USRE40971E1 - Direct drive programmable high speed power digital-to-analog converter - Google Patents

Direct drive programmable high speed power digital-to-analog converter Download PDF

Info

Publication number
USRE40971E1
USRE40971E1 US11/220,304 US22030405A USRE40971E US RE40971 E1 USRE40971 E1 US RE40971E1 US 22030405 A US22030405 A US 22030405A US RE40971 E USRE40971 E US RE40971E
Authority
US
United States
Prior art keywords
current
communication
digital
delay elements
analog
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US11/220,304
Inventor
Sehat Sutardja
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cavium International
Marvell Asia Pte Ltd
Original Assignee
Marvell International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marvell International Ltd filed Critical Marvell International Ltd
Priority to US11/220,304 priority Critical patent/USRE40971E1/en
Application granted granted Critical
Publication of USRE40971E1 publication Critical patent/USRE40971E1/en
Assigned to CAVIUM INTERNATIONAL reassignment CAVIUM INTERNATIONAL ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MARVELL INTERNATIONAL LTD.
Assigned to MARVELL ASIA PTE, LTD. reassignment MARVELL ASIA PTE, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CAVIUM INTERNATIONAL
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/08Continuously compensating for, or preventing, undesired influence of physical parameters of noise
    • H03M1/0863Continuously compensating for, or preventing, undesired influence of physical parameters of noise of switching transients, e.g. glitches
    • H03M1/0881Continuously compensating for, or preventing, undesired influence of physical parameters of noise of switching transients, e.g. glitches by forcing a gradual change from one output level to the next, e.g. soft-start
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/02Digital function generators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/68Digital/analogue converters with conversions of different sensitivity, i.e. one conversion relating to the more significant digital bits and another conversion to the less significant bits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion
    • H03M1/742Simultaneous conversion using current sources as quantisation value generators

Definitions

  • the present invention relates generally to signal processing and signal waveshaping. More particularly, the present invention relates to signal processing and signal waveshaping of digital-to-analog converters.
  • a digital-to-analog converter (hereinafter a DAC) is generally an electronic circuit that receives an n-bit codeword from an interface and generates an analog voltage or current that is proportional to the codeword.
  • DAC Digital-To-Analog Converter
  • the DAC of the U.S. Pat. No. 5,663,728 patent employs a waveform shaping circuit to control the rise and fall times of each component waveform so that the analog waveform rising and falling edges settle to within a desired error bound of a linear output ramp.
  • U.S. Pat. No. 5,936,450 entitled A Waveshaping Circuit Using Digitally Controlled Weighted Current Summing, issued on Aug. 10, 1999, the contents of which are hereby incorporated by reference, discloses a waveshaping circuit.
  • the waveshaping circuit of the U.S. Pat. No. 5,936,450 patent includes a controller and a current summing circuit controlled by the controller.
  • the current summing circuitry selectively sinks combinations of component currents in response to a sequence of control signal sets to generate an output current signal having a desired waveform.
  • a signal output may include the output of a DAC and/or the output of one or more signal components within a DAC.
  • a signal component may correspond to an individual bit of a codeword.
  • One conventional method generates a signal output with a slew rate controlled current source, as shown in FIG. 1 .
  • the voltage V measured across a resistor R is shown in FIG. 2 .
  • the waveform V includes sharp transition areas (e.g., corners) 1 , 2 and 3 , which may introduce electromagnetic interference. Such interference may inhibit accurate signal processing.
  • FIG. 3 Another circuit which generates an output signal employs a current mirror 10 having an RC filter, as illustrated in FIG. 3.
  • a current source 1 drives the current mirror 10 .
  • Current mirror 10 includes a first transistor 11 and a second transistor 12 .
  • Transistors 11 and 12 are preferably CMOS transistors.
  • the first transistor 11 includes gate-to-drain feedback, and is coupled to transistors 12 through the RC filter.
  • the RC filter limits rise and fall times of the input signal I.
  • the R and C components are typically process and/or temperature dependent. Such dependence causes variation in the output waveform as shown in FIG. 4 .
  • the dashed lines in FIG. 4 represent arbitrary output responses due to temperature and/or process variation. A stable output signal is difficult to obtain with such a circuit.
  • FIG. 5 depicts a D/A circuit employing a DAC 32 , a low pass filter 34 , a voltage buffer 36 , a transistor 38 , and a resistor 39 .
  • Each level of a multilevel input signal is provided to DAC 32 for conversion to an analog signal.
  • the LPF 34 determines the rise time of the output of the DAC 32 , and the output is passed to voltage buffer 36 .
  • This construction presents two problems. First, the R and C values of LPF 34 will vary with temperature and process variations, and the output signal will have a poor waveshape where the rise times are not constant. Second, since all input current is passed through the same DAC, and since bandwidth is a function of current level, each level of the multilevel signal will present a different rise time.
  • the present invention addresses these signal processing problems by providing a circuit to generate a desired output signal.
  • the present invention also provides a DAC for converting a digital signal into an analog signal with a desirable waveshape.
  • a current source includes N current sources configured in a parallel arrangement, wherein N is at least two. Each of the N current sources includes a respective control input.
  • the current source includes M delay elements, with an mth one of the M delay elements including an input in communication with an m ⁇ 1th one of the M delay elements. M is equal to N ⁇ 1, and an output of the mth one of the M delay elements is arranged in communication with the control input of an m+1th one of the N current sources.
  • an apparatus includes N current sources configured in a parallel arrangement, wherein N is at least two.
  • Each of the N current sources includes a respective control input and a respective biasing input.
  • the apparatus also includes a biasing generator in communication with each of the biasing inputs of the N current sources, an apparatus input in communication with the control input of a first one of the N current sources, and M delay elements, with an mth one of the M delay elements including an input in communication with an m ⁇ 1th one of the M delay elements.
  • M is equal to N ⁇ 1, and an output of the mth one of the M delay elements is arranged in communication with the control input of an m+1th one of the N current sources.
  • the first one of the M delay elements is in communication with the apparatus input.
  • a method of supplying current includes the steps of: (i) arranging first through n current sources in a parallel arrangement, where n comprises the total number of current sources, and wherein the first current source supplies a first current and the second through n current source respectively supplies second through n currents; and (ii) delaying the second through n currents each with respect the first current.
  • FIG. 1 is a diagram of a conventional circuit, which includes a slew rate controlled current source.
  • FIG. 2 is a graphical depiction of a waveshape corresponding to an output of the FIG. 1 circuit.
  • FIG. 3 is a view of a conventional circuit including a current mirror having an RC filter.
  • FIG. 4 is a graphical depiction of a waveshape corresponding to an output of the FIG. 3 circuit.
  • FIG. 5 is a schematic block diagram of a D/A circuit.
  • FIG. 6 is a graphical depiction of a waveshape having smooth transition areas.
  • FIG. 7 is a circuit diagram of a current source according to the present invention.
  • FIG. 8 is a graphical depiction of current components of the current source illustrated in FIG. 6 .
  • FIG. 9 is a graphical depiction of a resultant output waveshape from the current source illustrated in FIGS. 6 and 7 .
  • FIG. 10 is a graphical depiction of a waveform template, and a waveshape that fits within the template.
  • FIG. 11 is a circuit diagram of a current source according to the present invention.
  • FIGS. 12a-12c are graphical depictions of waveshapes generated by the current source of FIG. 10 .
  • FIG. 13 is a circuit diagram of a current source according to the present invention.
  • FIG. 14 is a circuit diagram of a current source having variable delay elements according to the present invention.
  • FIG. 15a is a graphical depiction of a waveform generated with uniform delay element.
  • FIG. 15b is a graphical depiction of a waveform generated with non-uniform delay element.
  • FIG. 16 is a circuit diagram of a current source including a plurality of differential transistor pairs according to the present invention.
  • FIG. 17 is a circuit diagram of an alternative embodiment according to the present invention.
  • the present invention will be described with respect to circuits and methods for shaping waveforms, and in particular, to a digital-to-analog converter (DAC) employing such a waveshaping circuit.
  • DAC digital-to-analog converter
  • the present invention is not limited to applications involving DACs, but also may be applied to other applications, such as signal processing, systems to control signal rise/fall time, signal storage, communications, etc.
  • the present invention is particularly suited to applications in the read channel of a hard disk drive, many other applications will suggest themselves to persons of skill in the electrical engineering arts.
  • the present invention is particularly suitable for use with the structure described in U.S. patent application Ser. No. 09/737743, entitled “Active Replica Transformer Hybrid”, filed concurrently herewith, the contents of which are incorporated herein by reference.
  • FIG. 6 illustrates a desired signal output 20 .
  • the output waveform 20 includes smooth transition areas, which reduce noise such as electromagnetic interference.
  • a preferred rise time (“T r ”) for a DAC is 3-5 nanoseconds (ns).
  • current source 30 includes a plurality of current sources.
  • current source 30 may include current sources I 1 , I 2 , I 3 and I 4 .
  • Current sources I 1 , I 2 , I 3 and I 4 each preferably generate a respective current I n , where n is 1, 2, 3 or so forth.
  • the signals I n are preferably equal in magnitude and form, and may include a signal delay.
  • current sources I n each generate a linear ramp. For example, consider a signal I 1 , which includes a linearly rising edge starting at time t 0 .
  • Current I 2 mirrors current I 1 , except that I 2 includes a linearly rising edge starting at time t 0 + ⁇ t.
  • the variable ⁇ t represents an amount of delay time.
  • Current I 3 mirrors currents I 1 and I 2 , except that current I 3 includes a linearly rising edge starting at time t 0 +2 ⁇ t.
  • current I 4 mirrors currents I 1 , I 2 , and I 3 , except that its linearly rising edge starts at time t 0 +3 ⁇ t.
  • the relative waveform components for currents I 1 , I 2 , I 3 and I 4 are shown in FIG. 8 .
  • Waveform I 0 approximates the desired output signal shown in FIG. 6 .
  • waveform I 0 has many desirable properties. For example, I 0 has selectable transition areas (corners). The transition areas can be smooth, or sharp, by selectively adjusting the length of ⁇ t. Also, waveform I 0 accommodates arbitrary rise/fall times.
  • the waveform I 0 can also be adjusted by varying ⁇ t to fit within specified requirements.
  • waveform I 0 can be adjusted to fit within a template 40 , for example, as provided by the IEEE standard waveform shape.
  • I 0 has been optimized to produce low electromagnetic interference and to fit within the IEEE template 40 .
  • the delay variable ⁇ t is preferably controlled using a delayed-lock loop or is controlled by reference to an external clock. As such, ⁇ t can be precisely regulated. A waveform which is independent of temperature and/or process considerations can then be generated.
  • a signal is produced from current source 50 , which includes a plurality of current sources I 1 through In. Each of the plurality of current sources generates a replica signal I.
  • input signal I is preferably a square waveform.
  • the signal I is delayed by ⁇ t from each subsequent current source, after the initial current source I 1 .
  • I 2 is delayed by ⁇ t
  • In is delayed by n ⁇ t.
  • the currents are summed (or mixed) in a known manner to produce an output which approximates a linear ramp.
  • FIG. 12b illustrates the resultant waveshape I 0 , which includes a stair-step pattern.
  • a linear ramp as shown in FIG. 12c , is approximated as the length of the delay variable ⁇ t is decreased.
  • FIG. 13 A circuit diagram of the current source 50 is shown in FIG. 13 .
  • Current source 50 includes a plurality of transistor pairs 52 - 56 , where pair 56 represents the nth transistor pair.
  • a current source 51 drives transistor pair 52 .
  • Transistor pair 52 includes a transistor 52 a communicating with a transistor 52 b.
  • Transistor 52 a is preferably configured with gate-to-drain feedback.
  • the gate of transistor 52 b is biased so as to operate in an “on” state.
  • the gate/drain of transistor 52 a communicates with the gates of transistors 53 a, 54 a, 55 a and 56 a.
  • the drains of transistors 53 a- 56 a each communicates with an output Io.
  • the gates of transistors 53 b- 56 b each communicates with an input waveform Iin (e.g., a square signal), some through delay elements.
  • Iin e.g., a square signal
  • the gate of transistor 54 b communicates with waveform Iin through delay element d 1 .
  • the gate of transistor 55 b communicates with waveform Iin through delay element d 2 and delay element d 1 .
  • the gate of transistor 56 b communicates with waveform Iin through each of the delay elements d 1 through dn.
  • each of delay elements d 1 -dn delays the signal by ⁇ .
  • Delay elements can be realized via known delay locked loops.
  • waveform Iin is communicated to the gate of transistor 53 b, which turns on the transistor pair 53 .
  • a signal I 1 which is proportional to the waveform Iin, is output at Io.
  • Waveform Iin is also communicated to delay element d 1 , which delays the waveform by ⁇ seconds. After ⁇ seconds, delay element d 1 communicates the delayed waveform to the gate of 54 b, which turns on the transistor pair 54 .
  • a signal I 2 which is proportional to lin, is output at Io.
  • the resultant waveform Io includes the sum (or mixture) of signals 11 and 12 .
  • the input waveform Iin is respectively delayed before communicating with the gates of transistors 55 b and 56 b.
  • Transistor pairs 55 and 56 are activated (e.g., turned on) and respectively supply current 13 and In, which are added to the resultant waveform I.
  • the current source 50 as shown in FIG. 11 , is therefore realized.
  • VGS-VT-VDS equals a small number of current sources with negative VDS.
  • a further current source 60 is shown in FIG. 14 .
  • the current source 60 is configured in the same manner as the current source 50 shown in FIG. 13 , except that the delay elements may include variable delays.
  • the same components with respect to FIG. 13 are labeled with their same reference numerals in FIG. 13 .
  • delay elements ⁇ are non-uniform throughout the circuit. For example, ⁇ may involve a longer delay than ⁇ n ⁇ 1, and so forth. Non-uniform delays may be employed to generate a smooth waveform. Multiple delay-locked-loops are preferably used to achieve different delay times.
  • FIG. 15 a an output waveform processed with uniform delay elements is shown in FIG. 15 a.
  • a stair step waveform is produced, which may approximate a linear ramp, particularly as the variable ⁇ is decreased in length (e.g., time).
  • the amount of delay is varied with respect to individual delay elements as shown in FIG. 15 b.
  • the approximated waveshape of FIG. 15b is smooth (e.g., includes smooth transition areas) in comparison to the approximated linear waveshape of FIG. 15 b. Seven steps (or corresponding current sources) are employed in a preferred embodiment for a Gigabit channel.
  • the number of levels may be varied according to need or design without deviating from the scope of the present invention.
  • FIG. 16 A further embodiment of a current source is illustrated in FIG. 16 .
  • the illustrated current source 70 includes a plurality of differential transistor pairs 72 - 74 , where 74 represents the nth differential transistor pair.
  • a bias current I B is supplied to the gate of transistors 72 c, 73 c and 74 c.
  • An input waveform Iin is communicated to the gates of 72 a, 72 b, 73 a, 73 b, 74 a and 74 b.
  • the input waveform Iin is delayed through delay elements d 1 and d 1 +dn, respectively.
  • Buffers B 1 -BN are optionally included in the circuit 70 to buffer the input signal Iin.
  • a differential output (Io+, Io ⁇ ) is accordingly produced.
  • FIG. 16 current source includes constant power dissipation. Also, the circuit provides matching capabilities, for example, for use in an Ethernet channel.
  • FIG. 17 depicts a schematic diagram of another embodiment according to the present invention which operates in Class B wherein one DAC is provided for each level of the multilevel input signal.
  • DACs 42 , 44 , . . . 46 may be provided with corresponding LPFs 43 , 45 , 4 m.
  • a circuit according to FIG. 13 supplies each DAC with a control current to provide a stair step output which defines the rise time.
  • each DAC since each DAC receives control current, and not input current, the transistors which supply each DAC may be smaller than those used in the FIG. 13 embodiment. Additionally, since the control signal determines the rise time of the output of each DAC, the LPFs merely produce a smoother output.
  • multilevel input signal D 0 , D 1 , . . . Dn is provided to the parallel DACs 42 , 44 , . . . 46 .
  • the number of DACs may be varied depending on the application.
  • This embodiment solves two problems. First, by providing the FIG. 17 circuit with a staircase waveform , for example, from FIG. 14 , an LPF 34 merely smoothes the staircase waveform rather than define rise time. Second, since the DACs are disposed in parallel, there will be no variations in rise time because each DAC has substantially the same current passing therethrough; that is there will be no bandwidth variation with resultant differences in rise time.
  • the DACs may also be controlled by any appropriate circuitry, such as a decoder disposed prior to the DACs which would, in effect, select which DACs are activated by proper application of the input signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

A current source is provided according to the present invention. The current source includes N current sources configured in a parallel arrangement, wherein N is at least two. Each of the N current sources includes a respective control input. The current source also includes M delay elements. An mth one of the M delay elements includes an input in communication with an m−1th one of the M delay elements. M is equal to N−1, and an output of the mth one of the M delay elements is arranged in communication with the control input of an m+1th one of the N current sources.

