USRE42066E1 - System and method for power-efficient charging and discharging of a capacitive load from a single source - Google Patents

System and method for power-efficient charging and discharging of a capacitive load from a single source Download PDF

Info

Publication number
USRE42066E1
USRE42066E1 US11/040,608 US4060805A USRE42066E US RE42066 E1 USRE42066 E1 US RE42066E1 US 4060805 A US4060805 A US 4060805A US RE42066 E USRE42066 E US RE42066E
Authority
US
United States
Prior art keywords
load
capacitive
discharging
switch
selectively
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US11/040,608
Inventor
Lars G. Svensson
William C. Athas
Jeffrey G. Koller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Southern California USC
Original Assignee
University of Southern California USC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/231,637 external-priority patent/US5473526A/en
Priority to US09/758,631 priority Critical patent/USRE38918E1/en
Application filed by University of Southern California USC filed Critical University of Southern California USC
Priority to US11/040,608 priority patent/USRE42066E1/en
Assigned to UNIVERSITY OF SOUTHERN CALIFORNIA reassignment UNIVERSITY OF SOUTHERN CALIFORNIA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SVENSSON, LARS, ATHAS, WILLIAM C., KOLLER, JEFFREY G.
Application granted granted Critical
Publication of USRE42066E1 publication Critical patent/USRE42066E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps

Definitions

  • the present invention relates to electronic circuits and systems. More specifically, the present invention relates to power dissipation in electronic circuits and systems.
  • Power dissipation of electronic circuitry is an important design consideration for many applications. Power dissipation provides a measure of the efficiency of the system. The efficiency of the system impacts the design of the power supply for the system. That is, low efficiency leads to higher costs due to the waste of energy and the need for larger power supplies.
  • CMOS complementary-metal-oxide semiconductor
  • capacitive effects are primarily responsible for the dissipation of power. Such capacitive effects arise due to junction capacitances within semiconductor devices, interlead capacitances between lines connecting the circuit to external devices and the capacitance of a load.
  • power dissipation is directly related to the operating frequency (f), the capacitance (C) and the square of the voltage (V 2 ) applied to the capacitive element.
  • the need in the art is addressed by the present invention which, in a most general sense, provides a system and method for efficiently charging and discharging a capacitive load from a single voltage source.
  • the inventive system includes a first switch for selectively connecting the voltage source to the load and a second switch for selectively providing a short across the load as may be common in the art.
  • a particularly novel aspect of the invention resides in the provision of plural capacitive elements and a switching mechanism for selectively connecting each of the capacitive elements to the load whereby the load is gradually charged or discharged.
  • the switching mechanism includes a set of switches for selectively connecting each of the capacitive elements to the capacitive load and a switch control mechanism for selectively activating the switches.
  • FIG. 1 is a simplified representation of a conventional driver for a capacitive load.
  • FIG. 2 shows a system for charging the load capacitance by several steps and thereby reducing power dissipation.
  • FIG. 3 is a simplified schematic of a preferred embodiment of the circuit of the present invention for reducing the power dissipation of a capacitive load.
  • FIG. 4 is a diagram showing the control circuit of the driver constructed in accordance with the teachings of the present invention.
  • FIG. 5 is a timing diagram which illustrates the operation of the driver of the present invention.
  • FIG. 1 is a simplified representation of a conventional driver for a capacitive load.
  • the load C L represents the capacitance of a load and the interlead capacitance of the lines connecting the driver 10 ′ to the load 12 ′.
  • the load 12 ′ is charged to the supply voltage V by connecting the load 12 ′ to the power rail via a first switch 14 ′.
  • the switch 14 ′ may be a metal-oxide semiconductor field-effect transistor (MOSFET) which has a nominal “on” resistance. When the switch 14 ′ is closed, a charge CV passes through the resistance of the switch 14 ′.
  • MOSFET metal-oxide semiconductor field-effect transistor
  • power dissipation is reduced by charging the capacitance of the load C L in several steps. This is illustrated in FIG. 2 .
  • FIG. 2 shows a system 10 for charging the load capacitance by several steps and thereby reducing power dissipation.
  • a bank of supply voltages V 1 to V N are used to charge the load 12 .
  • the voltages of the supplies are evenly distributed between ground and V N so that the voltage difference between any two adjacent supplies is the same.
  • Each of the voltages is selectively applied to the load 12 by N switches including the first switch 14 and N ⁇ 1 additional switches.
  • switch 0 is closed.
  • switch 0 is opened and the supplies V 1 through V N are connected to the load in succession by selectively closing the switches, that is, by momentarily closing switch 1 , opening switch 1 , momentarily closing switch 2 etc.
  • the supplies V N ⁇ 1 through V 1 are switched in in reverse order. Then switch 0 is closed connecting the output to ground.
  • the multiple supply voltages of FIG. 2 may be generated with a battery stack.
  • a power supply unit would seemingly have to generate these multiple supply voltages with an associated cost in expense, complexity and power dissipation.
  • FIG. 3 is a simplified schematic of a preferred embodiment of the circuit of the present invention for reducing the power dissipation of a capacitive load.
  • the circuit 100 is essentially identical to that of FIG. 2 with the exception that the supplies V 1 ⁇ V N ⁇ 1 are replaced with a corresponding number of capacitors C T 18 which will be referred to as “tank” capacitors.
  • Each tank capacitor C T has a capacitance which is much, much larger (e.g. an order of magnitude) than the load capacitance C L .
  • Switch operations are sequenced by a control circuit 20 .
  • the control signals may be provided by the circuit 20 or may be supplied by a host microprocessor.
  • the control circuit 20 may be implemented in several configurations. For example, the control circuit may be implemented with a microprocessor or with a shift register and a counter. In the alternative, a latch 22 and input and output logic circuits 24 and 26 , respectively, may be used as shown in FIG. 4 .
  • the input and output logic circuits may be designed by a computer aided logic design program of which several are currently available. If a computer aided logic design program is used, the desired outputs would be specified in response to the expected input signals. The program would then design the logic circuits.
  • Timing signals are provided by a system clock (not shown) through the latch 22 .
  • the clock rate should be at least (N+1) times the output signal rate.
  • switches 0 - 4 are implemented with n-channel MOSFET devices.
  • Switches 5 and 6 are implemented with p-channel devices.
  • FIG. 5 is a timing diagram which illustrates the operation of the driver 100 of the present invention.
  • the clock pulses are shown.
  • the input signal is shown in FIG. 5 (b).
  • FIGS. 5 (c)-(i) show the controls for switch 0 - 6 and
  • FIG. 5 (j) shows the output at the load C L .
  • a discharge cycle is initiated by when the switches are momentarily closed in reverse order.
  • switch N is opened and switch N ⁇ 1 is closed.
  • switch N ⁇ 1 is opened and switch N ⁇ 2 is closed and etc.
  • the associated tank capacitor will receive most of the charge on the load capacitance.
  • Each capacitor down the line will receive a lower charge than the immediately proceeding capacitor.
  • switch 0 closes to complete the cycle dumping the remaining charge on the load C L to ground.
  • the tank capacitors will approach their steady state voltages, for example, the (N ⁇ 1) th through 1st tank capacitors may have charges of say 5, 4, 3, 2 and 1 volts respectively.
  • the voltage on the first tank capacitor is applied to the load, then the voltage on the second capacitor is applied to the load and so on.
  • first 1 volt is applied to the load, then 2 volts, then three volts and etc.
  • the voltage on the load will gradually increase as shown in FIG. 5 (j).
  • switches N ⁇ 1 through 0 are closed and opened in succession.
  • each tank capacitor receives a charge of the same size as that delivered during charge phase, and an equally sized charge is dumped to ground via switch 0 .
  • the power supply injects any charge into the circuit. No net charge is drawn from any tank capacitor, so the tank voltages do not change.
  • the voltages of the tank capacitor bank are self-stabilizing. To appreciate this, assume that the voltage of one of the tank capacitors is slightly higher than it should be. Then, the charge delivered by this tank capacitor during the charging of the load will be somewhat larger than that given by equation [4], since the “step” from the voltage below is now slightly larger. During the discharge phase, the step from the voltage above is slightly smaller and the charge received is therefore smaller as well. Therefore, over the full cycle, a net decrease of the charge on the storage capacitor occurs, which causes a decrease in the capacitor voltage. The initial deviance is automatically counteracted.
  • the implementation cost of a driver such as that shown in FIG. 3 is determined by the tank capacitors, the switches, the mechanism controlling the switches, and the interconnections of same. Note that all extra interconnections are local. As for the conventional case, only one connection to the power supply is needed. Also, several drivers may share the same capacitor bank and part of the control mechanism.
  • CMOS complementary metal-oxide-semiconductor
  • the following design procedure may be followed to provide a driver configuration which exhibits minimal power dissipation.
  • Equation [3] indicates that dissipation decreases monotonically with increasing N.
  • the number N cannot, however, be usefully made arbitrarily large because each step requires that a switch be turned on and off, which itself causes dissipation.
  • the energy used to drive each switch depends on the width of the device, which should be just enough to allow the charging to complete before the next step commences.
  • T total allowable charging time
  • N opt T 4 ⁇ m ⁇ ⁇ ⁇ _ 3 [ 11 ]
  • the present invention has been described herein with reference to a particular embodiment for a particular application. Those having ordinary skill in the art and access to the present teachings will recognize additional modifications applications and embodiments within the scope thereof.
  • the switches may be closed in some other sequence as may be appropriate for a given application without departing from the scope of the present invention.
  • alternative circuit topologies for the network of tank capacitors and switches may be appropriate.
  • the second terminal of the load may be connected to a potentially variable) voltage other than ground.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Electronic Switches (AREA)

