USRE41617E1 - Method for determining a longitudinal vehicle by compensating individual wheel speeds - Google Patents
Method for determining a longitudinal vehicle by compensating individual wheel speeds Download PDFInfo
- Publication number
- USRE41617E1 USRE41617E1 US11/260,858 US26085805A USRE41617E US RE41617 E1 USRE41617 E1 US RE41617E1 US 26085805 A US26085805 A US 26085805A US RE41617 E USRE41617 E US RE41617E
- Authority
- US
- United States
- Prior art keywords
- determining
- velocity
- vehicle
- control system
- wheel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 12
- 230000001133 acceleration Effects 0.000 claims abstract description 28
- 230000004044 response Effects 0.000 claims abstract description 24
- 238000005096 rolling process Methods 0.000 claims description 14
- 230000006870 function Effects 0.000 claims 6
- 230000033001 locomotion Effects 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
- B60T8/172—Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2250/00—Monitoring, detecting, estimating vehicle conditions
- B60T2250/04—Vehicle reference speed; Vehicle body speed
Definitions
- the present invention relates generally to dynamic control systems for automotive vehicles and, more specifically to a system that compensates wheel speed sensor signals to determine a vehicle reference velocity.
- One piece of basic information that forms the aforementioned vehicle state estimation is the linear velocity of the rotating centers of the four wheels.
- this information can be used to assess the wheel slip used in anti-brake-lock controls and traction controls and to estimate the longitudinal velocity of the vehicle.
- the wheel speed sensors are used.
- the wheel speed sensors output the products of the wheel rotational speeds and the rolling radii.
- the wheel rotational speeds are directly measured and the rolling radii are assumed their normal values.
- the variations of the wheel normal loading will affect the rolling radii.
- the nominal rolling radii may not reflect the actual rolling radii and thus cause errors in the calculation of the wheel speeds.
- the present invention provides an improved determination of the individual wheel speeds.
- the individual wheel speed calculations may be compensated for by learning the rolling radii of the wheels.
- a more accurate determination of the vehicle reference velocity or the longitudinal velocity may be determined.
- a control system 24 for controlling a safety system 40 of an automotive vehicle includes a plurality of wheel speed sensors 30 generating a plurality of wheel velocity signals, a steering angle sensor 39 generating a steering actuator angle signal, a yaw rate sensor 28 generating a yaw rate signal, a lateral acceleration sensor 32 generating a lateral acceleration signal and a controller 26 .
- the controller 26 generates a final reference vehicle velocity in response to the plurality of wheel speed signals, the steering angle signal, the yaw rate signal and the lateral acceleration signal.
- the controller 26 controls the safety system in response to the final reference vehicle velocity.
- a method of controlling a safety system for an automotive vehicle having a plurality of wheels includes determining a plurality of wheel velocities for the plurality of wheels, determining a preliminary longitudinal velocity of the vehicle from the plurality of wheel velocities, determining a plurality of correction factors for the plurality of wheel velocities for the plurality of wheels, determining a vehicle reference velocity in response to the plurality of correction factors, the plurality of wheel velocities and the preliminary longitudinal velocity, determining a lateral acceleration, determining a vehicle reference velocity correction factor in response to the lateral acceleration, determining a final reference velocity in response to the vehicle reference velocity correction factor and the vehicle reference velocity, and controlling the safety system in response to the final reference velocity.
- FIG. 1 is a top view of a motor vehicle illustrating various operating parameters of a vehicle experiencing a turning maneuver on a road surface.
- FIG. 2 is a side view of a motor vehicle wheel illustrating various operating parameters of the wheel.
- FIG. 3 is a block diagram showing a portion of a microprocessor interconnected to sensors and controlled devices, which may be included in a system according to the present invention.
- FIG. 4 is a control system block diagram in accordance with the present invention.
- FIG. 1 various operating parameters and variables used by the present invention are illustrated as they relate to the application of the present invention to a ground based motor vehicle 10 having wheels 12 , 14 , 16 , 18 .
- Those skilled in the art will immediately recognize the basic physics represented by these illustrations, thereby making the adaptation to different types of vehicles easily within their reach.
- a lateral and longitudinal velocities of the center of gravity are denoted as V x and V y a yaw angular rate is denoted as ⁇ x
- a front wheel steering angle is denoted as ⁇
- lateral acceleration is represented by a y
- longitudinal acceleration is represented by a x .
- V lfx V x ⁇ z t f
- V lfy V y + ⁇ z l f
- V rfx V x + ⁇ z t f
- V rfy V y + ⁇ z l f
- V lrx V x ⁇ z t r
- V lry V y ⁇ z l r
- V rrx V y + ⁇ z t r
- V rry V y ⁇ z l r
- V rrx V y + ⁇ z t r
- V rry V y ⁇ z l r
- vehicle corner velocity along the wheel longitudinal direction is equal to the sum of the contact patch slip velocity v cp and the product of the wheel rotational rate ⁇ whl and its rolling radius r 0 .
- stability control system 24 has a controller 26 used for receiving information from a number of sensors which may include a yaw rate sensor 28 , speed sensors 30 (at each wheel), a lateral acceleration sensor 32 , a roll rate sensor 34 , a steering angle (hand wheel position) sensor 35 , a longitudinal acceleration sensor 36 , a pitch rate sensor 37 , and steering angle position sensor 39 .
- Steering angle position sensor 39 senses the position of the steered road wheels. Lateral acceleration, longitudinal acceleration, yaw rate, roll orientation and speed may also be obtained using a global positioning system (GPS).
