable back-up power source Expired - Lifetime USRE42682E1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08/690,968 US5733313A (en) 1996-08-01 1996-08-01 RF coupled, implantable medical device with rechargeable back-up power source
US09/541,351 USRE42682E1 (en) 1996-08-01 2000-03-31 RF coupled, implantable medical device with rechargeable back-up power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/541,351 USRE42682E1 (en) 1996-08-01 2000-03-31 RF coupled, implantable medical device with rechargeable back-up power source

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/690,968 Reissue US5733313A (en) 1996-08-01 1996-08-01 RF coupled, implantable medical device with rechargeable back-up power source

Publications (1)

Publication Number Publication Date
USRE42682E1 true USRE42682E1 (en) 2011-09-06

Family

ID=24774668

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/690,968 Expired - Lifetime US5733313A (en) 1996-08-01 1996-08-01 RF coupled, implantable medical device with rechargeable back-up power source
US09/541,351 Expired - Lifetime USRE42682E1 (en) 1996-08-01 2000-03-31 RF coupled, implantable medical device with rechargeable back-up power source

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/690,968 Expired - Lifetime US5733313A (en) 1996-08-01 1996-08-01 RF coupled, implantable medical device with rechargeable back-up power source

Country Status (1)

Country Link
US (2) US5733313A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8287495B2 (en) 2009-07-30 2012-10-16 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US8594806B2 (en) 2010-04-30 2013-11-26 Cyberonics, Inc. Recharging and communication lead for an implantable device
US8986253B2 (en) 2008-01-25 2015-03-24 Tandem Diabetes Care, Inc. Two chamber pumps and related methods
US9101768B2 (en) 2013-03-15 2015-08-11 Globus Medical, Inc. Spinal cord stimulator system
US9142989B2 (en) 2012-09-07 2015-09-22 Greatbatch Ltd. Method of minimizing interruptions to implantable medical device recharging
US9180243B2 (en) 2013-03-15 2015-11-10 Tandem Diabetes Care, Inc. Detection of infusion pump conditions
US9209634B2 (en) 2012-09-07 2015-12-08 Greatbatch Ltd. Method of improving battery recharge efficiency by statistical analysis
US9225190B2 (en) 2012-09-07 2015-12-29 Manufacturers And Traders Trust Company Implant current controlled battery charging based on temperature
US9287040B2 (en) 2012-07-27 2016-03-15 Thoratec Corporation Self-tuning resonant power transfer systems
US9343923B2 (en) 2012-08-23 2016-05-17 Cyberonics, Inc. Implantable medical device with backscatter signal based communication
US9555186B2 (en) 2012-06-05 2017-01-31 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US9583874B2 (en) 2014-10-06 2017-02-28 Thoratec Corporation Multiaxial connector for implantable devices
US9592397B2 (en) 2012-07-27 2017-03-14 Thoratec Corporation Thermal management for implantable wireless power transfer systems
US9680310B2 (en) 2013-03-15 2017-06-13 Thoratec Corporation Integrated implantable TETS housing including fins and coil loops
US9805863B2 (en) 2012-07-27 2017-10-31 Thoratec Corporation Magnetic power transmission utilizing phased transmitter coil arrays and phased receiver coil arrays
US9825471B2 (en) 2012-07-27 2017-11-21 Thoratec Corporation Resonant power transfer systems with protective algorithm
US9855437B2 (en) 2013-11-11 2018-01-02 Tc1 Llc Hinged resonant power transfer coil
US9872997B2 (en) 2013-03-15 2018-01-23 Globus Medical, Inc. Spinal cord stimulator system
US9878170B2 (en) 2013-03-15 2018-01-30 Globus Medical, Inc. Spinal cord stimulator system
US9887574B2 (en) 2013-03-15 2018-02-06 Globus Medical, Inc. Spinal cord stimulator system
US9935498B2 (en) 2012-09-25 2018-04-03 Cyberonics, Inc. Communication efficiency with an implantable medical device using a circulator and a backscatter signal
US9962486B2 (en) 2013-03-14 2018-05-08 Tandem Diabetes Care, Inc. System and method for detecting occlusions in an infusion pump
US10148126B2 (en) 2015-08-31 2018-12-04 Tc1 Llc Wireless energy transfer system and wearables
US10177604B2 (en) 2015-10-07 2019-01-08 Tc1 Llc Resonant power transfer systems having efficiency optimization based on receiver impedance
US10186760B2 (en) 2014-09-22 2019-01-22 Tc1 Llc Antenna designs for communication between a wirelessly powered implant to an external device outside the body
US10251987B2 (en) 2013-07-29 2019-04-09 Tc1 Llc Resonant power transmission coils and systems