Abstract

A system and method for efficiently charging and discharging a capacitive load from a single voltage source. The system includes a first switch for selectively connecting the voltage source to the load and a second switch for selectively providing a short across the load as may be common in the art. A particularly novel aspect of the invention resides in the provision of plural capacitive elements and a switching mechanism for selectively connecting each of the capacitive elements to the load whereby the load is gradually charged or discharged. In the illustrative embodiment, the switching mechanism includes a set of switches for selectively connecting each of the capacitive elements to the capacitive load and a switch control mechanism for selectively activating the switches.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This Reissue Application, Reissue application Ser. No. 08/986,327, and Reissue application Ser. No. 09/758,631 are all three reissue applications of U.S. Pat. No. 5,473,526, issued Dec. 5, 1995. This application is a continuation of Reissue application Ser. No. 09/758,631, filed Jan. 10, 2001 (now issued as U.S. Reissue Pat. No. RE 38,918, issued Dec. 13, 2005 ), entitled “System And Method For Power-Efficient Charging And Discharging Of A Capacitive Load From A Single Source”, which is a continuation of application Ser. No. 08/986,327, entitled “System And Method For Power-Efficient Charging And Discharging Of A Capacitive Load From A Single Source,” filed Dec. 5, 1997 (now issued as U.S. Reissue Pat. No. RE 37,552, issued Feb. 19, 2002 ).
GOVERNMENT'S INTEREST IN APPLICATION
This invention was made with government support under DABT- 63 - 92 -C- 0052 awarded by ARPA. The government has certain rights in the invention.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to electronic circuits and systems. More specifically, the present invention relates to power dissipation in electronic circuits and systems.
2. Description of the Related Art
Power dissipation of electronic circuitry is an important design consideration for many applications. Power dissipation provides a measure of the efficiency of the system. The efficiency of the system impacts the design of the power supply for the system. That is, low efficiency leads to higher costs due to the waste of energy and the need for larger power supplies.
For battery powered systems, power dissipation limits battery life. This necessitates larger batteries which increases the cost and weight of the system while limiting the applicability thereof. As an example, consider coronary pacemakers where power dissipation is a critical concern due to the difficultly of accessing the battery for replacement and the cost and inconvenience associated with the use of larger batteries.
In addition, the dissipated energy is released in the form of heat. Accordingly, systems which exhibit considerable power dissipation often require measures such as heat sinks to protect or cool system components from the heat created by the circuit. The use of heat sinks and the like adds to the cost, size and weight of the system and thereby limits the utility of same.
For the CMOS (complementary-metal-oxide semiconductor) based system, used widely in the design of computers, digital logic circuits and the like, capacitive effects are primarily responsible for the dissipation of power. Such capacitive effects arise due to junction capacitances within semiconductor devices, interlead capacitances between lines connecting the circuit to external devices and the capacitance of a load.
In accordance with conventional teachings, power dissipation is directly related to the operating frequency (f), the capacitance (C) and the square of the voltage (V2) applied to the capacitive element.
In addition to the elimination of unnecessary capacitances and the reduction of the switching frequency to the lowest value that supports the functional specification of the circuit, most prior approaches to the problem have focused on reducing the voltage applied to the capacitive elements. However, in addition to costly interfacing issues, attempts to lower the voltage of digital processors and the like have been limited by the fact that the trend is to higher processing speeds which cannot be attained at arbitrarily low operating voltages.
Thus, there is an ongoing need in the art for a system and technique for minimizing the power dissipated by a digital system.
SUMMARY OF THE INVENTION
The need in the art is addressed by the present invention which, in a most general sense, provides a system and method for efficiently charging and discharging a capacitive load from a single voltage source. The inventive system includes a first switch for selectively connecting the voltage source to the load and a second switch for selectively providing a short across the load as may be common in the art. A particularly novel aspect of the invention resides in the provision of plural capacitive elements and a switching mechanism for selectively connecting each of the capacitive elements to the load whereby the load is gradually charged or discharged.
In the illustrative embodiment, the switching mechanism includes a set of switches for selectively connecting each of the capacitive elements to the capacitive load and a switch control mechanism for selectively activating the switches.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a simplified representation of a conventional driver for a capacitive load.
FIG. 2 shows a system for charging the load capacitance by several steps and thereby reducing power dissipation.
FIG. 3 is a simplified schematic of a preferred embodiment of the circuit of the present invention for reducing the power dissipation of a capacitive load.
FIG. 4 is a diagram showing the control circuit of the driver constructed in accordance with the teachings of the present invention.
FIG. 5 is a timing diagram which illustrates the operation of the driver of the present invention.
DESCRIPTION OF THE INVENTION
Illustrative embodiments and exemplary applications will now be described with reference to the accompanying drawings to disclose the advantageous teachings of the present invention.
While the present invention is described herein with reference to illustrative embodiments for particular applications, it should be understood that the invention is not limited thereto. Those having ordinary skill in the art and access to the teachings provided herein will recognize additional modifications, applications, and embodiments within the scope thereof.
Most of the power dissipation in digital CMOS circuits is due to repeated charging and discharging of capacitive loads including those internal to the circuit and those associated with the output signals.
FIG. 1 is a simplified representation of a conventional driver for a capacitive load. The load CL represents the capacitance of a load and the interlead capacitance of the lines connecting the driver 10′ to the load 12′. The load 12′ is charged to the supply voltage V by connecting the load 12′ to the power rail via a first switch 14′. In practice, the switch 14′ may be a metal-oxide semiconductor field-effect transistor (MOSFET) which has a nominal “on” resistance. When the switch 14′ is closed, a charge CV passes through the resistance of the switch 14′. The voltage drop across the resistance varies from an initial value of V to a final value of zero, so the average voltage drop V traversed by the charge is V/2, if the capacitance is linear. The energy dissipated is:
Econv=QV′=CV (V/2)=CV2/2  [1]
A similar argument applies to the discharge process, so a complete conventional charge-discharge cycle dissipates all the energy provided by the power supply, QV=CV2.
In accordance with the present teachings, power dissipation is reduced by charging the capacitance of the load CL in several steps. This is illustrated in FIG. 2.
FIG. 2 shows a system 10 for charging the load capacitance by several steps and thereby reducing power dissipation. Here, a bank of supply voltages V1 to VN are used to charge the load 12. The voltages of the supplies are evenly distributed between ground and VN so that the voltage difference between any two adjacent supplies is the same. Each of the voltages is selectively applied to the load 12 by N switches including the first switch 14 and N−1 additional switches. Between charge cycles, switch 0 is closed. To charge the load, switch 0 is opened and the supplies V1 through VN are connected to the load in succession by selectively closing the switches, that is, by momentarily closing switch 1, opening switch 1, momentarily closing switch 2 etc. To discharge the load, the supplies VN−1 through V1 are switched in in reverse order. Then switch 0 is closed connecting the output to ground.
If N steps are used, the dissipation per step is again given by the transferred charge and the average voltage drop across the switch resistance:
Estep=QV′=(CV/N) (V/2N)=CV2/2N2  [2]
To charge the capacitance all the way to the supply voltage V, N steps are used, so the total energy dissipation is:
Estepwise = N*Estep  [3]
= N*CV2/2N2
= CV2/2N
= Econv/N
Again, a full charge-discharge cycle will cause twice the dissipation of the charging only. Thus, according to this simplified analysis, charging by several steps reduces the energy dissipation per charge-discharge cycle and thereby the total power dissipation, by a factor of N.
The multiple supply voltages of FIG. 2 may be generated with a battery stack. For equipment not powered by batteries or when the desired voltage increment is not a multiple of the battery cell voltage, a power supply unit would seemingly have to generate these multiple supply voltages with an associated cost in expense, complexity and power dissipation.
FIG. 3 is a simplified schematic of a preferred embodiment of the circuit of the present invention for reducing the power dissipation of a capacitive load. The circuit 100 is essentially identical to that of FIG. 2 with the exception that the supplies V1−VN−1 are replaced with a corresponding number of capacitors C T 18 which will be referred to as “tank” capacitors. Each tank capacitor CT has a capacitance which is much, much larger (e.g. an order of magnitude) than the load capacitance CL. Switch operations are sequenced by a control circuit 20.