- GPS global positioning system
- controller 26 controls the safety system 40 .
- the type of safety system and various other factors may be used in a commercial embodiment. Other factors may be obtained from the sensors such as the surface mu and the vehicle side slip angle, ⁇ .
- Roll rate sensors 34 and pitch rate sensors 37 may sense the roll condition to be used with a rollover control system as an extension of the present application.
- Safety system 40 may be a number of types of safety systems including a roll stability control system, a yaw control system, antilock brakes, traction control, airbags, or active suspension system.
- Safety system 40 if implemented may control a position of a front right wheel actuator, a front left wheel actuator, a rear left wheel actuator, or a right rear wheel actuator. Although, as described above, two or more of the actuators may be simultaneously controlled as one actuator. Based on the inputs from sensors 28 through 39 , controller 26 determines the vehicle dynamic conditions and controls the safety system. Controller 26 may also use brake control coupled to front right brakes, front left brakes, rear left brakes, and right rear brakes to dynamically control the vehicle. By using brakes in addition to steering control some control benefits may be achieved. For example, yaw control and rollover control may be simultaneously accomplished.
- Speed sensor 30 may be one of a variety of speed sensors known to those skilled in the art.
- a suitable speed sensor may include a sensor at every wheel that is averaged by controller 26 .
- the controller 26 translates the wheel speeds into the speed of the vehicle.
- step 60 the wheel speed sensors are read.
- each wheel has a separate speed sensor.
- the wheel speed sensor outputs usually are calibrated for providing the linear directional velocities V lf , V rf , V lr and V rr by multiplying the wheel rotational angular speeds with a nominal rolling radius of the wheels.
- the variables ⁇ lf-sensor , ⁇ rf-sensor , ⁇ lr-sensor and ⁇ rr-sensor are the wheel angular velocity at the left-front corner, right-front corner, left-rear corner and rear-right corner respectively.
- the nominal rolling radius (typically used in ABS) for calculating wheel speeds from the wheel rotational rates is r 0 .
- correction factors need to be added.
- the individual correction factors are denoted as K lf , K rf , K lr and K rr for the left-front, right-front, left-rear and rear-right corners, respectively.
- the wheels experience not only the rotational motion but also the linear sliding motion, or longitudinal slip.
- the slip is caused by the relative motion between the wheel and the road at the contact patch (CP).
- the longitudinal and lateral velocities of the vehicle may be determined in step 62 from the sensors, or they may be calculated as in Ford disclosure 201-1057 filed simultaneously herewith, or even a rough estimation by averaging certain variables calculated from wheel speeds. This may be a rough estimate or average but, as mentioned above, does not take into consideration the rolling radius or other factors.
- Equation (7) may be further simplified to the following, which is independent of the vehicle side slip angle ⁇ ⁇ lf ⁇ V x ⁇ cos ⁇ ( ⁇ ) + ⁇ z ⁇ [ l f ⁇ sin ⁇ ( ⁇ ) - t f ⁇ cos ⁇ ( ⁇ ) ] ⁇ lf - sensor ⁇ r 0 - v cp - l ⁇ f ⁇ lf - sensor ⁇ r 0 ⁇ ⁇ ⁇ rf ⁇ V x ⁇ cos ⁇ ( ⁇ ) + ⁇ z ⁇ [ l f ⁇ sin ⁇ ( ⁇ ) + t f ⁇ cos ⁇ ( ⁇ ) ] ⁇ rf - sensor ⁇ r 0 - v cp - rf ⁇ cos ⁇ ( ⁇ ) ] ⁇ rf - sensor ⁇ r 0 - v cp
- the correction factors are determined using an iterative process that is updated every N calculation samples in the following learning example. Notice that this is a conditional computation which is conducted only if the wheel's longitudinal slip ratios are small.
- corrected wheel speeds at each wheel can be determined in step 66 based upon the learned correction factor.
- ⁇ circumflex over (v) ⁇ lf k K lf r 0 ⁇ lf-sensor k
- ⁇ circumflex over (v) ⁇ rf k K rf r 0 ⁇ rf-sensor k
- ⁇ circumflex over (v) ⁇ lr k K lr r 0 ⁇ lr-sensor k
- ⁇ circumflex over (v) ⁇ rr k K rr r 0 ⁇ rr-sensor k
- V ref K ⁇ circumflex over (V) ⁇ ref (12)
- K is the global correction factor due to the total vehicle loading.
- ⁇ circumflex over (K) ⁇ inv( ⁇ circumflex over (V) ⁇ T ⁇ circumflex over (V) ⁇ ) ⁇ circumflex over (V) ⁇ T [A x ⁇ g ⁇ y ]
- Equation (16) is updated every N computational samples when the wheels have small longitudinal slip ratios.
- V k+1 is the updated reference velocity determined in step 76 .
- the safety system 40 may be controlled using the compensated velocity values.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Regulating Braking Force (AREA)
Abstract
A control system (24) for controlling a safety system (40) of an automotive vehicle includes a plurality of wheel speed sensors (30) generating a plurality of wheel velocity signals, a steering angle sensor (39) generating a steering actuator angle signal, a yaw rate sensor (28) generating a yaw rate signal, a lateral acceleration sensor (32) generating a lateral acceleration signal and a controller (26). The controller (26) generates a final reference vehicle velocity in response to the plurality of wheel speed signals, the steering angle signal, the yaw rate signal and the lateral acceleration signal. The controller (26) controls the safety system in response to the final reference vehicle velocity.