Description

BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates generally to signal processing and signal waveshaping. More particularly, the present invention relates to signal processing and signal waveshaping of digital-to-analog converters.
BACKGROUND AND RELATED ART
Digital-to-analog conversion involves the process of converting digital codes into a continuous range of analog signal levels (voltage or current), for example, as discussed in Chapter 31, “D/A and A/D Converters” of The Electrical Engineering Handbook, ed. Richard C. Dorf, CRC Press 1993, the contents of which are hereby incorporated by reference. A digital-to-analog converter (hereinafter a DAC) is generally an electronic circuit that receives an n-bit codeword from an interface and generates an analog voltage or current that is proportional to the codeword.
One example of a DAC is discussed in U.S. Pat. No. 5,663,728, entitled A Digital-To-Analog Converter (DAC) and Method that set Waveform Rise and Fall Times to Produce an Analog Waveform that Approximates a Piecewise Linear Waveform to Reduce Spectral Distortion, issued on Sep. 2, 1997, the contents of which are hereby incorporated by reference. The DAC of the U.S. Pat. No. 5,663,728 patent employs a waveform shaping circuit to control the rise and fall times of each component waveform so that the analog waveform rising and falling edges settle to within a desired error bound of a linear output ramp.
U.S. Pat. No. 5,936,450, entitled A Waveshaping Circuit Using Digitally Controlled Weighted Current Summing, issued on Aug. 10, 1999, the contents of which are hereby incorporated by reference, discloses a waveshaping circuit. The waveshaping circuit of the U.S. Pat. No. 5,936,450 patent includes a controller and a current summing circuit controlled by the controller. The current summing circuitry selectively sinks combinations of component currents in response to a sequence of control signal sets to generate an output current signal having a desired waveform.
Many DACs attempt to generate desired signal waveform in response to a digital signal. For the purposes of this discussion, a signal output may include the output of a DAC and/or the output of one or more signal components within a DAC. For example, a signal component may correspond to an individual bit of a codeword. One conventional method generates a signal output with a slew rate controlled current source, as shown in FIG. 1. The voltage V measured across a resistor R is shown in FIG. 2. The waveform V includes sharp transition areas (e.g., corners) 1, 2 and 3, which may introduce electromagnetic interference. Such interference may inhibit accurate signal processing.
Another circuit which generates an output signal employs a current mirror 10 having an RC filter, as illustrated in FIG. 3. A current source 1 drives the current mirror 10. Current mirror 10 includes a first transistor 11 and a second transistor 12. Transistors 11 and 12 are preferably CMOS transistors. The first transistor 11 includes gate-to-drain feedback, and is coupled to transistors 12 through the RC filter. The RC filter limits rise and fall times of the input signal I. However, the R and C components are typically process and/or temperature dependent. Such dependence causes variation in the output waveform as shown in FIG. 4. The dashed lines in FIG. 4 represent arbitrary output responses due to temperature and/or process variation. A stable output signal is difficult to obtain with such a circuit.
FIG. 5 depicts a D/A circuit employing a DAC32, a low pass filter 34, a voltage buffer 36, a transistor 38, and a resistor 39. Each level of a multilevel input signal is provided to DAC 32 for conversion to an analog signal. The LPF34 then determines the rise time of the output of the DAC 32, and the output is passed to voltage buffer 36. This construction presents two problems. First, the R and C values of LPF34 will vary with temperature and process variations, and the output signal will have a poor waveshape where the rise times are not constant. Second, since all input current is passed through the same DAC, and since bandwidth is a function of current level, each level of the multilevel signal will present a different rise time.
These signal processing problems are not adequately addressed in the art. Accordingly, there is a need for a current source to control an output signal which is independent of temperature and process considerations. There is also a need for a DAC to generate a signal having selectable transition areas (corners). There is a further need of a circuit to generate desirable waveshapes.
SUMMARY OF THE INVENTION
The present invention addresses these signal processing problems by providing a circuit to generate a desired output signal. The present invention also provides a DAC for converting a digital signal into an analog signal with a desirable waveshape.
According to a first aspect of the present invention, a current source includes N current sources configured in a parallel arrangement, wherein N is at least two. Each of the N current sources includes a respective control input. The current source includes M delay elements, with an mth one of the M delay elements including an input in communication with an m−1th one of the M delay elements. M is equal to N−1, and an output of the mth one of the M delay elements is arranged in communication with the control input of an m+1th one of the N current sources.
According to another aspect of the present invention, an apparatus includes N current sources configured in a parallel arrangement, wherein N is at least two. Each of the N current sources includes a respective control input and a respective biasing input. The apparatus also includes a biasing generator in communication with each of the biasing inputs of the N current sources, an apparatus input in communication with the control input of a first one of the N current sources, and M delay elements, with an mth one of the M delay elements including an input in communication with an m−1th one of the M delay elements. M is equal to N−1, and an output of the mth one of the M delay elements is arranged in communication with the control input of an m+1th one of the N current sources. The first one of the M delay elements is in communication with the apparatus input.
A method of supplying current is provided according to still another aspect of the present invention. The method includes the steps of: (i) arranging first through n current sources in a parallel arrangement, where n comprises the total number of current sources, and wherein the first current source supplies a first current and the second through n current source respectively supplies second through n currents; and (ii) delaying the second through n currents each with respect the first current.
These and other objects, features and advantages will be apparent from the following description of the preferred embodiments of the present invention.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will be more readily understood from a detailed description of the preferred embodiments taken in conjunction with the following figures.
FIG. 1 is a diagram of a conventional circuit, which includes a slew rate controlled current source.
FIG. 2 is a graphical depiction of a waveshape corresponding to an output of the FIG. 1 circuit.
FIG. 3 is a view of a conventional circuit including a current mirror having an RC filter.
FIG. 4 is a graphical depiction of a waveshape corresponding to an output of the FIG. 3 circuit.
FIG. 5 is a schematic block diagram of a D/A circuit.
FIG. 6 is a graphical depiction of a waveshape having smooth transition areas.
FIG. 7 is a circuit diagram of a current source according to the present invention.
FIG. 8 is a graphical depiction of current components of the current source illustrated in FIG. 6.
FIG. 9 is a graphical depiction of a resultant output waveshape from the current source illustrated in FIGS. 6 and 7.
FIG. 10 is a graphical depiction of a waveform template, and a waveshape that fits within the template.
FIG. 11 is a circuit diagram of a current source according to the present invention.
FIGS. 12a-12c are graphical depictions of waveshapes generated by the current source of FIG. 10.
FIG. 13 is a circuit diagram of a current source according to the present invention.
FIG. 14 is a circuit diagram of a current source having variable delay elements according to the present invention.
FIG. 15a is a graphical depiction of a waveform generated with uniform delay element.
FIG. 15b is a graphical depiction of a waveform generated with non-uniform delay element.
FIG. 16 is a circuit diagram of a current source including a plurality of differential transistor pairs according to the present invention.
FIG. 17 is a circuit diagram of an alternative embodiment according to the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention will be described with respect to circuits and methods for shaping waveforms, and in particular, to a digital-to-analog converter (DAC) employing such a waveshaping circuit. However, as will be appreciated by those skilled in the art, the present invention is not limited to applications involving DACs, but also may be applied to other applications, such as signal processing, systems to control signal rise/fall time, signal storage, communications, etc. Moreover, while the present invention is particularly suited to applications in the read channel of a hard disk drive, many other applications will suggest themselves to persons of skill in the electrical engineering arts. Furthermore, the present invention is particularly suitable for use with the structure described in U.S. patent application Ser. No. 09/737743, entitled “Active Replica Transformer Hybrid”, filed concurrently herewith, the contents of which are incorporated herein by reference.
FIG. 6 illustrates a desired signal output 20. The output waveform 20 includes smooth transition areas, which reduce noise such as electromagnetic interference. A preferred rise time (“Tr”) for a DAC is 3-5 nanoseconds (ns).
The present invention generates a signal to approximate the desired signal output 20 with a current source 30. As shown in FIG. 7, current source 30 includes a plurality of current sources. For example, current source 30 may include current sources I1, I2, I3 and I4. Current sources I1, I2, I3 and I4 each preferably generate a respective current In, where n is 1, 2, 3 or so forth. The signals In are preferably equal in magnitude and form, and may include a signal delay. In the FIG. 7 example, current sources In each generate a linear ramp. For example, consider a signal I1, which includes a linearly rising edge starting at time t0. Current I2 mirrors current I1, except that I2 includes a linearly rising edge starting at time t0+Δt. The variable Δt represents an amount of delay time. Current I3 mirrors currents I1 and I2, except that current I3 includes a linearly rising edge starting at time t0+2Δt. Similarly, current I4 mirrors currents I1, I2, and I3, except that its linearly rising edge starts at time t0+3Δt. The relative waveform components for currents I1, I2, I3 and I4 are shown in FIG. 8.
Currents I1, I2, I3 and I4 are summed (or mixed) to produce a resultant waveform I0 as shown in FIG. 9. Waveform I0 approximates the desired output signal shown in FIG. 6. Like the desired output signal of FIG. 6, waveform I0 has many desirable properties. For example, I0 has selectable transition areas (corners). The transition areas can be smooth, or sharp, by selectively adjusting the length of Δt. Also, waveform I0 accommodates arbitrary rise/fall times.
The waveform I0 can also be adjusted by varying Δt to fit within specified requirements. For example, with reference to FIG. 10, waveform I0 can be adjusted to fit within a template 40, for example, as provided by the IEEE standard waveform shape. In this example, I0 has been optimized to produce low electromagnetic interference and to fit within the IEEE template 40.
The delay variable Δt is preferably controlled using a delayed-lock loop or is controlled by reference to an external clock. As such, Δt can be precisely regulated. A waveform which is independent of temperature and/or process considerations can then be generated.
The generation of a linear ramp is explained with reference to FIGS. 11-13. A signal is produced from current source 50, which includes a plurality of current sources I1 through In. Each of the plurality of current sources generates a replica signal I. In this example, input signal I is preferably a square waveform. The signal I is delayed by Δt from each subsequent current source, after the initial current source I1. For example, I2 is delayed by Δt, and In is delayed by n−Δt. The currents are summed (or mixed) in a known manner to produce an output which approximates a linear ramp.
With reference to FIG. 12a, the signal components of the individual current sources are relatively illustrated. FIG. 12b illustrates the resultant waveshape I0, which includes a stair-step pattern. A linear ramp, as shown in FIG. 12c, is approximated as the length of the delay variable Δt is decreased.
A circuit diagram of the current source 50 is shown in FIG. 13. Current source 50 includes a plurality of transistor pairs 52-56, where pair 56 represents the nth transistor pair. With reference to FIG. 13, a current source 51 drives transistor pair 52. Transistor pair 52 includes a transistor 52a communicating with a transistor 52b. Transistor 52a is preferably configured with gate-to-drain feedback. The gate of transistor 52b is biased so as to operate in an “on” state. The gate/drain of transistor 52a communicates with the gates of transistors 53a, 54a, 55a and 56a. The drains of transistors 53a-56a each communicates with an output Io. The gates of transistors 53b-56b each communicates with an input waveform Iin (e.g., a square signal), some through delay elements. For example, the gate of transistor 54b communicates with waveform Iin through delay element d1. The gate of transistor 55b communicates with waveform Iin through delay element d2 and delay element d1. Similarly, the gate of transistor 56b communicates with waveform Iin through each of the delay elements d1 through dn. In the preferred embodiment, each of delay elements d1-dn delays the signal by Δ. Delay elements can be realized via known delay locked loops.
The operational aspects of FIG. 13 are now even further explained. Initially, waveform Iin is communicated to the gate of transistor 53b, which turns on the transistor pair 53. A signal I1, which is proportional to the waveform Iin, is output at Io. Waveform Iin is also communicated to delay element d1, which delays the waveform by Δ seconds. After Δ seconds, delay element d1 communicates the delayed waveform to the gate of 54b, which turns on the transistor pair 54. A signal I2, which is proportional to lin, is output at Io. The resultant waveform Io includes the sum (or mixture) of signals 11 and 12. The input waveform Iin is respectively delayed before communicating with the gates of transistors 55b and 56b. Transistor pairs 55 and 56 are activated (e.g., turned on) and respectively supply current 13 and In, which are added to the resultant waveform I. The current source 50, as shown in FIG. 11, is therefore realized.
There are many advantages of the configurations shown in FIGS. 11 and 13. For example, individual current sources (e.g., In) can be turned on/off on demand, particularly since Vgs is large and constant. Also, the current source 50 will generally consume less power than the current mirror shown in FIG. 3, particularly since a current mirror typically employs a DC bias. An additional advantage is that with a small Iin, the VGS voltage is also small (e.g., close to the threshold voltage VT). In such a case, VGS-VT-VDS equals a small number of current sources with negative VDS.
A further current source 60 is shown in FIG. 14. The current source 60 is configured in the same manner as the current source 50 shown in FIG. 13, except that the delay elements may include variable delays. The same components with respect to FIG. 13 are labeled with their same reference numerals in FIG. 13. In the FIG. 14 embodiment, delay elements Δ are non-uniform throughout the circuit. For example, Δ may involve a longer delay than Δn−1, and so forth. Non-uniform delays may be employed to generate a smooth waveform. Multiple delay-locked-loops are preferably used to achieve different delay times.
To illustrate, an output waveform processed with uniform delay elements is shown in FIG. 15a. Here a stair step waveform is produced, which may approximate a linear ramp, particularly as the variable Δ is decreased in length (e.g., time). In contrast, the amount of delay is varied with respect to individual delay elements as shown in FIG. 15b. The approximated waveshape of FIG. 15b is smooth (e.g., includes smooth transition areas) in comparison to the approximated linear waveshape of FIG. 15b. Seven steps (or corresponding current sources) are employed in a preferred embodiment for a Gigabit channel. Of course, the number of levels may be varied according to need or design without deviating from the scope of the present invention.
A further embodiment of a current source is illustrated in FIG. 16. The illustrated current source 70 includes a plurality of differential transistor pairs 72-74, where 74 represents the nth differential transistor pair. A bias current IB is supplied to the gate of transistors 72c, 73c and 74c. An input waveform Iin is communicated to the gates of 72a, 72b, 73a, 73b, 74a and 74b. In the case of transistor pair 73 and 74, the input waveform Iin is delayed through delay elements d1 and d1+dn, respectively. Buffers B1-BN are optionally included in the circuit 70 to buffer the input signal Iin. A differential output (Io+, Io−) is accordingly produced.
The advantages of the FIG. 16 current source include constant power dissipation. Also, the circuit provides matching capabilities, for example, for use in an Ethernet channel.
One drawback of the differential amplifier in FIG. 16 is that the differential amplifier is a Class A circuit which consumes unnecessary power even when no output is being transmitted. Moreover, a significant number of transistors is required to provide an adequately smoothed output current, thus requiring a large chip area. FIG. 17 depicts a schematic diagram of another embodiment according to the present invention which operates in Class B wherein one DAC is provided for each level of the multilevel input signal. DACs 42, 44, . . . 46 may be provided with corresponding LPFs 43, 45, 4m. Preferably, a circuit according to FIG. 13 supplies each DAC with a control current to provide a stair step output which defines the rise time. In such an embodiment, since each DAC receives control current, and not input current, the transistors which supply each DAC may be smaller than those used in the FIG. 13 embodiment. Additionally, since the control signal determines the rise time of the output of each DAC, the LPFs merely produce a smoother output.
In FIG. 17, multilevel input signal D0, D1, . . . Dn is provided to the parallel DACs 42, 44, . . . 46. The number of DACs may be varied depending on the application. This embodiment solves two problems. First, by providing the FIG. 17 circuit with a staircase waveform , for example, from FIG. 14, an LPF34 merely smoothes the staircase waveform rather than define rise time. Second, since the DACs are disposed in parallel, there will be no variations in rise time because each DAC has substantially the same current passing therethrough; that is there will be no bandwidth variation with resultant differences in rise time. The DACs may also be controlled by any appropriate circuitry, such as a decoder disposed prior to the DACs which would, in effect, select which DACs are activated by proper application of the input signals.
Thus, what has been described are circuits and methods to effectively shape a waveform. Furthermore, digital-to-analog conversion circuits employing such waveshaping circuits, which enhance signal conversion, have been described.
The individual components shown in outline or designated by blocks in the attached drawings are all well-known in the arts, and their specific construction and operation are not critical to the operation or best mode for carrying out the invention.
While the present invention has been described with respect to what is presently considered to be the preferred embodiments, it will be understood that the invention is not limited to the disclosed embodiments. To the contrary, the invention covers various modifications and equivalent arrangements included within the spirit and scope of the appended claims. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions. For example, the input signals for FIGS. 7, 11, , 13, 14 and 16 may be varied to produce different output waveforms. Also, the linear ramp produced by the current source of FIGS. 11 and 13, may be even further processed by the current source of FIG. 7, to produce smooth transition areas. Such modifications are within the scope of the present invention. Also, whereas the illustrated transistors are preferably CMOS transistor, n-type or p-type transistors may also be employed with the present invention.

Claims (73)