FIG. 4 is a diagram showing the control circuit 20 interconnected to plural MOSFET switches for an N=6 implementation of the driver constructed in accordance with the teachings of the present invention. In FIG. 4, the tank capacitors 18 are eliminated for simplicity. The control signals may be provided by the circuit 20 or may be supplied by a host microprocessor. The control circuit 20 may be implemented in several configurations. For example, the control circuit may be implemented with a microprocessor or with a shift register and a counter. In the alternative, a latch 22 and input and output logic circuits 24 and 26, respectively, may be used as shown in FIG. 4. The input and output logic circuits may be designed by a computer aided logic design program of which several are currently available. If a computer aided logic design program is used, the desired outputs would be specified in response to the expected input signals. The program would then design the logic circuits.
Timing signals are provided by a system clock (not shown) through the latch 22. In practice, the clock rate should be at least (N+1) times the output signal rate. In the preferred embodiment, switches 0-4 are implemented with n-channel MOSFET devices. Switches 5 and 6 are implemented with p-channel devices.
FIG. 5 is a timing diagram which illustrates the operation of the driver 100 of the present invention. In FIG. 5(a), the clock pulses are shown. The input signal is shown in FIG. 5(b). FIGS. 5(c)-(i) show the controls for switch 0-6 and FIG. 5(j) shows the output at the load CL.
The operation of the circuits of FIGS. 3 and 4 is essentially the same as that of FIG. 2. That is, in the initial standby condition switch 0 is closed and there is no charge on any of the capacitors in the system. Next, when an input pulse is to be transferred to the load, switch 0 is opened and switch 1 is closed. Since there is no charge on the load, CL nor on any of the tank capacitors CT, there will be no charge transfer through any of the switches as each is closed, in turn, momentarily. When the first switch 14 is closed, a charge is applied to the load 12.
On the trailing edge of input pulse, a discharge cycle is initiated by when the switches are momentarily closed in reverse order. Thus, switch N is opened and switch N−1 is closed. Then switch N−1 is opened and switch N−2 is closed and etc. On the closure of switch N−1, the associated tank capacitor will receive most of the charge on the load capacitance. Each capacitor down the line will receive a lower charge than the immediately proceeding capacitor. After switch 1 opens, switch 0 closes to complete the cycle dumping the remaining charge on the load CL to ground. Thus, over several cycles the tank capacitors will approach their steady state voltages, for example, the (N−1) th through 1st tank capacitors may have charges of say 5, 4, 3, 2 and 1 volts respectively. Then, at the beginning of the next cycle, on the closure of the first switch, the voltage on the first tank capacitor is applied to the load, then the voltage on the second capacitor is applied to the load and so on. Thus, in the example, first 1 volt is applied to the load, then 2 volts, then three volts and etc. As a result, the voltage on the load will gradually increase as shown in FIG. 5(j).
The circuits of FIG. 3 and 4 will provide the same power dissipation reduction as that of FIG. 2, but without multiply supply lines and without complicating the power supply. This is illustrated by the following analysis. Assume that each tank capacitor CT is charged to the voltage of the corresponding supply of FIG. 2, and that the load capacitance CL is discharged. The load capacitance is charged by closing and opening switches 1 through N in succession. Each tank capacitor (and the power supply) delivers a charge given by:
q=CLV/N  [4]
Since the tank capacitors are much larger than the load, the tank voltages do not change significantly, so the dissipation in the switches will be the same as for the case in FIG. 2, where the supply voltages are constant. To discharge the load capacitance, switches N−1 through 0 are closed and opened in succession. During the discharge, each tank capacitor receives a charge of the same size as that delivered during charge phase, and an equally sized charge is dumped to ground via switch 0. Over the full charge-discharge cycle, only the power supply injects any charge into the circuit. No net charge is drawn from any tank capacitor, so the tank voltages do not change.
The voltages of the tank capacitor bank are self-stabilizing. To appreciate this, assume that the voltage of one of the tank capacitors is slightly higher than it should be. Then, the charge delivered by this tank capacitor during the charging of the load will be somewhat larger than that given by equation [4], since the “step” from the voltage below is now slightly larger. During the discharge phase, the step from the voltage above is slightly smaller and the charge received is therefore smaller as well. Therefore, over the full cycle, a net decrease of the charge on the storage capacitor occurs, which causes a decrease in the capacitor voltage. The initial deviance is automatically counteracted.
Even if the tank capacitor voltages differ from the “correct” values, the circuit will work logically correctly, since each charging (discharging) cycle ends by connecting the load to he supply rail (ground). Voltage deviations simply bring higher dissipation. This happens during start-up, before the tank voltages have had time to converge to the even distribution between the supply voltage and ground.
The implementation cost of a driver such as that shown in FIG. 3 is determined by the tank capacitors, the switches, the mechanism controlling the switches, and the interconnections of same. Note that all extra interconnections are local. As for the conventional case, only one connection to the power supply is needed. Also, several drivers may share the same capacitor bank and part of the control mechanism.
The problem of maintaining the appropriate voltages on the tank capacitors is obviated by the fact that the capacitor voltages will converge automatically to the desired voltages. No additional circuitry is required. Only one supply line must be routed to the chip and the power supply need not be any more complicated than a conventional supply. In practice, the tank capacitors would be located off-chip.
For a CMOS implementation, the following design procedure may be followed to provide a driver configuration which exhibits minimal power dissipation.
Equation [3] indicates that dissipation decreases monotonically with increasing N. The number N cannot, however, be usefully made arbitrarily large because each step requires that a switch be turned on and off, which itself causes dissipation. Also, the energy used to drive each switch depends on the width of the device, which should be just enough to allow the charging to complete before the next step commences. Thus, for a given total allowable charging time ‘T’, there is an optimal number of steps and a set of optimal device sizes which lead to minimal total dissipation determined as follows.
Again, consider the circuit in FIG. 3 and assume the gates of the switch devices are driven conventionally. The load is charged and discharged once; the energy needed to drive the gates of the switch devices is: E sw = ( i = 1 N C i + i = 0 N - 1 C i ) V 2 [ 5 ]
Allot each step one Nth of the total charging time T. Then:
T/N=mRiCL  [6]
Here, m is the number of RC time constants spent waiting for each charging step to complete. From equation [6], it is evident that all the switch devices should have equal on-resistance: Ri=Rsw. Decreasing the on-resistance of device i by increasing the width means increasing the gate capacitance:
RiCii  [7]
ρi is a quality measure of the switch. It varies with i, since the bulk-to-channel and gate-to-channel voltages are different for different switches. Combining equations [5], [6], and [7] yields: E sw = Nm T ( i = 1 N ρ i + i = 0 N - 1 ρ i ) C L V 2 [ 8 ]
Introducing ρ, a weighted average of ρi for the different switches: ρ _ = 1 2 N ( i = 1 N ρ i + i = 0 N - 1 ρ i ) [ 9 ]
If N is sufficiently large, ρ is close to the unweighed average of ρ over the entire voltage range. Combining equations [3], [8] and [9] yields the following expression for the total energy dissipation: E tot = ( 1 N + 2 N 2 m ρ _ T ) C L V 2 [ 10 ]
The number N that minimizes Etot is given by: N opt = T 4 m ρ _ 3 [ 11 ]
The corresponding energy dissipation is: E opt = 3 2 4 m ρ _ T 3 C L V 2 [ 12 ]
It remains to select the value for m. If it is chosen too small, there will still be a significant voltage across a switch when the next switch is to close. Hence, there is an increase in the average voltage across each switch and therefore a dissipation increase (the first term in equation [10] is changed slightly). If on the other hand, m is chosen unnecessarily large, time is wasted that could have been used to increase the number of steps. Thus, in general, optimization methods for the value of m vary according to the application, however, one skilled in the art will be able to select a suitable value for m using conventional teachings (e.g., a simulation program).
By using the number of stages given by equation [10], the designer can minimize the power dissipation of the driver. The minimum is rather shallow, however, so a lower N (as would most often be dictated by practical considerations) will still give a considerable improvement over the conventional case; N=2 already gives almost 50% reduction. Once N and m have been selected, the on-resistance of each switch is given by equation [6]. The corresponding gate capacitance, and thereby the width of the device, is given by equation [7]. The values of ρ for a certain process can be found by circuit simulation or by measuring the on-resistances of test devices of known widths.
Thus, the present invention has been described herein with reference to a particular embodiment for a particular application. Those having ordinary skill in the art and access to the present teachings will recognize additional modifications applications and embodiments within the scope thereof. For example, the switches may be closed in some other sequence as may be appropriate for a given application without departing from the scope of the present invention. In addition, alternative circuit topologies for the network of tank capacitors and switches may be appropriate. The second terminal of the load may be connected to a potentially variable) voltage other than ground.
It is therefore intended by the appended claims to cover any and all such applications, modifications and embodiments within the scope of the present invention.
Accordingly,