Description
The present invention claims priority to provisional application No. 60/450,248, filed on Feb. 26, 2003, filed simultaneously herewith, the disclosure of which is incorporated by reference.
The present invention relates generally to dynamic control systems for automotive vehicles and, more specifically to a system that compensates wheel speed sensor signals to determine a vehicle reference velocity.
It is a well-known practice to control various operating dynamics of a motor vehicle to achieve active safety. Examples of active safety systems include traction control, yaw stability control and roll stability control systems. A more recent development has been to combine all the available subsystems to achieve better vehicle safety and dynamics performance. The effective operation of the various control systems requires high-accuracy and fast-response-times in the determination of the operating states of the vehicle, regardless of road conditions and driving conditions. Such vehicle operating states include the vehicle longitudinal, lateral and vertical velocities measured along the body-fixed longitudinal, lateral and vertical axes, the attitude of the vehicle body, and the travel course of the vehicle.
One piece of basic information that forms the aforementioned vehicle state estimation is the linear velocity of the rotating centers of the four wheels. For example, this information can be used to assess the wheel slip used in anti-brake-lock controls and traction controls and to estimate the longitudinal velocity of the vehicle. In order to obtain the linear corner velocities, the wheel speed sensors are used. The wheel speed sensors output the products of the wheel rotational speeds and the rolling radii. The wheel rotational speeds are directly measured and the rolling radii are assumed their normal values. During dynamic maneuvers, the variations of the wheel normal loading will affect the rolling radii. Hence, the nominal rolling radii may not reflect the actual rolling radii and thus cause errors in the calculation of the wheel speeds.
It would, therefore be desirable to provide a more accurate way in which to determine the vehicle speed taking into consideration changes in rolling radii.
The present invention provides an improved determination of the individual wheel speeds. In the present invention the individual wheel speed calculations may be compensated for by learning the rolling radii of the wheels. Thus, a more accurate determination of the vehicle reference velocity or the longitudinal velocity may be determined.
In one aspect of the invention, a control system 24 for controlling a safety system 40 of an automotive vehicle includes a plurality of wheel speed sensors 30 generating a plurality of wheel velocity signals, a steering angle sensor 39 generating a steering actuator angle signal, a yaw rate sensor 28 generating a yaw rate signal, a lateral acceleration sensor 32 generating a lateral acceleration signal and a controller 26. The controller 26 generates a final reference vehicle velocity in response to the plurality of wheel speed signals, the steering angle signal, the yaw rate signal and the lateral acceleration signal. The controller 26 controls the safety system in response to the final reference vehicle velocity.
In a further aspect of the invention, a method of controlling a safety system for an automotive vehicle having a plurality of wheels includes determining a plurality of wheel velocities for the plurality of wheels, determining a preliminary longitudinal velocity of the vehicle from the plurality of wheel velocities, determining a plurality of correction factors for the plurality of wheel velocities for the plurality of wheels, determining a vehicle reference velocity in response to the plurality of correction factors, the plurality of wheel velocities and the preliminary longitudinal velocity, determining a lateral acceleration, determining a vehicle reference velocity correction factor in response to the lateral acceleration, determining a final reference velocity in response to the vehicle reference velocity correction factor and the vehicle reference velocity, and controlling the safety system in response to the final reference velocity.
Other advantages and features of the present invention will become apparent when viewed in light of the detailed description of the preferred embodiment when taken in conjunction with the attached drawings and appended claims.
In the following figures the same reference numerals will be used to illustrate the same components.
Referring now to FIG. 1 , various operating parameters and variables used by the present invention are illustrated as they relate to the application of the present invention to a ground based motor vehicle 10 having wheels 12, 14, 16, 18. Those skilled in the art will immediately recognize the basic physics represented by these illustrations, thereby making the adaptation to different types of vehicles easily within their reach. A lateral and longitudinal velocities of the center of gravity are denoted as Vx and Vy a yaw angular rate is denoted as ωx, a front wheel steering angle is denoted as δ, lateral acceleration is represented by ay, longitudinal acceleration is represented by ax.
Using those vehicle motion variables, the velocities of the vehicle at the four corner locations, where the wheels are attached to the vehicle, can be calculated in the following form which are projected along the body fixed longitudinal and lateral directions
Vlfx=Vx−ωztf, Vlfy=Vy+ωzlf
Vrfx=Vx+ωztf, Vrfy=Vy+ωzlf
Vlrx=Vx−ωztr, Vlry=Vy−ωzlr
Vrrx=Vy+ωztr, Vrry=Vy−ωzlr (1)
Vlfx=Vx−ωztf, Vlfy=Vy+ωzlf
Vrfx=Vx+ωztf, Vrfy=Vy+ωzlf
Vlrx=Vx−ωztr, Vlry=Vy−ωzlr
Vrrx=Vy+ωztr, Vrry=Vy−ωzlr (1)
where tf and tr are the half tracks for the front and rear axles, lf and lr are the distances between the center of gravity of the vehicle and the front and rear axles. The variables Vlf, Vrf, Vlr and Vrr are the linear velocities of the four corners along the wheel heading directions (left front, right front, left rear and right rear, respectively), which can be calculated as in the following
Vlf=Vlfx cos (δ)+Vlfy sin (δ)
Vrf=Vrfx cos (δ)+Vrfy sin (δ)
Vlr=Vlrx
Vrr=Vrrx (2)
Vlf=Vlfx cos (δ)+Vlfy sin (δ)
Vrf=Vrfx cos (δ)+Vrfy sin (δ)
Vlr=Vlrx
Vrr=Vrrx (2)
Referring now to FIG. 2 , vehicle corner velocity along the wheel longitudinal direction is equal to the sum of the contact patch slip velocity vcp and the product of the wheel rotational rate ωwhl and its rolling radius r0.