Families Citing this family (320)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6164284A (en) * 1997-02-26 2000-12-26 Schulman; Joseph H. System of implantable devices for monitoring and/or affecting body parameters
US6208894B1 (en) * 1997-02-26 2001-03-27 Alfred E. Mann Foundation For Scientific Research And Advanced Bionics System of implantable devices for monitoring and/or affecting body parameters
US7114502B2 (en) * 1997-02-26 2006-10-03 Alfred E. Mann Foundation For Scientific Research Battery-powered patient implantable device
NZ337954A (en) * 1997-03-13 2001-09-28 First Opinion Corp Computerized disease management method adjusts a disease therapy for a patient based on obtained health data
US6089864A (en) 1997-11-14 2000-07-18 William L. Hintermister Bio-feedback, data acquisition teeth guards, methods of their manufacture and use
US6431175B1 (en) 1997-12-30 2002-08-13 Remon Medical Technologies Ltd. System and method for directing and monitoring radiation
US6140740A (en) 1997-12-30 2000-10-31 Remon Medical Technologies, Ltd. Piezoelectric transducer
US6475170B1 (en) 1997-12-30 2002-11-05 Remon Medical Technologies Ltd Acoustic biosensor for monitoring physiological conditions in a body implantation site
US6486588B2 (en) 1997-12-30 2002-11-26 Remon Medical Technologies Ltd Acoustic biosensor for monitoring physiological conditions in a body implantation site
WO2000024456A1 (en) 1998-10-27 2000-05-04 Phillips Richard P Transcutaneous energy transmission system with full wave class e rectifier
US6073050A (en) * 1998-11-10 2000-06-06 Advanced Bionics Corporation Efficient integrated RF telemetry transmitter for use with implantable device
US6358202B1 (en) * 1999-01-25 2002-03-19 Sun Microsystems, Inc. Network for implanted computer devices
US6166518A (en) * 1999-04-26 2000-12-26 Exonix Corporation Implantable power management system
US6635048B1 (en) * 1999-04-30 2003-10-21 Medtronic, Inc. Implantable medical pump with multi-layer back-up memory
US6669663B1 (en) * 1999-04-30 2003-12-30 Medtronic, Inc. Closed loop medicament pump
US6127799A (en) * 1999-05-14 2000-10-03 Gte Internetworking Incorporated Method and apparatus for wireless powering and recharging
US20010041869A1 (en) * 2000-03-23 2001-11-15 Causey James D. Control tabs for infusion devices and methods of using the same
US7177690B2 (en) 1999-07-27 2007-02-13 Advanced Bionics Corporation Implantable system having rechargeable battery indicator
US6516227B1 (en) * 1999-07-27 2003-02-04 Advanced Bionics Corporation Rechargeable spinal cord stimulator system
US6553263B1 (en) * 1999-07-30 2003-04-22 Advanced Bionics Corporation Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
US7295878B1 (en) 1999-07-30 2007-11-13 Advanced Bionics Corporation Implantable devices using rechargeable zero-volt technology lithium-ion batteries
US6644321B1 (en) * 1999-10-29 2003-11-11 Medtronic, Inc. Tactile feedback for indicating validity of communication link with an implantable medical device
US6277078B1 (en) 1999-11-19 2001-08-21 Remon Medical Technologies, Ltd. System and method for monitoring a parameter associated with the performance of a heart
US6873268B2 (en) 2000-01-21 2005-03-29 Medtronic Minimed, Inc. Microprocessor controlled ambulatory medical apparatus with hand held communication device
US8155752B2 (en) 2000-03-17 2012-04-10 Boston Scientific Neuromodulation Corporation Implantable medical device with single coil for charging and communicating
US6631296B1 (en) * 2000-03-17 2003-10-07 Advanced Bionics Corporation Voltage converter for implantable microstimulator using RF-powering coil
US6456883B1 (en) * 2000-04-26 2002-09-24 Medtronic, Inc. Apparatus and method for allowing immediate retrieval for information and identification from an implantable medical device having a depleted power source
US6453198B1 (en) 2000-04-28 2002-09-17 Medtronic, Inc. Power management for an implantable medical device
US7167756B1 (en) * 2000-04-28 2007-01-23 Medtronic, Inc. Battery recharge management for an implantable medical device
US6327504B1 (en) 2000-05-10 2001-12-04 Thoratec Corporation Transcutaneous energy transfer with circuitry arranged to avoid overheating
US6850803B1 (en) * 2000-06-16 2005-02-01 Medtronic, Inc. Implantable medical device with a recharging coil magnetic shield
DE60140025D1 (en) 2000-06-19 2009-11-12 Medtronic Inc An implantable medical device with an external Nachladespule
US6505077B1 (en) 2000-06-19 2003-01-07 Medtronic, Inc. Implantable medical device with external recharging coil electrical connection
US7024248B2 (en) * 2000-10-16 2006-04-04 Remon Medical Technologies Ltd Systems and methods for communicating with implantable devices
US7369890B2 (en) * 2000-11-02 2008-05-06 Cardiac Pacemakers, Inc. Technique for discriminating between coordinated and uncoordinated cardiac rhythms
EP1335776A2 (en) * 2000-11-22 2003-08-20 Medtronic, Inc. Apparatus for detecting and treating ventricular arrhythmia
US20020087116A1 (en) * 2000-12-29 2002-07-04 Medtronic, Inc. Patient scheduling techniques for an implantable medical device
US7065658B1 (en) 2001-05-18 2006-06-20 Palm, Incorporated Method and apparatus for synchronizing and recharging a connector-less portable computer system
US7191008B2 (en) * 2001-05-30 2007-03-13 Medtronic, Inc. Implantable medical device with a dual power source
US20030032868A1 (en) * 2001-07-09 2003-02-13 Henning Graskov Method and system for controlling data information between two portable apparatuses
US20030036746A1 (en) 2001-08-16 2003-02-20 Avi Penner Devices for intrabody delivery of molecules and systems and methods utilizing same
US7151378B2 (en) * 2001-09-25 2006-12-19 Wilson Greatbatch Technologies, Inc. Implantable energy management system and method
US7224300B2 (en) * 2001-11-30 2007-05-29 Second Sight Medical Products, Inc. Floating gate digital-to-analog converter
US6993393B2 (en) * 2001-12-19 2006-01-31 Cardiac Pacemakers, Inc. Telemetry duty cycle management system for an implantable medical device
US7729776B2 (en) 2001-12-19 2010-06-01 Cardiac Pacemakers, Inc. Implantable medical device with two or more telemetry systems
US6985773B2 (en) * 2002-02-07 2006-01-10 Cardiac Pacemakers, Inc. Methods and apparatuses for implantable medical device telemetry power management
US20080009689A1 (en) * 2002-04-09 2008-01-10 Benaron David A Difference-weighted somatic spectroscopy
US6711426B2 (en) * 2002-04-09 2004-03-23 Spectros Corporation Spectroscopy illuminator with improved delivery efficiency for high optical density and reduced thermal load
US20070015981A1 (en) * 2003-08-29 2007-01-18 Benaron David A Device and methods for the detection of locally-weighted tissue ischemia
US7295880B2 (en) * 2002-04-29 2007-11-13 Medtronic, Inc. Stimulation control for brain stimulation
DE10220171A1 (en) * 2002-05-06 2003-11-27 K-Jump Health Co Electronic patch thermometer, has measuring apparatus transmitting temperature signals to receiving apparatus that displays results in numeral, audio alarm or speech form
US7076307B2 (en) * 2002-05-09 2006-07-11 Boveja Birinder R Method and system for modulating the vagus nerve (10th cranial nerve) with electrical pulses using implanted and external components, to provide therapy neurological and neuropsychiatric disorders
US7437193B2 (en) * 2002-06-28 2008-10-14 Boston Scientific Neuromodulation Corporation Microstimulator employing improved recharging reporting and telemetry techniques
US7427280B2 (en) 2002-09-06 2008-09-23 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by delivering drugs to various nerves or tissues
US7369894B2 (en) 2002-09-06 2008-05-06 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by electrical stimulation of the sacral and/or pudendal nerves
US7276057B2 (en) * 2002-09-06 2007-10-02 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by drug delivery to the pudendal and sacral nerves
US7328069B2 (en) * 2002-09-06 2008-02-05 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by electrical stimulation of and the delivery of drugs to the left and right pudendal nerves
US7811231B2 (en) 2002-12-31 2010-10-12 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
TWI235523B (en) * 2002-12-31 2005-07-01 Ind Tech Res Inst A radio transmitter and receiver of an implantable medical device
US7484887B2 (en) * 2003-02-20 2009-02-03 Ysis Incorporated Digitally modified resistive output for a temperature sensor
US7328068B2 (en) * 2003-03-31 2008-02-05 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by means of electrical stimulation of the pudendal and associated nerves, and the optional delivery of drugs in association therewith
US7198603B2 (en) * 2003-04-14 2007-04-03 Remon Medical Technologies, Inc. Apparatus and methods using acoustic telemetry for intrabody communications
KR100739913B1 (en) * 2003-04-25 2007-07-16 올림푸스 가부시키가이샤 Radio-type in-subject information acquisition system and device for introduction into subject
US7444184B2 (en) * 2003-05-11 2008-10-28 Neuro And Cardial Technologies, Llc Method and system for providing therapy for bulimia/eating disorders by providing electrical pulses to vagus nerve(s)
US20060074450A1 (en) * 2003-05-11 2006-04-06 Boveja Birinder R System for providing electrical pulses to nerve and/or muscle using an implanted stimulator
US6967462B1 (en) 2003-06-05 2005-11-22 Nasa Glenn Research Center Charging of devices by microwave power beaming
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
US20050038331A1 (en) * 2003-08-14 2005-02-17 Grayson Silaski Insertable sensor assembly having a coupled inductor communicative system
US7320675B2 (en) * 2003-08-21 2008-01-22 Cardiac Pacemakers, Inc. Method and apparatus for modulating cellular metabolism during post-ischemia or heart failure
US20050102006A1 (en) * 2003-09-25 2005-05-12 Whitehurst Todd K. Skull-mounted electrical stimulation system
JP4036813B2 (en) * 2003-09-30 2008-01-23 シャープ株式会社 A contactless power supply system
US7286880B2 (en) * 2003-10-02 2007-10-23 Medtronic, Inc. System and method for transcutaneous energy transfer achieving high efficiency
US9259584B2 (en) 2003-10-02 2016-02-16 Medtronic, Inc. External unit for implantable medical device coupled by cord
US7225032B2 (en) 2003-10-02 2007-05-29 Medtronic Inc. External power source, charger and system for an implantable medical device having thermal characteristics and method therefore
US20050075696A1 (en) 2003-10-02 2005-04-07 Medtronic, Inc. Inductively rechargeable external energy source, charger, system and method for a transcutaneous inductive charger for an implantable medical device
US7308316B2 (en) * 2003-10-02 2007-12-11 Medtronic, Inc. Storable implantable medical device assembly allowing in package charging
US8346361B2 (en) * 2003-10-02 2013-01-01 Medtronic, Inc. User interface for external charger for implantable medical device
US7286881B2 (en) * 2003-10-02 2007-10-23 Medtronic, Inc. External power source having an adjustable magnetic core and method of use
US7515967B2 (en) * 2003-10-02 2009-04-07 Medtronic, Inc. Ambulatory energy transfer system for an implantable medical device and method therefore
US8140168B2 (en) * 2003-10-02 2012-03-20 Medtronic, Inc. External power source for an implantable medical device having an adjustable carrier frequency and system and method related therefore
US8265770B2 (en) * 2003-10-02 2012-09-11 Medtronic, Inc. Driver circuitry switchable between energy transfer and telemetry for an implantable medical device
DE10353943B4 (en) * 2003-11-18 2013-01-03 Deutsches Zentrum für Luft- und Raumfahrt e.V. Arrangement for wireless transfer of energy to an implanted device
US7450998B2 (en) 2003-11-21 2008-11-11 Alfred E. Mann Foundation For Scientific Research Method of placing an implantable device proximate to neural/muscular tissue
US20050137626A1 (en) * 2003-12-19 2005-06-23 Pastore Joseph M. Drug delivery system and method employing external drug delivery device in conjunction with computer network
WO2005067817A1 (en) * 2004-01-13 2005-07-28 Remon Medical Technologies Ltd Devices for fixing a sensor in a body lumen
EP1557949A1 (en) * 2004-01-23 2005-07-27 Matsushita Electric Industrial Co., Ltd. Low-noise differential bias circuit and differential signal processing apparatus
US9205255B2 (en) * 2004-06-10 2015-12-08 Medtronic Urinary Solutions, Inc. Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US9308382B2 (en) * 2004-06-10 2016-04-12 Medtronic Urinary Solutions, Inc. Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US20070066995A1 (en) * 2004-06-10 2007-03-22 Ndi Medical, Llc Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
US8771183B2 (en) 2004-02-17 2014-07-08 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US7288918B2 (en) * 2004-03-02 2007-10-30 Distefano Michael Vincent Wireless battery charger via carrier frequency signal
EP1732645B1 (en) 2004-04-07 2012-06-13 Cardiac Pacemakers, Inc. Rf wake-up of implantable medical device
US7212110B1 (en) * 2004-04-19 2007-05-01 Advanced Neuromodulation Systems, Inc. Implantable device and system and method for wireless communication
US7123966B2 (en) * 2004-04-30 2006-10-17 Medtronic, Inc. Drop and slide engagement for implantable medical device
US7035688B2 (en) * 2004-04-30 2006-04-25 Medtronic, Inc. Laminate of magnetic material and method of making
US8041427B2 (en) * 2004-04-30 2011-10-18 Medtronic, Inc. Battery isolator for implantable medical device
US7442337B2 (en) * 2004-04-30 2008-10-28 Medtronic, Inc. Method of laminating articles
US7512443B2 (en) * 2004-04-30 2009-03-31 Medtronic, Inc. Spacers for use with transcutaneous energy transfer system
US20050245982A1 (en) * 2004-04-30 2005-11-03 Medtronic, Inc. Connector block for an implantable medical device
US7955543B2 (en) * 2004-04-30 2011-06-07 Medtronic, Inc. Method of overmolding a substrate
US7236869B2 (en) * 2004-04-30 2007-06-26 General Motors Corporation Blended torque estimation for automatic transmission systems
US7374565B2 (en) * 2004-05-28 2008-05-20 Ethicon Endo-Surgery, Inc. Bi-directional infuser pump with volume braking for hydraulically controlling an adjustable gastric band
US7351240B2 (en) * 2004-05-28 2008-04-01 Ethicon Endo—Srugery, Inc. Thermodynamically driven reversible infuser pump for use as a remotely controlled gastric band