Claims (27)

1. A system for efficiently charging and discharging a capacitive load from a single voltage source of a first potential consisting of:
a first switch for selectively charging the load;
a second switch for selectively discharging the load;
plural capacitive elements; and
switch means for selectively connecting each of the capacitive elements to the capacitive load to gradually charge or discharge the capacitive load.
2. The invention of claim 1 wherein said switch means includes plural third switches connected between said capacitive elements and said load.
3. The invention of claim 2 wherein said switch means includes means for selectively activating the first, second and third switches.
4. The invention of claim 3 wherein the capacitive load has a first terminal connected to the first switch and a second terminal connected to a source of a second potential.
5. The invention of claim 4 wherein the second switch has a first terminal connected to the first terminal of the load and a second terminal connected to said source of a second potential.
6. The invention of claim 5 wherein each of the third switches has a first terminal connected to the first terminal of the load and a second terminal connected to a first terminal of an associated one of the plural capacitive elements.
7. The invention of claim 6 wherein the means for selectively activating the first, second and third switches includes a finite state machine.
8. The invention of claim 7 wherein the finite state machine is designed to receive a clock signal and an input signal and provide selective activation signals for the first, second and third switches in response thereto.
9. The invention of claim 8 wherein a second terminal, of each of the plural capacitive elements is connected to said source of a second potential.
10. The invention of claim 9 wherein each of the capacitive elements has a capacitance which is at least an order of magnitude greater than the capacitance of the load.
11. A method for efficiently charging and discharging a capacitive load from a single voltage source including the steps of:
providing a first switch for selectively connecting the voltage source to the load;
providing a second switch for selectively providing a short across the load;
providing plural capacitive elements;
providing plural third switches for selectively connecting each of the capacitive elements to the capacitive load; and
selectively activating the first, second and third switches to gradually charge or discharge the capacitive load.
12. A method for driving a capacitive load, comprising:
minimizing power dissipation by discharging the capacitive load by incremental voltage steps using a switching system which includes a switch for selectively discharging the load; and
electrically coupling a capacitive storage system to the capacitive load at an electrically floating node for discharging the capacitive load by one of the incremental voltage steps.
13. The method of claim 12, further comprising: charging and discharging the capacitive load between an upper voltage and a lower voltage by the incremental voltage steps.
14. The method of claim 13, wherein one of the incremental voltage steps is the difference of the upper and lower voltages divided by an integer N.
15. A system for driving a capacitive load, comprising:
means for minimizing power dissipation by discharging the capacitive load by incremental voltage steps using a switching system which includes a switch for selectively discharging the load; and means for electrically coupling a capacitive storage system to the capacitive load at an electrically floating node for discharging the capacitive load by one of the incremental voltage steps.
16. The system of claim 15, wherein the load capacitor is charged and discharged between an upper voltage and a lower voltage by the incremental voltage steps.
17. The system of claim 16, wherein one of the incremental voltage steps is the difference of the upper and lower voltages divided by an integer N.
18. A method for driving a load, the method comprising:
charging the load to a first level;
discharging the load to a second level using a switching system which includes a switch for selectively discharging the load, wherein during discharging to the second level, a first capacitor is charged to the second level by using the discharging charge of the load;
discharging the load to a third level using a switch; and
re-charging the load by using the charge of the first capacitor,
wherein the first level is higher from the second level and the second level is higher that the third level.
19. A method of claim 18, wherein during discharging the load to the third level, a second capacitor is charged to the third level by using the discharging charge of the load.
20. A system for charging and discharging a capacitive load in N steps, N being greater than 1, comprising:
N−1 capacitive devices; and
a first switching device operable to selectively couple and de-couple the N−1 capacitive devices to and from the capacitive load during a charging and a discharging of the capacitive load;
a switching system including a switch for selectively discharging the load,
whereby energy is recovered from the capacitive load and whereby the recovered energy is always stored substantially only in capacitance.
21. A system of claim 20, wherein the first switching device is operable to selectively couple and de-couple the N−1 capacitive devices to and from the capacitive load during both the charging and the discharging of the capacitive load.
22. The system of claim 21, wherein each of the N−1 capacitive devices includes a capacitor.
23. The system of claim 22, wherein a capacitance of the capacitor is greater than a capacitance of the capacitive load.
24. The system of claim 20, wherein the first switching device includes a MOSFET.
25. The system of claim 20, wherein the selective coupling and de-coupling of the N−1 capacitive devices to the capacitive load causes at least one of the charging and the discharging of the capacitive load to occur in the N steps.
26. The system of claim 20, further comprising:
a second switching device operable to selectively couple the capacitive load to a voltage source, and
a third switching device operable to selectively provide a short across the capacitive load.
27. A method for charging and discharging a capacitive load comprising:
selectively coupling and de-coupling a capacitive device to and from the capacitive load to cause the charging and the discharging of the capacitive load to occur in a plurality of steps using a switching system which includes a switch for selectively discharging the load,
whereby energy is recovered from the capacitive load and whereby the recovered energy is always stored substantially only in capacitance.
US11/040,608 1994-04-22 2005-01-21 System and method for power-efficient charging and discharging of a capacitive load from a single source Expired - Lifetime USRE42066E1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/758,631 USRE38918E1 (en) 1994-04-22 2001-01-10 System and method for power-efficient charging and discharging of a capacitive load from a single source
US11/040,608 USRE42066E1 (en) 1994-04-22 2005-01-21 System and method for power-efficient charging and discharging of a capacitive load from a single source

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US08/231,637 US5473526A (en) 1994-04-22 1994-04-22 System and method for power-efficient charging and discharging of a capacitive load from a single source
US08/986,327 USRE37552E1 (en) 1994-04-22 1997-12-05 System and method for power-efficient charging and discharging of a capacitive load from a single source
US09/758,631 USRE38918E1 (en) 1994-04-22 2001-01-10 System and method for power-efficient charging and discharging of a capacitive load from a single source
US11/040,608 USRE42066E1 (en) 1994-04-22 2005-01-21 System and method for power-efficient charging and discharging of a capacitive load from a single source

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/231,637 Reissue US5473526A (en) 1994-04-22 1994-04-22 System and method for power-efficient charging and discharging of a capacitive load from a single source

Publications (1)