1. A current source comprising:
N current sources configured in a parallel arrangement, wherein N is at least two, and wherein each of the N current sources includes a respective control input; and
M delay elements, an mth one of the M delay elements including an input in communication with an m−1th one of the M delay elements, wherein M is equal to N−1, and wherein an output of the mth one of the M delay elements is arranged in communication with the control input of an m+1th one of the N current sources,
wherein the M delay elements comprise at least one delay lock loop.
2. A current source according to claim 1, wherein the mth one of the M delay elements comprises a proportional delay with respect to the m−1th one of the M delay elements.
3. A current source according to claim 1, wherein the M delay elements are controlled with reference to at least one external signal.
4. A current source according to claim 1, wherein a sum of the N current sources provides a linear ramp waveform.
5. A current source according to claim 1, wherein the N current sources each provide a square waveform.
6. A current source according to claim 1, wherein current provided by said current source comprises smooth transition areas.
7. A current source according to claim 1, wherein the mth one of the M delaying means comprises a proportional delay with respect to the m−1th one of the M delaying means.
8. A current source comprising:
N means for providing current configured in a parallel arrangement, wherein N is at least two, and wherein each of the N current providing means includes a respective means for inputting; and
M means for delaying, an mth one of the M delaying means including means for inputting in communication with an
m−1th one of the M delaying means, wherein M is equal to N−1, and wherein means for outputting of the mth one of the M delaying means is arranged in communication with the inputting means of an m+1th one of the N current providing means,
wherein the M delaying means comprise at least one delay lock loop.
9. A current source according to claim 8, wherein the M delaying means are controlled with reference to at least one external signal.
10. A current source according to claim 8, wherein a sum of the N current providing means provides a linear ramp waveform.
11. A current source according to claim 8, wherein the N current providing means each provide a square waveform.
12. A current source according to claim 8, wherein current provided by said current source comprises smooth transition areas.
13. An apparatus comprising:
N current sources configured in a parallel arrangement, wherein N is at least two, and wherein each of the N current sources includes a respective control input and a respective biasing input; and
a biasing generator in communication with each of said biasing inputs of the N current sources;
an apparatus input in communication with the control input of a first one of the N current sources; and
M delay elements, an mth one of the M delay elements including an input in communication with an m−1th one of the M delay elements, wherein M is equal to N−1, and wherein an output of the mth one of the M delay elements is arranged in communication with the control input of an m+1th one of the N current sources, and wherein the first one of the M delay elements is in communication with the apparatus input,
wherein the M delay elements comprise at least one delay lock loop.
14. An apparatus according to claim 13, wherein the mth one of the M delay elements comprises a proportional delay with respect to the m−1th one of the M delay elements.
15. An apparatus according to claim 13, wherein the apparatus input is in delayed communication, with respect to a first one of the N current sources, with a second one through the m+1 one of the N current sources.
16. An apparatus according to claim 13, wherein the M delay elements are controlled with at least one external signal.
17. An apparatus according to claim 13, wherein the M delay elements comprise a uniform delay with respect to one another.
18. An apparatus according to claim 13, An apparatus comprising:
N current sources configured in a parallel arrangement, wherein N is at least two, and wherein each of the N current sources includes a respective control input and a respective biasing input; and
a biasing generator in communication with each of said biasing inputs of the N current sources;
an apparatus input in communication with the control input of a first one of the N current sources; and
M delay elements, an mth one of the M delay elements including an input in communication with an m−1th one of the M delay elements, wherein M is equal to N−1, and wherein an output of the mth one of the M delay elements is arranged in communication with the control input of an m+1th one of the N current sources, and wherein the first one of the M delay elements is in communication with the apparatus input,
wherein each of the M delay elements comprise at least one delay element comprising provides a non-uniform different delay than others of said M delay elements.
19. An apparatus according to claim 13, wherein the N current sources each comprises a transistor pair including at least a first transistor in communication with a second transistor.
20. An apparatus according to claim 13, wherein the N current sources each comprises a differential transistor pair including at least a first transistor in communication with a second transistor, and wherein said apparatus further comprises an output to provide a differential current.
21. An apparatus according to claim 13, wherein the apparatus input communicates with a square waveform.
22. An apparatus comprising:
N means for providing current configured in a parallel arrangement, wherein N is at least two, and wherein each of the N current providing means includes respective means for inputting control signals and respective means for inputting biasing signals;
means for biasing in communication with each of said biasing inputting means of the N current providing means;
apparatus means for inputting signals in communication with the means for inputting control signals of a first one of the N current providing means; and
M means for delaying, an mth one of the M delaying means including an input in communication with an m−1th one of the M delaying means, wherein M is equal to N−1, and wherein an output of the mth one of the M delaying means is arranged in communication with the control input of an m+1th one of the N current providing means, and wherein a first one of the M delaying means is in communication with the apparatus means for inputting signals,
wherein the M delaying means comprises at least one delay lock loop.
23. An apparatus according to claim 22, wherein the mth one of the M delaying means comprises a proportional delay with respect to the m−1th one of the M delaying means.
24. An apparatus according to claim 22, wherein the apparatus means for inputting signals is in delayed communication, with respect to the first one of the N current providing means, with a second one through the m+1 one of the N current providing means.
25. An apparatus according to claim 22, wherein the M delaying means are controlled with at least one external signal.
26. An apparatus according to claim 22, wherein the M delaying means comprise a uniform delay with respect to one another.
27. An apparatus according to claim 22, An apparatus comprising:
N means for providing current configured in a parallel arrangement, wherein N is at least two, and wherein each of the N current providing means includes a first transistor with respective means for inputting control signals and a second transistor with respective means for inputting biasing signals;
means for biasing in communication with each of said biasing inputting means of the N current providing means;
apparatus means for inputting signals in communication with the means for inputting control signals of a first one of the N current providing means; and
M means for delaying, an mth one of the M delaying means including an input in communication with an m−1th one of the M delaying means, wherein M is equal to N−1, and wherein an output of the mth one of the M delaying means is arranged in communication with the control input of an m+1th one of the N current providing means, and wherein a first one of the M delaying means is in communication with the apparatus means for inputting signals,
wherein each of the M delaying means comprise at least one delay means comprising a non-uniform delay provides a different delay than others of said M delay elements.
28. An apparatus according to claim 22, wherein the N current providing means each comprises a transistor pair including at least a first transistor in communication with a second transistor.
29. An apparatus according to claim 22, wherein the N current providing means each comprises a differential transistor pair including at least a first transistor in communication with a second transistor, and wherein said apparatus further comprises an output to provide a differential current.
30. An apparatus according to claim 22, wherein the apparatus means for inputting signals communicates with a square waveform.
31. An electrical circuit comprising:
N transistor pairs configured in a parallel arrangement, where N comprises the total number of transistor pairs, wherein each of the transistor pairs comprises a first transistor in communication with a second transistor;
a biasing transistor in communication with each of the first transistors of the N transistor pairs;
a circuit input in communication with the second transistor of a first one of the N transistor pairs;
an output in communication with each of the first transistors of the N transistor pairs; and
M delay elements, an mth one of the M delay elements including an input in communication with an m−1th one of the M delay elements, wherein M is equal to N−1, and wherein an output of the mth one of the M delay elements is arranged in communication with an m+1th one of the N transistor pairs, and wherein a first one of the M delay elements is in communication with the circuit input,
wherein the M delay elements comprise at least one delay lock loop.
32. An electrical circuit according to claim 31, wherein each of the M delay elements provides a uniform delay.
33. An electrical circuit according to claim 31, wherein at least one of the M delay elements comprises a non-uniform delay with respect to the first one of the M delay elements.
34. An electrical circuit according to claim 31, wherein the M delay elements are controlled with at least one external signal.
35. An electrical circuit according to claim 31, wherein the circuit input communicates with a square waveform.
36. An electrical circuit according to claim 31, wherein the electrical circuit provides a current comprising smooth transition areas.
37. An electrical circuit comprising:
N means for providing current configured in a parallel arrangement, where N comprises the total number of current providing means, wherein each of the current providing means comprises first means for supplying current in communication with second means for supplying current;
means for biasing in communication with each of the first means for supplying current of the N current providing means;
circuit means for inputting signals in communication with the second means for supplying current of a first one of the N current providing means;
means for outputting signals in communication with each of the first means for supplying current of the N current providing means; and
M means for delaying, an mth one of the M delaying means including means for inputting in communication with an
m−1th one of the M delaying means, wherein M is equal to N−1, and wherein outputting means of the mth one of the M delaying means is arranged in communication with an m+1th one of the N current providing means, and wherein a first one of the M delaying means is in communication with the circuit inputting means,
wherein the M delaying means comprise at least one delay lock loop.
38. An electrical circuit according to claim 37, wherein each of the M delaying means provides a uniform delay.
39. An electrical circuit according to claim 37, wherein at least one of the M delaying means comprises a non-uniform delay with respect to the first one of the M delaying means.
40. An electrical circuit according to claim 37, wherein the M delaying means are controlled with at least one external signal.
41. An electrical circuit according to claim 37, wherein the circuit inputting means communicates with a square waveform.
42. An electrical circuit according to claim 37, wherein the electrical circuit provides a current comprising smooth transition areas.
43. A method comprising the steps of:
providing N transistor pairs configured in a parallel arrangement, where N comprises the total number of transistor pairs, wherein each of the transistor pairs comprises a first transistor in communication with a second transistor;
biasing each of the first transistors of the N transistor pairs;
inputting a signal to the second transistor of a first one of the N transistor pairs;
outputting signals from each of the first transistors of the N transistor pairs; and
providing M delay elements, an mth one of the M delay elements including an input in communication with an m−1th one of the M delay elements, wherein M is equal to N−1, and arranging an output of the mth one of the M delay elements in communication with an m+1th one of the N transistor pairs, and wherein a first one of the M delay elements is in communication with the input signal,
wherein the M delay elements comprise at least one delay lock loop.
44. A method according to claim 43, wherein each of the M delay elements provides a uniform delay.
45. A method according to claim 43, wherein at least one of the M delay elements comprises a non-uniform delay with respect to the first one of the M delay elements.
46. A method according to claim 43, further comprising the step of controlling the M delay elements with at least one external signal.
47. A method according to claim 43, wherein the input signal comprises a square waveform.
48. A method according to claim 43, wherein the electrical circuit provides a current comprising smooth transition areas.
49. Digital-to-analog conversion apparatus, comprising:
structure providing a multilevel digital control signal so that each level has a substantially similar bandwidth;
a plurality of parallel digital-to-analog converters, each receiving a level of the provided multilevel digital control signal, each digital-to-analog converter converting the received level of the digital control signal into an analog signal; and
structure combining outputs of said plurality of parallel digital-to-analog converters,
further comprising a plurality of low pass filter respectively coupled to outputs of said plurality of parallel digital-to-analog converters.
50. Apparatus according to claim 49, further comprising a plurality of transistors supplying the multilevel digital control signal to said structure providing.
51. Apparatus according to claim 49, further comprising a resistor ladder supplying the multilevel control signal to said structure providing.
52. Apparatus according to claim 49, further comprising a voltage buffer connected to said structure combining.
53. Apparatus for converting a multilevel digital control signal into an analog signal, comprising:
means for providing the multilevel digital control signal where each level has a substantially similar bandwidth;
a plurality of digital-to-analog conversion means, coupled to said means for providing such that each digital-to-analog conversion means receives a different level of the multilevel digital control signal, each of said plurality of digital-to-analog conversion means converting the received level into an analog signal;
means for combining the converted analog signals from said plurality of digital-to-analog conversion means, to form an analog output signal; and
a plurality of low pass filter means respectively coupled to outputs of said plurality of digital-to-analog conversion means.
54. Apparatus according to claim 53, wherein said means for providing comprises a transistor array.
55. Apparatus according to claim 53, wherein said means for providing comprises a resistor ladder.
56. A direct drive programmable high speed power digital-to-analog converter comprising:
a first digital to analog converter responsive to a first control signal;
a second digital to analog converter response to a second control signal;
a voltage buffer responsive to said first and second digital to analog converters to provide an analog output;
a decoder to provide the first control signal to said first digital to analog converter and the second control signal to the second analog to digital converter,
wherein the first digital to analog converter is activated in response to the first control signal,
wherein the second digital to analog converter is activated in response to the second control signal,
wherein said first and second control signals determine a slew rate of the analog output.
57. A converter of claim 56, wherein to said first and second digital to analog converters provide substantially the same output level.
58. A converter of claim 56, further comprising first and second control signal generators to generate the first and second control signals, respectively.
59. A converter of claim 58, wherein the first and second control signals have a stair step shape.
60. A converter of claim 58, wherein said first and second control signal generators each comprise:
N current sources configured in a parallel arrangement, wherein N is at least two, and wherein each of the N current sources includes a respective control input; and M delay elements, an mth one of the M delay elements including an input in communication with an m−1th one of the M delay elements, wherein M is equal to N−1, and wherein an output of the mth one of the M delay elements is arranged in communication with the control input of an m+1th one of the N current sources.
61. A direct drive programmable high speed power digital-to-analog converter comprising:
a first digital to analog converter responsive to a first control signal;
a second digital to analog converter response to a second control signal;
a voltage buffer responsive to said first and second digital to analog converters to provide an analog output;
a decoder to select any combination of said first and second digital to analog converters,
wherein said first and second control signals determine a slew rate of the analog output,
further comprising first and second low pass filters, wherein said first low pass filter is responsive to said first digital to analog converter and said voltage buffer is responsive to said first low pass filter, and wherein said second low pass filter is responsive to said second digital to analog converter and said voltage buffer is responsive to said second low pass filter.
62. A direct drive programmable high speed power digital-to-analog converter comprising:
first digital to analog converter means responsive to a first control signal for generating a first signal having a first output level;
second digital to analog converter means responsive to a second control signal for generating a second signal having a second output level;
a voltage buffer responsive to said first and second signals for providing an analog output;
decoding means for providing the first control signal to said first digital to analog converter means and the second control signal to the second analog to digital converter means,
wherein the first digital to analog converter means is activated in response to the first control signal,
wherein the second digital to analog converter means is activated in response to the second control signal,
wherein said first and second control signals determine a slew rate of the analog output.
63. A converter of claim 62, wherein the first and second output levels are substantially equal.
64. A converter of claim 62, further comprising first and second control signal generator means for generating the first and second control signals, respectively.
65. A converter of claim 64, wherein the first and second control signals have a stair step shape.
66. A converter of claim 64, wherein said first and second control signal generator means each comprise:
N current sources means each for generating a current and configured in a parallel arrangement, wherein N is at least two, and wherein each of the N current sources includes a respective control input; and
M delay means, an mth one of the M delay means including an input in communication with an m−1th one of the M delay means, wherein M is equal to N−1, and wherein an output of the mth one of the M delay means is arranged in communication with the control input of an m+1th one of the N current sources.
67. A direct drive programmable high speed power digital-to-analog converter comprising:
first digital to analog converter means responsive to a first control signal for generating a first signal having a first output level;
second digital to analog converter means responsive to a second control signal for generating a second signal having a second output level;
a voltage buffer responsive to said first and second signals for providing an analog output;
decoding means for selecting any combination of said first and second digital to analog converter means,
wherein said first and second control signals determine a slew rate of the analog output,
further comprising first and second low pass filter means for low pass filtering said first and second digital to analog converter means, and wherein said voltage buffer is responsive to said first and second low pass filter means.
68. A method for converting a digital signal to an analog signal comprising the steps of:
(a) converting a digital signal to a first analog signal in response to a first control signal, the first analog signal having a first output level;
(b) converting a digital signal to a second analog signal in response to a second control signal, the second analog signal having a second output level;
(c) summing the first and second analog signals for providing an analog output;
(e) decoding an input to generate the first and second control signals;
(e)(f) activating step (a) in response to the first control signal; and
(f)(g) activating step (b) in response to the second control signal;
(h) filtering the analog output to provide a filtered output; and
(i) voltage buffering the filtered output,
wherein said first and second control signals determine a slew rate of the analog output.
69. A method of claim 68, further comprising the step of
(e)(i) low pass filtering the first and second analog signals, wherein step (c) is responsive step (e)(i).
70. The method of claim 68, wherein the first and second output levels are substantially equal.
71. A method of claim 68, further comprising the step of (f) (i) generating the first and second control signals.
72. A method of claim 71, wherein the first and second control signals have a stair step shape.
73. A converter method of claim 71, wherein step (f) (i) comprises the steps of:
supplying N sources of current, wherein N is at least two;
controlling the supply of current from ach from each of the N sources of current;
delaying current from M of the N sources of current, where M is equal to N−1; and
summing the current supplied from the N source of current.
US11/220,304 2000-12-18 2005-09-06 Direct drive programmable high speed power digital-to-analog converter Expired - Lifetime USRE40971E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/220,304 USRE40971E1 (en) 2000-12-18 2005-09-06 Direct drive programmable high speed power digital-to-analog converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/737,474 US6462688B1 (en) 2000-12-18 2000-12-18 Direct drive programmable high speed power digital-to-analog converter
US11/220,304 USRE40971E1 (en) 2000-12-18 2005-09-06 Direct drive programmable high speed power digital-to-analog converter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/737,474 Reissue US6462688B1 (en) 2000-05-23 2000-12-18 Direct drive programmable high speed power digital-to-analog converter

Publications (1)

Publication Number Publication Date
USRE40971E1 true USRE40971E1 (en) 2009-11-17

Family

ID=24964069

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/737,474 Ceased US6462688B1 (en) 2000-05-23 2000-12-18 Direct drive programmable high speed power digital-to-analog converter
US11/220,304 Expired - Lifetime USRE40971E1 (en) 2000-12-18 2005-09-06 Direct drive programmable high speed power digital-to-analog converter

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/737,474 Ceased US6462688B1 (en) 2000-05-23 2000-12-18 Direct drive programmable high speed power digital-to-analog converter

Country Status (1)

Country Link
US (2) US6462688B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100052758A1 (en) * 2008-08-26 2010-03-04 Ipgoal Microelectronics (Sichuan) Co., Ltd. Stage by stage delay current-summing slew rate controller
US20120218135A1 (en) * 2011-02-25 2012-08-30 Shinichi Amemiya Transmission circuit, ultrasonic probe and ultrasonic image display apparatus

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7433665B1 (en) 2000-07-31 2008-10-07 Marvell International Ltd. Apparatus and method for converting single-ended signals to a differential signal, and transceiver employing same
US6775529B1 (en) 2000-07-31 2004-08-10 Marvell International Ltd. Active resistive summer for a transformer hybrid
US7095348B1 (en) 2000-05-23 2006-08-22 Marvell International Ltd. Communication driver
US7113121B1 (en) 2000-05-23 2006-09-26 Marvell International Ltd. Communication driver
US6462688B1 (en) 2000-12-18 2002-10-08 Marvell International, Ltd. Direct drive programmable high speed power digital-to-analog converter
US7312739B1 (en) 2000-05-23 2007-12-25 Marvell International Ltd. Communication driver
US7194037B1 (en) 2000-05-23 2007-03-20 Marvell International Ltd. Active replica transformer hybrid
US7280060B1 (en) 2000-05-23 2007-10-09 Marvell International Ltd. Communication driver
USRE41831E1 (en) 2000-05-23 2010-10-19 Marvell International Ltd. Class B driver
US7606547B1 (en) 2000-07-31 2009-10-20 Marvell International Ltd. Active resistance summer for a transformer hybrid
US7049882B2 (en) * 2004-02-03 2006-05-23 Broadcom Corporation Transmitter IF section and method enabling IF output signal amplitude that is less sensitive to process, voltage, and temperature
JP4167201B2 (en) 2004-04-21 2008-10-15 株式会社日立製作所 Frequency output circuit
US7298173B1 (en) 2004-10-26 2007-11-20 Marvell International Ltd. Slew rate control circuit for small computer system interface (SCSI) differential driver
US7136003B1 (en) * 2004-11-02 2006-11-14 Skyworks Solutions, Inc. Clockless pulse shaping circuit for controlling a power amplified output
TWI318522B (en) * 2005-03-25 2009-12-11 Realtek Semiconductor Corp Network transmission unit
US7872542B2 (en) * 2005-08-01 2011-01-18 Marvell World Trade Ltd. Variable capacitance with delay lock loop
US7312662B1 (en) 2005-08-09 2007-12-25 Marvell International Ltd. Cascode gain boosting system and method for a transmitter
US7729300B1 (en) * 2005-08-19 2010-06-01 National Semiconductor Corporation Class-B transmitter and replica transmitter for gigabit ethernet applications
US7577892B1 (en) 2005-08-25 2009-08-18 Marvell International Ltd High speed iterative decoder
WO2009047673A2 (en) * 2007-10-08 2009-04-16 St-Nxp Wireless (Holding) Ag Fir digital to analog converter
US8717080B2 (en) * 2008-10-07 2014-05-06 Adtran, Inc. Digital delay line driver
US9484946B2 (en) 2014-08-25 2016-11-01 Nxp B.V. Digital-to-analog converter (DAC), method for operating a DAC and transceiver circuit
US12388455B2 (en) * 2023-06-21 2025-08-12 Apple Inc. Piecewise linear digital-to-analog converter circuit

Citations (303)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3297951A (en) 1963-12-20 1967-01-10 Ibm Transversal filter having a tapped and an untapped delay line of equal delay, concatenated to effectively provide sub-divided delays along both lines
US3500215A (en) 1965-11-16 1970-03-10 Philips Corp Filter for bivalent pulse signals
US3521170A (en) 1966-03-05 1970-07-21 Philips Corp Transversal digital filters having analog to digital converter for analog signals
US3543009A (en) 1966-05-13 1970-11-24 Research Corp Binary transversal filter systems
US3793588A (en) * 1967-05-13 1974-02-19 Philips Corp Device for the transmission of synchronous pulse signals
US3793589A (en) 1972-06-28 1974-02-19 Gen Electric Data communication transmitter utilizing vector waveform generation
US3973089A (en) 1973-10-29 1976-08-03 General Electric Company Adaptive hybrid circuit
US4071842A (en) 1975-08-28 1978-01-31 Bell Telephone Laboratories, Incorporated Apparatus for analog to digital conversion
US4112253A (en) 1976-07-22 1978-09-05 Siemens Aktiengesellschaft Device for the transmission of push-pull signals across a two-wire line in full duplex operation
US4131767A (en) 1976-09-07 1978-12-26 Bell Telephone Laboratories, Incorporated Echo cancellation in two-wire, two-way data transmission systems
US4152541A (en) 1978-02-03 1979-05-01 Burroughs Corporation Full duplex driver/receiver
USRE30111E (en) 1974-10-15 1979-10-09 Motorola, Inc. Digital single signal line full duplex method and apparatus
US4309673A (en) 1980-03-10 1982-01-05 Control Data Corporation Delay lock loop modulator and demodulator
US4321753A (en) 1978-09-01 1982-03-30 Illinois Tool Works Inc. Electronic gear checker
JPS5748827Y2 (en) 1977-06-06 1982-10-26
US4362909A (en) 1979-05-14 1982-12-07 U.S. Philips Corporation Echo canceler with high-pass filter
US4393494A (en) 1979-10-04 1983-07-12 Cselt Centro Studi E Laboratori Telecomunicazioni S.P.A. Transceiver for full-duplex transmission of digital signals over a common line
US4393370A (en) 1980-04-30 1983-07-12 Nippon Electric Co., Ltd. Digital to analog converter using matrix of current sources
JPS58111415U (en) 1982-01-26 1983-07-29 新田 博 Nut with long groove
US4408190A (en) 1980-06-03 1983-10-04 Tokyo Shibaura Denki Kabushiki Kaisha Resistorless digital-to-analog converter using cascaded current mirror circuits
US4464545A (en) 1981-07-13 1984-08-07 Bell Telephone Laboratories, Incorporated Echo canceller
US4503421A (en) 1981-05-27 1985-03-05 Nippon Electric Co., Ltd. Digital to analog converter
US4527126A (en) 1983-08-26 1985-07-02 Micro Component Technology, Inc. AC parametric circuit having adjustable delay lock loop
US4535206A (en) 1980-04-09 1985-08-13 At&T Bell Laboratories Echo cancellation in two-wire full-duplex data transmission with estimation of far-end data components
US4591832A (en) 1984-07-18 1986-05-27 Rca Corporation Digital-to-analog conversion system as for use in a digital TV receiver
US4605826A (en) 1982-06-23 1986-08-12 Nec Corporation Echo canceler with cascaded filter structure
US4621356A (en) 1983-07-18 1986-11-04 Scipione Fred J Communications interface for duplex transmission and reception of data and other signals over telephone lines
US4621172A (en) 1982-12-22 1986-11-04 Nec Corporation Fast convergence method and system for echo canceller
US4626803A (en) 1985-12-30 1986-12-02 General Electric Company Apparatus for providing a carrier signal with two digital data streams I-Q modulated thereon
JPS62159925A (en) 1986-01-09 1987-07-15 Nec Corp Echo eliminating device
US4715064A (en) 1984-06-22 1987-12-22 Ncr Corporation Adaptive hybrid circuit
US4727566A (en) 1984-02-01 1988-02-23 Telefonaktiebolaget Lm Ericsson Method to test the function of an adaptive echo canceller
US4746903A (en) 1985-12-30 1988-05-24 International Business Machines Corporation Parallel algorithmic digital to analog converter
JPS63300700A (en) 1987-05-30 1988-12-07 Akai Electric Co Ltd Time difference correcting device for audio system
US4817081A (en) 1986-03-28 1989-03-28 At&T And Philips Telecommunications B.V. Adaptive filter for producing an echo cancellation signal in a transceiver system for duplex digital communication through one single pair of conductors
US4816830A (en) 1987-09-14 1989-03-28 Cooper James C Waveform shaping apparatus and method
US4868571A (en) 1986-10-21 1989-09-19 Nec Corporation Digital to analog converter
US4878244A (en) 1985-09-16 1989-10-31 Northern Telecom Limited Electronic hybrid circuit
US4888762A (en) 1987-02-17 1989-12-19 Nec Corporation Echo canceller for bidirectional transmission on two-wire subscriber lines
US4894820A (en) 1987-03-24 1990-01-16 Oki Electric Industry Co., Ltd. Double-talk detection in an echo canceller
US4935919A (en) 1986-09-16 1990-06-19 Nec Corporation Full duplex modem having two echo cancellers for a near end echo and a far end echo
US4947171A (en) 1988-03-31 1990-08-07 Deutsche Itt Industries Gmbh Circuit arrangement for averaging signals during pulse-density D/A or A/D conversion
US4970715A (en) 1987-03-27 1990-11-13 Universal Data Systems, Inc. Modem with improved remote echo location and cancellation
US4972360A (en) 1988-08-30 1990-11-20 International Business Machines Corp. Digital filter for a modem sigma-delta analog-to-digital converter
US4988960A (en) 1988-12-21 1991-01-29 Yamaha Corporation FM demodulation device and FM modulation device employing a CMOS signal delay device
US4993045A (en) 1988-10-31 1991-02-12 Racal Data Communications Inc. Modem diagnostic loop
US4999830A (en) 1989-09-25 1991-03-12 At&T Bell Laboratories Communication system analog-to-digital converter using echo information to improve resolution
US5018134A (en) 1987-11-18 1991-05-21 Hitachi, Ltd. Method for cancelling echo in a transmitter and an apparatus therefor
US5043730A (en) 1988-12-16 1991-08-27 Nakamichi Corporation Digital-analog conversion circuit with application of voltage biasing for distortion stabilization
JPH03273704A (en) 1990-03-22 1991-12-04 Mitsubishi Electric Corp Amplifier
US5084865A (en) 1989-02-23 1992-01-28 Nec Corporation Echo canceller having fir and iir filters for cancelling long tail echoes
US5119365A (en) 1990-12-14 1992-06-02 Ag Communication Systems Corporation Bi-directional buffer line amplifier
US5136260A (en) 1991-03-08 1992-08-04 Western Digital Corporation PLL clock synthesizer using current controlled ring oscillator
US5148427A (en) 1990-04-10 1992-09-15 Level One Communications, Inc. Non-linear echo canceller
US5153450A (en) 1991-07-16 1992-10-06 Samsung Semiconductor, Inc. Programmable output drive circuit
JPH04293306A (en) 1991-03-22 1992-10-16 Mitsubishi Electric Corp Amplifier
US5164725A (en) 1992-02-05 1992-11-17 Tritech Microelectronics International Pte Ltd. Digital to analog converter with current sources paired for canceling error sources
JPH04351109A (en) 1991-05-29 1992-12-04 Nec Corp Composite differential amplifier
US5175764A (en) 1990-10-18 1992-12-29 Ag Communication Systems Corporation Enhanced high voltage line interface circuit
US5185538A (en) 1990-06-13 1993-02-09 Mitsubishi Denki Kabushiki Kaisha Output circuit for semiconductor integrated circuits having controllable load drive capability and operating method thereof
JPH0564231A (en) 1991-09-05 1993-03-12 Matsushita Electric Ind Co Ltd Chroma sub-Nyquist sampling circuit
US5202528A (en) 1990-05-14 1993-04-13 Casio Computer Co., Ltd. Electronic musical instrument with a note detector capable of detecting a plurality of notes sounded simultaneously
US5204880A (en) 1991-04-23 1993-04-20 Level One Communications, Inc. Differential line driver employing predistortion
US5212659A (en) 1991-10-08 1993-05-18 Crystal Semiconductor Low precision finite impulse response filter for digital interpolation
US5222084A (en) 1990-06-25 1993-06-22 Nec Corporation Echo canceler having adaptive digital filter unit associated with delta-sigma modulation circuit
US5243346A (en) 1990-12-19 1993-09-07 Nec Corporation Digital-to-analog converting device using decoders and parallel-to-serial converters
US5243347A (en) 1992-09-28 1993-09-07 Motorola, Inc. Monotonic current/resistor digital-to-analog converter and method of operation
US5245654A (en) 1991-10-10 1993-09-14 Cermetek Microelectronics, Inc. Solid state isolation device using opto-isolators
US5245231A (en) 1991-12-30 1993-09-14 Dell Usa, L.P. Integrated delay line
US5248956A (en) 1991-04-05 1993-09-28 Center For Innovative Technology Electronically controllable resistor
US5253249A (en) 1989-06-29 1993-10-12 Digital Equipment Corporation Bidirectional transceiver for high speed data system
US5253272A (en) 1991-03-01 1993-10-12 Amp Incorporated Digital data transmission system with adaptive predistortion of transmitted pulses
US5254994A (en) 1991-03-06 1993-10-19 Kabushiki Kaisha Toshiba Current source cell use in current segment type D and A converter
US5267269A (en) 1991-09-04 1993-11-30 Level One Communications, Inc. System and method employing predetermined waveforms for transmit equalization
US5269313A (en) 1991-09-09 1993-12-14 Sherwood Medical Company Filter and method for filtering baseline wander
US5272453A (en) 1992-08-03 1993-12-21 Motorola Inc. Method and apparatus for switching between gain curves of a voltage controlled oscillator
US5280526A (en) 1992-05-26 1994-01-18 At&T Bell Laboratories Transformer-less hybrid circuit
US5282157A (en) 1990-09-13 1994-01-25 Telecom Analysis Systems, Inc. Input impedance derived from a transfer network
US5283582A (en) 1991-12-20 1994-02-01 Texas Instruments Incorporated Circuitry and method for current input analog to digital conversion
US5305379A (en) 1991-05-22 1994-04-19 Hitachi, Ltd. Semiconductor integrated device
US5307064A (en) 1991-09-09 1994-04-26 Tekuno Esu Kabushiki Kaisha Digital-to-analog converter capable of reducing load of low-pass filter
US5307405A (en) 1992-09-25 1994-04-26 Qualcomm Incorporated Network echo canceller
US5323157A (en) 1993-01-15 1994-06-21 Motorola, Inc. Sigma-delta digital-to-analog converter with reduced noise
US5325400A (en) 1992-06-04 1994-06-28 The Lan Guys, Inc. Method and apparatus for predistortion of signals in digital transmission systems
JPH06276182A (en) 1993-03-22 1994-09-30 Fujitsu Denso Ltd Full duplex communication control system
US5357145A (en) 1992-12-22 1994-10-18 National Semiconductor Corporation Integrated waveshaping circuit using weighted current summing
US5367540A (en) 1992-01-16 1994-11-22 Fujitsu Limited Transversal filter for use in a digital subscriber line transmission interface
US5365935A (en) 1991-09-10 1994-11-22 Ralin, Inc. Portable, multi-channel ECG data monitor/recorder
JPH0697831B2 (en) 1985-11-27 1994-11-30 神鋼電機株式会社 Skew structure linear pulse motor
US5375147A (en) 1991-08-21 1994-12-20 Fujitsu Limited Jitter compensating device
US5388092A (en) 1989-06-27 1995-02-07 Nec Corporation Echo canceller for two-wire full duplex digital data transmission
US5388123A (en) 1991-05-10 1995-02-07 Matsushita Electric Industrial Co., Ltd. Data receiving system
US5392042A (en) 1993-08-05 1995-02-21 Martin Marietta Corporation Sigma-delta analog-to-digital converter with filtration having controlled pole-zero locations, and apparatus therefor
US5399996A (en) 1993-08-16 1995-03-21 At&T Global Information Solutions Company Circuit and method for minimizing electromagnetic emissions
JPH07131260A (en) 1993-11-05 1995-05-19 Hitachi Ltd Semiconductor integrated circuit
US5440514A (en) 1994-03-08 1995-08-08 Motorola Inc. Write control for a memory using a delay locked loop
US5440515A (en) 1994-03-08 1995-08-08 Motorola Inc. Delay locked loop for detecting the phase difference of two signals having different frequencies
US5444739A (en) 1991-09-12 1995-08-22 Matsushita Electric Industrial Co., Ltd. Equalizer for data receiver apparatus
US5465272A (en) 1994-04-08 1995-11-07 Synoptics Communications, Inc. Data transmitter baseline wander correction circuit
US5471665A (en) 1994-10-18 1995-11-28 Motorola, Inc. Differential DC offset compensation circuit
US5479124A (en) 1993-08-20 1995-12-26 Nexgen Microsystems Slew rate controller for high speed bus
US5489873A (en) 1994-03-03 1996-02-06 Motorola, Inc. Active low-pass filter
US5507036A (en) 1994-09-30 1996-04-09 Rockwell International Apparatus with distortion cancelling feed forward signal
US5508656A (en) 1993-12-23 1996-04-16 Sgs-Thomson Microelectronics S.A. Amplifier with offset correction
US5517141A (en) 1993-11-05 1996-05-14 Motorola, Inc. Differential high speed track and hold amplifier
US5517435A (en) 1993-03-11 1996-05-14 Nec Corporation Method of identifying an unknown system with a band-splitting adaptive filter and a device thereof
US5521540A (en) 1992-03-24 1996-05-28 Bull, S.A. Method and apparatus for multi-range delay control
US5537113A (en) 1992-06-17 1996-07-16 Advantest Corp. A/D or D/A conversion using distribution of differential waveforms to interleaved converters
US5539773A (en) 1992-02-17 1996-07-23 Thomson Consumer Electronics S.A. Method and apparatus for ghost cancelling and/or equalizing
US5539403A (en) 1992-06-01 1996-07-23 Matsushita Electric Industrial Co, Ltd D/A conversion apparatus and A/D conversion apparatus
US5539405A (en) 1993-07-29 1996-07-23 Cirrus Logic, Inc. DAC achieving monotonicity with equal sources and shift array therefor
US5559476A (en) 1995-05-31 1996-09-24 Cirrus Logic, Inc. Voltage controlled oscillator including voltage controlled delay circuit with power supply noise isolation
US5568142A (en) 1994-10-20 1996-10-22 Massachusetts Institute Of Technology Hybrid filter bank analog/digital converter
US5568064A (en) 1995-01-23 1996-10-22 International Business Machines Corporation Bidirectional transmission line driver/receiver
US5572158A (en) 1994-02-15 1996-11-05 Rambus, Inc. Amplifier with active duty cycle correction
US5572159A (en) 1994-11-14 1996-11-05 Nexgen, Inc. Voltage-controlled delay element with programmable delay
US5577027A (en) 1995-04-18 1996-11-19 Intel Corporation Apparatus and method for effectively eliminating the echo signal of transmitting signal in a modem
US5579004A (en) 1994-11-02 1996-11-26 Advanced Micro Devices, Inc. Digital interpolation circuit for a digital-to-analog converter circuit
US5585802A (en) 1994-11-02 1996-12-17 Advanced Micro Devices, Inc. Multi-stage digital to analog conversion circuit and method
US5585795A (en) 1992-04-06 1996-12-17 Fujitsu Limited D/A converter including output buffer having a controllable offset voltage
US5587681A (en) 1993-10-29 1996-12-24 Plessey Semiconductors Limited DC restoration circuit
US5589788A (en) 1994-05-12 1996-12-31 Hewlett-Packard Company Timing adjustment circuit
US5596439A (en) 1995-08-01 1997-01-21 Viasat, Inc. Self-interference cancellation for two-party relayed communication
US5600321A (en) 1995-06-07 1997-02-04 Advanced Micro Devices Inc. High speed, low power CMOS D/A converter for wave synthesis in network
JPH0955770A (en) 1995-08-17 1997-02-25 Minsei Kagi Kofun Yugenkoshi Apparatus for transmitting pre-determined frequency response output to unshielded twisted pair medium, waveform shaping circuit therefor and method thereof
US5613233A (en) 1994-09-30 1997-03-18 Rockwell International Corp. Apparatus with distortion cancelling feedback signal
US5625357A (en) * 1995-02-16 1997-04-29 Advanced Micro Devices, Inc. Current steering semi-digital reconstruction filter
US5629652A (en) 1996-05-09 1997-05-13 Analog Devices Band-switchable, low-noise voltage controlled oscillator (VCO) for use with low-q resonator elements
US5648738A (en) 1994-11-01 1997-07-15 Cirrus Logic, Inc. Read channel having auto-zeroing and offset compensation, and power-down between servo fields
US5651029A (en) 1995-05-16 1997-07-22 Myson Technology, Inc. Apparatus for transmitting an output with predetermined frequency response to an unshielded twisted-pair media and waveform shaping circuit and method employed therein
US5659609A (en) 1994-09-05 1997-08-19 Fujitsu Limited Echo canceller and waveform-distortion compensation device
US5663728A (en) 1995-05-18 1997-09-02 Hughes Aircraft Company Digital-to-analog converted (DAC) and method that set waveform rise and fall times to produce an analog waveform that approximates a piecewise linear waveform to reduce spectral distortion
US5666354A (en) 1995-12-20 1997-09-09 International Business Machines Corporation CMOS bi-directional differential link
JPH09270707A (en) 1996-04-03 1997-10-14 Rohm Co Ltd Digital/analog converter and controller using the converter
US5684482A (en) 1996-03-06 1997-11-04 Ian A. Galton Spectral shaping of circuit errors in digital-to-analog converters
US5687330A (en) 1993-06-18 1997-11-11 Digital Equipment Corporation Semiconductor process, power supply and temperature compensated system bus integrated interface architecture with precision receiver
US5696796A (en) 1995-06-07 1997-12-09 Comsat Corporation Continuously variable if sampling method for digital data transmission
US5703541A (en) 1995-06-05 1997-12-30 Mitsubishi Denki Kabushiki Kaisha Ring oscillator with two inverters per unit inverter circuit
US5719515A (en) 1993-09-27 1998-02-17 Sgs-Thomson Microelectronics S.A. Digital delay line
US5726583A (en) 1996-07-19 1998-03-10 Kaplinsky; Cecil H. Programmable dynamic line-termination circuit
US5745564A (en) 1995-01-26 1998-04-28 Northern Telecom Limited Echo cancelling arrangement
JPH10126183A (en) 1996-10-21 1998-05-15 Oki Electric Ind Co Ltd Differential amplifier and limiter amplifier
US5757298A (en) 1996-02-29 1998-05-26 Hewlett-Packard Co. Method and apparatus for error compensation using a non-linear digital-to-analog converter
US5757219A (en) 1996-01-31 1998-05-26 Analogic Corporation Apparatus for and method of autozeroing the input of a charge-to-voltage converter
US5760726A (en) 1996-08-23 1998-06-02 Motorola, Inc. Digital-to-analog converter with dynamic matching and bit splitting
US5790060A (en) 1996-09-11 1998-08-04 Harris Corporation Digital-to-analog converter having enhanced current steering and associated method
US5796725A (en) 1994-08-31 1998-08-18 Nec Corporation Echo canceller capable of cancelling an echo signal at a high speed
US5798664A (en) 1995-04-07 1998-08-25 Nec Corporation Offset cancelling amplifier circuit having Miller integrator as offset detector
US5798661A (en) 1996-02-09 1998-08-25 Advanced Micro Devices, Inc. Method for continuous waveform synthesis
US5812597A (en) 1994-09-21 1998-09-22 Tut Systems, Inc. Circuit for preventing base line wander of digital signals in a network receiver
US5822426A (en) 1995-06-06 1998-10-13 International Business Machines Corporation Balanced hybrid circuit
US5821892A (en) 1996-11-20 1998-10-13 Texas Instruments Incorporated Digital to analog conversion system
US5825819A (en) 1996-04-23 1998-10-20 Motorola, Inc. Asymmetrical digital subscriber line (ADSL) line driver circuit
US5834860A (en) 1992-11-25 1998-11-10 Sgs-Thomson Microelectronics Ltd. Controlled impedance transistor switch circuit
US5838177A (en) 1997-01-06 1998-11-17 Micron Technology, Inc. Adjustable output driver circuit having parallel pull-up and pull-down elements
US5838186A (en) 1994-09-21 1998-11-17 Mitsubishi Denki Kabushiki Kaisha Signal output circuit with reduced noise in output signal
US5841809A (en) 1996-06-03 1998-11-24 Fujitsu Limimited Access line termination unit
US5841386A (en) 1996-01-18 1998-11-24 Texas Instruments Incorporated Simple high resolution monolithic DAC for the tuning of an external VCXO (voltage controlled quartz oscillator)
US5844439A (en) 1996-03-13 1998-12-01 Integrated Circuit Systems, Inc. DC restoration circuit for multi-level transmission signals
US5859552A (en) 1995-10-06 1999-01-12 Lsi Logic Corporation Programmable slew rate control circuit for output buffer
US5864587A (en) 1995-06-06 1999-01-26 Lsi Logic Corporation Differential signal receiver
US5880615A (en) 1996-12-10 1999-03-09 Intel Corporation Method and apparatus for detecting differential threshold levels while compensating for baseline wander
US5887059A (en) 1996-01-30 1999-03-23 Advanced Micro Devices, Inc. System and method for performing echo cancellation in a communications network employing a mixed mode LMS adaptive balance filter
US5892701A (en) * 1996-08-14 1999-04-06 Tamarack Microelectronics, Inc. Silicon filtering buffer apparatus and the method of operation thereof
US5894496A (en) 1996-09-16 1999-04-13 Ericsson Inc. Method and apparatus for detecting and compensating for undesired phase shift in a radio transceiver
US5898340A (en) 1996-11-20 1999-04-27 Chatterjee; Manjirnath A. High power efficiency audio amplifier with digital audio and volume inputs
US5930686A (en) 1993-05-05 1999-07-27 Marconi Electronic Systems Limited Integrated transceiver circuit packaged component
US5936450A (en) * 1997-03-21 1999-08-10 National Semiconductor Corporation Waveshaping circuit using digitally controlled weighted current summing
US5940442A (en) 1997-01-30 1999-08-17 National Semioonductor Corporation High speed data receiver
US5940498A (en) 1996-06-14 1999-08-17 Siemens Aktiengesellschaft Electronic voice circuit configuration
US5949362A (en) 1997-08-22 1999-09-07 Harris Corporation Digital-to-analog converter including current cell matrix with enhanced linearity and associated methods
WO1999046867A1 (en) 1998-03-09 1999-09-16 Broadcom Corporation Gigabit ethernet transceiver
US5963069A (en) 1995-10-16 1999-10-05 Altera Corporation System for distributing clocks using a delay lock loop in a programmable logic circuit
US5982317A (en) 1997-04-18 1999-11-09 Jesper Steensgaard-Madsen Oversampled digital-to-analog converter based on nonlinear separation and linear recombination
US5999044A (en) 1998-04-13 1999-12-07 Credence Systems Corporation Differential driver having multiple output voltage ranges
EP0800278B1 (en) 1996-04-04 1999-12-08 Mitel Semiconductor Limited An error correction circuit
US6005370A (en) 1998-01-26 1999-12-21 Physio-Control Manufacturing Corporation Automatic rate control for defibrillator capacitor charging
US6014048A (en) 1998-05-27 2000-01-11 Advanced Micro Devices, Inc. Clock generator with multiple feedback paths including a delay locked loop path
US6038266A (en) 1998-09-30 2000-03-14 Lucent Technologies, Inc. Mixed mode adaptive analog receive architecture for data communications
US6037812A (en) 1998-05-18 2000-03-14 National Semiconductor Corporation Delay locked loop (DLL) based clock synthesis
US6044489A (en) 1997-12-10 2000-03-28 National Semiconductor Corporation Data signal baseline error detector
US6043766A (en) 1997-12-10 2000-03-28 National Semiconductor Corporation Distributive encoder for encoding error signals which represent signal peak errors in data signals for identifying erroneous signal baseline, peak and equalization conditions
US6047346A (en) 1998-02-02 2000-04-04 Rambus Inc. System for adjusting slew rate on an output of a drive circuit by enabling a plurality of pre-drivers and a plurality of output drivers
US6046607A (en) 1994-11-21 2000-04-04 Yamaha Corporation Logic circuit controlled by a plurality of clock signals
US6049706A (en) 1998-10-21 2000-04-11 Parkervision, Inc. Integrated frequency translation and selectivity
US6052076A (en) 1998-10-14 2000-04-18 Western Digital Corporation Digital-to-analog converter having high resolution and high bandwidth
US6057716A (en) 1998-04-07 2000-05-02 Credence Systems Corporation Inhibitable continuously-terminated differential drive circuit for an integrated circuit tester
WO2000027079A1 (en) 1998-10-30 2000-05-11 Broadcom Corporation Internet gigabit ethernet transmitter architecture
WO2000028663A2 (en) 1998-11-09 2000-05-18 Broadcom Corporation Fir filter structure with low latency for gigabit ethernet applications
WO2000028668A1 (en) 1998-11-09 2000-05-18 Broadcom Corporation Forward error corrector
WO2000028691A2 (en) 1998-11-09 2000-05-18 Broadcom Corporation, Et Al. Multi-pair gigabit ethernet transceiver
US6067327A (en) 1997-09-18 2000-05-23 International Business Machines Corporation Data transmitter and method therefor
WO2000035094A1 (en) 1998-12-07 2000-06-15 Broadcom Corporation Low jitter high phase resolution pll-based timing recovery system
US6087968A (en) 1997-04-16 2000-07-11 U.S. Philips Corporation Analog to digital converter comprising an asynchronous sigma delta modulator and decimating digital filter
US6094082A (en) 1998-05-18 2000-07-25 National Semiconductor Corporation DLL calibrated switched current delay interpolator
US6100830A (en) 1998-01-08 2000-08-08 Fujitsu Microelectronics Europe Gmbh Differential switching circuitry
US6121831A (en) 1999-05-12 2000-09-19 Level One Communications, Inc. Apparatus and method for removing offset in a gain circuit
US6137328A (en) 1998-05-29 2000-10-24 Hyundai Electronics Industries Co., Ltd. Clock phase correction circuit
US6140857A (en) 1999-03-29 2000-10-31 Intel Corporation Method and apparatus for reducing baseline wander
US6148025A (en) 1998-04-17 2000-11-14 Lucent Technologies, Inc. System and method for compensating for baseline wander
US6150856A (en) 1999-04-30 2000-11-21 Micron Technology, Inc. Delay lock loops, signal locking methods and methods of implementing delay lock loops
US6154784A (en) 1998-06-10 2000-11-28 Lsi Logic Corporation Current mode ethernet transmitter
US6163283A (en) 1998-01-08 2000-12-19 Fujitsu Microelectronics Europe Gmbh Thermometer coding circuitry
US6163289A (en) 1997-09-23 2000-12-19 Philips Electronics North America Corp. Differential voltage digital-to-analog converter
US6163579A (en) 1998-03-04 2000-12-19 Analog Devices, Inc. Broadband modem transformer hybird
US6166572A (en) 1997-06-13 2000-12-26 Oki Electric Industry Co., Ltd. Voltage-controlled delay line, direct phase controlled voltage-controlled oscillator, clock/data recovery circuit, and clock/data recovery apparatus
US6173019B1 (en) 1997-12-10 2001-01-09 National Semiconductor Corporation Control loop for data signal baseline correction
US6172634B1 (en) 1998-02-25 2001-01-09 Lucent Technologies Inc. Methods and apparatus for providing analog-fir-based line-driver with pre-equalization
US6177896B1 (en) 1998-03-13 2001-01-23 Hyundai Electronics Industries Co., Ltd. Oversampling digital/analog converter
US6185263B1 (en) 1998-11-09 2001-02-06 Broadcom Corporation Adaptively configurable class-A/class-B transmit DAC for transceiver emission and power consumption control
US6188282B1 (en) 1999-10-08 2001-02-13 Ericsson Inc. Differential amplifier with reduced even order non-linearity and associated methods
US6192226B1 (en) 1998-12-21 2001-02-20 Motorola, Inc. Carrier squelch processing system and apparatus
US6191719B1 (en) 1997-08-25 2001-02-20 Broadcom Corporation Digital to analog converter with reduced ringing
US6201490B1 (en) 1997-11-14 2001-03-13 Yamaha Corporation DA conversion apparatus to reduce transient noise upon switching of analog signals
US6201841B1 (en) 1994-12-07 2001-03-13 Fujitsu Limited Distortion compensating device
US6201831B1 (en) 1998-11-13 2001-03-13 Broadcom Corporation Demodulator for a multi-pair gigabit transceiver
US6204788B1 (en) 1998-08-25 2001-03-20 Matsushita Electric Industrial Co., Ltd. Digital/analog conversion apparatus
US6211716B1 (en) 1999-05-28 2001-04-03 Kendin Communications, Inc. Baseline wander compensation circuit and method
US6215429B1 (en) 1998-02-10 2001-04-10 Lucent Technologies, Inc. Distributed gain for audio codec
US6223061B1 (en) 1997-07-25 2001-04-24 Cleveland Medical Devices Inc. Apparatus for low power radio communications
US6236346B1 (en) 1998-01-08 2001-05-22 Fujitsu Limited Cell array circuitry
US6236645B1 (en) 1998-03-09 2001-05-22 Broadcom Corporation Apparatus for, and method of, reducing noise in a communications system
US6236345B1 (en) 1998-04-24 2001-05-22 U.S. Philips Corporation Video rate D/A converter with sigma-delta modulator
US6249249B1 (en) 1998-05-14 2001-06-19 Kabushiki Kaisha Toshiba Active array antenna system
US6249164B1 (en) 1998-09-25 2001-06-19 International Business Machines Corporation Delay circuit arrangement for use in a DAC/driver waveform generator with phase lock rise time control
JP2001177409A (en) 1999-12-16 2001-06-29 Philips Japan Ltd D/a converter
US6259680B1 (en) 1997-10-01 2001-07-10 Adtran, Inc. Method and apparatus for echo cancellation
US6259957B1 (en) 1997-04-04 2001-07-10 Cirrus Logic, Inc. Circuits and methods for implementing audio Codecs and systems using the same
US6266367B1 (en) 1998-05-28 2001-07-24 3Com Corporation Combined echo canceller and time domain equalizer
US6271782B1 (en) 1998-08-06 2001-08-07 Jesper Steensgaard-Madsen Delta-sigma A/D converter
US6275098B1 (en) 1999-10-01 2001-08-14 Lsi Logic Corporation Digitally calibrated bandgap reference
US6288592B1 (en) * 1998-01-21 2001-09-11 Gennum Corporation Cable driver with controlled linear rise and fall
US6289068B1 (en) 1998-06-22 2001-09-11 Xilinx, Inc. Delay lock loop with clock phase shifter
US6288604B1 (en) 1998-02-03 2001-09-11 Broadcom Corporation CMOS amplifier providing automatic offset cancellation
US6295012B1 (en) 1999-08-25 2001-09-25 Broadcom Corporation CMOS DAC with high impedance differential current drivers
US6298046B1 (en) 1998-08-28 2001-10-02 Rc Networks Adjustable balancing circuit for an adaptive hybrid and method of adjusting the same
US6307490B1 (en) 1999-09-30 2001-10-23 The Engineering Consortium, Inc. Digital to analog converter trim apparatus and method
US6309077B1 (en) 1999-01-12 2001-10-30 Cornell Research Foundation Inc. Motion amplification based sensors
US6313775B1 (en) 1999-09-03 2001-11-06 Nokia Mobile Phones Limited Delta-sigma modulator with two-step quantization, and method for using two-step quantization in delta-sigma modulation
US20010050585A1 (en) * 2000-01-18 2001-12-13 Larrie Carr Digital delay line with synchronous control
WO2000028712A9 (en) 1998-10-30 2001-12-20 Broadcom Corp Cable modem system
US6333959B1 (en) 2000-04-25 2001-12-25 Winbond Electronics Corporation Cross feedback latch-type bi-directional shift register in a delay lock loop circuit
US6339390B1 (en) 2000-10-04 2002-01-15 Scott R. Velazquez Adaptive parallel processing analog and digital converter
US6340940B1 (en) 2000-07-18 2002-01-22 Cirrus Logic, Inc. Digital to analog conversion circuits and methods utilizing single-bit delta-SIGMA modulators and multiple-bit digital to analog converters
US6346899B1 (en) 1998-12-04 2002-02-12 Asahi Kasei Kabushiki Kaisha Analog current mode D/A converter using transconductors
US6351229B1 (en) 2000-09-05 2002-02-26 Texas Instruments Incorporated Density-modulated dynamic dithering circuits and method for delta-sigma converter
USRE37619E1 (en) * 1996-01-05 2002-04-02 Analog Devices, Inc. Skewless differential switch and DAC employing the same
US6369734B2 (en) 1998-02-10 2002-04-09 Intel Corporation Method and apparatus for increasing linearity and reducing noise coupling in a digital to analog converter
US6370190B1 (en) 1998-09-15 2002-04-09 3Com Technologies Data receiver including hybrid decision feedback equalizer
US6373417B1 (en) 1999-02-23 2002-04-16 Cirrus Logic, Inc. Digital to analog converter using level and timing control signals to cancel noise
US6373908B2 (en) 1998-11-11 2002-04-16 Broadcom Corporation Adaptive electronic transmission signal cancellation apparatus for full duplex communication
US6377640B2 (en) 1997-07-31 2002-04-23 Stanford Syncom, Inc. Means and method for a synchronous network communications system
US6377683B1 (en) 1998-05-29 2002-04-23 3Com Corporation Low complexity frequency domain echo canceller for DMT transceivers
US6385238B1 (en) 1997-12-03 2002-05-07 Kabushiki Kaisha Toshiba Adaptive equalization and baseline wander correction circuit
US6385442B1 (en) 1998-03-04 2002-05-07 Symbol Technologies, Inc. Multiphase receiver and oscillator
US20020061087A1 (en) 2000-11-21 2002-05-23 Stephen Williams Apparatus and method for acquiring phase lock timing recovery in a partial response maximum likelihood (PRML) channel
US6408032B1 (en) 1998-09-30 2002-06-18 Pmc-Sierra Ltd. Transmit baseline wander correction technique
US6415003B1 (en) 1998-09-11 2002-07-02 National Semiconductor Corporation Digital baseline wander correction circuit
US20020084857A1 (en) 2000-10-23 2002-07-04 Samsung Electronics Co., Ltd. Delay locked loop for improving high frequency characteristics and yield
US6421377B1 (en) 1998-05-13 2002-07-16 Globespanvirata, Inc. System and method for echo cancellation over asymmetric spectra
US6433608B1 (en) 2001-01-02 2002-08-13 Realtek Semi-Conductor Co., Ltd. Device and method for correcting the baseline wandering of transmitting signals
US6441761B1 (en) 1999-12-08 2002-08-27 Texas Instruments Incorporated High speed, high resolution digital-to-analog converter with off-line sigma delta conversion and storage
US6452428B1 (en) 1999-11-23 2002-09-17 Intel Corporation Slew rate control circuit
US20020136321A1 (en) 1998-10-30 2002-09-26 Chan Kevin T. Reduction of aggregate EMI emissions of multiple transmitters
US6462688B1 (en) 2000-12-18 2002-10-08 Marvell International, Ltd. Direct drive programmable high speed power digital-to-analog converter
US6469988B1 (en) * 1999-07-08 2002-10-22 Conexant Systems, Inc. Low-level circuit implementation of signal flow graphs for real-time signal processing of high-speed digital signals
US6476749B1 (en) 1998-12-21 2002-11-05 Bell Canada High speed analog-to-digital converter and digital-to-analog converter
US6476746B2 (en) 1999-12-08 2002-11-05 Texas Instruments Incorporated Cellular base station having a high speed, high resolution digital-to-analog converter with off-line sigma delta conversion and storage
US6477200B1 (en) 1998-11-09 2002-11-05 Broadcom Corporation Multi-pair gigabit ethernet transceiver
US20020181601A1 (en) 2001-03-21 2002-12-05 Chin-Wen Huang Receiver with baseline wander correction and correction method thereof
US6492922B1 (en) 2000-12-14 2002-12-10 Xilinx Inc. Anti-aliasing filter with automatic cutoff frequency adaptation
US6501402B2 (en) 2001-05-09 2002-12-31 Broadcom Corporation Digital-to-analogue converter using an array of current sources
US6509854B1 (en) 1997-03-16 2003-01-21 Hitachi, Ltd. DA conversion circuit
US6509857B1 (en) 1999-10-25 2003-01-21 Texas Instruments Incorporated Digital-to-analog converting method and digital-to-analog converter
US6531973B2 (en) 2000-09-11 2003-03-11 Broadcom Corporation Sigma-delta digital-to-analog converter
US6535987B1 (en) 1998-07-31 2003-03-18 Stmicroelectronics S.A. Amplifier with a fan-out variable in time
US6539072B1 (en) 1997-02-06 2003-03-25 Rambus, Inc. Delay locked loop circuitry for clock delay adjustment
US6556677B1 (en) 1999-05-27 2003-04-29 William Christopher Hardy Single-ended echo cancellation system and method
US6563870B1 (en) 1997-12-22 2003-05-13 Infineon Technologies Ag Nonlinear echo compensator
US6570931B1 (en) 1999-12-31 2003-05-27 Intel Corporation Switched voltage adaptive slew rate control and spectrum shaping transmitter for high speed digital transmission
US6576746B2 (en) 1998-10-13 2003-06-10 Immunomedics, Inc. Site-specific labeling of disulfide-containing targeting vectors
US6577114B1 (en) 2000-07-31 2003-06-10 Marvell International, Ltd. Calibration circuit
US6583742B1 (en) 1998-02-26 2003-06-24 Wolfson Microelectronics Limited Digital to analogue converter with dynamic element matching
US6608743B1 (en) 1999-10-19 2003-08-19 Nec Corporation Delay locked loop, synchronizing method for the same and semiconductor device equipped with the same
US20030174660A1 (en) 2000-06-20 2003-09-18 Thomas Blon Circuit arrangement for the analogue suppression of echos
US6633178B2 (en) 2001-09-28 2003-10-14 Intel Corporation Apparatus and method for power efficient line driver
US20040005015A1 (en) 1998-10-30 2004-01-08 Chan Kevin T. Method and system for a reduced emissions direct drive transmitter for unshielded twisted pair (UTP) applications
US6687286B1 (en) 1999-12-17 2004-02-03 Agere Systems, Inc. Programmable transmitter circuit for coupling to an ethernet or fast ethernet
US6714825B1 (en) 1998-11-12 2004-03-30 Matsushita Electric Industrial Co., Ltd. Multi-channel audio reproducing device
US6721379B1 (en) 1998-09-25 2004-04-13 International Business Machines Corporation DAC/Driver waveform generator with phase lock rise time control
US6731748B1 (en) 1998-11-30 2004-05-04 Qualcomm Incorporated Audio interface for satellite user terminals
US20040091071A1 (en) 2002-11-07 2004-05-13 Realtek Semiconductor Corp. Demodulation apparatus for a network transceiver and method thereof
US20040090981A1 (en) 2002-11-07 2004-05-13 Realtek Semiconductor Corp. Initialization method for a network system
US6744931B2 (en) 1992-04-09 2004-06-01 Olympus Optical Co., Ltd. Image processing apparatus
US6751202B1 (en) 1999-04-30 2004-06-15 3Com Corporation Filtered transmit cancellation in a full-duplex modem data access arrangement (DAA)
US20040141569A1 (en) 1999-10-20 2004-07-22 Agazzi Oscar E. Method, apparatus and system for high-speed transmission on fiber optic channel
US6775529B1 (en) 2000-07-31 2004-08-10 Marvell International Ltd. Active resistive summer for a transformer hybrid
US20040208312A1 (en) 1997-09-16 2004-10-21 Kozo Okuda Echo canceling method, echo canceller, and voice switch
US6823028B1 (en) 2000-05-12 2004-11-23 National Semiconductor Corporation Digitally controlled automatic gain control system for use in an analog front-end of a receiver
DE102004017497A1 (en) 2003-04-14 2004-11-25 Realtek Semiconductor Corp. amplifier circuit
US6844837B1 (en) 2000-05-23 2005-01-18 Marvell International Ltd. Class B driver
US6864726B2 (en) 2003-06-17 2005-03-08 Intel Corporation Output signal control from a DAC-driven amplifier-based driver
US6882216B2 (en) 2003-06-24 2005-04-19 Realtek Semiconductor Corp. On-chip high-pass filter with large time constant

Patent Citations (319)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3297951A (en) 1963-12-20 1967-01-10 Ibm Transversal filter having a tapped and an untapped delay line of equal delay, concatenated to effectively provide sub-divided delays along both lines
US3500215A (en) 1965-11-16 1970-03-10 Philips Corp Filter for bivalent pulse signals
US3521170A (en) 1966-03-05 1970-07-21 Philips Corp Transversal digital filters having analog to digital converter for analog signals
US3543009A (en) 1966-05-13 1970-11-24 Research Corp Binary transversal filter systems
US3793588A (en) * 1967-05-13 1974-02-19 Philips Corp Device for the transmission of synchronous pulse signals
US3793589A (en) 1972-06-28 1974-02-19 Gen Electric Data communication transmitter utilizing vector waveform generation
US3973089A (en) 1973-10-29 1976-08-03 General Electric Company Adaptive hybrid circuit
USRE30111E (en) 1974-10-15 1979-10-09 Motorola, Inc. Digital single signal line full duplex method and apparatus
US4071842A (en) 1975-08-28 1978-01-31 Bell Telephone Laboratories, Incorporated Apparatus for analog to digital conversion
US4112253A (en) 1976-07-22 1978-09-05 Siemens Aktiengesellschaft Device for the transmission of push-pull signals across a two-wire line in full duplex operation
US4131767A (en) 1976-09-07 1978-12-26 Bell Telephone Laboratories, Incorporated Echo cancellation in two-wire, two-way data transmission systems
JPS5748827Y2 (en) 1977-06-06 1982-10-26
US4152541A (en) 1978-02-03 1979-05-01 Burroughs Corporation Full duplex driver/receiver
US4321753A (en) 1978-09-01 1982-03-30 Illinois Tool Works Inc. Electronic gear checker
US4362909A (en) 1979-05-14 1982-12-07 U.S. Philips Corporation Echo canceler with high-pass filter
US4393494A (en) 1979-10-04 1983-07-12 Cselt Centro Studi E Laboratori Telecomunicazioni S.P.A. Transceiver for full-duplex transmission of digital signals over a common line
US4309673A (en) 1980-03-10 1982-01-05 Control Data Corporation Delay lock loop modulator and demodulator
US4535206A (en) 1980-04-09 1985-08-13 At&T Bell Laboratories Echo cancellation in two-wire full-duplex data transmission with estimation of far-end data components
US4393370A (en) 1980-04-30 1983-07-12 Nippon Electric Co., Ltd. Digital to analog converter using matrix of current sources
US4408190A (en) 1980-06-03 1983-10-04 Tokyo Shibaura Denki Kabushiki Kaisha Resistorless digital-to-analog converter using cascaded current mirror circuits
US4503421A (en) 1981-05-27 1985-03-05 Nippon Electric Co., Ltd. Digital to analog converter
US4464545A (en) 1981-07-13 1984-08-07 Bell Telephone Laboratories, Incorporated Echo canceller
JPS58111415U (en) 1982-01-26 1983-07-29 新田 博 Nut with long groove
US4605826A (en) 1982-06-23 1986-08-12 Nec Corporation Echo canceler with cascaded filter structure
US4621172A (en) 1982-12-22 1986-11-04 Nec Corporation Fast convergence method and system for echo canceller
US4621356A (en) 1983-07-18 1986-11-04 Scipione Fred J Communications interface for duplex transmission and reception of data and other signals over telephone lines
US4527126A (en) 1983-08-26 1985-07-02 Micro Component Technology, Inc. AC parametric circuit having adjustable delay lock loop
US4727566A (en) 1984-02-01 1988-02-23 Telefonaktiebolaget Lm Ericsson Method to test the function of an adaptive echo canceller
US4715064A (en) 1984-06-22 1987-12-22 Ncr Corporation Adaptive hybrid circuit
US4591832A (en) 1984-07-18 1986-05-27 Rca Corporation Digital-to-analog conversion system as for use in a digital TV receiver
US4878244A (en) 1985-09-16 1989-10-31 Northern Telecom Limited Electronic hybrid circuit
JPH0697831B2 (en) 1985-11-27 1994-11-30 神鋼電機株式会社 Skew structure linear pulse motor
US4626803A (en) 1985-12-30 1986-12-02 General Electric Company Apparatus for providing a carrier signal with two digital data streams I-Q modulated thereon
US4746903A (en) 1985-12-30 1988-05-24 International Business Machines Corporation Parallel algorithmic digital to analog converter
JPS62159925A (en) 1986-01-09 1987-07-15 Nec Corp Echo eliminating device
US4817081A (en) 1986-03-28 1989-03-28 At&T And Philips Telecommunications B.V. Adaptive filter for producing an echo cancellation signal in a transceiver system for duplex digital communication through one single pair of conductors
US4935919A (en) 1986-09-16 1990-06-19 Nec Corporation Full duplex modem having two echo cancellers for a near end echo and a far end echo
US4868571A (en) 1986-10-21 1989-09-19 Nec Corporation Digital to analog converter
US4888762A (en) 1987-02-17 1989-12-19 Nec Corporation Echo canceller for bidirectional transmission on two-wire subscriber lines
US4894820A (en) 1987-03-24 1990-01-16 Oki Electric Industry Co., Ltd. Double-talk detection in an echo canceller
US4970715A (en) 1987-03-27 1990-11-13 Universal Data Systems, Inc. Modem with improved remote echo location and cancellation
JPS63300700A (en) 1987-05-30 1988-12-07 Akai Electric Co Ltd Time difference correcting device for audio system
US4816830A (en) 1987-09-14 1989-03-28 Cooper James C Waveform shaping apparatus and method
US5018134A (en) 1987-11-18 1991-05-21 Hitachi, Ltd. Method for cancelling echo in a transmitter and an apparatus therefor
US4947171A (en) 1988-03-31 1990-08-07 Deutsche Itt Industries Gmbh Circuit arrangement for averaging signals during pulse-density D/A or A/D conversion
US4972360A (en) 1988-08-30 1990-11-20 International Business Machines Corp. Digital filter for a modem sigma-delta analog-to-digital converter
US4993045A (en) 1988-10-31 1991-02-12 Racal Data Communications Inc. Modem diagnostic loop
US5043730A (en) 1988-12-16 1991-08-27 Nakamichi Corporation Digital-analog conversion circuit with application of voltage biasing for distortion stabilization
US4988960A (en) 1988-12-21 1991-01-29 Yamaha Corporation FM demodulation device and FM modulation device employing a CMOS signal delay device
US5084865A (en) 1989-02-23 1992-01-28 Nec Corporation Echo canceller having fir and iir filters for cancelling long tail echoes
US5388092A (en) 1989-06-27 1995-02-07 Nec Corporation Echo canceller for two-wire full duplex digital data transmission
US5253249A (en) 1989-06-29 1993-10-12 Digital Equipment Corporation Bidirectional transceiver for high speed data system
US4999830A (en) 1989-09-25 1991-03-12 At&T Bell Laboratories Communication system analog-to-digital converter using echo information to improve resolution
JPH03273704A (en) 1990-03-22 1991-12-04 Mitsubishi Electric Corp Amplifier
US5148427A (en) 1990-04-10 1992-09-15 Level One Communications, Inc. Non-linear echo canceller
US5202528A (en) 1990-05-14 1993-04-13 Casio Computer Co., Ltd. Electronic musical instrument with a note detector capable of detecting a plurality of notes sounded simultaneously
US5185538A (en) 1990-06-13 1993-02-09 Mitsubishi Denki Kabushiki Kaisha Output circuit for semiconductor integrated circuits having controllable load drive capability and operating method thereof
US5222084A (en) 1990-06-25 1993-06-22 Nec Corporation Echo canceler having adaptive digital filter unit associated with delta-sigma modulation circuit
US5282157A (en) 1990-09-13 1994-01-25 Telecom Analysis Systems, Inc. Input impedance derived from a transfer network
US5175764A (en) 1990-10-18 1992-12-29 Ag Communication Systems Corporation Enhanced high voltage line interface circuit
US5119365A (en) 1990-12-14 1992-06-02 Ag Communication Systems Corporation Bi-directional buffer line amplifier
US5243346A (en) 1990-12-19 1993-09-07 Nec Corporation Digital-to-analog converting device using decoders and parallel-to-serial converters
US5253272A (en) 1991-03-01 1993-10-12 Amp Incorporated Digital data transmission system with adaptive predistortion of transmitted pulses
US5254994A (en) 1991-03-06 1993-10-19 Kabushiki Kaisha Toshiba Current source cell use in current segment type D and A converter
US5136260A (en) 1991-03-08 1992-08-04 Western Digital Corporation PLL clock synthesizer using current controlled ring oscillator
JPH04293306A (en) 1991-03-22 1992-10-16 Mitsubishi Electric Corp Amplifier
US5248956A (en) 1991-04-05 1993-09-28 Center For Innovative Technology Electronically controllable resistor
US5204880A (en) 1991-04-23 1993-04-20 Level One Communications, Inc. Differential line driver employing predistortion
US5388123A (en) 1991-05-10 1995-02-07 Matsushita Electric Industrial Co., Ltd. Data receiving system
US5305379A (en) 1991-05-22 1994-04-19 Hitachi, Ltd. Semiconductor integrated device
JPH04351109A (en) 1991-05-29 1992-12-04 Nec Corp Composite differential amplifier
US5153450A (en) 1991-07-16 1992-10-06 Samsung Semiconductor, Inc. Programmable output drive circuit
US5375147A (en) 1991-08-21 1994-12-20 Fujitsu Limited Jitter compensating device
US5267269A (en) 1991-09-04 1993-11-30 Level One Communications, Inc. System and method employing predetermined waveforms for transmit equalization
JPH0564231A (en) 1991-09-05 1993-03-12 Matsushita Electric Ind Co Ltd Chroma sub-Nyquist sampling circuit
US5307064A (en) 1991-09-09 1994-04-26 Tekuno Esu Kabushiki Kaisha Digital-to-analog converter capable of reducing load of low-pass filter
US5269313A (en) 1991-09-09 1993-12-14 Sherwood Medical Company Filter and method for filtering baseline wander
US5365935A (en) 1991-09-10 1994-11-22 Ralin, Inc. Portable, multi-channel ECG data monitor/recorder
US5444739A (en) 1991-09-12 1995-08-22 Matsushita Electric Industrial Co., Ltd. Equalizer for data receiver apparatus
US5212659A (en) 1991-10-08 1993-05-18 Crystal Semiconductor Low precision finite impulse response filter for digital interpolation
US5245654A (en) 1991-10-10 1993-09-14 Cermetek Microelectronics, Inc. Solid state isolation device using opto-isolators
US5283582A (en) 1991-12-20 1994-02-01 Texas Instruments Incorporated Circuitry and method for current input analog to digital conversion
US5245231A (en) 1991-12-30 1993-09-14 Dell Usa, L.P. Integrated delay line
US5367540A (en) 1992-01-16 1994-11-22 Fujitsu Limited Transversal filter for use in a digital subscriber line transmission interface
US5164725A (en) 1992-02-05 1992-11-17 Tritech Microelectronics International Pte Ltd. Digital to analog converter with current sources paired for canceling error sources
US5539773A (en) 1992-02-17 1996-07-23 Thomson Consumer Electronics S.A. Method and apparatus for ghost cancelling and/or equalizing
US5521540A (en) 1992-03-24 1996-05-28 Bull, S.A. Method and apparatus for multi-range delay control
US5585795A (en) 1992-04-06 1996-12-17 Fujitsu Limited D/A converter including output buffer having a controllable offset voltage
US6744931B2 (en) 1992-04-09 2004-06-01 Olympus Optical Co., Ltd. Image processing apparatus
US5280526A (en) 1992-05-26 1994-01-18 At&T Bell Laboratories Transformer-less hybrid circuit
US5280526C1 (en) 1992-05-26 2001-05-01 Paradyne Corp Transformer-less hybrid circuit
US5539403A (en) 1992-06-01 1996-07-23 Matsushita Electric Industrial Co, Ltd D/A conversion apparatus and A/D conversion apparatus
US5325400A (en) 1992-06-04 1994-06-28 The Lan Guys, Inc. Method and apparatus for predistortion of signals in digital transmission systems
US5537113A (en) 1992-06-17 1996-07-16 Advantest Corp. A/D or D/A conversion using distribution of differential waveforms to interleaved converters
US5272453A (en) 1992-08-03 1993-12-21 Motorola Inc. Method and apparatus for switching between gain curves of a voltage controlled oscillator
US5307405A (en) 1992-09-25 1994-04-26 Qualcomm Incorporated Network echo canceller
US5243347A (en) 1992-09-28 1993-09-07 Motorola, Inc. Monotonic current/resistor digital-to-analog converter and method of operation
US5834860A (en) 1992-11-25 1998-11-10 Sgs-Thomson Microelectronics Ltd. Controlled impedance transistor switch circuit
US5357145A (en) 1992-12-22 1994-10-18 National Semiconductor Corporation Integrated waveshaping circuit using weighted current summing
US5323157A (en) 1993-01-15 1994-06-21 Motorola, Inc. Sigma-delta digital-to-analog converter with reduced noise
US5517435A (en) 1993-03-11 1996-05-14 Nec Corporation Method of identifying an unknown system with a band-splitting adaptive filter and a device thereof
JPH06276182A (en) 1993-03-22 1994-09-30 Fujitsu Denso Ltd Full duplex communication control system
US5930686A (en) 1993-05-05 1999-07-27 Marconi Electronic Systems Limited Integrated transceiver circuit packaged component
US5687330A (en) 1993-06-18 1997-11-11 Digital Equipment Corporation Semiconductor process, power supply and temperature compensated system bus integrated interface architecture with precision receiver
US5539405A (en) 1993-07-29 1996-07-23 Cirrus Logic, Inc. DAC achieving monotonicity with equal sources and shift array therefor
US5392042A (en) 1993-08-05 1995-02-21 Martin Marietta Corporation Sigma-delta analog-to-digital converter with filtration having controlled pole-zero locations, and apparatus therefor
US5399996A (en) 1993-08-16 1995-03-21 At&T Global Information Solutions Company Circuit and method for minimizing electromagnetic emissions
US5479124A (en) 1993-08-20 1995-12-26 Nexgen Microsystems Slew rate controller for high speed bus
US5719515A (en) 1993-09-27 1998-02-17 Sgs-Thomson Microelectronics S.A. Digital delay line
US5587681A (en) 1993-10-29 1996-12-24 Plessey Semiconductors Limited DC restoration circuit
US5517141A (en) 1993-11-05 1996-05-14 Motorola, Inc. Differential high speed track and hold amplifier
JPH07131260A (en) 1993-11-05 1995-05-19 Hitachi Ltd Semiconductor integrated circuit
US5508656A (en) 1993-12-23 1996-04-16 Sgs-Thomson Microelectronics S.A. Amplifier with offset correction
US5572158A (en) 1994-02-15 1996-11-05 Rambus, Inc. Amplifier with active duty cycle correction
US5489873A (en) 1994-03-03 1996-02-06 Motorola, Inc. Active low-pass filter
US5440515A (en) 1994-03-08 1995-08-08 Motorola Inc. Delay locked loop for detecting the phase difference of two signals having different frequencies
US5440514A (en) 1994-03-08 1995-08-08 Motorola Inc. Write control for a memory using a delay locked loop
US5465272A (en) 1994-04-08 1995-11-07 Synoptics Communications, Inc. Data transmitter baseline wander correction circuit
US5589788A (en) 1994-05-12 1996-12-31 Hewlett-Packard Company Timing adjustment circuit
US5796725A (en) 1994-08-31 1998-08-18 Nec Corporation Echo canceller capable of cancelling an echo signal at a high speed
US5659609A (en) 1994-09-05 1997-08-19 Fujitsu Limited Echo canceller and waveform-distortion compensation device
US5812597A (en) 1994-09-21 1998-09-22 Tut Systems, Inc. Circuit for preventing base line wander of digital signals in a network receiver
US5838186A (en) 1994-09-21 1998-11-17 Mitsubishi Denki Kabushiki Kaisha Signal output circuit with reduced noise in output signal
US5613233A (en) 1994-09-30 1997-03-18 Rockwell International Corp. Apparatus with distortion cancelling feedback signal
US5507036A (en) 1994-09-30 1996-04-09 Rockwell International Apparatus with distortion cancelling feed forward signal
US5471665A (en) 1994-10-18 1995-11-28 Motorola, Inc. Differential DC offset compensation circuit
US5568142A (en) 1994-10-20 1996-10-22 Massachusetts Institute Of Technology Hybrid filter bank analog/digital converter
US5648738A (en) 1994-11-01 1997-07-15 Cirrus Logic, Inc. Read channel having auto-zeroing and offset compensation, and power-down between servo fields
US5585802A (en) 1994-11-02 1996-12-17 Advanced Micro Devices, Inc. Multi-stage digital to analog conversion circuit and method
US5579004A (en) 1994-11-02 1996-11-26 Advanced Micro Devices, Inc. Digital interpolation circuit for a digital-to-analog converter circuit
US5572159A (en) 1994-11-14 1996-11-05 Nexgen, Inc. Voltage-controlled delay element with programmable delay
US6046607A (en) 1994-11-21 2000-04-04 Yamaha Corporation Logic circuit controlled by a plurality of clock signals
US6201841B1 (en) 1994-12-07 2001-03-13 Fujitsu Limited Distortion compensating device
US5568064A (en) 1995-01-23 1996-10-22 International Business Machines Corporation Bidirectional transmission line driver/receiver
US5745564A (en) 1995-01-26 1998-04-28 Northern Telecom Limited Echo cancelling arrangement
US5625357A (en) * 1995-02-16 1997-04-29 Advanced Micro Devices, Inc. Current steering semi-digital reconstruction filter
US5798664A (en) 1995-04-07 1998-08-25 Nec Corporation Offset cancelling amplifier circuit having Miller integrator as offset detector
US5577027A (en) 1995-04-18 1996-11-19 Intel Corporation Apparatus and method for effectively eliminating the echo signal of transmitting signal in a modem
US5651029A (en) 1995-05-16 1997-07-22 Myson Technology, Inc. Apparatus for transmitting an output with predetermined frequency response to an unshielded twisted-pair media and waveform shaping circuit and method employed therein
US5663728A (en) 1995-05-18 1997-09-02 Hughes Aircraft Company Digital-to-analog converted (DAC) and method that set waveform rise and fall times to produce an analog waveform that approximates a piecewise linear waveform to reduce spectral distortion
US5559476A (en) 1995-05-31 1996-09-24 Cirrus Logic, Inc. Voltage controlled oscillator including voltage controlled delay circuit with power supply noise isolation
US5703541A (en) 1995-06-05 1997-12-30 Mitsubishi Denki Kabushiki Kaisha Ring oscillator with two inverters per unit inverter circuit
US5864587A (en) 1995-06-06 1999-01-26 Lsi Logic Corporation Differential signal receiver
US5822426A (en) 1995-06-06 1998-10-13 International Business Machines Corporation Balanced hybrid circuit
US5600321A (en) 1995-06-07 1997-02-04 Advanced Micro Devices Inc. High speed, low power CMOS D/A converter for wave synthesis in network
US5696796A (en) 1995-06-07 1997-12-09 Comsat Corporation Continuously variable if sampling method for digital data transmission
US5596439A (en) 1995-08-01 1997-01-21 Viasat, Inc. Self-interference cancellation for two-party relayed communication
JPH0955770A (en) 1995-08-17 1997-02-25 Minsei Kagi Kofun Yugenkoshi Apparatus for transmitting pre-determined frequency response output to unshielded twisted pair medium, waveform shaping circuit therefor and method thereof
US5859552A (en) 1995-10-06 1999-01-12 Lsi Logic Corporation Programmable slew rate control circuit for output buffer
US5963069A (en) 1995-10-16 1999-10-05 Altera Corporation System for distributing clocks using a delay lock loop in a programmable logic circuit
US5666354A (en) 1995-12-20 1997-09-09 International Business Machines Corporation CMOS bi-directional differential link
USRE37619E1 (en) * 1996-01-05 2002-04-02 Analog Devices, Inc. Skewless differential switch and DAC employing the same
US5841386A (en) 1996-01-18 1998-11-24 Texas Instruments Incorporated Simple high resolution monolithic DAC for the tuning of an external VCXO (voltage controlled quartz oscillator)
US5887059A (en) 1996-01-30 1999-03-23 Advanced Micro Devices, Inc. System and method for performing echo cancellation in a communications network employing a mixed mode LMS adaptive balance filter
US5757219A (en) 1996-01-31 1998-05-26 Analogic Corporation Apparatus for and method of autozeroing the input of a charge-to-voltage converter
US5798661A (en) 1996-02-09 1998-08-25 Advanced Micro Devices, Inc. Method for continuous waveform synthesis
US5757298A (en) 1996-02-29 1998-05-26 Hewlett-Packard Co. Method and apparatus for error compensation using a non-linear digital-to-analog converter
US5684482A (en) 1996-03-06 1997-11-04 Ian A. Galton Spectral shaping of circuit errors in digital-to-analog converters
US5844439A (en) 1996-03-13 1998-12-01 Integrated Circuit Systems, Inc. DC restoration circuit for multi-level transmission signals
JPH09270707A (en) 1996-04-03 1997-10-14 Rohm Co Ltd Digital/analog converter and controller using the converter
EP0800278B1 (en) 1996-04-04 1999-12-08 Mitel Semiconductor Limited An error correction circuit
US5825819A (en) 1996-04-23 1998-10-20 Motorola, Inc. Asymmetrical digital subscriber line (ADSL) line driver circuit
US5629652A (en) 1996-05-09 1997-05-13 Analog Devices Band-switchable, low-noise voltage controlled oscillator (VCO) for use with low-q resonator elements
US5841809A (en) 1996-06-03 1998-11-24 Fujitsu Limimited Access line termination unit
US5940498A (en) 1996-06-14 1999-08-17 Siemens Aktiengesellschaft Electronic voice circuit configuration
US5726583A (en) 1996-07-19 1998-03-10 Kaplinsky; Cecil H. Programmable dynamic line-termination circuit
US5892701A (en) * 1996-08-14 1999-04-06 Tamarack Microelectronics, Inc. Silicon filtering buffer apparatus and the method of operation thereof
US5760726A (en) 1996-08-23 1998-06-02 Motorola, Inc. Digital-to-analog converter with dynamic matching and bit splitting
US5790060A (en) 1996-09-11 1998-08-04 Harris Corporation Digital-to-analog converter having enhanced current steering and associated method
US5894496A (en) 1996-09-16 1999-04-13 Ericsson Inc. Method and apparatus for detecting and compensating for undesired phase shift in a radio transceiver
JPH10126183A (en) 1996-10-21 1998-05-15 Oki Electric Ind Co Ltd Differential amplifier and limiter amplifier
US5898340A (en) 1996-11-20 1999-04-27 Chatterjee; Manjirnath A. High power efficiency audio amplifier with digital audio and volume inputs
US5821892A (en) 1996-11-20 1998-10-13 Texas Instruments Incorporated Digital to analog conversion system
US5880615A (en) 1996-12-10 1999-03-09 Intel Corporation Method and apparatus for detecting differential threshold levels while compensating for baseline wander
US5838177A (en) 1997-01-06 1998-11-17 Micron Technology, Inc. Adjustable output driver circuit having parallel pull-up and pull-down elements
US5940442A (en) 1997-01-30 1999-08-17 National Semioonductor Corporation High speed data receiver
US6539072B1 (en) 1997-02-06 2003-03-25 Rambus, Inc. Delay locked loop circuitry for clock delay adjustment
US6509854B1 (en) 1997-03-16 2003-01-21 Hitachi, Ltd. DA conversion circuit
US5936450A (en) * 1997-03-21 1999-08-10 National Semiconductor Corporation Waveshaping circuit using digitally controlled weighted current summing
US6259957B1 (en) 1997-04-04 2001-07-10 Cirrus Logic, Inc. Circuits and methods for implementing audio Codecs and systems using the same
US6087968A (en) 1997-04-16 2000-07-11 U.S. Philips Corporation Analog to digital converter comprising an asynchronous sigma delta modulator and decimating digital filter
US5982317A (en) 1997-04-18 1999-11-09 Jesper Steensgaard-Madsen Oversampled digital-to-analog converter based on nonlinear separation and linear recombination
US6166572A (en) 1997-06-13 2000-12-26 Oki Electric Industry Co., Ltd. Voltage-controlled delay line, direct phase controlled voltage-controlled oscillator, clock/data recovery circuit, and clock/data recovery apparatus
US6223061B1 (en) 1997-07-25 2001-04-24 Cleveland Medical Devices Inc. Apparatus for low power radio communications
US6377640B2 (en) 1997-07-31 2002-04-23 Stanford Syncom, Inc. Means and method for a synchronous network communications system
US5949362A (en) 1997-08-22 1999-09-07 Harris Corporation Digital-to-analog converter including current cell matrix with enhanced linearity and associated methods
US6191719B1 (en) 1997-08-25 2001-02-20 Broadcom Corporation Digital to analog converter with reduced ringing
US20040208312A1 (en) 1997-09-16 2004-10-21 Kozo Okuda Echo canceling method, echo canceller, and voice switch
US6067327A (en) 1997-09-18 2000-05-23 International Business Machines Corporation Data transmitter and method therefor
US6163289A (en) 1997-09-23 2000-12-19 Philips Electronics North America Corp. Differential voltage digital-to-analog converter
US6259680B1 (en) 1997-10-01 2001-07-10 Adtran, Inc. Method and apparatus for echo cancellation
US20020009057A1 (en) 1997-10-01 2002-01-24 Blackwell Steven R. Method and apparatus for echo cancellation
US6201490B1 (en) 1997-11-14 2001-03-13 Yamaha Corporation DA conversion apparatus to reduce transient noise upon switching of analog signals
US6385238B1 (en) 1997-12-03 2002-05-07 Kabushiki Kaisha Toshiba Adaptive equalization and baseline wander correction circuit
US6173019B1 (en) 1997-12-10 2001-01-09 National Semiconductor Corporation Control loop for data signal baseline correction
US6043766A (en) 1997-12-10 2000-03-28 National Semiconductor Corporation Distributive encoder for encoding error signals which represent signal peak errors in data signals for identifying erroneous signal baseline, peak and equalization conditions
US6044489A (en) 1997-12-10 2000-03-28 National Semiconductor Corporation Data signal baseline error detector
US6563870B1 (en) 1997-12-22 2003-05-13 Infineon Technologies Ag Nonlinear echo compensator
US6100830A (en) 1998-01-08 2000-08-08 Fujitsu Microelectronics Europe Gmbh Differential switching circuitry
US6163283A (en) 1998-01-08 2000-12-19 Fujitsu Microelectronics Europe Gmbh Thermometer coding circuitry
US6236346B1 (en) 1998-01-08 2001-05-22 Fujitsu Limited Cell array circuitry
US6288592B1 (en) * 1998-01-21 2001-09-11 Gennum Corporation Cable driver with controlled linear rise and fall
US6005370A (en) 1998-01-26 1999-12-21 Physio-Control Manufacturing Corporation Automatic rate control for defibrillator capacitor charging
US6047346A (en) 1998-02-02 2000-04-04 Rambus Inc. System for adjusting slew rate on an output of a drive circuit by enabling a plurality of pre-drivers and a plurality of output drivers
US6288604B1 (en) 1998-02-03 2001-09-11 Broadcom Corporation CMOS amplifier providing automatic offset cancellation
US6369734B2 (en) 1998-02-10 2002-04-09 Intel Corporation Method and apparatus for increasing linearity and reducing noise coupling in a digital to analog converter
US6215429B1 (en) 1998-02-10 2001-04-10 Lucent Technologies, Inc. Distributed gain for audio codec
US6172634B1 (en) 1998-02-25 2001-01-09 Lucent Technologies Inc. Methods and apparatus for providing analog-fir-based line-driver with pre-equalization
US6583742B1 (en) 1998-02-26 2003-06-24 Wolfson Microelectronics Limited Digital to analogue converter with dynamic element matching
US6385442B1 (en) 1998-03-04 2002-05-07 Symbol Technologies, Inc. Multiphase receiver and oscillator
US6163579A (en) 1998-03-04 2000-12-19 Analog Devices, Inc. Broadband modem transformer hybird
US6236645B1 (en) 1998-03-09 2001-05-22 Broadcom Corporation Apparatus for, and method of, reducing noise in a communications system
WO1999046867A1 (en) 1998-03-09 1999-09-16 Broadcom Corporation Gigabit ethernet transceiver
US6177896B1 (en) 1998-03-13 2001-01-23 Hyundai Electronics Industries Co., Ltd. Oversampling digital/analog converter
US6057716A (en) 1998-04-07 2000-05-02 Credence Systems Corporation Inhibitable continuously-terminated differential drive circuit for an integrated circuit tester
US5999044A (en) 1998-04-13 1999-12-07 Credence Systems Corporation Differential driver having multiple output voltage ranges
US6148025A (en) 1998-04-17 2000-11-14 Lucent Technologies, Inc. System and method for compensating for baseline wander
US6236345B1 (en) 1998-04-24 2001-05-22 U.S. Philips Corporation Video rate D/A converter with sigma-delta modulator
US6421377B1 (en) 1998-05-13 2002-07-16 Globespanvirata, Inc. System and method for echo cancellation over asymmetric spectra
US6249249B1 (en) 1998-05-14 2001-06-19 Kabushiki Kaisha Toshiba Active array antenna system
US6094082A (en) 1998-05-18 2000-07-25 National Semiconductor Corporation DLL calibrated switched current delay interpolator
US6037812A (en) 1998-05-18 2000-03-14 National Semiconductor Corporation Delay locked loop (DLL) based clock synthesis
US6014048A (en) 1998-05-27 2000-01-11 Advanced Micro Devices, Inc. Clock generator with multiple feedback paths including a delay locked loop path
US6266367B1 (en) 1998-05-28 2001-07-24 3Com Corporation Combined echo canceller and time domain equalizer
US6137328A (en) 1998-05-29 2000-10-24 Hyundai Electronics Industries Co., Ltd. Clock phase correction circuit
US6377683B1 (en) 1998-05-29 2002-04-23 3Com Corporation Low complexity frequency domain echo canceller for DMT transceivers
US6154784A (en) 1998-06-10 2000-11-28 Lsi Logic Corporation Current mode ethernet transmitter
US6289068B1 (en) 1998-06-22 2001-09-11 Xilinx, Inc. Delay lock loop with clock phase shifter
US6535987B1 (en) 1998-07-31 2003-03-18 Stmicroelectronics S.A. Amplifier with a fan-out variable in time
US6271782B1 (en) 1998-08-06 2001-08-07 Jesper Steensgaard-Madsen Delta-sigma A/D converter
US6204788B1 (en) 1998-08-25 2001-03-20 Matsushita Electric Industrial Co., Ltd. Digital/analog conversion apparatus
US6298046B1 (en) 1998-08-28 2001-10-02 Rc Networks Adjustable balancing circuit for an adaptive hybrid and method of adjusting the same
US6415003B1 (en) 1998-09-11 2002-07-02 National Semiconductor Corporation Digital baseline wander correction circuit
US6370190B1 (en) 1998-09-15 2002-04-09 3Com Technologies Data receiver including hybrid decision feedback equalizer
US6249164B1 (en) 1998-09-25 2001-06-19 International Business Machines Corporation Delay circuit arrangement for use in a DAC/driver waveform generator with phase lock rise time control
US6721379B1 (en) 1998-09-25 2004-04-13 International Business Machines Corporation DAC/Driver waveform generator with phase lock rise time control
US6408032B1 (en) 1998-09-30 2002-06-18 Pmc-Sierra Ltd. Transmit baseline wander correction technique
US6038266A (en) 1998-09-30 2000-03-14 Lucent Technologies, Inc. Mixed mode adaptive analog receive architecture for data communications
US6576746B2 (en) 1998-10-13 2003-06-10 Immunomedics, Inc. Site-specific labeling of disulfide-containing targeting vectors
US6052076A (en) 1998-10-14 2000-04-18 Western Digital Corporation Digital-to-analog converter having high resolution and high bandwidth
US6421534B1 (en) 1998-10-21 2002-07-16 Parkervision, Inc. Integrated frequency translation and selectivity
US6049706A (en) 1998-10-21 2000-04-11 Parkervision, Inc. Integrated frequency translation and selectivity
US20040105504A1 (en) 1998-10-30 2004-06-03 Chan Kevin T. Adaptively configurable class-A/class-B transmit DAC for transceiver emission and power consumption control
US6411647B1 (en) 1998-10-30 2002-06-25 Broadcom Corporation Fully integrated ethernet transmitter architecture with interpolating filtering
US6332004B1 (en) 1998-10-30 2001-12-18 Broadcom Corporation Analog discrete-time filtering for unshielded twisted pair data communication
WO2000028712A9 (en) 1998-10-30 2001-12-20 Broadcom Corp Cable modem system
WO2000027079A1 (en) 1998-10-30 2000-05-11 Broadcom Corporation Internet gigabit ethernet transmitter architecture
US6259745B1 (en) 1998-10-30 2001-07-10 Broadcom Corporation Integrated Gigabit Ethernet transmitter architecture
US6690742B2 (en) 1998-10-30 2004-02-10 Broadcom Corporation Adaptively configurable class-A/class-B transmit DAC for transceiver emission and power consumption control
US6389077B1 (en) 1998-10-30 2002-05-14 Broadcom Corporation Adaptively configurable class-A/class-B transmit DAC for transceiver emission and power consumption control
US20020136321A1 (en) 1998-10-30 2002-09-26 Chan Kevin T. Reduction of aggregate EMI emissions of multiple transmitters
US20040005015A1 (en) 1998-10-30 2004-01-08 Chan Kevin T. Method and system for a reduced emissions direct drive transmitter for unshielded twisted pair (UTP) applications
US20030002570A1 (en) 1998-10-30 2003-01-02 Chan Kevin T. Fully integrated ethernet transmitter architecture with interpolating filtering
US6594304B2 (en) 1998-10-30 2003-07-15 Broadcom Corporation Adaptive configurable class-A/class-B transmit DAC for transceiver emission and power consumption control
US6185263B1 (en) 1998-11-09 2001-02-06 Broadcom Corporation Adaptively configurable class-A/class-B transmit DAC for transceiver emission and power consumption control
WO2000028668A1 (en) 1998-11-09 2000-05-18 Broadcom Corporation Forward error corrector
WO2000028663A2 (en) 1998-11-09 2000-05-18 Broadcom Corporation Fir filter structure with low latency for gigabit ethernet applications
WO2000028691A2 (en) 1998-11-09 2000-05-18 Broadcom Corporation, Et Al. Multi-pair gigabit ethernet transceiver
WO2000028691A3 (en) 1998-11-09 2000-11-23 Broadcom Corp Multi-pair gigabit ethernet transceiver
WO2000028663A3 (en) 1998-11-09 2000-08-17 Broadcom Corp Fir filter structure with low latency for gigabit ethernet applications
US6477200B1 (en) 1998-11-09 2002-11-05 Broadcom Corporation Multi-pair gigabit ethernet transceiver
US6744831B2 (en) 1998-11-11 2004-06-01 Broadcom Corporation Adaptive electronic transmission signal cancellation apparatus for full duplex communication
US6373908B2 (en) 1998-11-11 2002-04-16 Broadcom Corporation Adaptive electronic transmission signal cancellation apparatus for full duplex communication
US20050025266A1 (en) 1998-11-11 2005-02-03 Chan Kevin T. Adaptive electronic transmission signal cancellation apparatus for full duplex communication
US6714825B1 (en) 1998-11-12 2004-03-30 Matsushita Electric Industrial Co., Ltd. Multi-channel audio reproducing device
US6201831B1 (en) 1998-11-13 2001-03-13 Broadcom Corporation Demodulator for a multi-pair gigabit transceiver
US6731748B1 (en) 1998-11-30 2004-05-04 Qualcomm Incorporated Audio interface for satellite user terminals
US6346899B1 (en) 1998-12-04 2002-02-12 Asahi Kasei Kabushiki Kaisha Analog current mode D/A converter using transconductors
WO2000035094A1 (en) 1998-12-07 2000-06-15 Broadcom Corporation Low jitter high phase resolution pll-based timing recovery system
US6192226B1 (en) 1998-12-21 2001-02-20 Motorola, Inc. Carrier squelch processing system and apparatus
US6476749B1 (en) 1998-12-21 2002-11-05 Bell Canada High speed analog-to-digital converter and digital-to-analog converter
US6309077B1 (en) 1999-01-12 2001-10-30 Cornell Research Foundation Inc. Motion amplification based sensors
US6373417B1 (en) 1999-02-23 2002-04-16 Cirrus Logic, Inc. Digital to analog converter using level and timing control signals to cancel noise
US6140857A (en) 1999-03-29 2000-10-31 Intel Corporation Method and apparatus for reducing baseline wander
US6150856A (en) 1999-04-30 2000-11-21 Micron Technology, Inc. Delay lock loops, signal locking methods and methods of implementing delay lock loops
US6751202B1 (en) 1999-04-30 2004-06-15 3Com Corporation Filtered transmit cancellation in a full-duplex modem data access arrangement (DAA)
US6121831A (en) 1999-05-12 2000-09-19 Level One Communications, Inc. Apparatus and method for removing offset in a gain circuit
US6556677B1 (en) 1999-05-27 2003-04-29 William Christopher Hardy Single-ended echo cancellation system and method
US6211716B1 (en) 1999-05-28 2001-04-03 Kendin Communications, Inc. Baseline wander compensation circuit and method
US6469988B1 (en) * 1999-07-08 2002-10-22 Conexant Systems, Inc. Low-level circuit implementation of signal flow graphs for real-time signal processing of high-speed digital signals
US6295012B1 (en) 1999-08-25 2001-09-25 Broadcom Corporation CMOS DAC with high impedance differential current drivers
US6313775B1 (en) 1999-09-03 2001-11-06 Nokia Mobile Phones Limited Delta-sigma modulator with two-step quantization, and method for using two-step quantization in delta-sigma modulation
US6307490B1 (en) 1999-09-30 2001-10-23 The Engineering Consortium, Inc. Digital to analog converter trim apparatus and method
US6275098B1 (en) 1999-10-01 2001-08-14 Lsi Logic Corporation Digitally calibrated bandgap reference
US6188282B1 (en) 1999-10-08 2001-02-13 Ericsson Inc. Differential amplifier with reduced even order non-linearity and associated methods
US6608743B1 (en) 1999-10-19 2003-08-19 Nec Corporation Delay locked loop, synchronizing method for the same and semiconductor device equipped with the same
US20040141569A1 (en) 1999-10-20 2004-07-22 Agazzi Oscar E. Method, apparatus and system for high-speed transmission on fiber optic channel
US6509857B1 (en) 1999-10-25 2003-01-21 Texas Instruments Incorporated Digital-to-analog converting method and digital-to-analog converter
US6452428B1 (en) 1999-11-23 2002-09-17 Intel Corporation Slew rate control circuit
US6441761B1 (en) 1999-12-08 2002-08-27 Texas Instruments Incorporated High speed, high resolution digital-to-analog converter with off-line sigma delta conversion and storage
US6476746B2 (en) 1999-12-08 2002-11-05 Texas Instruments Incorporated Cellular base station having a high speed, high resolution digital-to-analog converter with off-line sigma delta conversion and storage
JP2001177409A (en) 1999-12-16 2001-06-29 Philips Japan Ltd D/a converter
US6687286B1 (en) 1999-12-17 2004-02-03 Agere Systems, Inc. Programmable transmitter circuit for coupling to an ethernet or fast ethernet
US6570931B1 (en) 1999-12-31 2003-05-27 Intel Corporation Switched voltage adaptive slew rate control and spectrum shaping transmitter for high speed digital transmission
US20010050585A1 (en) * 2000-01-18 2001-12-13 Larrie Carr Digital delay line with synchronous control
US6333959B1 (en) 2000-04-25 2001-12-25 Winbond Electronics Corporation Cross feedback latch-type bi-directional shift register in a delay lock loop circuit
US6823028B1 (en) 2000-05-12 2004-11-23 National Semiconductor Corporation Digitally controlled automatic gain control system for use in an analog front-end of a receiver
US6844837B1 (en) 2000-05-23 2005-01-18 Marvell International Ltd. Class B driver
US20030174660A1 (en) 2000-06-20 2003-09-18 Thomas Blon Circuit arrangement for the analogue suppression of echos
US6340940B1 (en) 2000-07-18 2002-01-22 Cirrus Logic, Inc. Digital to analog conversion circuits and methods utilizing single-bit delta-SIGMA modulators and multiple-bit digital to analog converters
US6775529B1 (en) 2000-07-31 2004-08-10 Marvell International Ltd. Active resistive summer for a transformer hybrid
US6577114B1 (en) 2000-07-31 2003-06-10 Marvell International, Ltd. Calibration circuit
US6351229B1 (en) 2000-09-05 2002-02-26 Texas Instruments Incorporated Density-modulated dynamic dithering circuits and method for delta-sigma converter
US6816097B2 (en) 2000-09-11 2004-11-09 Broadcom Corporation System and method for performing digital-to-analog conversion using a sigma-delta modulator
US6531973B2 (en) 2000-09-11 2003-03-11 Broadcom Corporation Sigma-delta digital-to-analog converter
US6339390B1 (en) 2000-10-04 2002-01-15 Scott R. Velazquez Adaptive parallel processing analog and digital converter
US20020084857A1 (en) 2000-10-23 2002-07-04 Samsung Electronics Co., Ltd. Delay locked loop for improving high frequency characteristics and yield
US20020061087A1 (en) 2000-11-21 2002-05-23 Stephen Williams Apparatus and method for acquiring phase lock timing recovery in a partial response maximum likelihood (PRML) channel
US6492922B1 (en) 2000-12-14 2002-12-10 Xilinx Inc. Anti-aliasing filter with automatic cutoff frequency adaptation
US6462688B1 (en) 2000-12-18 2002-10-08 Marvell International, Ltd. Direct drive programmable high speed power digital-to-analog converter
US6433608B1 (en) 2001-01-02 2002-08-13 Realtek Semi-Conductor Co., Ltd. Device and method for correcting the baseline wandering of transmitting signals
US20020181601A1 (en) 2001-03-21 2002-12-05 Chin-Wen Huang Receiver with baseline wander correction and correction method thereof
US6501402B2 (en) 2001-05-09 2002-12-31 Broadcom Corporation Digital-to-analogue converter using an array of current sources
US6633178B2 (en) 2001-09-28 2003-10-14 Intel Corporation Apparatus and method for power efficient line driver
US20040090981A1 (en) 2002-11-07 2004-05-13 Realtek Semiconductor Corp. Initialization method for a network system
US20040091071A1 (en) 2002-11-07 2004-05-13 Realtek Semiconductor Corp. Demodulation apparatus for a network transceiver and method thereof
DE102004017497A1 (en) 2003-04-14 2004-11-25 Realtek Semiconductor Corp. amplifier circuit
US6864726B2 (en) 2003-06-17 2005-03-08 Intel Corporation Output signal control from a DAC-driven amplifier-based driver
US6882216B2 (en) 2003-06-24 2005-04-19 Realtek Semiconductor Corp. On-chip high-pass filter with large time constant

Non-Patent Citations (164)

* Cited by examiner, † Cited by third party
Title
A 1. 2 GHz Programmable DLL-Based Frequency Multiplier for Wireless Applications, Dec. 2004, Wang et al.
A 1.24-GHz MonolithicCMOS VOC with PhaseNoise of-137 dBc/Hz at a3-MHz Offset, 1999, Hung et al., pp. 111-113.
A 1.8-GHz Low-Phase-Noise CMOS VCO Using Optimized Hollow Spiral Inductors, 1997, Craninckx et al., pp. 736-744.
A 1.8-GHz Low-Phase-Noise Voltage-Controlled Oscillator with Prescaler, 1995, Craninckx et al., pp. 1474-1482.
A 1.9-GHz Wide-Band IF Double Conversion CMOS Receiver for Cordless Telephone Applications, 1997, Rudell et al., pp. 2071-2088.
A 10 bit 80 MHz glitchless CMOS D/A converter, May 1991, Takakura et al., pp. 26.5.1-26.5.4.
A 100 Mb/s BiCMOS Adaptive Pulse-Shaping Filter, Dec. 1995, Shoval et al., pp. 1692-1702.
A 100 Mb/s CMOS 100Base-T4 Fast Ethernet Transceiver for Category 3,4 & 5 UTP, 1998, Chan et al.
A 10-b 125-MHz CMOS digital-to-analog converter (DAC) with threshold-voltage compensated current sources, Nov. 1994, Chin et al., pp. 1374-1380.
A 10-b 70-MS/s CMOS D/A converter, Apr. 1991, Nakamura et al., pp. 637-642.
A 10-b, 500-M Sample/s CMOS DAC in 0.6 mm2; Chi-Hung Lin and Klaas Bult; IEEE Journal of Solid-State Circuits, vol. 33, No. 12, Dec. 1996; 11 pages.
A 130-MHz 8-b CMOS video DAC for HDTV applications, Jul. 1991, Fournier et al., pp. 1073-1077.
A 14-Bit Current-Mode La DAC Based Upon Rotated Data Weighted Averaging, Aug. 2000, Radke et al., pp. 1074-1084.
A 14-bit Intrinsic Acurracy Q2 Random Walk CMOS DAC, Dec. 1999, Van der Plas et, pp. 1708-1718.
A 2.5 V CMOS Delay-Locked Loop for an 18 Mbit, 500 Megabyte/s DRAM, 1994, Lee et al., pp. 1491-1496.
A 2.7-V 900-MHz/1.9-GHz Dual-Band Transceiver IC for Digital Wireless Communication, 1999, Leong et al., pp. 286-291.
A 3 V 10b 100MS/s Digital-to-Analog Converter for Cable Modem Applications, Aug. 2000, Lee et al., pp. 203-205.
A 30-MHz Hybrid Analog/Digital Clock Recovery Circuit in 2-um CMOS, 1990, Kim et al., pp. 1385-1394.
A 320 MHz CMOS triple 8b DAC with on-chip PLL and hardware cursor, Feb. 1994, Reynolds, pp. 50-51.
A 333MHz, 20mW, 18ps Resolution Digital DLL using Current-controlled Delay with Parallel Variables Resistor DAC (PVR-DAC), Aug. 2000, Eto et al., pp. 349-350.
A 3V Low Power 0.25um CMOS 100Mb/s Receiver for Fast Ethernet, 2000, Shoael et al.
A 3-V, 22-mV Multibit Current-Mode DAC with 100 dB Dynamic Range, Dec. 1996, Hamasaki et al., pp. 1888-1894.
A 900-MHz Local Oscillator using a DLL-based Frequency Multiplier Technique for PCS Applications; George Chien and Paul R. Gray, University of California, Berkeley, CA; 3 pages.
A BiCMOS Double-Low-IF Receiver for GSM, 1997, Banu et al., pp. 521-524.
A CMOS Channel-Select Filter for a Direct-Conversion Wireless Receiver, 1996, Chang et al., pp. 62-63.
A CMOS Mixed-Signal 100Mb/s Receive Architecture for Fast Ethernet, 1999, Shoval et al.
A CMOS Oversampling D/A Converter with a Current-Mode Semidigital Reconstruction Filter, Dec. 1993, Su et al., pp. 1224-1233.
A CMOS Serial Link for Fully Duplexed Data Communication, Apr. 1995, Lee et al.
A CMOS Steering-Current Multiplying Digital-to-Analog Converter, 1995, Henriques et al., pp. 145-155.
A CMOS Transceiver Analog Front-End for Gigabit Ethernet over Cat-5 Cables, 2001, Roo et al.
A CMOS Transceiver for 10 Mb/s and 100-Mb/s Ethernet, Dec. 1998, Everitt et al.
A Constant Slew Rate Ethernet Line Driver, May 2001, Nack et al.
A DSP Receiver for 1000 Base-T PHY, 2001, He et al.
A Dynamic Line-Termination Circuit for Multireceiver Nets, Dec. 1993, Dolle, pp. 1370-1373.
A Fully Integrated Low-Noise 1-GHz Frequency Synthesizer Design for Mobile Communication Application, May 1997, Lee et al. pp. 760-765.
A Gigabit Transceiver Chip Set for UTP CA-6 Cables in Digital CMOS Technology, Feb. 2000, Azadet et al.
A high-performance CMOS 70-MHz palette/DAC, Dec. 1987, Letham et al., pp. 1041-1047.
A low glitch 10-bit 75-MHz CMOS video D/A converter, Jan. 1995, Wu et al., pp. 68-72.
A Low-Noise 1.6-GHz CMOS PLL with On-Chip Loop Filter, 1997, Parker et al., pp. 407, 409-410.
A Low-Noise RF Voltage-Controlled Oscillator Using On-Chip High-Q Three-Dimensional Coil Inductor and Micromachined Variable Capacitor, Jun. 1998, Young et al., pp. 128-131.
A Low-Noise, 900-MHz VCO in 0.6um CMOS, May 1999, Parker et al., pp. 588-591.
A Micromachined Variable Capacitor for Monolithic Low-Noise VCOS, 1996, Young et al., pp. 86-89.
A Mixed Signal 120M PRML Solution for DVD Systems, 1999, Baird et al.
A Mixed Signal DFE/FFE Receiver for 100Base-TX Applications, 2000, Kelly et al.
A Monolithic 2.3-Gb/s 100-mW Clock and Data Recovery Circuit in Silicon Bipolar Technology, Dec. 1993, Soyuer et al., pp. 1310-1313.
A Monolithic 480 Mb/s Parallel AGC/Decision/Clock-Recovery Circuit in 1.2-urn CMOS, Dec. 1993, Hu et al., pp. 1314-1320.
A New Approach for the Fabrication of Micromechanical Structures, Elsevier/Sequoia; Sensors & Actuators, Dec. 1998, Parameswaran et al., pp. 289-307.
A Precision Baseline Offset and Drift Corrector for Low-Frequency Applications, IEEE Transactions On Instrumentation and Measurement, vol. IM-34, No. 3, Sep. 1985, Bertolaccini, Mario, et al., pp. 405-412.
A Self-Terminating Low-Voltage Swing CMOS Output Driver, 1988, Knight, Jr. et al., pp. 457-464.
A Single-Chip CMOS Direct-Conversion Transceiver for 900MHz Spread-Spectrum Digital Cordless Phones, 1999, Cho et al., 10 pages.
A Third Method of Generation and Detection of Single-Sideband Signals, proceedings of the I.R.E., Dec. 1956, Weaver, Jr., pp. 1703-1705.
A Two Chip 1.5 GBd Serial Link Interface, Dec. 1992, Walker et al.
Active Output Impedance for ADSL Line Drivers, Texas Instruments Application Report SL0A100, Nov. 2002, Stephens.
Adaptive Impedance Matching, 1994 IEEE International Symposium on Circuits and Systems, ISCAS '94., vol. 2, Jun. 1994, Munshi et al., pp. 69-72.
ADSL Line Driver/Receiver Design Guide, Part 1, Linear Tech Magazine, Feb. 2000, Regan.
An 80-MHz 8-bit CMOS D/A converter, Dec. 1986, Miki et al., pp. 983-988.
An 8-bit 2-ns Monolithic DAC, Feb. 1988, Tsutomu Kamoto.
An Adaptive Cable Equalizer for Serial Digital Rates to 400Mb/s, 1996, Baker.
An ADSL Integrated Active Hybrid Circuit, Texas Instruments presentation, undated, Hellums et al. *
An All Analog Multiphase Delay Locked Loop Using a Replica Delay Line for Wide Range Operation and Low-Jitter Performance, Mar. 2000, Moon et al., pp. 377-384. *
An Intergratable 1-2.5Gbps Low Jitter CMOS Transceiver with Built in Self Test Capability, 1999, Yee et al. *
An Operational Amplifier Circulator Based on the Weighted Summer, Jun. 1975, Fuad et al. *
Analysis and Design of Analog Integrated Circuits, Fourth Edition; 1977; 7 pages.
Analysis and Optimatization of Monolithic Inductors and Transformers for RF Ics, 1997, Niknej ad et al., pp. 375-378. *
Analysis of Timing Jitter in CMOS Ring Oscillators, 1994 IEEE International Symposium on Circuits and Systems, 1994, ISCAS '94, vol. 4, May 30-Jun. 1994 pp. 27-30, vol. 4, 1994, Weigandt et al., pp. 27-30. *
Analysis, Design, and Optimization of Spiral Inductors and Transformers for Si RF IC's, Oct. 1998, Niknejad et al., pp. 1470-1481. *
Charge-Pump Phase-Lock Loops, Nov. 1980, Gardner, pp. 1849-1858.
CODEC for Echo-Canceling, Full-Rate ADSL Modems, Dec. 1999, Hester et al.
Combining Echo Cancellation and Decision Feedback Equalization, Bell System Technical Journal, Feb. 1979, Mueller, pp. 401-500.
Dehng, et al., A Fast-Lock Mixed-Mode DLL Using a 2-b SAR Algorithm, 2001.
Dehng, et al., Clock-Deskaw Buffer Using a SAR-Controlled Delay-Locked Loop, 2000.
Delay Based Monolithic CMOS Frequency Synthesizer for Portable Wireless Applications, May 1998, Chien.
Design of a 10-bit 100 MSamples/s BiCMOS D/A Converter, 1996, Harald et al., pp. 730-733.
Digital Generation of Low-Frequency Sine Waves, Jun. 1969, Davies, pp. 97-105.
Digital Logic and Computer Design, Prentice Hall Inc. 1979, 1979, Marto.
Digital Systems Engineering (Cover and p. 390-391, ) Cambridge University Press, no date, Daily et al.
Digital-to-analog Converter having Common-mode Isolation and Differential Output, IBM Journal of Research and Development, Jan. 1973, Hellwarth et al.
Doppler Estimation Using a Coherent Ultrawide-Band Random Noise Radar, Jun. 2000, Narayanan et al.
DP83220 CDLTM Twisted Pair FDDI Transceiver Device, National Semiconductor Product Sheet, Oct. 1992, unknown.
Dual Mode Transmitter with Adaptively Controlled Slew Rate and Impedance Supporting Wide Range Data Rates, 2001, Song.
Dunning, Jim, "An All-Digital Phase-Locked Loop with 50-Cycle Lock Time Suitable for High-Performance Microprocessors," IEEE Journal of Solid-State Circuits, vol. 30, No. 4, Apr. 1995, pp. 412-422.
Experimental Results and Modeling Techniques for Substrate Noise in Mixed-Signal Integrated Circuits, Apr. 1993, Su et al., pp. 420-430.
FA 18.5: A Delay Line Loop for Frequency Synthesis of De-Skewed Clock, Feb. 1994, Waizman, pp. 298-299.
FA 7.2: The Future of CMOS Wireless Transceivers, Feb. 1997, Abidi et al., pp. 118-119; 440.
Farjad-rad, et al., 4.5 A 0.2-2GHz 12mW Multiplying DLL for Low-Jitter Clock Synthesis in Highly Integrated Data Communication Chip, 2002.
Fibre Distributed Data Interface (FDDI)-Token Medium Dependent (TP-PMD), Sep. 1995, American National Standard.
FP 12.1:NRZ Timing Recovery Technique for Band-Limited Channels, 1996, Song et al.
FP 14.7: A Fully Integrated 2.7V 0.35um CMOS VCO for 5GHz Wireless Applications Design for Mobile, Feb. 1998, Kinget.
Future Directions in Silicon ICs for RF Personal Communications, 1995, Gray et al., pp. 83-90.
Garlepp, et al., A Portable Digital DLL Architecture for CMOs Interface Circuits, 1999.
Garlepp, et al., A Portable Digital DLL for High-Speed CMOS Interface Circuits, 1998.
Gigabit Ethernet 100BASE-T , Gigabit Ethernet Alliance, copyright 1997. *
Gigabit Ethernet PHY Chip Sets LAN Speed Record for Cooper Story, 1998, Goldberg, 6 pages.
Gotoh, et al., All-Digital Multi-Phase Delay Locked Loop for Internal Timing Generation in Embedded and/or High-Speed DRAMS, 1997.
HC-5509B ITU CO/Loop Carrier SLIC, Aug. 2003, Intersil.
High Performance Electrical Signaling, Daily et al.
High-Speed Electrical Signaling: Overview and Limitations, IEEE Micro, 1998, Horowitz et al.
IEEE Standard 802.3: Part 3 Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Detection, Mar. 2002, pp. 1-378.
IEEE Standards 802.3ab-2002, "Part 3: Carrier sense multiple access with collision detection (CSMA/CD) Access method and physical layer specifications" , no date, pp. 147-249.
Integrated Analog-to-Digital and Digital-to-Analog Converters-Chapter 6, Kluwer Academic Publishers, 1994, Van de Plassche, pp. 211-271.
Integrated Circuits for Data Transmission Over Twisted Pair Channels, 1996, Johns et al., pp. 398-406.
Johnson, et al., THAM 11.2: A Variable Delay Line Phase Locked Loop for CPU-Coprocessor Synchronization, 1998.
Kim, et al., A Low-Power Small-Area 7.28-ps-Jitter 1-GHz DLL-Based Clock Generator, 2002.
Large Suspended Inductors on Silicon and Their Use in a 1-micrometer CMOS RF Amplifier, May 1993, Chang et al., pp. 246-248. *
Lin, et al., A Register-Controller Symmetrical DLL for Double-Data-Rate DRAM, 1999.
Linear Technology High Speed Modern Solutions Info Card, unknown, unknown. *
Linear Technology, LT1355/LT1356, Dual and Quad 12MHz, 400V/us Op Amps, Linear Technology Corporation, no date, pp. 1-16.
Linear Technology, LT1358/LT1359, Dual and Quad 25MHz, 600V/us Op Amps, Linear Technology Corporation, no date, pp. 1-12.
Linear Technology, LT1361/LT1362, Dual and Quad 50MHz, 800V/us Op Amps, Linear Technology Corporation, pp. 1-12, no date, pp. 1-12.
Linear Technology, LT1364/LT1365, Dual and Quad 70MHz, 1000V/us Op Amps, Linear Technology Corporation, pp. 1-12, no date, pp. 1-12.
Linear Technology, LT1813/LT1814, Dual/Quad 3mA, 100MHz, 750V/us Operational Amplifiers, Linear Technology Corporation, pp. 1-16, no date, pp. 1-16.
Low-Jitter Process-Independent DLL and PLL Based on Self-Biased Techniques, Nov. 1996, Maneatis, pp. 1723-1732. *
Low-Noise Local Oscillator Design Techniques using a DLL-based Frequency Multiplier for Wireless Application; George Chien; 2000; 190 pages.
Low-Power Equalizer Architectures for High-Speed Moderns, IEEE Communications Magazine, Oct. 1998, Azadet. *
Micro-Electronic Circuits 3rd Ed.; Saunders College Publishing, 1991, Sedra et al., pp. 48-115.
Micro-Electronics Circuit 3rd Ed.; Saunders College Publishing, 1991, Sedra et al., pp. 62-63; 86-92, 95-97; 243-247. *
Mismatch Shaping for a Current-Mode Multibit Delta-Sigma DAC, Mar. 1999, Shui et al., pp. 331-338. *
Modeling and Analysis of Substrate Coupling in Integrated Circuits, Mar. 1996, Gharpurey et al., pp. 344-353. *
Modeling of CMOS Digital-to-Analog Converters for Telecommunication, May 1999, Wikner et al., pp. 489-499.
Monolithic CMOS Frequency Synthesizer for Cellular Applications; George Chien and Prof. Paul R. Gray, University of California, Berkeley, CA; 9 pages.
Monolithic High-Performance Three-Dimensional Coil Inductors for Wireless Communications, 1997, Young et al.
MP 4.8 A 1.9GHzMicromachined-Based Low-Phrase-Noise CMOS VCO, 1999, Dec et al., pp. 80-81, 449.
MTD214-EthernetEncoder/Decoder and 10BaseT Transceiver with Built-in Waveform Shaper, 1997, Myson Technology, pp. 11 Jan.
MTD972 (Preliminary) 100Base TX PCS/PMA, 1997, Myson Technology, Jan. 21.
Multifrequency Zero-Jitter Delay-Locked Loop, Jan. 1994, Efeendovich et al., pp. 67-70.
Numerically Stable Green Function for Modeling and Analysis of Substrate Coupling in Integrated Circuits, Apr. 1998, Niknejad et al., pp. 305-315.
On-chip Terminating Registers for High Speed ECL-CMOS Interfaces, 1992, Gabara, pp. 292-295.
Phase Noise in Multi-Gigahertz CMOS Ring Oscillators, 1998, Hajimiri et al., pp. 49-52.
PLL/DLL System Noise Analysis for Low Jitter Clock Synthesizer Design, 1994, Kim et al., pp. 31-34.
Principles of Data Conversion System Design, IEEE Press, 1995, Razavi.
Progress in High-Speed and High-Resolution CMOS Data Converters, Sep. 1995, Liberali et al., pp. 19-28.
Pulse, Digital, and Switching Waveforms, McGraw-Hill Inc., 1965, Millman et al., pp. 674-675.
Recent Developments in High Integration Multi-Standard CMOS Transceivers for Personal Communication Systems, 1998, Rudell et al., pp. 149-154.
SA 18.3: A 1.9GHz Wide-Band IF Double Conversion CMOS Integrated Receiver for Cordless Telephone Applications, 1997, Rudell et al., pp. 304-305, 476. *
Short Course: Local Area Networks, Feb. 1998, Rao; Kenney.
SI IC-Compatible Inductors and LC Passive Filters, Aug. 1990, Nguyen et al., pp. 1028-1031. *
Sonntag, et al., FAM: 11.5: A Monolithic CMOS 10MHz DPLL for Burse-Mode, 1990.
SP 21.2: A 1.9GHz Single-Chip IF Transceiver for Digital Cordless Phones, Feb. 1996, Sato et al. *
SP 23.6: A 1.8GHz CMOS Voltage-Controlled Oscillator, 1997, Razavi, pp. 388-389. *
SP 23.7: A Balanced 1.5GHz Voltage Controlled Oscillator, 1997, Dauphinee et al., pp. 390-391, 491. *
SP 23.8: Silicon Bipolar VCO Family for 1.1 to 2.2GHz with Fully-Integrated Tank and Tuning Circuits, Feb. 1997, Jansen et al., pp. 392-393, 492. *
SP 24.6: A 900MHz CMOS LC-Oscillator with Quadrature Outputs, 1996, Rofougaran et al. *
TA 8.7:A 2.7V GSM Transceiver ICs with On-Chip Filtering, 1995, Marshall et al.
Techdictionary.com definition of decoder, Link:http://www.teghdictionary.com, undated.
The Authoritative Dictionary of IEEE Standards Terms 7 Edition, undated, p. 280.
The HC-5502X14X Telephone Subscriber Line InterfaceCircuits (SLIC), Jan. 1997, Phillips.
TP 11.1: Direct-Conversion Radio Transceivers for Digital Communications, 1995, Abidi.
TP 12.5 A 1.4GHz Differential Low-Noise CMDS Frequency Synthesizer using a Wideband PLL Architecture, 2000, Line et al., pp. 204-205, 458.
TP 13.5 A Single-Chip CMOS Direct-Conversion Transceiver for 900MHz Spread-Spectrum Digital Cordless Phones, 1999, Cho et al., pp. 420-430.
TP 9.2: A 900MHz Transceiver Chip Set for Dual-Mode Cellular Radio Mobile Terminals with an Integrated LC Resonator, 1993, Koullias et al., pp. 140-141, 278.
U.S. Appl. No. 09/737,743, filed Dec. 2000, Sutardja.
U.S. Appl. No. 09/920,241, filed Aug. 2001, Roo.
U.S. Appl. No. 09/920240, filed Aug. 2001, Roo et al.
U.S. Appl. No. 60/106,265, filed Oct. 1998, Chan.
U.S. Appl. No. 60/107,105, filed Nov. 1998, Chan.
U.S. Appl. No. 60/107,702, filed Nov. 1998, Chan.
U.S. Appl. No. 60/108,001, filed Nov. 1998, Chan.
Uda, et al., "125Mbits/s Fiber Optic Transmitter/Receiver with Duplex Connector", Fiber Optic Communications Development Div., NEC Corporation, NEC Engineering, Ltd. and Trans, no date.
University of Pennsylvania CSE Digital Logic Lab re decoders. Link: http://www.cse.dmu.ac.uk/-sexton/wwwPages/cs2.html.
WA 18.7—A Combined 10/125Mbaud Twisted-PairLine Driver withProgrammablePerformance/Power Features, 2000, Shoval et al., pp. 314-315.
WP 23.6 A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator, 1999, Lam et al., pp. 402-403, 484.
WP 23.7 A 6.5GHz Monolithic CMOS Voltage-Controlled Oscillator, 1999, Liu et al., pp. 404-405, 484.
WP 23.8 A 9.8GHz Back-Gate Tuned VCD in 0.35um, 1999, Wang et al., pp. 406-407, 484.
Yamaguchi, et al., "400Mbit/s Submarine Optical Repeater Using Integrated Circuits," Fujitsu Laboratories Ltd. and English Language Translation, no date.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100052758A1 (en) * 2008-08-26 2010-03-04 Ipgoal Microelectronics (Sichuan) Co., Ltd. Stage by stage delay current-summing slew rate controller
US7795942B2 (en) * 2008-08-26 2010-09-14 IPGlobal Microelectronics (SiChuan) Co., Ltd. Stage by stage delay current-summing slew rate controller
US20120218135A1 (en) * 2011-02-25 2012-08-30 Shinichi Amemiya Transmission circuit, ultrasonic probe and ultrasonic image display apparatus
US8451155B2 (en) * 2011-02-25 2013-05-28 General Electric Company Transmission circuit, ultrasonic probe and ultrasonic image display apparatus

Also Published As

Publication number Publication date
US6462688B1 (en) 2002-10-08

Similar Documents

Publication Publication Date Title
USRE40971E1 (en) Direct drive programmable high speed power digital-to-analog converter
US6844837B1 (en) Class B driver
US8009073B2 (en) Method and apparatus for generating an analog signal having a pre-determined pattern
US7330069B2 (en) Digital switching amplifier
Syed et al. Digital pulse width modulator architectures
US6373334B1 (en) Real time correction of a digital PWM amplifier
US9722625B2 (en) Semiconductor device and semiconductor device operating method
US7113121B1 (en) Communication driver
US9048864B2 (en) Digital to analog converter with current steering source for reduced glitch energy error
US7777538B2 (en) Method and apparatus for slew rate control
CN107645233A (en) For producing the method and circuit of pulse-width signal
CN101395771B (en) Driving laser diodes in a manner that is immune to temperature changes, aging, and other effects
US7095348B1 (en) Communication driver
De Martino et al. A standard-cell-based all-digital PWM modulator with high resolution and spread-spectrum capability
US7005901B1 (en) Process, temperature and supply insensitive trapezoidal pulse generator
US6069511A (en) Digital slew rate and duty cycle control circuit and method
US7280060B1 (en) Communication driver
US6577202B1 (en) Multiple duty cycle tap points for a precise and programmable duty cycle generator
US5963106A (en) Double-sided pulse width modulator
EP0720301B1 (en) Three-level digital-to-analog converter for low-power consumption
US6803798B1 (en) Output control apparatus of pulse width modulator
KR100400314B1 (en) Clock synchronization device
USRE41831E1 (en) Class B driver
US7184452B2 (en) Laser driver circuit for reducing electromagnetic interference
JP2852282B2 (en) Clock generator

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: CAVIUM INTERNATIONAL, CAYMAN ISLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MARVELL INTERNATIONAL LTD.;REEL/FRAME:052918/0001

Effective date: 20191231

AS Assignment

Owner name: MARVELL ASIA PTE, LTD., SINGAPORE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CAVIUM INTERNATIONAL;REEL/FRAME:053475/0001

Effective date: 20191231