Referring now to FIG. 3 , stability control system 24 has a controller 26 used for receiving information from a number of sensors which may include a yaw rate sensor 28, speed sensors 30 (at each wheel), a lateral acceleration sensor 32, a roll rate sensor 34, a steering angle (hand wheel position) sensor 35, a longitudinal acceleration sensor 36, a pitch rate sensor 37, and steering angle position sensor 39. Steering angle position sensor 39 senses the position of the steered road wheels. Lateral acceleration, longitudinal acceleration, yaw rate, roll orientation and speed may also be obtained using a global positioning system (GPS). Based upon inputs from the sensors, controller 26 controls the safety system 40. Depending on the desired sensitivity, the type of safety system and various other factors, not all the sensors 28-39 may be used in a commercial embodiment. Other factors may be obtained from the sensors such as the surface mu and the vehicle side slip angle, β.
Referring now to FIG. 4 , a method of operating a safety system using a corrected vehicle velocity is determined. In step 60 the wheel speed sensors are read. In one embodiment each wheel has a separate speed sensor.
The wheel speed sensor outputs usually are calibrated for providing the linear directional velocities Vlf, Vrf, Vlr and Vrr by multiplying the wheel rotational angular speeds with a nominal rolling radius of the wheels. The variables ωlf-sensor, ωrf-sensor, ωlr-sensor and ωrr-sensor are the wheel angular velocity at the left-front corner, right-front corner, left-rear corner and rear-right corner respectively. The nominal rolling radius (typically used in ABS) for calculating wheel speeds from the wheel rotational rates is r0. Thus, the linear directional velocities may be represented by:
vlf=ωlf-sensorr0
vrf=ωrf-sensorr0
vlr=ωlr-sensorr0
vrr=ωrr-sensorr0 (3)
vlf=ωlf-sensorr0
vrf=ωrf-sensorr0
vlr=ωlr-sensorr0
vrr=ωrr-sensorr0 (3)
Notice that the wheels have different rolling radii than r0. Hence, in order to accurately calculate the actual linear velocities at the four corners, correction factors need to be added. The individual correction factors are denoted as Klf, Krf, Klr and Krr for the left-front, right-front, left-rear and rear-right corners, respectively. Thus, the linear directional velocities may then be represented by:
vlf=Klfωlf-sensorr0
vrf=Krfωrf-sensorr0
vlr=Klrωlr-sensorr0
vrr=Krrωrr-sensorr0 (4)
vlf=Klfωlf-sensorr0
vrf=Krfωrf-sensorr0
vlr=Klrωlr-sensorr0
vrr=Krrωrr-sensorr0 (4)
Notice also that the wheels experience not only the rotational motion but also the linear sliding motion, or longitudinal slip. The slip is caused by the relative motion between the wheel and the road at the contact patch (CP). The longitudinal velocities of the relative motions at the contact patches are denoted as vcp-lf, vcp-rf, v cp-lr and vcp-rr, then the vehicle corner velocities can be expressed as the sums of two speeds as in the following
Vlf=vcp-lf+vlf
Vrf=vcp-rf+vrf
Vlr=vcp-lr+vlr
Vrr=vcp-rr+vrr (5)
Vlf=vcp-lf+vlf
Vrf=vcp-rf+vrf
Vlr=vcp-lr+vlr
Vrr=vcp-rr+vrr (5)
The longitudinal and lateral velocities of the vehicle may be determined in step 62 from the sensors, or they may be calculated as in Ford disclosure 201-1057 filed simultaneously herewith, or even a rough estimation by averaging certain variables calculated from wheel speeds. This may be a rough estimate or average but, as mentioned above, does not take into consideration the rolling radius or other factors. Consider
Vy=Vx tan (β) (6)
where β is the vehicle side slip angle Vy is the lateral velocity of the vehicle and Vx is the longitudinal velocity of the vehicle. Instep 64, the front steering angle 8 is determined. Then, the individual correction factors Klf, Krf, Klr and Krr for each wheel can be calculated in step 66 as
Vy=Vx tan (β) (6)
where β is the vehicle side slip angle Vy is the lateral velocity of the vehicle and Vx is the longitudinal velocity of the vehicle. In
The product term tan (β) sin (δ) is negligible in comparison to cos (δ), hence equation (7) may be further simplified to the following, which is independent of the vehicle side slip angle β
In the case of small wheel longitudinal slip ratios, the longitudinal velocities vcp-lf, vcp-rf, vcp-lr and vcp-rr of the relative motions at the contact patches are close to zero, and equation (8) can be further simplified as the following
The digital value of the above wheel speed individual correction factors Klf, Krf, Klr and Krr at the time instant t=kΔT are
Klfk , Krf k , Klr k and Krr k
then learning algorithms can be used to calculate the average correction factors. The correction factors are determined using an iterative process that is updated every N calculation samples in the following learning example. Notice that this is a conditional computation which is conducted only if the wheel's longitudinal slip ratios are small.
Klf
then learning algorithms can be used to calculate the average correction factors. The correction factors are determined using an iterative process that is updated every N calculation samples in the following learning example. Notice that this is a conditional computation which is conducted only if the wheel's longitudinal slip ratios are small.