Publication Number Publication Date
USRE42066E1 true USRE42066E1 (en) 2011-01-25

Family

ID=38595966

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/758,631 Expired - Lifetime USRE38918E1 (en) 1994-04-22 2001-01-10 System and method for power-efficient charging and discharging of a capacitive load from a single source
US11/040,608 Expired - Lifetime USRE42066E1 (en) 1994-04-22 2005-01-21 System and method for power-efficient charging and discharging of a capacitive load from a single source

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/758,631 Expired - Lifetime USRE38918E1 (en) 1994-04-22 2001-01-10 System and method for power-efficient charging and discharging of a capacitive load from a single source

Country Status (1)

Country Link
US (2) USRE38918E1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110170368A1 (en) * 2010-01-12 2011-07-14 International Business Machines Corporation Charge pump system and method utilizing adjustable output charge and compilation system and method for use by the charge pump
US20180226969A1 (en) * 2017-02-03 2018-08-09 The Regents Of The University Of California Multi-level adiabatic charging methods, devices and systems
US10895856B2 (en) * 2017-10-12 2021-01-19 Stmicroelectronics (Rousset) Sas Device and method for switching an electrical system into standby mode

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI270910B (en) * 2005-12-07 2007-01-11 Inst Information Industry Electronic switching device using non-interrupt voltage modulation switch
US7414460B1 (en) 2006-03-31 2008-08-19 Integrated Device Technology, Inc. System and method for integrated circuit charge recycling
JP4155316B2 (en) * 2006-06-30 2008-09-24 ソニー株式会社 D / A conversion circuit, liquid crystal drive circuit, and liquid crystal display device
US9285851B2 (en) 2012-06-22 2016-03-15 Microsoft Technology Licensing, Llc Optimizing battery use for known future load
US9696782B2 (en) 2015-02-09 2017-07-04 Microsoft Technology Licensing, Llc Battery parameter-based power management for suppressing power spikes
US10158148B2 (en) 2015-02-18 2018-12-18 Microsoft Technology Licensing, Llc Dynamically changing internal state of a battery
US9748765B2 (en) 2015-02-26 2017-08-29 Microsoft Technology Licensing, Llc Load allocation for multi-battery devices
US9939862B2 (en) 2015-11-13 2018-04-10 Microsoft Technology Licensing, Llc Latency-based energy storage device selection
US10061366B2 (en) 2015-11-17 2018-08-28 Microsoft Technology Licensing, Llc Schedule-based energy storage device selection
US9793570B2 (en) 2015-12-04 2017-10-17 Microsoft Technology Licensing, Llc Shared electrode battery

Citations (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3594627A (en) * 1969-10-20 1971-07-20 Teledyne Inc Capacitor discharge battery charger
US3603898A (en) 1969-03-14 1971-09-07 Marconi Co Ltd N-parallel-path capacitive switched filter in which only incomplete spaced portions of input signal are sampled
US3654537A (en) 1970-04-29 1972-04-04 Westinghouse Electric Corp High efficiency power supply for charging capacitors in steps
US3836906A (en) 1972-03-02 1974-09-17 Sony Corp Digital-to-analog converter circuit
US4082430A (en) 1971-03-30 1978-04-04 Bbc Aktiengesellschaft Brown, Boveri & Company, Ltd. Driving circuit for a matrix-addressed liquid crystal display device
US4107757A (en) 1977-06-30 1978-08-15 Senichi Masuda Pulse power source
US4109192A (en) 1976-06-25 1978-08-22 Hughes Aircraft Company Low power reactive drive circuit for capacitive loads
US4328525A (en) 1980-06-27 1982-05-04 International Business Machines Corporation Pulsed sine wave oscillating circuit arrangement
US4594589A (en) 1981-08-31 1986-06-10 Sharp Kabushiki Kaisha Method and circuit for driving electroluminescent display panels with a stepwise driving voltage
US4605999A (en) 1985-03-11 1986-08-12 At&T Bell Laboratories Self-oscillating high frequency power converter
US4707692A (en) 1984-11-30 1987-11-17 Hewlett-Packard Company Electroluminescent display drive system
US4802739A (en) 1985-06-07 1989-02-07 Kabushiki Kaisha Toshiba Liquid crystal display control device
US4818981A (en) 1986-09-11 1989-04-04 Fujitsu Limited Active matrix display device and method for driving the same
US4862113A (en) 1988-01-06 1989-08-29 International Business Machines Corporation Sinusoidal oscillator with instant start-up
US4893117A (en) 1986-07-18 1990-01-09 Stc Plc Liquid crystal driving systems
US4920474A (en) 1989-03-23 1990-04-24 North American Philips Corporation High frequency high voltage power supply with controlled output power
US5051668A (en) 1989-08-11 1991-09-24 Sony Corporation Sine wave deflecting circuit
US5063340A (en) 1990-10-25 1991-11-05 Motorola, Inc. Capacitive power supply having charge equalization circuit
US5095223A (en) 1990-06-13 1992-03-10 U.S. Philips Corporation Dc/dc voltage multiplier with selective charge/discharge
US5105288A (en) 1989-10-18 1992-04-14 Matsushita Electronics Corporation Liquid crystal display apparatus with the application of black level signal for suppressing light leakage
US5107136A (en) 1989-04-25 1992-04-21 U.S. Philips Corporation Control circuit for at least one clock electrode of an integrated circuit
US5126589A (en) 1990-08-31 1992-06-30 Siemens Pacesetter, Inc. Piezoelectric driver using resonant energy transfer
US5150013A (en) 1991-05-06 1992-09-22 Motorola, Inc. Power converter employing a multivibrator-inverter
US5206632A (en) 1989-09-11 1993-04-27 Deutsche Thomson-Brandt Gmbh Actuating circuit for a liquid crystal display
US5247376A (en) 1988-11-17 1993-09-21 Seiko Epson Corporation Method of driving a liquid crystal display device
US5264752A (en) 1992-06-01 1993-11-23 At&T Bell Laboratories Amplifier for driving large capacitive loads
US5293082A (en) 1988-06-21 1994-03-08 Western Digital Corporation Output driver for reducing transient noise in integrated circuits
US5339236A (en) 1992-03-23 1994-08-16 Nec Corporation Charge pump circuit for intermediate voltage between power supply voltage and its double voltage
US5349366A (en) 1991-10-29 1994-09-20 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and process for fabricating the same and method of driving the same
US5400028A (en) 1992-10-30 1995-03-21 International Business Machines Corporation Charge summing digital to analog converter
US5459414A (en) 1993-05-28 1995-10-17 At&T Corp. Adiabatic dynamic logic
US5465054A (en) 1994-04-08 1995-11-07 Vivid Semiconductor, Inc. High voltage CMOS logic using low voltage CMOS process
US5473526A (en) 1994-04-22 1995-12-05 University Of Southern California System and method for power-efficient charging and discharging of a capacitive load from a single source
US5506520A (en) 1995-01-11 1996-04-09 International Business Machines Corporation Energy conserving clock pulse generating circuits
US5508639A (en) 1995-01-13 1996-04-16 Texas Instruments Incorporated CMOS clock drivers with inductive coupling
US5510748A (en) 1994-01-18 1996-04-23 Vivid Semiconductor, Inc. Integrated circuit having different power supplies for increased output voltage range while retaining small device geometries
US5517145A (en) 1994-10-31 1996-05-14 International Business Machines Corporation CMOS toggle flip-flop using adiabatic switching
US5521538A (en) 1995-03-30 1996-05-28 At&T Corp. Adiabatic logic
US5526319A (en) 1995-01-31 1996-06-11 International Business Machines Corporation Memory with adiabatically switched bit lines
US5528256A (en) 1994-08-16 1996-06-18 Vivid Semiconductor, Inc. Power-saving circuit and method for driving liquid crystal display
US5559478A (en) 1995-07-17 1996-09-24 University Of Southern California Highly efficient, complementary, resonant pulse generation
US5559463A (en) 1994-04-18 1996-09-24 Lucent Technologies Inc. Low power clock circuit
US5572211A (en) 1994-01-18 1996-11-05 Vivid Semiconductor, Inc. Integrated circuit for driving liquid crystal display using multi-level D/A converter
US5602497A (en) 1995-12-20 1997-02-11 Thomas; Steven D. Precharged adiabatic pipelined logic
US5604449A (en) 1996-01-29 1997-02-18 Vivid Semiconductor, Inc. Dual I/O logic for high voltage CMOS circuit using low voltage CMOS processes
US5604454A (en) 1995-09-29 1997-02-18 Motorola Inc. Integrated circuit with low output buffer energy consumption and related method
US5657039A (en) 1993-11-04 1997-08-12 Sharp Kabushiki Kaisha Display device
US5675263A (en) 1994-07-18 1997-10-07 Lucent Technologies Inc. Hot-clock adiabatic gate using multiple clock signals with different phases
US5694445A (en) 1994-09-22 1997-12-02 Matshushita Electric Industrial Co., Ltd. Semiconductor device with means for charge recycling
US5734285A (en) 1992-12-19 1998-03-31 Harvey; Geoffrey P. Electronic circuit utilizing resonance technique to drive clock inputs of function circuitry for saving power
US5748165A (en) 1993-12-24 1998-05-05 Sharp Kabushiki Kaisha Image display device with plural data driving circuits for driving the display at different voltage magnitudes and polarity
US5754156A (en) 1996-09-19 1998-05-19 Vivid Semiconductor, Inc. LCD driver IC with pixel inversion operation
US5818252A (en) 1996-09-19 1998-10-06 Vivid Semiconductor, Inc. Reduced output test configuration for tape automated bonding
US5821923A (en) 1995-02-23 1998-10-13 U.S. Philips Corporation Picture display device
US5838289A (en) 1994-10-04 1998-11-17 Nippondenso Co., Ltd. EL display driver and system using floating charge transfers to reduce power consumption
US5838203A (en) 1996-12-06 1998-11-17 Intel Corporation Method and apparatus for generating waveforms using adiabatic circuitry
US5841299A (en) 1997-02-06 1998-11-24 Intel Corporation Method and apparatus for implementing an adiabatic logic family
US5861861A (en) 1996-06-28 1999-01-19 Microchip Technology Incorporated Microcontroller chip with integrated LCD control module and switched capacitor driver circuit
US5870331A (en) 1997-09-26 1999-02-09 Advanced Micro Devices, Inc. Application-specific SRAM memory cell for low voltage, high speed operation
US5880602A (en) 1995-02-28 1999-03-09 Hitachi, Ltd. Input and output buffer circuit
US5881014A (en) 1994-08-04 1999-03-09 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device with a voltage down converter stably generating an internal down-converter voltage
US5883538A (en) 1996-11-13 1999-03-16 Micron Technology, Inc. Low-to-high voltage CMOS driver circuit for driving capacitive loads
US5889439A (en) 1996-08-23 1999-03-30 U.S. Philips Corporation Phase-locked loop with capacitive voltage divider for reducing jitter
US5892540A (en) 1996-06-13 1999-04-06 Rockwell International Corporation Low noise amplifier for passive pixel CMOS imager
US5896117A (en) 1995-09-29 1999-04-20 Samsung Electronics, Co., Ltd. Drive circuit with reduced kickback voltage for liquid crystal display
US5900854A (en) 1994-09-28 1999-05-04 International Business Machines Corporation Drive unit of liquid crystal display and drive method of liquid crystal display