US7390294B2 (en) * 2004-05-28 2008-06-24 Ethicon Endo-Surgery, Inc. Piezo electrically driven bellows infuser for hydraulically controlling an adjustable gastric band
US7481763B2 (en) * 2004-05-28 2009-01-27 Ethicon Endo-Surgery, Inc. Metal bellows position feedback for hydraulic control of an adjustable gastric band
US7351198B2 (en) * 2004-06-02 2008-04-01 Ethicon Endo-Surgery, Inc. Implantable adjustable sphincter system
US7764995B2 (en) * 2004-06-07 2010-07-27 Cardiac Pacemakers, Inc. Method and apparatus to modulate cellular regeneration post myocardial infarct
US7794499B2 (en) * 2004-06-08 2010-09-14 Theken Disc, L.L.C. Prosthetic intervertebral spinal disc with integral microprocessor
US9480846B2 (en) * 2006-05-17 2016-11-01 Medtronic Urinary Solutions, Inc. Systems and methods for patient control of stimulation systems
WO2006022993A2 (en) * 2004-06-10 2006-03-02 Ndi Medical, Llc Implantable generator for muscle and nerve stimulation
US8165692B2 (en) * 2004-06-10 2012-04-24 Medtronic Urinary Solutions, Inc. Implantable pulse generator power management
US7191007B2 (en) * 2004-06-24 2007-03-13 Ethicon Endo-Surgery, Inc Spatially decoupled twin secondary coils for optimizing transcutaneous energy transfer (TET) power transfer characteristics
US7599744B2 (en) * 2004-06-24 2009-10-06 Ethicon Endo-Surgery, Inc. Transcutaneous energy transfer primary coil with a high aspect ferrite core
US20050288740A1 (en) * 2004-06-24 2005-12-29 Ethicon Endo-Surgery, Inc. Low frequency transcutaneous telemetry to implanted medical device
US7599743B2 (en) * 2004-06-24 2009-10-06 Ethicon Endo-Surgery, Inc. Low frequency transcutaneous energy transfer to implanted medical device
US20050288739A1 (en) * 2004-06-24 2005-12-29 Ethicon, Inc. Medical implant having closed loop transcutaneous energy transfer (TET) power transfer regulation circuitry
US9192772B1 (en) * 2004-06-29 2015-11-24 Quallion Llc Portable medical power system
US20060009817A1 (en) * 2004-07-12 2006-01-12 Radi Medical Systems Ab Wireless communication of physiological variables
US9044201B2 (en) * 2004-07-12 2015-06-02 St. Jude Medical Coordination Center Bvba Wireless communication of physiological variables using spread spectrum
DE602005020948D1 (en) * 2004-07-20 2010-06-10 Medtronic Inc Switched power with telemetry in an implantable medicine
US20060020303A1 (en) * 2004-07-20 2006-01-26 Medtronic, Inc. Medical device telemetry arbitration system using signal strength
US20060020304A1 (en) * 2004-07-20 2006-01-26 Medtronic, Inc. Medical device telemetry arbitration system using time of response
US20060020302A1 (en) * 2004-07-20 2006-01-26 Medtronic, Inc. Medical device telemetry arbitration system based upon user selection
US7539541B2 (en) * 2004-08-09 2009-05-26 Cardiac Pacemakers, Inc. Automatic power control for a radio frequency transceiver of an implantable device
US7406349B2 (en) * 2004-08-09 2008-07-29 Cardiac Pacemakers, Inc. Dynamic telemetry link selection for an implantable device
US7567841B2 (en) * 2004-08-20 2009-07-28 Cardiac Pacemakers, Inc. Method and apparatus for delivering combined electrical and drug therapies
US7621906B2 (en) * 2004-08-25 2009-11-24 Cardiac Pacemakers, Inc. Method and apparatus to deliver drug and pacing therapy for treatment of cardiac disorders
US8271093B2 (en) 2004-09-17 2012-09-18 Cardiac Pacemakers, Inc. Systems and methods for deriving relative physiologic measurements using a backend computing system
US7720546B2 (en) * 2004-09-30 2010-05-18 Codman Neuro Sciences Sárl Dual power supply switching circuitry for use in a closed system
US20060085051A1 (en) * 2004-10-19 2006-04-20 Fritsch Michael H Electrical implants
US7632235B1 (en) 2004-11-22 2009-12-15 Pacesetter, Inc. System and method for measuring cardiac output via thermal dilution using an implantable medical device with an external ultrasound power delivery system
EP2289392B1 (en) * 2004-11-24 2012-05-09 Remon Medical Technologies Ltd. Implantable medical device with integrated acoustic transducer
US7813808B1 (en) 2004-11-24 2010-10-12 Remon Medical Technologies Ltd Implanted sensor system with optimized operational and sensing parameters
US20060122522A1 (en) * 2004-12-03 2006-06-08 Abhi Chavan Devices and methods for positioning and anchoring implantable sensor devices
US7522962B1 (en) 2004-12-03 2009-04-21 Remon Medical Technologies, Ltd Implantable medical device with integrated acoustic transducer
US20060136007A1 (en) * 2004-12-21 2006-06-22 Mickle Marlin H Deep brain stimulation apparatus, and associated methods
EP1851865B1 (en) * 2005-02-09 2009-05-27 Nxp B.V. Method for ensuring a secure nfc functionality of a wireless mobile communication device and wireless mobile communication device having a secure nfc functionality
US7909754B2 (en) * 2005-02-24 2011-03-22 Ethicon Endo-Surgery, Inc. Non-invasive measurement of fluid pressure in an adjustable gastric band
US7927270B2 (en) 2005-02-24 2011-04-19 Ethicon Endo-Surgery, Inc. External mechanical pressure sensor for gastric band pressure measurements
US8016744B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. External pressure-based gastric band adjustment system and method
US7775215B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. System and method for determining implanted device positioning and obtaining pressure data
US7699770B2 (en) 2005-02-24 2010-04-20 Ethicon Endo-Surgery, Inc. Device for non-invasive measurement of fluid pressure in an adjustable restriction device
US8870742B2 (en) 2006-04-06 2014-10-28 Ethicon Endo-Surgery, Inc. GUI for an implantable restriction device and a data logger
US8152710B2 (en) 2006-04-06 2012-04-10 Ethicon Endo-Surgery, Inc. Physiological parameter analysis for an implantable restriction device and a data logger
US7775966B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. Non-invasive pressure measurement in a fluid adjustable restrictive device
US8066629B2 (en) 2005-02-24 2011-11-29 Ethicon Endo-Surgery, Inc. Apparatus for adjustment and sensing of gastric band pressure
US7658196B2 (en) 2005-02-24 2010-02-09 Ethicon Endo-Surgery, Inc. System and method for determining implanted device orientation
US7610065B2 (en) * 2005-02-28 2009-10-27 Cardiac Pacemakers, Inc. Method and apparatus for antenna selection in a diversity antenna system for communicating with implantable medical device
US7502594B2 (en) * 2005-04-27 2009-03-10 Codman Neuro Sciences Sárl Power regulation feedback to optimize robustness of wireless transmissions
US7774069B2 (en) * 2005-04-29 2010-08-10 Medtronic, Inc. Alignment indication for transcutaneous energy transfer
US7505816B2 (en) 2005-04-29 2009-03-17 Medtronic, Inc. Actively cooled external energy source, external charger, system of transcutaneous energy transfer, system of transcutaneous charging and method therefore
US20060253193A1 (en) * 2005-05-03 2006-11-09 Lichtenstein Samuel V Mechanical means for controlling blood pressure
EP1906830B1 (en) * 2005-07-26 2013-09-04 Ram Weiss Extending intrabody capsule
US8021384B2 (en) * 2005-07-26 2011-09-20 Ram Weiss Extending intrabody capsule
US7813778B2 (en) * 2005-07-29 2010-10-12 Spectros Corporation Implantable tissue ischemia sensor
US7615012B2 (en) * 2005-08-26 2009-11-10 Cardiac Pacemakers, Inc. Broadband acoustic sensor for an implantable medical device
US7570998B2 (en) * 2005-08-26 2009-08-04 Cardiac Pacemakers, Inc. Acoustic communication transducer in implantable medical device header
US9026211B2 (en) 2005-08-30 2015-05-05 Boston Scientific Neuromodulation Corporation Battery charger circuit for battery powered implantable neurostimulation systems
WO2007028226A1 (en) * 2005-09-09 2007-03-15 Ibm Canada Limited - Ibm Canada Limitee Method and system for state machine translation
US7742815B2 (en) * 2005-09-09 2010-06-22 Cardiac Pacemakers, Inc. Using implanted sensors for feedback control of implanted medical devices
US20070106277A1 (en) * 2005-11-09 2007-05-10 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Remote controller for substance delivery system
US8273071B2 (en) * 2006-01-18 2012-09-25 The Invention Science Fund I, Llc Remote controller for substance delivery system
US7942867B2 (en) * 2005-11-09 2011-05-17 The Invention Science Fund I, Llc Remotely controlled substance delivery device
US20080140057A1 (en) * 2006-03-09 2008-06-12 Searete Llc, A Limited Liability Corporation Of State Of The Delaware Injectable controlled release fluid delivery system
US20070106275A1 (en) * 2005-11-09 2007-05-10 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Reaction device controlled by RF control signal
US8083710B2 (en) * 2006-03-09 2011-12-27 The Invention Science Fund I, Llc Acoustically controlled substance delivery device
US8992511B2 (en) * 2005-11-09 2015-03-31 The Invention Science Fund I, Llc Acoustically controlled substance delivery device
US8273075B2 (en) * 2005-12-13 2012-09-25 The Invention Science Fund I, Llc Osmotic pump with remotely controlled osmotic flow rate
US8936590B2 (en) * 2005-11-09 2015-01-20 The Invention Science Fund I, Llc Acoustically controlled reaction device
US9067047B2 (en) * 2005-11-09 2015-06-30 The Invention Science Fund I, Llc Injectable controlled release fluid delivery system
ES2349480T3 (en) 2005-12-07 2011-01-04 Boston Scientific Neuromodulation Corporation Protection of batteries and system recovery of batteries with no voltage for implantable medical device.
US20070142696A1 (en) 2005-12-08 2007-06-21 Ventrassist Pty Ltd Implantable medical devices
US8060214B2 (en) 2006-01-05 2011-11-15 Cardiac Pacemakers, Inc. Implantable medical device with inductive coil configurable for mechanical fixation
US7616995B2 (en) * 2006-04-28 2009-11-10 Medtronic, Inc. Variable recharge determination for an implantable medical device and method therefore
US7738965B2 (en) * 2006-04-28 2010-06-15 Medtronic, Inc. Holster for charging pectorally implanted medical devices
US20070255333A1 (en) * 2006-04-28 2007-11-01 Medtronic, Inc. Neuromodulation therapy for perineal or dorsal branch of pudendal nerve
US7962211B2 (en) * 2006-04-28 2011-06-14 Medtronic, Inc. Antenna for an external power source for an implantable medical device, system and method
WO2007126454A2 (en) 2006-04-28 2007-11-08 Medtronic, Inc. System for transcutaneous energy transfer to an implantable medical device with mating elements
US8805526B2 (en) * 2006-05-03 2014-08-12 Cardiac Pacemakers, Inc. Configurable medical telemetry radio system
US20070276444A1 (en) * 2006-05-24 2007-11-29 Daniel Gelbart Self-powered leadless pacemaker
CN101472646A (en) * 2006-06-13 2009-07-01 Med-El电气医疗器械有限公司 Cochlear implant power system and methodology
US20070293904A1 (en) * 2006-06-20 2007-12-20 Daniel Gelbart Self-powered resonant leadless pacemaker
US7949396B2 (en) * 2006-07-21 2011-05-24 Cardiac Pacemakers, Inc. Ultrasonic transducer for a metallic cavity implated medical device
US7955268B2 (en) * 2006-07-21 2011-06-07 Cardiac Pacemakers, Inc. Multiple sensor deployment
US7912548B2 (en) * 2006-07-21 2011-03-22 Cardiac Pacemakers, Inc. Resonant structures for implantable devices
US8676349B2 (en) * 2006-09-15 2014-03-18 Cardiac Pacemakers, Inc. Mechanism for releasably engaging an implantable medical device for implantation
WO2008034077A2 (en) * 2006-09-15 2008-03-20 Cardiac Pacemakers, Inc. Anchor for an implantable sensor
US20080071248A1 (en) * 2006-09-15 2008-03-20 Cardiac Pacemakers, Inc. Delivery stystem for an implantable physiologic sensor
US20080077440A1 (en) * 2006-09-26 2008-03-27 Remon Medical Technologies, Ltd Drug dispenser responsive to physiological parameters
US20080082146A1 (en) * 2006-09-29 2008-04-03 Cardiac Pacemakers, Inc Temperature compensation for analog circuits in implantable medical device
JP5062862B2 (en) * 2006-10-11 2012-10-31 マリンクロッド インコーポレイテッド Syringe with a low input power
US7881803B2 (en) 2006-10-18 2011-02-01 Boston Scientific Neuromodulation Corporation Multi-electrode implantable stimulator device with a single current path decoupling capacitor
US20080103557A1 (en) * 2006-10-31 2008-05-01 Medtronic, Inc. Extended shelf life storable implantable medical device assembly, shipping container and method
WO2008057720A1 (en) * 2006-11-08 2008-05-15 Cardiac Pacemakers, Inc. Implant for securing a sensor in a vessel
US20080199894A1 (en) 2007-02-15 2008-08-21 Abbott Diabetes Care, Inc. Device and method for automatic data acquisition and/or detection
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
EP1968359B1 (en) * 2007-03-07 2011-03-02 Martin, Charles Circuit and method of verifying the impedance of electrodes and of controlling the intensity of an electric stimulus
US8068918B2 (en) * 2007-03-09 2011-11-29 Enteromedics Inc. Remote monitoring and control of implantable devices
US7768387B2 (en) 2007-04-14 2010-08-03 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US7734353B2 (en) * 2007-04-19 2010-06-08 Medtronic Inc. Controlling temperature during recharge for treatment of infection or other conditions
US8204599B2 (en) * 2007-05-02 2012-06-19 Cardiac Pacemakers, Inc. System for anchoring an implantable sensor in a vessel
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US20080283066A1 (en) * 2007-05-17 2008-11-20 Cardiac Pacemakers, Inc. Delivery device for implantable sensors
US8825161B1 (en) 2007-05-17 2014-09-02 Cardiac Pacemakers, Inc. Acoustic transducer for an implantable medical device
US20080300657A1 (en) * 2007-05-31 2008-12-04 Mark Raymond Stultz Therapy system
US8901878B2 (en) * 2007-06-05 2014-12-02 Impulse Dynamics Nv Transcutaneous charging device
JP2010530769A (en) * 2007-06-14 2010-09-16 カーディアック ペースメイカーズ, インコーポレイテッド Body pressure measuring apparatus and method
JP2010528814A (en) * 2007-06-14 2010-08-26 カーディアック ペースメイカーズ, インコーポレイテッド Multi-element acoustic re-charging system
US8159364B2 (en) 2007-06-14 2012-04-17 Omnilectric, Inc. Wireless power transmission system
US8446248B2 (en) * 2007-06-14 2013-05-21 Omnilectric, Inc. Wireless power transmission system
KR20100057601A (en) * 2007-08-10 2010-05-31 메드-엘 엘렉트로메디지니쉐 게라에테 게엠베하 Pulse width adaptation for inductive links
US8244367B2 (en) * 2007-10-26 2012-08-14 Medtronic, Inc. Closed loop long range recharging