Using the above learning algorithm, corrected wheel speeds at each wheel can be determined in step 66 based upon the learned correction factor.
{circumflex over (v)}lfk = K lfr0ωlf-sensor k
{circumflex over (v)}rfk = K rfr0ωrf-sensor k
{circumflex over (v)}lrk = K lrr0ωlr-sensor k
{circumflex over (v)}rrk = K rrr0ωrr-sensor k (11)
{circumflex over (v)}lf
{circumflex over (v)}rf
{circumflex over (v)}lr
{circumflex over (v)}rr
Notice that the above learning algorithm only corrects the individual wheel speeds. There are cases when the average rolling radii of the four wheels are reduced together due to vehicle loading change. Feeding back the above corrected wheel speeds to the algorithms used in vehicle dynamics control will provide a vehicle reference velocity
{circumflex over (V)}ref
instep 70 which needs to be further calibrated against the available vehicle longitudinal acceleration sensor signal.
{circumflex over (V)}ref
in
Consider that the actual vehicle reference velocity is
Vref=K{circumflex over (V)}ref (12)
where K is the global correction factor due to the total vehicle loading. K is usually a slow time varying parameters
K{circumflex over (V)}ref=ax−gθy (13)
where θy is the vehicle pitch angle generated from a pitch angle sensor or calculated from the pitch rate sensor signal.
Vref=K{circumflex over (V)}ref (12)
where K is the global correction factor due to the total vehicle loading. K is usually a slow time varying parameters
K{circumflex over (V)}ref=ax−gθy (13)
where θy is the vehicle pitch angle generated from a pitch angle sensor or calculated from the pitch rate sensor signal.
In step 72, the longitudinal acceleration ax is determined. Then, the following variables are defined
Then a least square computation of the correction factor due to loading can be determined in step 74 as the following:
{circumflex over (K)}=inv({circumflex over (V)}T{circumflex over (V)}){circumflex over (V)}T[Ax−gΘy] (15)
or in the following form
{circumflex over (K)}=inv({circumflex over (V)}T{circumflex over (V)}){circumflex over (V)}T[Ax−gΘy] (15)
or in the following form
Notice that the global correction factor
{circumflex over (K)}
{circumflex over (K)}
is updated every N computational samples when the wheels have small longitudinal slip ratios. The digital implementation of equation (16) can be obtained as in the following where Vk+1 is the updated reference velocity determined in step 76.
The final corrected wheel speed sensor signals may be corrected by the aforementioned factors can also be obtained as the following:
{circumflex over (v)}lfk ={circumflex over (K)} K lfr0ωlf-sensor k
{circumflex over (v)}rfk ={circumflex over (K)} K rfr0ωrf-sensor k
{circumflex over (v)}lrk ={circumflex over (K)} K lrr0ωlr-sensor k
{circumflex over (v)}rrk ={circumflex over (K)} K rrr0ωrr-sensor k (17)
{circumflex over (v)}lf
{circumflex over (v)}rf
{circumflex over (v)}lr
{circumflex over (v)}rr
Once the corrected final vehicle reference velocity is determined, the safety system 40 may be controlled using the compensated velocity values.
While particular embodiments of the invention have been shown and described, numerous variations and alternate embodiments will occur to those skilled in the art. Accordingly, it is intended that the invention be limited only in terms of the appended claims.
Claims (21)
1. A control system for controlling a safety system of an automotive vehicle comprising:
a plurality of wheel speed sensors generating a plurality of wheel velocity signals;
a steering angle sensor generating a steering actuator angle signal;
a yaw rate sensor generating a yaw rate signal;
a lateral longitudinal acceleration sensor generating a lateral longitudinal acceleration signal; and
a controller coupled to the plurality of wheel speed sensors, the steering actuator angle sensor, the yaw rate sensor, the lateral longitudinal acceleration sensor, said controller generating a final reference vehicle velocity in response to the plurality of wheel velocity signals, the steering angle signal, the yaw rate signal and the lateral longitudinal acceleration signal, said controller controlling the safety system in response to the final reference vehicle velocity.
2. A control system as recited in claim 1 wherein the safety system comprises a rollover control system.
3. A control system as recited in claim 1 wherein the safety system comprises a yaw control system.
4. A control system as recited in claim 1 wherein the safety system comprises an antilock brake system.
5. A control system as recited in claim 1 wherein the final reference vehicle velocity is determined in response to a learning function.
6. A control system for an automotive vehicle comprising:
a plurality of wheel speed sensors generating a plurality of wheel velocity signals;
a lateral longitudinal acceleration sensor generating a lateral longitudinal acceleration signal;
a safety system; and
a controller coupled to the plurality of wheel speed sensors, the lateral longitudinal acceleration sensor and the safety system, said controller determining a preliminary longitudinal velocity of the vehicle from the plurality of wheel velocity signals, determining a plurality of correction factors for the plurality of wheel velocity signals, determining a vehicle reference velocity in response to the plurality of correction factors, the plurality of wheel velocities and the preliminary longitudinal velocity, determining a vehicle reference velocity correction factor in response to the lateral longitudinal acceleration, determining a final reference velocity in response to the velocity correction factor and the vehicle reference velocity, said controller controlling the safety system in response to the final reference vehicle velocity.
7. A control system as recited in claim 1 wherein the safety system comprises a rollover control system.
8. A control system as recited in claim 1 wherein the safety system comprises a yaw control system.
9. A control system as recited in claim 1 wherein the safety system comprises an antilock brake system.
10. A control system as recited in claim 1 wherein determining a plurality of correction factors is performed using a learning function.