Patent Citations (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3603898A (en) 1969-03-14 1971-09-07 Marconi Co Ltd N-parallel-path capacitive switched filter in which only incomplete spaced portions of input signal are sampled
US3594627A (en) * 1969-10-20 1971-07-20 Teledyne Inc Capacitor discharge battery charger
US3654537A (en) 1970-04-29 1972-04-04 Westinghouse Electric Corp High efficiency power supply for charging capacitors in steps
US4082430A (en) 1971-03-30 1978-04-04 Bbc Aktiengesellschaft Brown, Boveri & Company, Ltd. Driving circuit for a matrix-addressed liquid crystal display device
US3836906A (en) 1972-03-02 1974-09-17 Sony Corp Digital-to-analog converter circuit
US4109192A (en) 1976-06-25 1978-08-22 Hughes Aircraft Company Low power reactive drive circuit for capacitive loads
US4107757A (en) 1977-06-30 1978-08-15 Senichi Masuda Pulse power source
US4328525A (en) 1980-06-27 1982-05-04 International Business Machines Corporation Pulsed sine wave oscillating circuit arrangement
US4594589A (en) 1981-08-31 1986-06-10 Sharp Kabushiki Kaisha Method and circuit for driving electroluminescent display panels with a stepwise driving voltage
US4707692A (en) 1984-11-30 1987-11-17 Hewlett-Packard Company Electroluminescent display drive system
US4605999A (en) 1985-03-11 1986-08-12 At&T Bell Laboratories Self-oscillating high frequency power converter
US4802739A (en) 1985-06-07 1989-02-07 Kabushiki Kaisha Toshiba Liquid crystal display control device
US4893117A (en) 1986-07-18 1990-01-09 Stc Plc Liquid crystal driving systems
US4818981A (en) 1986-09-11 1989-04-04 Fujitsu Limited Active matrix display device and method for driving the same
US4862113A (en) 1988-01-06 1989-08-29 International Business Machines Corporation Sinusoidal oscillator with instant start-up
US5293082A (en) 1988-06-21 1994-03-08 Western Digital Corporation Output driver for reducing transient noise in integrated circuits
US5247376A (en) 1988-11-17 1993-09-21 Seiko Epson Corporation Method of driving a liquid crystal display device
US4920474A (en) 1989-03-23 1990-04-24 North American Philips Corporation High frequency high voltage power supply with controlled output power
US5107136A (en) 1989-04-25 1992-04-21 U.S. Philips Corporation Control circuit for at least one clock electrode of an integrated circuit
US5051668A (en) 1989-08-11 1991-09-24 Sony Corporation Sine wave deflecting circuit
US5206632A (en) 1989-09-11 1993-04-27 Deutsche Thomson-Brandt Gmbh Actuating circuit for a liquid crystal display
US5105288A (en) 1989-10-18 1992-04-14 Matsushita Electronics Corporation Liquid crystal display apparatus with the application of black level signal for suppressing light leakage
US5095223A (en) 1990-06-13 1992-03-10 U.S. Philips Corporation Dc/dc voltage multiplier with selective charge/discharge
US5126589A (en) 1990-08-31 1992-06-30 Siemens Pacesetter, Inc. Piezoelectric driver using resonant energy transfer
US5063340A (en) 1990-10-25 1991-11-05 Motorola, Inc. Capacitive power supply having charge equalization circuit
US5150013A (en) 1991-05-06 1992-09-22 Motorola, Inc. Power converter employing a multivibrator-inverter
US5349366A (en) 1991-10-29 1994-09-20 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and process for fabricating the same and method of driving the same
US5339236A (en) 1992-03-23 1994-08-16 Nec Corporation Charge pump circuit for intermediate voltage between power supply voltage and its double voltage
US5264752A (en) 1992-06-01 1993-11-23 At&T Bell Laboratories Amplifier for driving large capacitive loads
US5400028A (en) 1992-10-30 1995-03-21 International Business Machines Corporation Charge summing digital to analog converter
US5734285A (en) 1992-12-19 1998-03-31 Harvey; Geoffrey P. Electronic circuit utilizing resonance technique to drive clock inputs of function circuitry for saving power
US5459414A (en) 1993-05-28 1995-10-17 At&T Corp. Adiabatic dynamic logic
US5473269A (en) 1993-05-28 1995-12-05 At&T Corp. Adiabatic dynamic logic
US5657039A (en) 1993-11-04 1997-08-12 Sharp Kabushiki Kaisha Display device
US5748165A (en) 1993-12-24 1998-05-05 Sharp Kabushiki Kaisha Image display device with plural data driving circuits for driving the display at different voltage magnitudes and polarity
US5510748A (en) 1994-01-18 1996-04-23 Vivid Semiconductor, Inc. Integrated circuit having different power supplies for increased output voltage range while retaining small device geometries
US5578957A (en) 1994-01-18 1996-11-26 Vivid Semiconductor, Inc. Integrated circuit having different power supplies for increased output voltage range while retaining small device geometries
US5572211A (en) 1994-01-18 1996-11-05 Vivid Semiconductor, Inc. Integrated circuit for driving liquid crystal display using multi-level D/A converter
US5465054A (en) 1994-04-08 1995-11-07 Vivid Semiconductor, Inc. High voltage CMOS logic using low voltage CMOS process
US5559463A (en) 1994-04-18 1996-09-24 Lucent Technologies Inc. Low power clock circuit
US5473526A (en) 1994-04-22 1995-12-05 University Of Southern California System and method for power-efficient charging and discharging of a capacitive load from a single source
US5675263A (en) 1994-07-18 1997-10-07 Lucent Technologies Inc. Hot-clock adiabatic gate using multiple clock signals with different phases
US5881014A (en) 1994-08-04 1999-03-09 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device with a voltage down converter stably generating an internal down-converter voltage
US5528256A (en) 1994-08-16 1996-06-18 Vivid Semiconductor, Inc. Power-saving circuit and method for driving liquid crystal display
US5852426A (en) 1994-08-16 1998-12-22 Vivid Semiconductor, Inc. Power-saving circuit and method for driving liquid crystal display
US5694445A (en) 1994-09-22 1997-12-02 Matshushita Electric Industrial Co., Ltd. Semiconductor device with means for charge recycling
US5900854A (en) 1994-09-28 1999-05-04 International Business Machines Corporation Drive unit of liquid crystal display and drive method of liquid crystal display
US5838289A (en) 1994-10-04 1998-11-17 Nippondenso Co., Ltd. EL display driver and system using floating charge transfers to reduce power consumption
US5517145A (en) 1994-10-31 1996-05-14 International Business Machines Corporation CMOS toggle flip-flop using adiabatic switching
US5506520A (en) 1995-01-11 1996-04-09 International Business Machines Corporation Energy conserving clock pulse generating circuits
US5508639A (en) 1995-01-13 1996-04-16 Texas Instruments Incorporated CMOS clock drivers with inductive coupling
US5526319A (en) 1995-01-31 1996-06-11 International Business Machines Corporation Memory with adiabatically switched bit lines
US5821923A (en) 1995-02-23 1998-10-13 U.S. Philips Corporation Picture display device
US5880602A (en) 1995-02-28 1999-03-09 Hitachi, Ltd. Input and output buffer circuit
US5521538A (en) 1995-03-30 1996-05-28 At&T Corp. Adiabatic logic
US5559478A (en) 1995-07-17 1996-09-24 University Of Southern California Highly efficient, complementary, resonant pulse generation
US5604454A (en) 1995-09-29 1997-02-18 Motorola Inc. Integrated circuit with low output buffer energy consumption and related method
US5896117A (en) 1995-09-29 1999-04-20 Samsung Electronics, Co., Ltd. Drive circuit with reduced kickback voltage for liquid crystal display
US5602497A (en) 1995-12-20 1997-02-11 Thomas; Steven D. Precharged adiabatic pipelined logic
US5604449A (en) 1996-01-29 1997-02-18 Vivid Semiconductor, Inc. Dual I/O logic for high voltage CMOS circuit using low voltage CMOS processes
US5892540A (en) 1996-06-13 1999-04-06 Rockwell International Corporation Low noise amplifier for passive pixel CMOS imager
US5861861A (en) 1996-06-28 1999-01-19 Microchip Technology Incorporated Microcontroller chip with integrated LCD control module and switched capacitor driver circuit
US5889439A (en) 1996-08-23 1999-03-30 U.S. Philips Corporation Phase-locked loop with capacitive voltage divider for reducing jitter
US5754156A (en) 1996-09-19 1998-05-19 Vivid Semiconductor, Inc. LCD driver IC with pixel inversion operation
US5818252A (en) 1996-09-19 1998-10-06 Vivid Semiconductor, Inc. Reduced output test configuration for tape automated bonding
US5883538A (en) 1996-11-13 1999-03-16 Micron Technology, Inc. Low-to-high voltage CMOS driver circuit for driving capacitive loads
US5838203A (en) 1996-12-06 1998-11-17 Intel Corporation Method and apparatus for generating waveforms using adiabatic circuitry
US5841299A (en) 1997-02-06 1998-11-24 Intel Corporation Method and apparatus for implementing an adiabatic logic family
US5870331A (en) 1997-09-26 1999-02-09 Advanced Micro Devices, Inc. Application-specific SRAM memory cell for low voltage, high speed operation