US8187163B2 (en) 2007-12-10 2012-05-29 Ethicon Endo-Surgery, Inc. Methods for implanting a gastric restriction device
US8100870B2 (en) 2007-12-14 2012-01-24 Ethicon Endo-Surgery, Inc. Adjustable height gastric restriction devices and methods
US8377079B2 (en) 2007-12-27 2013-02-19 Ethicon Endo-Surgery, Inc. Constant force mechanisms for regulating restriction devices
US8142452B2 (en) 2007-12-27 2012-03-27 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
WO2009091911A1 (en) * 2008-01-15 2009-07-23 Cardiac Pacemakers, Inc. Implantable medical device with antenna
WO2009091910A1 (en) * 2008-01-15 2009-07-23 Cardiac Pacemakers, Inc. Implantable medical device with wireless communications
US8591395B2 (en) 2008-01-28 2013-11-26 Ethicon Endo-Surgery, Inc. Gastric restriction device data handling devices and methods
US8337389B2 (en) 2008-01-28 2012-12-25 Ethicon Endo-Surgery, Inc. Methods and devices for diagnosing performance of a gastric restriction system
US8192350B2 (en) 2008-01-28 2012-06-05 Ethicon Endo-Surgery, Inc. Methods and devices for measuring impedance in a gastric restriction system
US8301262B2 (en) * 2008-02-06 2012-10-30 Cardiac Pacemakers, Inc. Direct inductive/acoustic converter for implantable medical device
US7844342B2 (en) 2008-02-07 2010-11-30 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using light
US8221439B2 (en) 2008-02-07 2012-07-17 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using kinetic motion
US8114345B2 (en) 2008-02-08 2012-02-14 Ethicon Endo-Surgery, Inc. System and method of sterilizing an implantable medical device
US8725260B2 (en) * 2008-02-11 2014-05-13 Cardiac Pacemakers, Inc Methods of monitoring hemodynamic status for rhythm discrimination within the heart
US8591532B2 (en) 2008-02-12 2013-11-26 Ethicon Endo-Sugery, Inc. Automatically adjusting band system
US8057492B2 (en) 2008-02-12 2011-11-15 Ethicon Endo-Surgery, Inc. Automatically adjusting band system with MEMS pump
WO2009102640A1 (en) * 2008-02-12 2009-08-20 Cardiac Pacemakers, Inc. Systems and methods for controlling wireless signal transfers between ultrasound-enabled medical devices
US20090209995A1 (en) * 2008-02-14 2009-08-20 Byrum Randal T Implantable adjustable sphincter system
US8034065B2 (en) 2008-02-26 2011-10-11 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8187162B2 (en) 2008-03-06 2012-05-29 Ethicon Endo-Surgery, Inc. Reorientation port
US8233995B2 (en) 2008-03-06 2012-07-31 Ethicon Endo-Surgery, Inc. System and method of aligning an implantable antenna
US8204602B2 (en) * 2008-04-23 2012-06-19 Medtronic, Inc. Recharge system and method for deep or angled devices
EP2124136B1 (en) * 2008-05-23 2012-08-22 Charles Martin Hands-free device for remote control
WO2010008936A1 (en) * 2008-07-15 2010-01-21 Cardiac Pacemakers, Inc. Implant assist apparatus for acoustically enabled implantable medical device
WO2010019326A1 (en) 2008-08-14 2010-02-18 Cardiac Pacemakers, Inc. Performance assessment and adaptation of an acoustic communication link
USD640976S1 (en) 2008-08-28 2011-07-05 Hewlett-Packard Development Company, L.P. Support structure and/or cradle for a mobile computing device
US8385822B2 (en) * 2008-09-26 2013-02-26 Hewlett-Packard Development Company, L.P. Orientation and presence detection for use in configuring operations of computing devices in docked environments
US20110106954A1 (en) * 2008-09-26 2011-05-05 Manjirnath Chatterjee System and method for inductively pairing devices to share data or resources
US8234509B2 (en) * 2008-09-26 2012-07-31 Hewlett-Packard Development Company, L.P. Portable power supply device for mobile computing devices
US8401469B2 (en) * 2008-09-26 2013-03-19 Hewlett-Packard Development Company, L.P. Shield for use with a computing device that receives an inductive signal transmission
US8850045B2 (en) 2008-09-26 2014-09-30 Qualcomm Incorporated System and method for linking and sharing resources amongst devices
USD674391S1 (en) 2009-11-17 2013-01-15 Hewlett-Packard Development Company, L.P. Docking station for a computing device
US8527688B2 (en) * 2008-09-26 2013-09-03 Palm, Inc. Extending device functionality amongst inductively linked devices
US8868939B2 (en) 2008-09-26 2014-10-21 Qualcomm Incorporated Portable power supply device with outlet connector
US8688037B2 (en) 2008-09-26 2014-04-01 Hewlett-Packard Development Company, L.P. Magnetic latching mechanism for use in mating a mobile computing device to an accessory device
US8712324B2 (en) 2008-09-26 2014-04-29 Qualcomm Incorporated Inductive signal transfer system for computing devices
JP5465252B2 (en) * 2008-10-10 2014-04-09 カーディアック ペースメイカーズ, インコーポレイテッド System and method for determining the cardiac output using pulmonary artery pressure measurements
US9083686B2 (en) * 2008-11-12 2015-07-14 Qualcomm Incorporated Protocol for program during startup sequence
WO2010059291A1 (en) 2008-11-19 2010-05-27 Cardiac Pacemakers, Inc. Assessment of pulmonary vascular resistance via pulmonary artery pressure
EP2377296A4 (en) * 2009-01-05 2014-12-31 Qualcomm Inc Interior connector scheme for accessorizing a mobile computing device with a removeable housing segment
US9402544B2 (en) * 2009-02-03 2016-08-02 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
WO2010093489A2 (en) 2009-02-13 2010-08-19 Cardiac Pacemakers, Inc. Deployable sensor platform on the lead system of an implantable device
US9233254B2 (en) 2009-02-17 2016-01-12 Boston Scientific Neuromodulation Corporation Selectable boost converter and charge pump for compliance voltage generation in an implantable stimulator device
US9517352B2 (en) * 2009-03-20 2016-12-13 Medtronic, Inc. Accessory apparatus for improved recharging of implantable medical device
US8271089B2 (en) * 2009-04-03 2012-09-18 Medtronic, Inc. Hybrid rectification for recharging an implantable medical device
US8326426B2 (en) * 2009-04-03 2012-12-04 Enteromedics, Inc. Implantable device with heat storage
US20100253156A1 (en) * 2009-04-07 2010-10-07 Jeffrey Iott Sensor device powered through rf harvesting
US8214042B2 (en) * 2009-05-26 2012-07-03 Boston Scientific Neuromodulation Corporation Techniques for controlling charging of batteries in an external charger and an implantable medical device
US9782527B2 (en) 2009-05-27 2017-10-10 Tc1 Llc Monitoring of redundant conductors
US20100324378A1 (en) * 2009-06-17 2010-12-23 Tran Binh C Physiologic signal monitoring using ultrasound signals from implanted devices
US8954001B2 (en) * 2009-07-21 2015-02-10 Qualcomm Incorporated Power bridge circuit for bi-directional wireless power transmission
US9395827B2 (en) * 2009-07-21 2016-07-19 Qualcomm Incorporated System for detecting orientation of magnetically coupled devices
US8437695B2 (en) * 2009-07-21 2013-05-07 Hewlett-Packard Development Company, L.P. Power bridge circuit for bi-directional inductive signaling
CN101632576B (en) 2009-07-30 2011-06-15 浙江大学 Wirelessly controlled miniature embedded type wireless energy-supply power supply management integrated circuit chip
US8395547B2 (en) 2009-08-27 2013-03-12 Hewlett-Packard Development Company, L.P. Location tracking for mobile computing device
JP5795584B2 (en) 2009-08-31 2015-10-14 アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. Medical devices
EP2473098A4 (en) 2009-08-31 2014-04-09 Abbott Diabetes Care Inc Analyte signal processing device and methods
US8690749B1 (en) 2009-11-02 2014-04-08 Anthony Nunez Wireless compressible heart pump
US8562508B2 (en) 2009-12-30 2013-10-22 Thoratec Corporation Mobility-enhancing blood pump system
EP3360479A1 (en) * 2010-01-21 2018-08-15 ARKRAY, Inc. Electric power supply method
US9186519B2 (en) * 2010-01-28 2015-11-17 Medtronic, Inc. Wireless communication with an implantable medical device
WO2011097289A1 (en) 2010-02-03 2011-08-11 Medtronic, Inc. Implantable medical devices and systems having dual frequency inductive telemetry and recharge
US9042995B2 (en) * 2010-02-03 2015-05-26 Medtronic, Inc. Implantable medical devices and systems having power management for recharge sessions
US9044616B2 (en) * 2010-07-01 2015-06-02 Boston Scientific Neuromodulation Corporation Charging system for an implantable medical device employing magnetic and electric fields
WO2012012552A1 (en) 2010-07-22 2012-01-26 Thoratec Corporation Controlling implanted blood pumps
US8755815B2 (en) 2010-08-31 2014-06-17 Qualcomm Incorporated Use of wireless access point ID for position determination
JP2014502528A (en) 2010-12-20 2014-02-03 アビオメド インコーポレイティドAbiomed, Inc. Method and apparatus for accurately track the available charge in transcutaneous energy transmission system
EP2654878A4 (en) 2010-12-20 2018-02-28 Abiomed, Inc. Transcutaneous energy transfer system with multiple secondary coils
WO2012087819A2 (en) * 2010-12-20 2012-06-28 Abiomed, Inc. Transcutaneous energy transfer system with vibration inducing warning circuitry
US8634927B2 (en) 2011-01-28 2014-01-21 Medtronic, Inc. Medical device recharge systems using a controller in wireless communication with a separate recharge device
US8712541B2 (en) 2011-01-28 2014-04-29 Medtronic, Inc. Far field telemetry operations between an external device and an implantable medical device during recharge of the implantable medical device via a proximity coupling
EP2697890B1 (en) 2011-04-14 2019-02-20 Abiomed, Inc. Transcutaneous energy transfer coil with integrated radio frequency antenna
US9136728B2 (en) 2011-04-28 2015-09-15 Medtronic, Inc. Implantable medical devices and systems having inductive telemetry and recharge on a single coil
US9393433B2 (en) 2011-07-20 2016-07-19 Boston Scientific Neuromodulation Corporation Battery management for an implantable medical device
US8666504B2 (en) * 2011-10-24 2014-03-04 Boston Scientific Neuromodulation Corporation Communication and charging circuitry for a single-coil implantable medical device
US9002468B2 (en) 2011-12-16 2015-04-07 Abiomed, Inc. Automatic power regulation for transcutaneous energy transfer charging system
CN104394930B (en) 2012-03-09 2016-11-09 安特罗麦迪克斯公司 Security features for use in medical devices member
US9653935B2 (en) * 2012-04-20 2017-05-16 Medtronic, Inc. Sensing temperature within medical devices
CN102832927B (en) * 2012-08-31 2016-04-13 华南理工大学 Formula suitable for implantation method and system for transmitting am cmos process implemented
EP2948216A1 (en) 2013-01-28 2015-12-02 Enteromedics Inc. Energy efficient neuromodulation
AU2014259681B2 (en) 2013-05-03 2018-08-09 Nevro Corporation Molded headers for implantable signal generators, and associated systems and methods
US9795788B2 (en) 2013-05-30 2017-10-24 Pacesetter, Inc. Implantable medical devices, and methods of use therewith, that use a same coil for receiving both communication and power signals
US9884190B2 (en) 2013-10-23 2018-02-06 Syntilla Medical LLC Surgical method for implantable head mounted neurostimulation system for head pain
US9042991B2 (en) 2013-08-14 2015-05-26 Syntilla Medical LLC Implantable head mounted neurostimulation system for head pain
US9498635B2 (en) 2013-10-16 2016-11-22 Syntilla Medical LLC Implantable head located radiofrequency coupled neurostimulation system for head pain
US9694192B2 (en) 2013-10-04 2017-07-04 Boston Scientific Neuromodulation Corporation Implantable medical device with a primary and rechargeable battery
US9205258B2 (en) * 2013-11-04 2015-12-08 ElectroCore, LLC Nerve stimulator system
US9463320B2 (en) 2014-01-28 2016-10-11 St. Jude Medical Luxembourg Holdings SMI S.A.R.L. (“SJM LUX SMI”) Implantable neurostimulator devices including both non-rechargeable and rechargeable batteries and methods of use therewith
US9345883B2 (en) 2014-02-14 2016-05-24 Boston Scientific Neuromodulation Corporation Rechargeable-battery implantable medical device having a primary battery active during a rechargeable-battery undervoltage condition
US20150306403A1 (en) * 2014-04-25 2015-10-29 Mr3 Medical, Llc Energy harvesting stimulator
US9409020B2 (en) 2014-05-20 2016-08-09 Nevro Corporation Implanted pulse generators with reduced power consumption via signal strength/duration characteristics, and associated systems and methods
AU2015336218A1 (en) 2014-10-22 2017-06-08 Nevro Corp. Systems and methods for extending the life of an implanted pulse generator battery
US9632554B2 (en) 2015-04-10 2017-04-25 Ossia Inc. Calculating power consumption in wireless power delivery systems
US9620996B2 (en) 2015-04-10 2017-04-11 Ossia Inc. Wireless charging with multiple power receiving facilities on a wireless device
US9517344B1 (en) 2015-03-13 2016-12-13 Nevro Corporation Systems and methods for selecting low-power, effective signal delivery parameters for an implanted pulse generator
US9876386B2 (en) 2015-04-29 2018-01-23 Fp Wireless Llc Wirelessly powered door lock systems and methods
US10135288B2 (en) 2015-04-29 2018-11-20 Fp Wireless Llc Electronic control module and driver module for controlling an electronic lock module
US10049517B2 (en) 2016-01-27 2018-08-14 FP Wireless, LLC Wirelessly charged electronic lock with open/closed status reporting
US20160322847A1 (en) 2015-04-29 2016-11-03 Fp Wireless Llc Wireless Battery Charging Systems And Methods
US9757574B2 (en) 2015-05-11 2017-09-12 Rainbow Medical Ltd. Dual chamber transvenous pacemaker
US10188866B2 (en) 2015-06-24 2019-01-29 Impulse Dynamics Nv Simple control of complex bio-implants
WO2017040317A1 (en) * 2015-08-28 2017-03-09 Thoratec Corporation Blood pump controllers and methods of use for improved energy efficiency
US10177606B2 (en) 2015-10-21 2019-01-08 The Board Of Trustees Of The Leland Stanford Junior University Dynamic reconfiguration for maximizing the overall link efficiency of energy receivers in a reliable implantable system
US9717917B2 (en) 2016-01-06 2017-08-01 Syntilla Medical LLC Charging system incorporating independent charging and communication with multiple implanted devices
WO2017136552A1 (en) 2016-02-02 2017-08-10 Enteromedics Inc. High-frequency low duty cycle patterns for neural regulation
US20180221662A1 (en) * 2017-02-09 2018-08-09 Josip Devcic Rechargeable battery voltage adaption
US10117580B1 (en) 2017-05-06 2018-11-06 Synerfuse, Inc. Systems, devices and methods that affect neural tissue through the delivery of a pulsed radio frequency signal generated by an implantable medical device