11. A control system as recited in claim 1 10 wherein the learning function averages N correction factors, where N is an integer.
12. A control system as recited in claim 1 further comprising said controller determining a nominal rolling radius,
wherein the wheel velocity is a function of vehicle speed.
13. A method of controlling a safety system for an automotive vehicle having a plurality of wheels comprising:
determining a plurality of wheel velocities for the plurality of wheels;
determining a preliminary longitudinal velocity of the vehicle from the plurality of wheel velocities;
determining a plurality of correction factors for the plurality of wheel velocities for the plurality of wheels;
determining a vehicle reference velocity in response to the plurality of correction factors, the plurality of wheel velocities and the preliminary longitudinal velocity;
determining a lateral longitudinal acceleration;
determining a vehicle reference velocity correction factor in response to the lateral longitudinal acceleration;
determining a final reference velocity in response to the vehicle reference velocity correction factor and the vehicle reference velocity; and
controlling the safety system in response to the final reference velocity.
14. A method as recited in claim 13 further comprising determining a yaw rate determining a plurality of preliminary lateral longitudinal velocity of the vehicle from the plurality of wheel speeds and the yaw rate.
15. A method as recited in claim 13 further comprising determining a front steering angle, wherein determining a plurality of correction factors are determined in response to the front steering angle.
16. A method as recited in claim 13 wherein said safety system comprises at least one selected from a rollover stability control system, a yaw control system, a traction control system or an antilock brake control system.
17. A method as recited in claim 13 further comprising using a learning function in the step of determining a plurality of correction factors.
18. A method of controlling a safety system for an automotive vehicle having a plurality of wheels comprising:
determining a plurality of wheel velocities for the plurality of wheels;
determining a yaw rate;
determining a preliminary longitudinal velocity of the vehicle from the plurality of wheel velocities and the yaw rate;
determining a front steering angle;
determining a plurality of correction factors for the plurality of preliminary wheel speeds in response to the front steering angle;
determining a vehicle reference velocity in response to the plurality of correction factors and the plurality of correction factors and the preliminary longitudinal velocity.
19. A method as recited in claim 18 further comprising determining a lateral longitudinal acceleration;
determining a velocity correction factor in response to the lateral longitudinal acceleration; and
determining a final reference velocity in response to the velocity correction factor and the vehicle reference velocity.
20. A method as recited in claim 18 further comprising using a learning function in the step of determining a plurality of correction factors.
21. A method as recited in claim 18 wherein said safety system comprises at least one selected from a rollover stability control system, a yaw control system, a traction control system or an antilock brake control system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/260,858 USRE41617E1 (en) | 2003-02-26 | 2005-10-27 | Method for determining a longitudinal vehicle by compensating individual wheel speeds |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US45024803P | 2003-02-26 | 2003-02-26 | |
US10/605,841 US6847875B2 (en) | 2003-02-26 | 2003-10-30 | Method for determining a longitudinal vehicle velocity by compensating individual wheel speeds |
US11/260,858 USRE41617E1 (en) | 2003-02-26 | 2005-10-27 | Method for determining a longitudinal vehicle by compensating individual wheel speeds |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/605,841 Reissue US6847875B2 (en) | 2003-02-26 | 2003-10-30 | Method for determining a longitudinal vehicle velocity by compensating individual wheel speeds |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE41617E1 true USRE41617E1 (en) | 2010-08-31 |
Family
ID=31998224
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/605,841 Ceased US6847875B2 (en) | 2003-02-26 | 2003-10-30 | Method for determining a longitudinal vehicle velocity by compensating individual wheel speeds |
US11/260,858 Expired - Lifetime USRE41617E1 (en) | 2003-02-26 | 2005-10-27 | Method for determining a longitudinal vehicle by compensating individual wheel speeds |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/605,841 Ceased US6847875B2 (en) | 2003-02-26 | 2003-10-30 | Method for determining a longitudinal vehicle velocity by compensating individual wheel speeds |
Country Status (2)
Country | Link |
---|---|
US (2) | US6847875B2 (en) |
GB (1) | GB2398846B (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6847875B2 (en) * | 2003-02-26 | 2005-01-25 | Ford Global Technologies, Llc | Method for determining a longitudinal vehicle velocity by compensating individual wheel speeds |
WO2005067613A2 (en) * | 2004-01-06 | 2005-07-28 | Deo Hrishikesh V | Suspension system with independent control of ride-height, stiffness and damping |
US7451033B2 (en) * | 2005-06-10 | 2008-11-11 | Ford Global Technologies, Llc | Lateral and longitudinal velocity determination for an automotive vehicle |