Non-Patent Citations (45)

* Cited by examiner, † Cited by third party
Title
[Svensson, L.J.] LS. "LCD Driver Test Chip Evaluation," Oct. 21, 1996.
Ammer, J., M. Bolotski, P. Alveida, T.F. Knight, Jr., "TP12.5: A 160×120 Pixel Liquid-Crystal-on-Silicon Microdisplay with an Adiabatic DACM," In 1999 IEEE Interational Solid-States Circuits Conference Digest of Technical Papers, pp. 212-213.
Ammer, J., M. Bolotski, P. Alvelda, T.F. Knight, Jr., "TP12.5: A 160×120 Pixel Liquid-Crystal-on-Silicon Microdisplay with an Adiabatic DAC," 1999 ISSCC Slide Supplement, pp. 184-185, 435-.
Athas, W.C. and L.J. Svensson, Reversible Logic Issues in Adiabatic CMOS, IEEE Worshop on Physics and Computation, Nov. 17-20, 1994 www.isi.edu/acmos.
Athas, W.C., J. Koller and L. Svensson, "An Energy-Efficient CMOS Line Driver Using Adiabatic Switching," IEEE, pp. 196-199.
Athas, W.C., J. Koller and L. Svensson, An Energy-Efficient CMOS Line Driver Using Adiabatic Switching, University of Southerm California, Information Sciences Institute Technical Report ACMOS-TR-2, Aug. 15, 1993, pp. 1-16.
Athas, W.C., L. "J." Svensson and N. Tzartzanis, "A Personal Signal Drive For Two-Phase, Almost-Non-Overlapping Clocks," IEEE International Symposium on Circuits and Systems, May 1996.
Athas, W.C., N. Tzartzanis, L. Svensson, L., Peterson, H. Li, X. Jiang, P. Wang, W-C. Liu, "AC-1: A Clock-Powered Microprocessor," IEEE Intl. Symposium on Low-Power Electronics and Design, Aug. 1997.
Athas, William C., "Energy-Recovery CMOS," Chapter 5 in J. Rabaey, M. Pedram (Eds.) Low-Power Design Methodologies, Kluwer Academic Press, 1996.
Athas, William C., Lars "J." Svensson, Jeffrey G. Koller, Nestoras Tzartzanis and Eric Ying-Chin Chou, "Low-Power Digital Systems Based on Adiabatic-Switching Principles," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 2, Dec. 1994, pp. 398-407.
Burr et al., "Energy Considerations in Multichip-Module based Multiprocessors, " IEEE International Conference on Computer Design 1991, pp. 593-600.
Chandrakasan et al., "Low-Power CMOS Digital Design," IEEE Journal of Solid-State Circuits, Apr. 1992, vol. 27, No. 4, pp. 473-484.
Davis, Andrew W. "Flat Panel Display Drivers: 'Little Things' Changing The Image Quality Picture," Advanced Imaging, Oct. 1997, vol. 12, No. 10, pp. 10, 12, 62.
Dharmasena, Sanjaya and Lars Svensson, "Startup Energies in Energy-Recovery CMOS," in Proceedings of Physics and Computation '96, Boston, MA, Nov. 22-24, 1996.
Dickinson, Alex G. and John S. Denker, "Adiabatic Dynamic Logic," IEEE, Custom Integrated Circuits Conference, 1994, pp. 282-285.
Erhart, A. "P-10: Late Poster Paper: A High-Voltage High-Gray-Shade LCD Column Driver Utilizing a Standard 1.2-mum CMOS Process," SID 94 Digest, 1994, pp. 471-474.
Erhart, A. "P-10: Late Poster Paper: A High-Voltage High-Gray-Shade LCD Column Driver Utilizing a Standard 1.2-μm CMOS Process," SID 94 Digest, 1994, pp. 471-474.
Erhart, Alex, "Direct Drive Promises Reduced Power Consumption and Improved Image Quality for Notebook AMLCDs," Information Display, Dec. 1996, vol. 12, No. 12, pp. 24-27.
Flat Panel Display Handbook, Technology Trends & Fundamentals, First Edition, 1999, San Jose: Stanford Resources, 1999.
Fundaun, I., C. Reese and H.H. Soonpaa (Physics Department , University of North Dakota, Grand Forks), "Charging a capacitor," American Journal of Physics, vol. 60, No. 11, Nov. 1999, pp. 1047-1048.
Heinrich, F. (Laboratory of Solid State Physics, Swiss Federal Institute of technology ETH), Entrophy Change When Charging A Capacitor: A Demonstration Experiment, American Journal of Physics, vol. 54, No. 8, Aug. 1986, pp. 742-744.
Jonscher, A.K. (Royal Holloway and Bedford New College, Univ. of London), "Charging and Discharging of Non-Ideal Capacitors," IEEE Transactions on Electrical Insulation, vol. EI-22, No. 4, Aug. 1987, 357-359.
Kawahara, T., M. Horiguchi, Y. Kawajiri, T. Akiba, G. Kitsukawa, T. Kure, and M. Aoki. "A Charge Recycle Refresh for Gb-scale DRAMs in File Applications," 1993 Symposium on VLSI Circuits, Digest of Technical Papers, May 19-21, 1993, pp. 41-42.
Koller, Jeffrey G. and William C. Athas, "Adiabatic Switching, Low Energy Computing, and the Physics of Storing and Erasing Information," IEEE Press 1993, pp. 267-270.
Lieberman, David, "EL Design Yields Brighter Display At Lower Power," Electronic Engineering Times, No. 1021, Aug. 1998, pp. 52-.
Maksimovic, Dragan, "A MOS Gate Drive With Resonant Transitions," IEEE Press, 1991, pp. 527-532.
Mateo, D. and A. Rubio, "Quasi-adiabatic ternary CMOS logic," Electronics Letters, vol. 32, No. 2, Jan. 18, 1996, pp. 99-101.
Mead et al., "Chapter 1, MOS Devices and Circuits," In Introduction to VLSI Systems, 1980, Addison-Wesley, pp. 1-37.
Morimura, Hiroki and Nobutaro Shibata, "A 1-V 1-Mb SRAM for Portable Equipment," ISLPED, 1996 Monterey CA USA, pp. 61-66.
Nordin et al., "A Systems Perspective on Digital Interconnection Technology," IEEE Journal of Lightwave Technology, Jun. 1992, vol. 10, No. 6, pp. 811-827.
RCA Transistor Thyristor & Diode Manual RCA Corporation, 4/71, Technical Series SC-15, 1971, pp. 179-183.
Schlig, E.S. and J.L. Sanford, "New Circuits for AMLCD Data Line Drivers," 1994.
Seitz et al., "Hot-Clock nMOS," Proceedings of the 1985 Chapel Hill Conference on VLSI, 1985, pp. 1-17.