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942535A (en) * 1973-09-27 1976-03-09 G. D. Searle & Co. Rechargeable tissue stimulating system
US4041955A (en) * 1976-01-29 1977-08-16 Pacesetter Systems Inc. Implantable living tissue stimulator with an improved hermetic metal container
US4082097A (en) 1976-05-20 1978-04-04 Pacesetter Systems Inc. Multimode recharging system for living tissue stimulators
US4096866A (en) * 1976-04-30 1978-06-27 The Johns Hopkins University Rechargeable body tissue stimulator with back-up battery and pulse generator
US4166470A (en) 1977-10-17 1979-09-04 Medtronic, Inc. Externally controlled and powered cardiac stimulating apparatus
US4232679A (en) 1977-01-26 1980-11-11 Pacesetter Systems, Inc. Programmable human tissue stimulator
US4408607A (en) * 1981-04-13 1983-10-11 Empi, Inc. Capacitive energy source and circuitry for powering medical apparatus
US4441498A (en) * 1982-05-10 1984-04-10 Cardio-Pace Medical, Inc. Planar receiver antenna coil for programmable electromedical pulse generator
US4690144A (en) 1982-04-02 1987-09-01 Medtronic, Inc. Wireless transcutaneous electrical tissue stimulator
US4793353A (en) * 1981-06-30 1988-12-27 Borkan William N Non-invasive multiprogrammable tissue stimulator and method
US5279292A (en) * 1991-02-13 1994-01-18 Implex Gmbh Charging system for implantable hearing aids and tinnitus maskers
US5314457A (en) * 1993-04-08 1994-05-24 Jeutter Dean C Regenerative electrical
US5314453A (en) * 1991-12-06 1994-05-24 Spinal Cord Society Position sensitive power transfer antenna
US5411537A (en) 1993-10-29 1995-05-02 Intermedics, Inc. Rechargeable biomedical battery powered devices with recharging and control system therefor
US5476488A (en) * 1993-12-15 1995-12-19 Pacesetter, Inc. Telemetry system power control for implantable medical devices
US5480415A (en) * 1993-05-05 1996-01-02 Intermedics, Inc. Apparatus for high speed data communication between an external medical device and an implantable medical device
US5522865A (en) 1989-09-22 1996-06-04 Alfred E. Mann Foundation For Scientific Research Voltage/current control system for a human tissue stimulator
US5630836A (en) 1995-01-19 1997-05-20 Vascor, Inc. Transcutaneous energy and information transmission apparatus
US5690693A (en) 1995-06-07 1997-11-25 Sulzer Intermedics Inc. Transcutaneous energy transmission circuit for implantable medical device

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942535A (en) * 1973-09-27 1976-03-09 G. D. Searle & Co. Rechargeable tissue stimulating system
US4041955A (en) * 1976-01-29 1977-08-16 Pacesetter Systems Inc. Implantable living tissue stimulator with an improved hermetic metal container
US4096866A (en) * 1976-04-30 1978-06-27 The Johns Hopkins University Rechargeable body tissue stimulator with back-up battery and pulse generator
US4082097A (en) 1976-05-20 1978-04-04 Pacesetter Systems Inc. Multimode recharging system for living tissue stimulators
US4232679B1 (en) 1977-01-26 1988-05-31
US4232679A (en) 1977-01-26 1980-11-11 Pacesetter Systems, Inc. Programmable human tissue stimulator
US4166470A (en) 1977-10-17 1979-09-04 Medtronic, Inc. Externally controlled and powered cardiac stimulating apparatus
US4408607A (en) * 1981-04-13 1983-10-11 Empi, Inc. Capacitive energy source and circuitry for powering medical apparatus
US4793353A (en) * 1981-06-30 1988-12-27 Borkan William N Non-invasive multiprogrammable tissue stimulator and method
US4690144A (en) 1982-04-02 1987-09-01 Medtronic, Inc. Wireless transcutaneous electrical tissue stimulator
US4441498A (en) * 1982-05-10 1984-04-10 Cardio-Pace Medical, Inc. Planar receiver antenna coil for programmable electromedical pulse generator
US5522865A (en) 1989-09-22 1996-06-04 Alfred E. Mann Foundation For Scientific Research Voltage/current control system for a human tissue stimulator
US5279292A (en) * 1991-02-13 1994-01-18 Implex Gmbh Charging system for implantable hearing aids and tinnitus maskers
US5314453A (en) * 1991-12-06 1994-05-24 Spinal Cord Society Position sensitive power transfer antenna
US5314457A (en) * 1993-04-08 1994-05-24 Jeutter Dean C Regenerative electrical
US5480415A (en) * 1993-05-05 1996-01-02 Intermedics, Inc. Apparatus for high speed data communication between an external medical device and an implantable medical device
US5411537A (en) 1993-10-29 1995-05-02 Intermedics, Inc. Rechargeable biomedical battery powered devices with recharging and control system therefor
US5476488A (en) * 1993-12-15 1995-12-19 Pacesetter, Inc. Telemetry system power control for implantable medical devices
US5630836A (en) 1995-01-19 1997-05-20 Vascor, Inc. Transcutaneous energy and information transmission apparatus
US5690693A (en) 1995-06-07 1997-11-25 Sulzer Intermedics Inc. Transcutaneous energy transmission circuit for implantable medical device

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8986253B2 (en) 2008-01-25 2015-03-24 Tandem Diabetes Care, Inc. Two chamber pumps and related methods
US8298184B2 (en) 2009-07-30 2012-10-30 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US9211377B2 (en) 2009-07-30 2015-12-15 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US8758323B2 (en) 2009-07-30 2014-06-24 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US8926561B2 (en) 2009-07-30 2015-01-06 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US8287495B2 (en) 2009-07-30 2012-10-16 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US8594806B2 (en) 2010-04-30 2013-11-26 Cyberonics, Inc. Recharging and communication lead for an implantable device
US9555186B2 (en) 2012-06-05 2017-01-31 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US9287040B2 (en) 2012-07-27 2016-03-15 Thoratec Corporation Self-tuning resonant power transfer systems
US9805863B2 (en) 2012-07-27 2017-10-31 Thoratec Corporation Magnetic power transmission utilizing phased transmitter coil arrays and phased receiver coil arrays
US9825471B2 (en) 2012-07-27 2017-11-21 Thoratec Corporation Resonant power transfer systems with protective algorithm
US9997928B2 (en) 2012-07-27 2018-06-12 Tc1 Llc Self-tuning resonant power transfer systems
US9592397B2 (en) 2012-07-27 2017-03-14 Thoratec Corporation Thermal management for implantable wireless power transfer systems
US9343923B2 (en) 2012-08-23 2016-05-17 Cyberonics, Inc. Implantable medical device with backscatter signal based communication
US9225190B2 (en) 2012-09-07 2015-12-29 Manufacturers And Traders Trust Company Implant current controlled battery charging based on temperature
US9209634B2 (en) 2012-09-07 2015-12-08 Greatbatch Ltd. Method of improving battery recharge efficiency by statistical analysis
US10027157B2 (en) 2012-09-07 2018-07-17 Nuvectra Corporation Implant current controlled battery charging based on temperature
US9142989B2 (en) 2012-09-07 2015-09-22 Greatbatch Ltd. Method of minimizing interruptions to implantable medical device recharging
US10103559B2 (en) 2012-09-07 2018-10-16 Nuvectra Corporation Method of improving battery recharge efficiency by statistical analysis
US9935498B2 (en) 2012-09-25 2018-04-03 Cyberonics, Inc. Communication efficiency with an implantable medical device using a circulator and a backscatter signal
US9962486B2 (en) 2013-03-14 2018-05-08 Tandem Diabetes Care, Inc. System and method for detecting occlusions in an infusion pump
US9101768B2 (en) 2013-03-15 2015-08-11 Globus Medical, Inc. Spinal cord stimulator system
US9680310B2 (en) 2013-03-15 2017-06-13 Thoratec Corporation Integrated implantable TETS housing including fins and coil loops
US9550062B2 (en) 2013-03-15 2017-01-24 Globus Medical, Inc Spinal cord stimulator system
US9492665B2 (en) 2013-03-15 2016-11-15 Globus Medical, Inc. Spinal cord stimulator system
US10149977B2 (en) 2013-03-15 2018-12-11 Cirtec Medical Corp. Spinal cord stimulator system
US9872997B2 (en) 2013-03-15 2018-01-23 Globus Medical, Inc. Spinal cord stimulator system
US9872986B2 (en) 2013-03-15 2018-01-23 Globus Medical, Inc. Spinal cord stimulator system
US9878170B2 (en) 2013-03-15 2018-01-30 Globus Medical, Inc. Spinal cord stimulator system
US9887574B2 (en) 2013-03-15 2018-02-06 Globus Medical, Inc. Spinal cord stimulator system
US9440076B2 (en) 2013-03-15 2016-09-13 Globus Medical, Inc. Spinal cord stimulator system
US9956409B2 (en) 2013-03-15 2018-05-01 Globus Medical, Inc. Spinal cord stimulator system
US9623246B2 (en) 2013-03-15 2017-04-18 Globus Medical, Inc. Spinal cord stimulator system
US9308369B2 (en) 2013-03-15 2016-04-12 Globus Medical, Inc. Spinal cord stimulator system
US10016602B2 (en) 2013-03-15 2018-07-10 Globus Medical, Inc. Spinal cord stimulator system
US10016605B2 (en) 2013-03-15 2018-07-10 Globus Medical, Inc. Spinal cord stimulator system
US9180243B2 (en) 2013-03-15 2015-11-10 Tandem Diabetes Care, Inc. Detection of infusion pump conditions
US10251987B2 (en) 2013-07-29 2019-04-09 Tc1 Llc Resonant power transmission coils and systems
US9855437B2 (en) 2013-11-11 2018-01-02 Tc1 Llc Hinged resonant power transfer coil
US10186760B2 (en) 2014-09-22 2019-01-22 Tc1 Llc Antenna designs for communication between a wirelessly powered implant to an external device outside the body
US9583874B2 (en) 2014-10-06 2017-02-28 Thoratec Corporation Multiaxial connector for implantable devices
US10148126B2 (en) 2015-08-31 2018-12-04 Tc1 Llc Wireless energy transfer system and wearables
US10177604B2 (en) 2015-10-07 2019-01-08 Tc1 Llc Resonant power transfer systems having efficiency optimization based on receiver impedance

Also Published As

Publication number Publication date
US5733313A (en) 1998-03-31

Similar Documents

Publication Publication Date Title
US5769875A (en) Functional neuromusclar stimulation system
EP0569522B1 (en) Apparatus for the treatment of eating disorders by nerve stimulation
US5222494A (en) Implantable tissue stimulator output stabilization system
US6937891B2 (en) Independent therapy programs in an implantable medical device
US7024246B2 (en) Automatic waveform output adjustment for an implantable medical device
EP1385570B1 (en) Implantable medical device and patch system
US8588917B2 (en) Fully implantable neurostimulator for autonomic nerve fiber stimulation as a therapy for urinary and bowel dysfunction
DE60133054T2 (en) Battery charging control for an implantable device
EP2451523B1 (en) Systems for adjusting electrical therapy based on impedance changes
US7155284B1 (en) Treatment of hypertension
US5263480A (en) Treatment of eating disorders by nerve stimulation
CN102821814B (en) Neural stimulation devices and systems for treatment of chronic inflammation
US8195304B2 (en) Implantable systems and methods for acquisition and processing of electrical signals
US5354320A (en) Neurostimulator for production of periodic stimulation pulses
US7483748B2 (en) Programmable waveform pulses for an implantable medical device
CN1275661C (en) Interrogation of an implantable medical device using audible sound communication
US6950706B2 (en) Wave shaping for an implantable medical device
EP0191404B1 (en) Activity sensor for pacemaker control
US7805189B2 (en) Voltage/current regulator improvements for an implantable medical device
US20040098068A1 (en) Chair pad charging and communication system for a battery-powered microstimulator
US7155279B2 (en) Treatment of movement disorders with drug therapy
US4543955A (en) System for controlling body implantable action device
US20090240194A1 (en) Energy balance therapy for obesity management
US6400988B1 (en) Implantable cardiac device having precision RRT indication
DE602004005236T2 (en) Inductively rechargeable external power source, charger, system and process for an implantable medicine

Legal Events

Date Code Title Description
CC Certificate of correction