DE102006037531A1 (en) * | 2006-08-10 | 2008-02-14 | Siemens Ag | Method and device for operating a vehicle |
RU2445635C2 (en) * | 2007-04-13 | 2012-03-20 | Кинетик, Инк. | Force sensor and method of determining turning radius of moving object |
US8095309B2 (en) * | 2007-06-05 | 2012-01-10 | GM Global Technology Operations LLC | GPS assisted vehicular longitudinal velocity determination |
FR2923436B1 (en) * | 2007-11-09 | 2010-04-09 | Michelin Soc Tech | SYSTEM FOR MONITORING THE BEHAVIOR OF A VEHICLE COMPRISING A DETERMINATION OF ITS SPEED IN RELATION TO THE GROUND |
FR2923437B1 (en) * | 2007-11-09 | 2010-04-09 | Michelin Soc Tech | SYSTEM FOR MONITORING THE BEHAVIOR OF A VEHICLE COMPRISING A DETERMINATION OF THE WHEEL ADHESION COEFFICIENT |
US20090187324A1 (en) | 2008-01-23 | 2009-07-23 | Jianbo Lu | Vehicle Stability Control System and Method |
US9285485B2 (en) * | 2009-11-12 | 2016-03-15 | GM Global Technology Operations LLC | GPS-enhanced vehicle velocity estimation |
CN105691388B (en) * | 2016-01-14 | 2017-11-14 | 南京航空航天大学 | A kind of Automotive active anti-collision system and its method for planning track |
US11366135B2 (en) | 2017-04-19 | 2022-06-21 | Ford Global Technologies, Llc | GNSS statistically derived ABS speedometer calibration |
DE102018115043A1 (en) | 2018-06-22 | 2019-12-24 | Thyssenkrupp Ag | Method for determining a wheel circumference based on the measured yaw rate |
US11187719B2 (en) * | 2019-01-08 | 2021-11-30 | Qualcomm Incorporated | In-motion initialization of accelerometer for accurate vehicle positioning |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0439191A1 (en) * | 1990-01-25 | 1991-07-31 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Turning control apparatus and method for vehicle |
JPH04324357A (en) * | 1991-04-24 | 1992-11-13 | Nippon Shoji Kk | Measurement method of collagen |
US5216608A (en) * | 1990-01-25 | 1993-06-01 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Apparatus and a method for estimating the friction coefficient of a road surface and controlling a driving condition of a vehicle in accordance with the estimated friction coefficient |
EP0689116A2 (en) * | 1994-06-22 | 1995-12-27 | General Motors Corporation | Method and apparatus for estimating incline and bank angles of a road surface |
US5699251A (en) * | 1994-03-18 | 1997-12-16 | Honda Giken Kogyo Kabushiki Kaisha | Correcting the wheel speed of a wheel having a different diameter than other wheels |
US5719790A (en) * | 1995-01-30 | 1998-02-17 | Siemens Aktiengesellschaft | Method and circuit configuration for compensating for signal errors of a yaw velocity sensor |
US5720533A (en) * | 1996-10-15 | 1998-02-24 | General Motors Corporation | Brake control system |
US5746486A (en) * | 1996-10-16 | 1998-05-05 | General Motors Corporation | Brake control system |
US5788345A (en) * | 1995-09-26 | 1998-08-04 | Aisin Seiki Kabushiki Kaisha | Anti-skid control device |
US5852788A (en) * | 1995-10-04 | 1998-12-22 | Nisshinbo Industries Inc. | Wheel speed correction method that accounts for use of a mini tire |
US5959202A (en) * | 1997-01-27 | 1999-09-28 | Sumitomo Electric Industries, Ltd. | Device for determining initial correction factor for correcting rotational velocity of tire |
US6055488A (en) * | 1997-02-27 | 2000-04-25 | Sumitomo Electric Industries, Ltd. | Device for calculating initial correction factor for correcting rotational velocity of tire |
US6053583A (en) * | 1997-03-31 | 2000-04-25 | Mazda Motor Corporation | Stability control system for vehicle |
US6120113A (en) * | 1996-04-26 | 2000-09-19 | Aisin Seiki Kabushiki Kaisha | Hydraulic braking system for an automotive vehicle |
US6192305B1 (en) * | 1998-02-06 | 2001-02-20 | Delco Electronics Corporation | Vehicle rollover sensing using yaw rate estimation |
US6212460B1 (en) * | 1996-09-06 | 2001-04-03 | General Motors Corporation | Brake control system |
US6292759B1 (en) * | 1998-11-19 | 2001-09-18 | Delphi Technologies, Inc. | Vehicle attitude angle estimation using sensed signal blending |
US6556908B1 (en) * | 2002-03-04 | 2003-04-29 | Ford Global Technologies, Inc. | Attitude sensing system for an automotive vehicle relative to the road |
US6631317B2 (en) * | 2001-10-01 | 2003-10-07 | Ford Global Technologies, Inc. | Attitude sensing system for an automotive vehicle |
US6725140B2 (en) * | 2002-05-07 | 2004-04-20 | Ford Global Technologies, Llc | Method and apparatus for determining lateral velocity of a motor vehicle in closed form for all road and driving conditions |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3275320B2 (en) * | 1991-04-25 | 2002-04-15 | トヨタ自動車株式会社 | Wheel slip condition evaluation device |
US6847875B2 (en) * | 2003-02-26 | 2005-01-25 | Ford Global Technologies, Llc | Method for determining a longitudinal vehicle velocity by compensating individual wheel speeds |
-
2003
- 2003-10-30 US US10/605,841 patent/US6847875B2/en not_active Ceased
-
2004
- 2004-02-09 GB GB0402788A patent/GB2398846B/en not_active Expired - Fee Related
-
2005
- 2005-10-27 US US11/260,858 patent/USRE41617E1/en not_active Expired - Lifetime
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5216608A (en) * | 1990-01-25 | 1993-06-01 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Apparatus and a method for estimating the friction coefficient of a road surface and controlling a driving condition of a vehicle in accordance with the estimated friction coefficient |