Sekiguchi, Tomonori, Masashi Horiguchi, Takeshi Sakata, Yoshinobu Nakagome, Shigeki Ueda and Masakazu Aoki, "Low-Noise, High-Speed Data Transmission Using a Ringing-Canceling Output Buffer," IEEE Journal of Solid-State Circuits, vol. 30, No. 12, 1995, pp. 1569-1574.
Somasekhar, Dinesh, Yibin Ye and Kaushik Roy, "An Energy Recovery Static RAM Memory Core," in IEEE Symposium on Low-Power Electronics, 2d ed., 1995, pp. 62-63.
Svensson L. et al., Adiabatic Charging Without Inductors, USC/ISI Technical Report ACMOS-TR-3, Dec. 17, 1993.
Svensson, L. "J." and W.C. Athas, "Stepwise Charging Without Equations," USC/ISI, Feb. 25, 1997, pp. 1-4.
Svensson, L. "J.", W.C. Athas and R.S.-C. Wen, "A sub-CV 2 pad driver with 10 ns transition time," ISLPED 1996 Monterey CA USA, Aug. 1996, pp. 105-108.
Tzartzanis, Nestor and William C. Athas "Energy-Recovery for the Design of High-Speed, Low-Power Static RAMs," International Symposium on Low-Power Electronics and Design, Aug. 1996, Monterey CA USA, pp. 55-60.
Tzartzanis, Nestor and William C. Athas, "Clock-Powered CMOS: A Hybrid Adiabatic Logic Style for Energy-Efficient Computing, " 20th Anniversary Conference on Advanced Reseach in VLSI, IEEE Computer Society Press, Mar. 1999.
Tzartzanis, Nestor, Energy-Recovery Techniques for CMOS Microprocessor Design, Ph.D. Dissertation, University of Southern California, Aug. 1998, 163 pp.
Weste et al., "Principles of CMOS VLSI Design, A Systems Perspective," Chapter 5 in CMOS Circuit and Logic Design, 2d Edition, 1993, Addison-Wesley, pp. 160-231.
Ye, Yibin and Roy Kaushik, "Energy Recovery Circuits Using Reversible and Partially Reversible Logic," IEEE Transactions on Circuits and Systems-I. Fundamental Theory, vol. 43, No. 9, 1996, pp. 769-778.
Younis, Saed G. and Thomas F. Knight, Jr., "Non-Dissipative Rail Drivers for Adiabatic Circuits," IEEE, 9/95, pp. 404-414.
Yuan, Jiren (Linkoping Univeristy), "Low Power and Low Area or High Throughput Single-Ended Bus and I/O Protocols," Proceedings of 1997 IEEE International Symposium on Circuits and Systems: Circuits and Systems in the InformationAge, ISCAS '97, Jun. 9-12, 1997, Hong Kong, pp. 1932-1935.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110170368A1 (en) * 2010-01-12 2011-07-14 International Business Machines Corporation Charge pump system and method utilizing adjustable output charge and compilation system and method for use by the charge pump
US8300489B2 (en) * 2010-01-12 2012-10-30 International Business Machines Corporation Charge pump system and method utilizing adjustable output charge and compilation system and method for use by the charge pump
US20180226969A1 (en) * 2017-02-03 2018-08-09 The Regents Of The University Of California Multi-level adiabatic charging methods, devices and systems
US10348300B2 (en) * 2017-02-03 2019-07-09 The Regents Of The University Of California Multi-level adiabatic charging methods, devices and systems
US10895856B2 (en) * 2017-10-12 2021-01-19 Stmicroelectronics (Rousset) Sas Device and method for switching an electrical system into standby mode

Also Published As

Publication number Publication date
USRE38918E1 (en) 2005-12-13

Similar Documents

Publication Publication Date Title
USRE37552E1 (en) System and method for power-efficient charging and discharging of a capacitive load from a single source
USRE42066E1 (en) System and method for power-efficient charging and discharging of a capacitive load from a single source
US6023187A (en) Voltage pump for integrated circuit and operating method thereof
US6559492B1 (en) On-die switching power converter with stepped switch drivers and method
US5524266A (en) System having multiple phase boosted charge pump with a plurality of stages
KR100524985B1 (en) Effective boosting circuit, boosting power unit having it and providing for automatically load-dependent boosting, and power boosting control method thereof
EP0792505B1 (en) Voltage supplies for flash memory
US6724241B1 (en) Variable charge pump circuit with dynamic load
US6255896B1 (en) Method and apparatus for rapid initialization of charge pump circuits
US5945870A (en) Voltage ramp rate control circuit
US5671179A (en) Low power pulse generator for smart voltage flash eeprom
US20050071693A1 (en) Method and circuitry for controlling supply voltage in a data processing system
EP0735688A2 (en) Adiabatic logic
EP0175935B1 (en) Integrated circuit for arithmetic operation and display
US20020105848A1 (en) Supply voltage generating circuit and semiconductor memory device using same
US5023614A (en) Switchable DAC with current surge protection
US5396133A (en) High speed CMOS current switching circuits
US20020030516A1 (en) Driver circuit for a power switch
US7394298B2 (en) Stepwise drivers for DC/DC converters
US6828830B2 (en) Low power, area-efficient circuit to provide clock synchronization
US20040212414A1 (en) Input receiver with hysteresis
US6605972B1 (en) Integrated circuit with switched capacitor network for recycling power
US5939923A (en) Selectable low power signal line and method of operation
US20030122609A1 (en) Charge pump ripple reduction
US6147884A (en) Method and apparatus for low-power charge transition in an I/O system of an integrated circuit

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNIVERSITY OF SOUTHERN CALIFORNIA, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SVENSSON, LARS;ATHAS, WILLIAM C.;KOLLER, JEFFREY G.;SIGNING DATES FROM 19980608 TO 19980609;REEL/FRAME:025174/0247