EP0439191A1 (en) * | 1990-01-25 | 1991-07-31 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Turning control apparatus and method for vehicle |
JPH04324357A (en) * | 1991-04-24 | 1992-11-13 | Nippon Shoji Kk | Measurement method of collagen |
US5699251A (en) * | 1994-03-18 | 1997-12-16 | Honda Giken Kogyo Kabushiki Kaisha | Correcting the wheel speed of a wheel having a different diameter than other wheels |
EP0689116A2 (en) * | 1994-06-22 | 1995-12-27 | General Motors Corporation | Method and apparatus for estimating incline and bank angles of a road surface |
US5719790A (en) * | 1995-01-30 | 1998-02-17 | Siemens Aktiengesellschaft | Method and circuit configuration for compensating for signal errors of a yaw velocity sensor |
US5788345A (en) * | 1995-09-26 | 1998-08-04 | Aisin Seiki Kabushiki Kaisha | Anti-skid control device |
US5852788A (en) * | 1995-10-04 | 1998-12-22 | Nisshinbo Industries Inc. | Wheel speed correction method that accounts for use of a mini tire |
US6120113A (en) * | 1996-04-26 | 2000-09-19 | Aisin Seiki Kabushiki Kaisha | Hydraulic braking system for an automotive vehicle |
US6212460B1 (en) * | 1996-09-06 | 2001-04-03 | General Motors Corporation | Brake control system |
US5720533A (en) * | 1996-10-15 | 1998-02-24 | General Motors Corporation | Brake control system |
US5746486A (en) * | 1996-10-16 | 1998-05-05 | General Motors Corporation | Brake control system |
US5959202A (en) * | 1997-01-27 | 1999-09-28 | Sumitomo Electric Industries, Ltd. | Device for determining initial correction factor for correcting rotational velocity of tire |
US6055488A (en) * | 1997-02-27 | 2000-04-25 | Sumitomo Electric Industries, Ltd. | Device for calculating initial correction factor for correcting rotational velocity of tire |
US6053583A (en) * | 1997-03-31 | 2000-04-25 | Mazda Motor Corporation | Stability control system for vehicle |
US6192305B1 (en) * | 1998-02-06 | 2001-02-20 | Delco Electronics Corporation | Vehicle rollover sensing using yaw rate estimation |
US6292759B1 (en) * | 1998-11-19 | 2001-09-18 | Delphi Technologies, Inc. | Vehicle attitude angle estimation using sensed signal blending |
US6631317B2 (en) * | 2001-10-01 | 2003-10-07 | Ford Global Technologies, Inc. | Attitude sensing system for an automotive vehicle |
US6556908B1 (en) * | 2002-03-04 | 2003-04-29 | Ford Global Technologies, Inc. | Attitude sensing system for an automotive vehicle relative to the road |
US6725140B2 (en) * | 2002-05-07 | 2004-04-20 | Ford Global Technologies, Llc | Method and apparatus for determining lateral velocity of a motor vehicle in closed form for all road and driving conditions |
Also Published As
Publication number | Publication date |
---|---|
US6847875B2 (en) | 2005-01-25 |
GB2398846B (en) | 2005-10-12 |
US20040167692A1 (en) | 2004-08-26 |
GB0402788D0 (en) | 2004-03-10 |
GB2398846A (en) | 2004-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE41617E1 (en) | Method for determining a longitudinal vehicle by compensating individual wheel speeds | |
US7092808B2 (en) | Integrated sensing system for an automotive system | |
US6804584B2 (en) | Method for determining the roll angle of a vehicle using an estimation of road bank angle | |
US7010409B2 (en) | Reference signal generator for an integrated sensing system | |
US6904349B2 (en) | Method of estimating quantities that represent state of vehicle | |
US7600826B2 (en) | System for dynamically determining axle loadings of a moving vehicle using integrated sensing system and its application in vehicle dynamics controls | |
US6631317B2 (en) | Attitude sensing system for an automotive vehicle | |
EP1118507B1 (en) | Roll over detection for an automotive vehicle | |
US8180513B2 (en) | Autonomous ground vehicle control system for high-speed and safe operation | |
US6351694B1 (en) | Method for robust estimation of road bank angle | |
US7143864B2 (en) | Yaw control for an automotive vehicle using steering actuators | |
US7079928B2 (en) | System and method for determining a wheel departure angle for a rollover control system with respect to road roll rate and loading misalignment | |
US6909957B2 (en) | Method for controlling yaw and transversal dynamics in a road vehicle | |
US20020082749A1 (en) | Roll over stability control for an automotive vehicle having rear wheel steering | |
US7130729B2 (en) | Adaptive compensation of rear-wheel steering control using vehicle dynamics parameter estimation | |
US20020095244A1 (en) | Rollover stability control for an automotive vehicle using front wheel actuators | |
US8121758B2 (en) | System for determining torque and tire forces using integrated sensing system | |
US20030236603A1 (en) | System for sensing vehicle global and relative attitudes using suspension height sensors | |
US20020013651A1 (en) | Apparatus and method for determining vehicle operating and dynamic parameters | |
EP1386808B1 (en) | System and method for characterizing vehicle body to road angle for vehicle roll stability control | |
US6915193B2 (en) | Method for determining a longitudinal vehicle velocity by compensating individual wheel speeds using pitch attitude | |
EP1147929B1 (en) | Apparatus and method for determining vehicle operating and dynamic parameters | |
CN111216732B (en) | Road surface friction coefficient estimation method and device and vehicle | |
US6853886B2 (en) | Method of estimating quantities that represent state of vehicle | |
KR100388104B1 (en) | system for controlling the stability of vehicles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |