USRE40523E1 - Non-contact rotational position sensor and throttle valve assembly including non-contact rotational position sensor - Google Patents

Non-contact rotational position sensor and throttle valve assembly including non-contact rotational position sensor Download PDF

Info

Publication number
USRE40523E1
USRE40523E1 US10/797,702 US79770204A USRE40523E US RE40523 E1 USRE40523 E1 US RE40523E1 US 79770204 A US79770204 A US 79770204A US RE40523 E USRE40523 E US RE40523E
Authority
US
United States
Prior art keywords
magnetic
magnet
magnetic plate
permanent magnet
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US10/797,702
Inventor
Kenji Miyata
Satoshi Shimada
Fumio Tajima
Toshifumi Usui
Masanori Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to US10/797,702 priority Critical patent/USRE40523E1/en
Application granted granted Critical
Publication of USRE40523E1 publication Critical patent/USRE40523E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/14Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields

Definitions

  • the present invention relates to a rotational position sensor for detecting the rotational position of a rotating axis of a throttle valve used in an internal combustion engine, for example, and more particularly to a non-contact rotational position sensor.
  • the present invention also relates to a throttle valve assembly including the non-contact rotational position sensor.
  • Those prior-art sensors are based on the fact that, taking the permanent magnet side as a rotor, the circumferential magnetic flux density in a stator is linearly distributed relative to the rotating direction of the rotor. To avoid as perfect as possible a magnetic field distribution in the stator from being affected by the rotational position of the rotor to which the magnet is attached, confronting surfaces of the rotor and the stator are shaped such that their lengths are even in a direction perpendicular to the rotating direction of the rotor.
  • the conventional rotational position sensors have a problem that flexibility in design is low when the sensors are designed to be adapted for target equipment to which the sensors are attached.
  • part of a stator-side magnetic path is formed by, e.g., a pair of magnetic plates arranged to sandwich an annular or semi-annular permanent magnet therebetween, which constitutes a rotor.
  • a magnetic flux converging portion serving as a portion to concentrate a magnetic flux is provided midway a closed magnetic path formed through the stator-side magnetic path.
  • a magnetic sensitive device is disposed in the magnetic flux concentrating (converging) portion.
  • an annular or semi-annular permanent magnet is attached to an end of a rotating shaft of a throttle valve, and a pair of magnetic substance assemblies sandwiching the permanent magnet therebetween to form magnetic paths are attached to a resin cover which is in turn attached to a body of the throttle valve.
  • a magnetic flux converging portion is provided in each of the magnetic substance assemblies, and a magnetic sensitive device is disposed in the magnetic flux converging portion.
  • the annular or semi-annular permanent magnet is detachably attached to the rotating shaft, and at least one of the magnetic substance assemblies has a hole formed at the center thereof and having a diameter greater than a diameter of the rotating shaft, but smaller than an inner diameter of the permanent magnet.
  • FIG. 1 shows an external appearance of a non-contact rotational position sensor according to a first embodiment of the sent invention
  • FIG. 2 shows an internal structure of the non-contact rotational position sensor according to the first embodiment of the present invention
  • FIG. 3 shows a magnetization distribution of a ring-shaped permanent magnet as one component of the non-contact rotational position sensor according to the first embodiment of the present invention
  • FIG. 4 shows a distribution of magnetic flux density vectors in the non-contact rotational position sensor according to the first embodiment of the present invention
  • FIG. 5A is a representation for explaining the principle of operation of the non-contact rotational position sensor according to the first embodiment of the present invention
  • FIG. 5B is a conceptual sectional view taken along line Y—Y in FIG. 5A ;
  • FIG. 6 shows an external appearance of a non-contact rotational position sensor according to a second embodiment of the present invention
  • FIG. 7 shows an internal structure of the non-contact rotational position sensor according to the second embodiment of the present invention.
  • FIG. 8 shows a magnetization distribution of a ring-shaped permanent magnet as one component of the non-contact rotational position sensor according to the second embodiment of the present invention
  • FIG. 9 shows a distribution of magnetic flux density vectors in the non-contact rotational position sensor according to the second embodiment of the present invention.
  • FIG. 10 shows an external appearance of a non-contact rotational position sensor according to a third embodiment of the present invention.
  • FIG. 11 shows an external appearance of a non-contact rotational position sensor according to a fourth embodiment of the present invention.
  • FIG. 12 shows an internal structure of a non-contact rotational position sensor according to a fifth embodiment of the present invention.
  • FIG. 13 shows an internal structure of a non-contact rotational position sensor according to a sixth embodiment of the present invention.
  • FIG. 14 shows an internal structure of a non-contact rotational position sensor according to a seventh embodiment of the present invention.
  • FIG. 15 shows shapes of magnetic plates before machining, which are used in a non-contact rotational position sensor according to an eighth embodiment of the present invention.
  • FIG. 16 shows an internal structure of the non-contact rotational position sensor according to the eighth embodiment of the present invention.
  • FIG. 17 shows an internal structure of a non-contact rotational position sensor according to a ninth embodiment of the present invention in a state of being attached to an actual apparatus
  • FIG. 18 shows an internal structure of a non-contact rotational position sensor according to a tenth embodiment of the present invention in a state of being attached to an actual apparatus
  • FIG. 19 is a conceptual view (showing components that have the same functions as actual ones, but are not exactly coincident in dimensions, shapes and positional relationship with the actual ones) taken along line X—X in FIG. 20 ;
  • FIG. 20 is an exploded perspective view showing one embodiment of a throttle valve assembly to which the non-contact rotational position sensor of the present invention is attached.
  • FIGS. 1 to 4 A first embodiment of the present invention will be described with reference to FIGS. 1 to 4 .
  • FIG. 1 shows an external appearance of a non-contact rotational position sensor 100 according to this first embodiment
  • FIG. 2 shows an internal structure of the sensor.
  • a rotor comprises a ring-shaped (annular) permanent magnet 10 and a shaft (rotating axis) 15 for supporting the ring-shaped permanent magnet 10 .
  • the ring-shaped permanent magnet 10 is sandwiched between vertically spaced pairs of magnetic plates (magnetic substance assemblies) 11 , 12 , 13 and 14 from above and below.
  • the magnetic plates 11 , 12 are arranged to be apart from each other in the horizontal direction. Air gaps (a 1 , a 2 , b 1 and b 2 ) are therefore formed between the magnetic plates 11 , 12 . Also, air gaps are similarly formed between the magnetic plates 13 , 14 .
  • the magnetic plates 11 , 12 , 13 and 14 are provided respectively with protruded magnetic substance portions 16 , 17 , 18 and 19 that serve as magnetic flux concentrating (converging) portions.
  • a Hall device (magnetic sensitive device) 21 is arranged between the protruded magnetic substance portions 16 and 17
  • a Hall device (magnetic sensitive device) 22 is arranged between the protruded magnetic substance portions 18 and 19 .
  • the protruded magnetic substance portions 16 , 17 , 18 and 19 serving as the magnetic flux concentrating (converging) portions are formed in horizontally symmetrical positions with the air gaps a 1 , a 2 , b 1 and b 2 situated between pairs 16 , 18 ; 17 , 19 , and they are located at an outer periphery of the magnet 10 . While the protruded magnetic substance portions 16 , 17 , 18 and 19 serving as the magnetic flux concentrating (converging) portions are formed integrally with the magnetic plates 11 , 12 , 13 and 14 in this embodiment, they may be formed separately and then fixed to the respective magnetic plates by bonding or welding.
  • FIG. 5 B A front view of the non-contact rotational position sensor of this embodiment is shown in FIG. 5 B.
  • the pairs of magnetic plates 11 , 13 ; 12 , 14 are arranged to face each other in parallel with a uniform gap G 1 left therebetween.
  • a small gap g 1 is formed between the magnetic plates 11 , 12 and an upper surface of the magnet 10
  • a small gap g 2 is formed between the magnetic plates 13 , 14 and a lower surface of the magnet 10 .
  • the gap G 1 has a size determined by the sum of a thickness t 1 of the magnet 10 and the two small gaps g 1 , g 2 .
  • gaps between one pair of protruded magnetic substance portions 16 , 17 and between the other pair 18 , 19 are each smaller than the thickness t 1 of the magnet 10 .
  • An insertion hole 51 formed at the center of the two magnetic plates 13 , 14 for insertion of the shaft 15 therethrough has a diameter d set to be equal to or smaller than an inner diameter D of the magnet 10 .
  • the diameter d of the insertion hole 51 is required to be at least smaller than an outer diameter D 0 of the magnet 10 , but how small should be the diameter d of the insertion hole 51 is determined depending on conditions of magnetic paths.
  • the diameters d, d 0 of the holes 51 , 52 formed at the centers of the pairs of magnetic plates ( 11 , 12 ; 13 , 14 ) are determined depending on whether the rotating shaft 15 is utilized as part of the magnetic paths.
  • the rotating shaft 15 is made of a non-magnetic substance, a noticeable change in performance is not resulted from setting the diameters d, d 0 of the holes 51 , 52 , which are formed at the centers of the pairs of magnetic plates, to be smaller than the inner diameter D of the magnet 10 .
  • the rotating shaft 15 is made of a magnetic substance, the magnetic flux at positions, where the magnetic sensitive devices 21 , 22 are attached, is affected by the magnetic flux leaking through the rotating shaft 15 . Therefore, the diameters d, d 0 of the holes 51 , 52 formed at the centers of the pairs of magnetic plates ( 11 , 12 ; 13 , 14 ) are determined in consideration of such an effect.
  • the diameters d, d 0 of the holes 51 , 52 formed at the centers of the pairs of magnetic plates ( 11 , 12 ; 13 , 14 ) are set to smaller values.
  • the diameters d, d 0 of the holes 51 , 52 formed at the centers of the pairs of magnetic plates ( 11 , 12 ; 13 , 14 ) are set to larger values.
  • the hole diameters d, d 0 are set to be greater than the outer diameter D 0 of the magnet 10 , air gaps between the magnet 10 and the magnetic plates ( 11 , 12 ; 13 , 14 ) would be too increased, thus resulting in the reduced amount of basic magnetic flux.
  • upper limits of the diameters d, d 0 of the holes 51 , 52 formed at the centers of the pairs of magnetic plates ( 11 , 12 ; 13 , 14 ) are each preferably set to the outer diameter D 0 of the magnet 10 .
  • the magnetic flux generated from the magnet is concentrated and converged to the two air gaps G 2 where the magnetic sensitive devices 21 , 22 are attached.
  • the leakage magnetic path passing the rotating shaft 15 is utilized to adjust the magnetic flux so that extreme saturation of the magnetic flux will not occur at the protruded magnetic substance portions 16 , 17 , 18 and 19 .
  • non-contact rotational position sensor functions with only one of the Hall devices 21 , 22 , two Hall devices are disposed in this embodiment for the purpose of backup in the event of a failure or diagnostic check of a failure.
  • the ring-shaped permanent magnet 10 is magnetized substantially in the axial direction of the rotating shaft.
  • the direction in which the ring-shaped permanent magnet 10 is magnetized is upward in one angular region covering 1800 in the rotating direction, and it is downward in the other angular region.
  • Magnetic fields generated by the ring-shaped permanent magnet 10 are shunted to the upper and lower magnetic plates 11 , 12 , 13 and 14 , and then pass the protruded magnetic substance portions 16 , 17 , 18 and 19 and the Hall devices 21 , 22 .
  • the direction and intensity of the magnetic field passing the Hall devices 21 , 22 are changed depending on the rotational position of the ring-shaped permanent magnet 10 .
  • FIG. 5 A The relationship between the rotational position of the ring-shaped permanent magnet 10 and the amount of magnetic flux passing the Hall device 21 will now be described with reference to FIG. 5 A.
  • the directions of the magnetic fields generated by the ring-shaped permanent magnet 10 are shown in FIG. 5 A.
  • a region a and a region b cover the same circumferential (opening) angle, and the direction of the magnetic fields in these regions are opposite to each other. Therefore, the magnetic flux generated from the region a is canceled by the magnetic flux generated from the region b. Because the magnetization is actually weakened near the boundary between the region a and a region c at which the direction of the magnetization distribution is reversed, the magnetic fluxes from the two regions a and b are not exactly canceled in the strict sense, but they can be regarded as being substantially canceled in the practical point of view.
  • the area of the region c is proportional to the rotational angle of the ring-shaped permanent magnet 10 .
  • the magnetic flux density detected by the Hall device 21 is therefore substantially proportional to the rotational angle of the ring-shaped permanent magnet 10 .
  • the Hall device 21 by sensing the magnetic flux density detected by the Hall device 21 , it is possible to detect the rotational angle of the ring-shaped permanent magnet 10 , i.e., the rotational angle of the shaft 15 .
  • the present invention is not limited to such an arrangement, and the gaps may be set to satisfy a 1 >b 1 and a 2 >b 2 .
  • the pairs of upper and lower magnetic plates 11 , 13 ; 12 , 14 are arranged to face each other in parallel with the uniform gap G 1 left therebetween. Also, the pairs of upper and lower magnetic plates 11 , 13 ; 12 , 14 are arranged to face the permanent magnet 10 such that the uniform gaps g 1 (upper gap) and g 2 (lower gap) are kept with respect to the upper and lower surfaces of the permanent magnet 10 .
  • the gap G 1 is greater than the thickness t 1 of the permanent magnet 10 by the sum (g+g 2 ) of the gaps g 1 , g 2 .
  • a gap g 3 between the protruded magnetic substance portions 16 , 17 and a gap g 4 between the protruded magnetic substance portions 18 , 19 are smaller than the thickness t 1 of the permanent magnet 10 .
  • This arrangement enables the magnetic flux of the permanent magnet 10 to be converged to the protruded magnetic substance portions 16 , 17 , 18 and 19 . From this point of view, the protruded magnetic substance portions 16 , 17 , 18 and 19 serve as magnetic flux concentrating portions.
  • the basic principle of the present invention resides in that the protruded magnetic substance portions 16 , 17 , 18 and 19 are provided between the pairs of magnetic plates 11 , 13 ; 12 , 14 to form portions allowing the magnetic flux to easily pass therethrough, whereby the magnetic flux is condensed to those portions.
  • each component is on the order of ⁇ 0.2 mm when the non-contact rotational position sensor is produced at a low cost
  • an effect of attachment errors upon characteristics of the sensor can be reduced in this embodiment by setting each of the air gaps between the ring-shaped permanent magnet 10 and the upper and lower magnetic plates 11 , 12 , 13 and 14 to be not less than 0.5 mm, preferably approximately 1 mm. This point is similarly applied to other embodiments described below.
  • Magnetic materials have varying degrees of magnetic hysteresis characteristic. Generally, when the degree of magnetic hysteresis exceeds 0.5 T or 1 T, the magnetic hysteresis effect becomes noticeable in a gradually increasing manner. To obtain a high accuracy in detection of the rotational position sensor, therefore, it is preferable that the magnetic hysteresis is held in a range as small as possible in operation of the sensor. For this reason, the magnetic flux density in magnetic materials, typically represented by the magnetic plates 11 , 12 , 13 and 14 , is preferably held to be not higher than 0.5 T. This point is also similarly applied to the other embodiments described below.
  • the permanent magnet is described as being ring-shaped in this embodiment, similar functions can be provided even with a disk-shaped permanent magnet.
  • FIG. 6 shows an external appearance of a non-contact rotational position sensor 200 according to this second embodiment
  • FIG. 7 shows an internal structure of the sensor.
  • the sensor of this second embodiment is of basically the same structure as that of the above first embodiment except that an magnetic plate 30 is formed of one piece of magnetic plate.
  • the horizontal gaps are formed in at least one of the upper and lower magnetic plates. In this embodiment, the horizontal gaps are formed between the lower magnetic plates 13 and 14 .
  • FIG. 8 shows a magnetization distribution of the ring-shaped permanent magnet 10
  • FIG. 9 shows a distribution of magnetic flux density vectors.
  • a magnetic path is formed above the ring-shaped permanent magnet 10 , and therefore the amounts of magnetic flux shunted to the protruded magnetic substance portions 16 , 17 and the protruded magnetic substance portions 18 , 19 are somewhat reduced.
  • This embodiment however has advantages that, because of employing one piece of upper magnetic plate 30 , the number of parts is reduced and the rotational position sensor can be manufactured with more ease. Further, when the rotational position sensor is attached at its lower surface to a target apparatus, an upper surface of the sensor is faced to the outside. In such a case, this embodiment provides another advantage of reducing an effect upon a sensor output caused when any magnetic substance enters the sensor from the outside.
  • FIG. 10 shows a third embodiment of the present invention.
  • a non-contact rotational position sensor 300 of this third embodiment is modified from the structure of the above first embodiment in that holes 31 , 32 are formed respectively in the magnetic plates 11 , 12 .
  • Magnetic resistance distributions in magnetic paths formed in the magnetic plates 11 , 12 can be adjusted depending on shapes and sizes of the holes 31 , 32 .
  • This arrangement is effective in improving linearity in the relationship between the magnetic flux density detected by the Hall device and the rotational angle of the ring-shaped permanent magnet as compared with that in the rotational position sensor of the above first embodiment. It is also possible to further improve the linearity by forming similar holes in the magnetic plates 13 , 14 as well. While one hole is formed in each magnetic plate in this embodiment, the present invention is not limited to such an arrangement, and two or more holes may be formed in each magnetic plate. This point is similarly applied to the other embodiments described below.
  • FIG. 11 shows a fourth embodiment of the present invention.
  • a non-contact rotational position sensor 400 of this fourth embodiment is modified from the structure of the above second embodiment in that holes 31 , 32 are formed in the magnetic plate 30 .
  • This arrangement is effective in improving linearity in the relationship between the magnetic flux density detected by the Hall device and the rotational angle of the ring-shaped permanent magnet as compared with that in the rotational position sensor of the above second embodiment.
  • FIG. 12 shows a fifth embodiment of the present invention.
  • a non-contact rotational position sensor 500 of this fifth embodiment is modified from the structure of the above first embodiment in that the ring-shaped permanent magnet 10 magnetized into a double-pole magnet, shown in FIG. 2 , is replaced by a single-pole permanent magnet 10 a in the form split into a semi-ring.
  • the permanent magnet 10 a is magnetized upward or downward parallel to the axial direction of the rotating shaft.
  • the magnetic flux entering the magnetic plate 11 is substantially proportional to the area of a vertically projected surface of the permanent magnet 10 a upon the magnetic plate 11 , and the vertically projected surface area of the permanent magnet 10 a is proportional to the rotational angle thereof.
  • the magnetic flux density detected by the Hall device 21 is therefore proportional to the rotational angle of the permanent magnet 10 a.
  • the rotational angle of the permanent magnet 10 a i.e., the rotational angle of the shaft 15 .
  • FIG. 13 shows a sixth embodiment of the present invention.
  • a non-contact rotational position sensor 600 of this sixth embodiment is modified from the structure of the above second embodiment in that the ring-shaped permanent magnet 10 magnetized into a double-pole magnet, shown in FIG. 7 , is replaced by a single-pole permanent magnet 10 a in the form split into a semi-ring.
  • the magnetic flux generated from the permanent magnet 10 a enters the magnetic plate 30 and is then shunted to the protruded magnetic substance portions 17 , 19 .
  • the magnetic fluxes enter the magnetic plates 13 , 14 and then return to the permanent magnet 10 a, whereby magnetic path loops are formed.
  • a distribution ratio between the magnetic fluxes shunted to the protruded magnetic substance portions 17 , 19 is substantially determined by a ratio of the area of a vertically projected surface of the permanent magnet 10 a upon the magnetic plate 13 to the area of a vertically projected surface of the permanent magnet 10 a upon the magnetic plate 14 .
  • the magnetic flux density detected by the Hall device 21 is therefore proportional to the rotational angle of the permanent magnet 10 a.
  • the rotational angle of the permanent magnet 10 a which is a circular arc in shape, i.e., the rotational angle of the shaft 15 .
  • FIG. 14 shows a seventh embodiment of the present invention.
  • a rotor comprises a ring-shaped permanent magnet 10 , a magnetic yoke 35 , and a shaft 15 for supporting the ring-shaped permanent magnet 10 .
  • a stator comprises magnetic plates 31 surrounding the ring-shaped permanent magnet 10 from the outer side, and Hall devices 21 , 22 inserted in gaps between the magnetic plates 31 .
  • the ring-shaped permanent magnet 10 is magnetized in the radial direction, and looking round an outer circumferential surface of the ring-shaped permanent magnet 10 , it is magnetized into a double-pole magnet.
  • the ring-shaped permanent magnet 10 is magnetized outward in the radial direction in one circumferential region of 180°, and magnetized inward in the radial direction in the other circumferential region.
  • Magnetic plates sub-members 31 a of the magnetic plates 31 which form magnetic poles closest to the rotor, serve to collect the magnetic flux generated from the ring-shaped permanent magnet 10 , and magnetic field distribution in the magnetic plate sub-members 31 a do not directly affect signal outputs of the Hall devices 21 , 22 . Therefore, shapes of surfaces 31 b of the magnetic plate sub-members 31 a directly facing the ring-shaped permanent magnet 10 are not required to be even in the rotating direction of the ring-shaped permanent magnet 10 .
  • the magnetic flux collected by the magnetic plate sub-member 31 a of one magnetic plate 31 passes an associated magnetic plate submember 31 c and then the Hall device 21 . Thereafter, the magnetic flux passes a magnetic plate sub-member 31 c and the magnetic plate sub-member 31 a of the other magnetic plate 31 , and is then returned to the ring-shaped permanent magnet 10 . While the magnetic plate sub-member 31 a and the magnetic plate sub-member 31 c are arranged on the same plane in this embodiment, the present invention is not limited to such an arrangement. Looking FIG. 14 from the observer side, the magnetic plate sub-member 31 c may be arranged on the front or rear side of the ring-shaped permanent magnet 10 so as to provide a three-dimensional structure.
  • FIG. 16 shows an eighth embodiment of the present invention.
  • a non-contact rotational position sensor 800 of this eighth embodiment differs from that of the above first embodiment in that two pairs of magnetic plates 50 , 51 having protruded portions 50 a, 51 a, shown in FIG. 15 , are employed instead of the magnetic plates 11 , 12 , 13 and 14 and the protruded magnetic substance portions 16 , 17 , 18 and 19 , the protruded portions 50 a, 51 a being bent substantially vertical to planes of the magnetic plates 50 , 51 .
  • a ring-shaped permanent magnet 10 is sandwiched between the vertically spaced magnetic plates 50 , 51 from above and below as shown in FIG. 16 .
  • Hall devices 21 , 22 are held between the protruded portions 50 a, 51 a of the magnetic plates 50 , 51 .
  • Magnetic paths substantially equivalent to those in the above first embodiment were thereby formed to provide the function of a non-contact rotational position sensor.
  • the productivity can be increased as compared with the above first embodiment in which the protruded magnetic substance portions 16 , 17 , 18 and 19 are provided on the magnetic plates 11 , 12 , 13 and 14 .
  • a rotating-axis penetrating hole 42 through which a rotating axis is to be extended to the outside, is formed in a housing cover 41 of a target apparatus for which a rotational angle is to be detected.
  • the magnetic plates 13 , 14 including the protruded magnetic substance portions 16 , 18 provided thereon, and the Hall devices 21 , 22 are mounted onto an outer surface of the housing cover 41 .
  • An integral assembly of the ring-shaped permanent magnet 10 and the shaft 15 is coupled to the rotating axis of the target apparatus.
  • the housing cover 40 is made of a resin, for example, and the resin is molded into the housing cover 40 with the magnetic plates 11 , 12 embedded therein.
  • the magnetic plates 11 , 12 , 13 , 14 and 30 are illustrated as being rectangular plates.
  • the magnetic plates for use in the present invention are not limited to a rectangular shape, but may have any of other suitable shapes such as a disk, semi-disk, sector, and a trapezoid.
  • non-contact rotational position sensors using permanent magnets including the sensor of the present invention.
  • any magnetic substance may exist in the vicinity of the assembled non-contact rotational position sensors.
  • an output signal of a magnetic sensitive device such as a Hall device
  • a shield cover 45 provided with a magnetic substance is attached to a housing cover 40 of a non-contact rotational position sensor 1000 , as shown in FIG. 18 .
  • This arrangement is advantageous in reducing an effect of any external magnetic substance upon an output signal of a magnetic sensitive device, such as a Hall device.
  • a rotating shaft (rotating axis) 203 (corresponding to the shaft 15 ) is rotatably supported by a body 201 .
  • Numeral 200 denotes a throttle valve for controlling an opening area of an air passage formed in the body 201 .
  • the throttle valve 200 is fixed to the rotating shaft 203 by screws.
  • Numeral 202 denotes a resin cover fixed to the body 201 by screws ( 210 a- 210 c).
  • a through hole 204 is formed in the resin cover 202 .
  • a fore end of the rotating shaft 203 is extended to the outside of the resin cover 202 after passing the through hole 204 .
  • a rectangular recess is formed in the resin cover 202 around the through hole 204 .
  • Magnetic plates 13 , 14 having a hole 51 formed at the center thereof are stuck by bonding to an outer wall surface of the resin cover 202 which defines the rectangular recess.
  • the magnetic plates 13 , 14 are horizontally divided from each other, and air gaps similar to those (a 1 , a 2 , b 1 and b 2 ) shown in FIG. 1 are formed between the magnetic plates 13 and 14 .
  • An annular or semi-annular magnet 10 is fixed to a resin-made attachment piece 110 having an attachment hole formed at the center, and the fore end of the rotating shaft 203 is fixed by press fitting to the central hole of the attachment piece 110 .
  • the magnet 10 having an outer diameter greater than the diameter of the hole 51 formed at the center of the two magnetic plates 13 , 14 can be attached to the fore end of the rotating shaft 203 on the outer side of the magnetic plates 13 , 14 .
  • Numeral 40 denotes a resin-made auxiliary cover for covering an area corresponding to the rectangular recess of the resin cover 202 .
  • auxiliary cover 40 Inside the auxiliary cover 40 , magnetic plates 11 , 12 are bonded by an adhesive to positions to face the magnetic plates 13 , 14 , respectively. In a state where the auxiliary cover 40 is attached to the resin cover 202 , a pair of gaps G 2 are formed between the protruded magnetic substance portions 16 , 18 provided on the magnetic plates 13 , 14 and between the protruded magnetic substance portions 17 , 19 provided on the magnetic plates 11 , 12 .
  • Hall devices 21 , 22 as magnetic sensitive devices are disposed in the gaps G 2 .
  • the same non-contact rotational position sensor as shown in FIG. 1 to FIGS. 5A and 5B can be constructed at the fore end of the rotating shaft of the throttle valve.
  • a motor 207 is mounted to the body 201 , and a torque of the motor 207 is transmitted to the throttle valve rotating shaft 203 through an intermediate gear 205 and a final stage gear 206 fixed to the rotating shaft 203 .
  • Numeral 208 denotes a stationary shaft for supporting the intermediate gear 205 .
  • the intermediate gear 205 is made of a resin material and the final stage gear 206 is made of a sintered alloy. This material selection is advantageous in that electromagnetic noises generated by the motor 207 are absorbed by the final stage gear 20 made of a magnetic substance and hence can be avoided from adversely affecting a magnetic circuit of the sensor.
  • That effect can also be obtained by using a magnetic material to form the intermediate gear 205 and/or the stationary shaft 208 for supporting the intermediate gear 205 .
  • the final stage gear 206 when the final stage gear 206 is made of a magnetic material, it must be taken into consideration that the final stage gear 206 acts as part of the magnetic path of the leakage magnetic flux passing the rotating shaft.
  • a gear central portion is required to be made of a metal to provide a securing force sufficient to fix the final stage gear 206 onto the rotating shaft with certainty.
  • a metal portion is made of a magnetic material, it likewise acts as part of the magnetic path of the leakage magnetic flux passing the rotating shaft of the magnet 10 . Accordingly, a magnetic action of the metal portion must also be taken into consideration.
  • the diameter of the hole 51 formed at the center of the two magnetic plates 13 , 14 or the gap between the magnetic material member on the final stage gear side and the magnetic plates 13 , 14 must be set in consideration of the above-described points.
  • the air gaps G 2 between the magnet 10 and the magnetic plates 13 , 14 are set to be smaller than any of the air gap between the magnetic plates 13 , 14 and the rotating shaft 203 and the air gap between the magnetic plates and the magnetic material member on the side of the final stage gear 206 so that the leakage magnetic flux passing the rotating shaft 203 is minimized.
  • the following advantages are achieved. Satisfactory performance of a non-contact rotational position sensor can be obtained while high flexibility in design is ensured, even when confronting surfaces of magnetic paths on the stator side and the rotor side are not shaped such that their lengths are even in a direction perpendicular to the rotor rotating direction. Also, since the magnetic flux can be effectively concentrated to positions where magnetic sensitive devices are attached, a non-contact rotational position sensor having high accuracy and high sensitivity can be obtained. Further, when a used permanent magnet is magnetized in the axial direction of a rotating axis, a sufficient level of detection sensitivity can be provided even with no magnetic material other than the permanent magnet being disposed on the rotor side. The inertial moment of the rotor is therefore reduced. As a result, the load of an actuator for rotating the rotor can be reduced, and hence a response of the rotor can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

A non-contact sensor for sensing a rotational position of a rotating object is provided. A ring-shaped permanent magnet magnetized in the axial direction is sandwiched between two pairs of magnetic plates from above and below. Two pairs of upper and lower protruded magnetic substance portions are provided between the upper and lower magnetic plates at opposite outer ends thereof. Magnetic sensitive devices are inserted in air gaps between the two pairs of upper and lower protruded magnetic substance portions. A magnetic flux generated from the ring-shaped permanent magnet is substantially concentrated to the protruded magnetic substance portions and passes the magnetic sensitive devices. The amount of magnetic flux passing each magnetic sensitive device is substantially proportional to the rotational angle of the ring-shaped permanent magnet. The rotational position of the ring-shaped permanent magnet and hence the rotational position of a rotating shaft supporting the ring-shaped permanent magnet can be sensed in a non-contact manner as a signal output from the magnetic sensitive device. Since the magnetic flux is effectively concentrated to positions where magnetic sensitive devices are attached, a non-contact rotational position sensor having high accuracy and high sensitivity can be obtained.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a rotational position sensor for detecting the rotational position of a rotating axis of a throttle valve used in an internal combustion engine, for example, and more particularly to a non-contact rotational position sensor.
The present invention also relates to a throttle valve assembly including the non-contact rotational position sensor.
2. Description of the Related Art
Conventional rotational position sensors of the above-mentioned type are disclosed in Japanese Patent Nos. 2842482 and 2920179 and U.S. Pat. Nos. 5,528,139, 5,789,917 and 6,137,288.
Those prior-art sensors are based on the fact that, taking the permanent magnet side as a rotor, the circumferential magnetic flux density in a stator is linearly distributed relative to the rotating direction of the rotor. To avoid as perfect as possible a magnetic field distribution in the stator from being affected by the rotational position of the rotor to which the magnet is attached, confronting surfaces of the rotor and the stator are shaped such that their lengths are even in a direction perpendicular to the rotating direction of the rotor.
Because of such a limitation imposed on shapes of the confronting surfaces of the rotor and the stator, the conventional rotational position sensors have a problem that flexibility in design is low when the sensors are designed to be adapted for target equipment to which the sensors are attached.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide a non-contact rotational position sensor which is able to operate with satisfactory performance even when confronting surfaces of magnetic paths on the stator side and the rotor side are not shaped such that their lengths are even in a direction perpendicular to the rotor rotating direction.
To achieve the above object, according to one aspect of the present invention, part of a stator-side magnetic path is formed by, e.g., a pair of magnetic plates arranged to sandwich an annular or semi-annular permanent magnet therebetween, which constitutes a rotor. A magnetic flux converging portion serving as a portion to concentrate a magnetic flux is provided midway a closed magnetic path formed through the stator-side magnetic path. A magnetic sensitive device is disposed in the magnetic flux concentrating (converging) portion.
According to another aspect of the present invention, an annular or semi-annular permanent magnet is attached to an end of a rotating shaft of a throttle valve, and a pair of magnetic substance assemblies sandwiching the permanent magnet therebetween to form magnetic paths are attached to a resin cover which is in turn attached to a body of the throttle valve. A magnetic flux converging portion is provided in each of the magnetic substance assemblies, and a magnetic sensitive device is disposed in the magnetic flux converging portion.
More specifically, the annular or semi-annular permanent magnet is detachably attached to the rotating shaft, and at least one of the magnetic substance assemblies has a hole formed at the center thereof and having a diameter greater than a diameter of the rotating shaft, but smaller than an inner diameter of the permanent magnet.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows an external appearance of a non-contact rotational position sensor according to a first embodiment of the sent invention;
FIG. 2 shows an internal structure of the non-contact rotational position sensor according to the first embodiment of the present invention;
FIG. 3 shows a magnetization distribution of a ring-shaped permanent magnet as one component of the non-contact rotational position sensor according to the first embodiment of the present invention;
FIG. 4 shows a distribution of magnetic flux density vectors in the non-contact rotational position sensor according to the first embodiment of the present invention;
FIG. 5A is a representation for explaining the principle of operation of the non-contact rotational position sensor according to the first embodiment of the present invention, and FIG. 5B is a conceptual sectional view taken along line Y—Y in FIG. 5A;
FIG. 6 shows an external appearance of a non-contact rotational position sensor according to a second embodiment of the present invention;
FIG. 7 shows an internal structure of the non-contact rotational position sensor according to the second embodiment of the present invention;
FIG. 8 shows a magnetization distribution of a ring-shaped permanent magnet as one component of the non-contact rotational position sensor according to the second embodiment of the present invention;
FIG. 9 shows a distribution of magnetic flux density vectors in the non-contact rotational position sensor according to the second embodiment of the present invention;
FIG. 10 shows an external appearance of a non-contact rotational position sensor according to a third embodiment of the present invention;
FIG. 11 shows an external appearance of a non-contact rotational position sensor according to a fourth embodiment of the present invention;
FIG. 12 shows an internal structure of a non-contact rotational position sensor according to a fifth embodiment of the present invention;
FIG. 13 shows an internal structure of a non-contact rotational position sensor according to a sixth embodiment of the present invention;
FIG. 14 shows an internal structure of a non-contact rotational position sensor according to a seventh embodiment of the present invention;
FIG. 15 shows shapes of magnetic plates before machining, which are used in a non-contact rotational position sensor according to an eighth embodiment of the present invention;
FIG. 16 shows an internal structure of the non-contact rotational position sensor according to the eighth embodiment of the present invention;
FIG. 17 shows an internal structure of a non-contact rotational position sensor according to a ninth embodiment of the present invention in a state of being attached to an actual apparatus;
FIG. 18 shows an internal structure of a non-contact rotational position sensor according to a tenth embodiment of the present invention in a state of being attached to an actual apparatus;
FIG. 19 is a conceptual view (showing components that have the same functions as actual ones, but are not exactly coincident in dimensions, shapes and positional relationship with the actual ones) taken along line X—X in FIG. 20; and
FIG. 20 is an exploded perspective view showing one embodiment of a throttle valve assembly to which the non-contact rotational position sensor of the present invention is attached.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
A first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
FIG. 1 shows an external appearance of a non-contact rotational position sensor 100 according to this first embodiment, and FIG. 2 shows an internal structure of the sensor. As shown FIGS. 1 and 2, in this embodiment, a rotor comprises a ring-shaped (annular) permanent magnet 10 and a shaft (rotating axis) 15 for supporting the ring-shaped permanent magnet 10. The ring-shaped permanent magnet 10 is sandwiched between vertically spaced pairs of magnetic plates (magnetic substance assemblies) 11, 12, 13 and 14 from above and below.
The magnetic plates 11, 12 are arranged to be apart from each other in the horizontal direction. Air gaps (a1, a2, b1 and b2) are therefore formed between the magnetic plates 11, 12. Also, air gaps are similarly formed between the magnetic plates 13, 14.
The magnetic plates 11, 12, 13 and 14 are provided respectively with protruded magnetic substance portions 16, 17, 18 and 19 that serve as magnetic flux concentrating (converging) portions. A Hall device (magnetic sensitive device) 21 is arranged between the protruded magnetic substance portions 16 and 17, and a Hall device (magnetic sensitive device) 22 is arranged between the protruded magnetic substance portions 18 and 19.
The protruded magnetic substance portions 16, 17, 18 and 19 serving as the magnetic flux concentrating (converging) portions are formed in horizontally symmetrical positions with the air gaps a1, a2, b1 and b2 situated between pairs 16, 18; 17, 19, and they are located at an outer periphery of the magnet 10. While the protruded magnetic substance portions 16, 17, 18 and 19 serving as the magnetic flux concentrating (converging) portions are formed integrally with the magnetic plates 11, 12, 13 and 14 in this embodiment, they may be formed separately and then fixed to the respective magnetic plates by bonding or welding.
A front view of the non-contact rotational position sensor of this embodiment is shown in FIG. 5B.
The pairs of magnetic plates 11, 13; 12, 14 are arranged to face each other in parallel with a uniform gap G1 left therebetween.
A small gap g1 is formed between the magnetic plates 11, 12 and an upper surface of the magnet 10, and a small gap g2 is formed between the magnetic plates 13, 14 and a lower surface of the magnet 10.
As a result, the gap G1 has a size determined by the sum of a thickness t1 of the magnet 10 and the two small gaps g1, g2.
Also, gaps between one pair of protruded magnetic substance portions 16, 17 and between the other pair 18, 19 are each smaller than the thickness t1 of the magnet 10.
An insertion hole 51 formed at the center of the two magnetic plates 13, 14 for insertion of the shaft 15 therethrough has a diameter d set to be equal to or smaller than an inner diameter D of the magnet 10.
The diameter d of the insertion hole 51 is required to be at least smaller than an outer diameter D0 of the magnet 10, but how small should be the diameter d of the insertion hole 51 is determined depending on conditions of magnetic paths.
Note that a hole 52 at the center of the two magnetic plates 11, 12 and the small gaps a1, a2, b1 and b2 between them may be dispensed with. An embodiment corresponding to such a modification will be described later.
The diameters d, d0 of the holes 51, 52 formed at the centers of the pairs of magnetic plates (11, 12; 13, 14) are determined depending on whether the rotating shaft 15 is utilized as part of the magnetic paths. When the rotating shaft 15 is made of a non-magnetic substance, a noticeable change in performance is not resulted from setting the diameters d, d0 of the holes 51, 52, which are formed at the centers of the pairs of magnetic plates, to be smaller than the inner diameter D of the magnet 10. On the other hand, when the rotating shaft 15 is made of a magnetic substance, the magnetic flux at positions, where the magnetic sensitive devices 21, 22 are attached, is affected by the magnetic flux leaking through the rotating shaft 15. Therefore, the diameters d, d0 of the holes 51, 52 formed at the centers of the pairs of magnetic plates (11, 12; 13, 14) are determined in consideration of such an effect.
In the case of positively utilizing the magnetic flux passing the rotating shaft 15, the diameters d, d0 of the holes 51, 52 formed at the centers of the pairs of magnetic plates (11, 12; 13, 14) are set to smaller values. Conversely, in the case of avoiding an effect of the magnetic flux passing the rotating shaft 15, the diameters d, d0 of the holes 51, 52 formed at the centers of the pairs of magnetic plates (11, 12; 13, 14) are set to larger values. However, if the hole diameters d, d0 are set to be greater than the outer diameter D0 of the magnet 10, air gaps between the magnet 10 and the magnetic plates (11, 12; 13, 14) would be too increased, thus resulting in the reduced amount of basic magnetic flux. For this reason, upper limits of the diameters d, d0 of the holes 51, 52 formed at the centers of the pairs of magnetic plates (11, 12; 13, 14) are each preferably set to the outer diameter D0 of the magnet 10.
By setting the shapes and layouts of the respective magnetic members (11 to 14, 16 to 19, and the rotating shaft) and the dimensional relationships among the gaps (g1, g2, G1 and G2) as described above, the magnetic flux generated from the magnet is concentrated and converged to the two air gaps G2 where the magnetic sensitive devices 21, 22 are attached.
The leakage magnetic path passing the rotating shaft 15 is utilized to adjust the magnetic flux so that extreme saturation of the magnetic flux will not occur at the protruded magnetic substance portions 16, 17, 18 and 19.
Although the non-contact rotational position sensor functions with only one of the Hall devices 21, 22, two Hall devices are disposed in this embodiment for the purpose of backup in the event of a failure or diagnostic check of a failure.
As indicated by arrows in FIG. 3, the ring-shaped permanent magnet 10 is magnetized substantially in the axial direction of the rotating shaft. The direction in which the ring-shaped permanent magnet 10 is magnetized is upward in one angular region covering 1800 in the rotating direction, and it is downward in the other angular region.
In this state, magnetic flux density vectors are distributed as schematically shown in FIG. 4. Magnetic fields generated by the ring-shaped permanent magnet 10 are shunted to the upper and lower magnetic plates 11, 12, 13 and 14, and then pass the protruded magnetic substance portions 16, 17, 18 and 19 and the Hall devices 21, 22. The direction and intensity of the magnetic field passing the Hall devices 21, 22 are changed depending on the rotational position of the ring-shaped permanent magnet 10.
The relationship between the rotational position of the ring-shaped permanent magnet 10 and the amount of magnetic flux passing the Hall device 21 will now be described with reference to FIG. 5A. The directions of the magnetic fields generated by the ring-shaped permanent magnet 10 are shown in FIG. 5A.
At the rotational position illustrated, a region a and a region b cover the same circumferential (opening) angle, and the direction of the magnetic fields in these regions are opposite to each other. Therefore, the magnetic flux generated from the region a is canceled by the magnetic flux generated from the region b. Because the magnetization is actually weakened near the boundary between the region a and a region c at which the direction of the magnetization distribution is reversed, the magnetic fluxes from the two regions a and b are not exactly canceled in the strict sense, but they can be regarded as being substantially canceled in the practical point of view.
Accordingly, most of the magnetic flux generated from the remaining region c passes the protruded magnetic substance portions 16, 17. The amount of magnetic flux passing the protruded magnetic substance portions 16, 17 is proportional to the area of the region c.
Also, the area of the region c is proportional to the rotational angle of the ring-shaped permanent magnet 10. The magnetic flux density detected by the Hall device 21 is therefore substantially proportional to the rotational angle of the ring-shaped permanent magnet 10. As a result, by sensing the magnetic flux density detected by the Hall device 21, it is possible to detect the rotational angle of the ring-shaped permanent magnet 10, i.e., the rotational angle of the shaft 15.
In this embodiment, the gaps a1, a2, b1 and b2 between the magnetic plates 11 and 12, shown in FIG. 1 are set to satisfy a1=a2=b1=b2. However, the present invention is not limited to such an arrangement, and the gaps may be set to satisfy a1>b1 and a2>b2. Preferably, the relationships of a1=a2 and b1=b2 are satisfied. Setting the gaps to satisfy a1>b1 and a2>b2 contributes to weakening the magnetic coupling between magnetic plates 11 and 12, and hence to improving linearity in the relationship between the magnetic flux density detected by the Hall device 21 and the rotational angle of the ring-shaped permanent magnet 10.
The pairs of upper and lower magnetic plates 11, 13; 12, 14 are arranged to face each other in parallel with the uniform gap G1 left therebetween. Also, the pairs of upper and lower magnetic plates 11, 13; 12, 14 are arranged to face the permanent magnet 10 such that the uniform gaps g1 (upper gap) and g2 (lower gap) are kept with respect to the upper and lower surfaces of the permanent magnet 10. The gap G1 is greater than the thickness t1 of the permanent magnet 10 by the sum (g+g2) of the gaps g1, g2. On the other hand, a gap g3 between the protruded magnetic substance portions 16, 17 and a gap g4 between the protruded magnetic substance portions 18, 19 are smaller than the thickness t1 of the permanent magnet 10. This arrangement enables the magnetic flux of the permanent magnet 10 to be converged to the protruded magnetic substance portions 16, 17, 18 and 19. From this point of view, the protruded magnetic substance portions 16, 17, 18 and 19 serve as magnetic flux concentrating portions. Thus, the basic principle of the present invention resides in that the protruded magnetic substance portions 16, 17, 18 and 19 are provided between the pairs of magnetic plates 11, 13; 12, 14 to form portions allowing the magnetic flux to easily pass therethrough, whereby the magnetic flux is condensed to those portions.
Considering that the attachment accuracy of each component is on the order of ±0.2 mm when the non-contact rotational position sensor is produced at a low cost, an effect of attachment errors upon characteristics of the sensor can be reduced in this embodiment by setting each of the air gaps between the ring-shaped permanent magnet 10 and the upper and lower magnetic plates 11, 12, 13 and 14 to be not less than 0.5 mm, preferably approximately 1 mm. This point is similarly applied to other embodiments described below.
Magnetic materials have varying degrees of magnetic hysteresis characteristic. Generally, when the degree of magnetic hysteresis exceeds 0.5 T or 1 T, the magnetic hysteresis effect becomes noticeable in a gradually increasing manner. To obtain a high accuracy in detection of the rotational position sensor, therefore, it is preferable that the magnetic hysteresis is held in a range as small as possible in operation of the sensor. For this reason, the magnetic flux density in magnetic materials, typically represented by the magnetic plates 11, 12, 13 and 14, is preferably held to be not higher than 0.5 T. This point is also similarly applied to the other embodiments described below.
Note that the permanent magnet is described as being ring-shaped in this embodiment, similar functions can be provided even with a disk-shaped permanent magnet.
A second embodiment of the present invention will be described with reference to FIGS. 6 to 9. FIG. 6 shows an external appearance of a non-contact rotational position sensor 200 according to this second embodiment, and FIG. 7 shows an internal structure of the sensor. As shown FIGS. 6 and 7, the sensor of this second embodiment is of basically the same structure as that of the above first embodiment except that an magnetic plate 30 is formed of one piece of magnetic plate. In order to branch and shunt the magnetic flux generated from the ring-shaped permanent magnet 10 to the protruded magnetic substance portions 16, 17 and the protruded magnetic substance portions 18, 19, it is just required tat the horizontal gaps are formed in at least one of the upper and lower magnetic plates. In this embodiment, the horizontal gaps are formed between the lower magnetic plates 13 and 14. FIG. 8 shows a magnetization distribution of the ring-shaped permanent magnet 10, and FIG. 9 shows a distribution of magnetic flux density vectors.
In this embodiment, a magnetic path is formed above the ring-shaped permanent magnet 10, and therefore the amounts of magnetic flux shunted to the protruded magnetic substance portions 16, 17 and the protruded magnetic substance portions 18, 19 are somewhat reduced. This embodiment however has advantages that, because of employing one piece of upper magnetic plate 30, the number of parts is reduced and the rotational position sensor can be manufactured with more ease. Further, when the rotational position sensor is attached at its lower surface to a target apparatus, an upper surface of the sensor is faced to the outside. In such a case, this embodiment provides another advantage of reducing an effect upon a sensor output caused when any magnetic substance enters the sensor from the outside.
FIG. 10 shows a third embodiment of the present invention. A non-contact rotational position sensor 300 of this third embodiment is modified from the structure of the above first embodiment in that holes 31, 32 are formed respectively in the magnetic plates 11, 12. Magnetic resistance distributions in magnetic paths formed in the magnetic plates 11, 12 can be adjusted depending on shapes and sizes of the holes 31, 32. This arrangement is effective in improving linearity in the relationship between the magnetic flux density detected by the Hall device and the rotational angle of the ring-shaped permanent magnet as compared with that in the rotational position sensor of the above first embodiment. It is also possible to further improve the linearity by forming similar holes in the magnetic plates 13, 14 as well. While one hole is formed in each magnetic plate in this embodiment, the present invention is not limited to such an arrangement, and two or more holes may be formed in each magnetic plate. This point is similarly applied to the other embodiments described below.
FIG. 11 shows a fourth embodiment of the present invention. A non-contact rotational position sensor 400 of this fourth embodiment is modified from the structure of the above second embodiment in that holes 31, 32 are formed in the magnetic plate 30. This arrangement is effective in improving linearity in the relationship between the magnetic flux density detected by the Hall device and the rotational angle of the ring-shaped permanent magnet as compared with that in the rotational position sensor of the above second embodiment.
FIG. 12 shows a fifth embodiment of the present invention. A non-contact rotational position sensor 500 of this fifth embodiment is modified from the structure of the above first embodiment in that the ring-shaped permanent magnet 10 magnetized into a double-pole magnet, shown in FIG. 2, is replaced by a single-pole permanent magnet 10a in the form split into a semi-ring. The permanent magnet 10a is magnetized upward or downward parallel to the axial direction of the rotating shaft. In this case, the magnetic flux entering the magnetic plate 11 is substantially proportional to the area of a vertically projected surface of the permanent magnet 10a upon the magnetic plate 11, and the vertically projected surface area of the permanent magnet 10a is proportional to the rotational angle thereof. The magnetic flux density detected by the Hall device 21 is therefore proportional to the rotational angle of the permanent magnet 10a. As a result, by sensing the magnetic flux density detected by the Hall device 21, it is possible to detect the rotational angle of the permanent magnet 10a, i.e., the rotational angle of the shaft 15.
FIG. 13 shows a sixth embodiment of the present invention. A non-contact rotational position sensor 600 of this sixth embodiment is modified from the structure of the above second embodiment in that the ring-shaped permanent magnet 10 magnetized into a double-pole magnet, shown in FIG. 7, is replaced by a single-pole permanent magnet 10a in the form split into a semi-ring. The magnetic flux generated from the permanent magnet 10a enters the magnetic plate 30 and is then shunted to the protruded magnetic substance portions 17, 19. After passing the Hall devices 21, 22 and the protruded magnetic substance portions 16, 18, the magnetic fluxes enter the magnetic plates 13, 14 and then return to the permanent magnet 10a, whereby magnetic path loops are formed. A distribution ratio between the magnetic fluxes shunted to the protruded magnetic substance portions 17, 19 is substantially determined by a ratio of the area of a vertically projected surface of the permanent magnet 10a upon the magnetic plate 13 to the area of a vertically projected surface of the permanent magnet 10a upon the magnetic plate 14. The magnetic flux density detected by the Hall device 21 is therefore proportional to the rotational angle of the permanent magnet 10a. As a result, by sensing the magnetic flux density detected by the Hall device 21, it is possible to detect the rotational angle of the permanent magnet 10a which is a circular arc in shape, i.e., the rotational angle of the shaft 15.
FIG. 14 shows a seventh embodiment of the present invention. In a non-contact rotational position sensor 700 of this seventh embodiment, a rotor comprises a ring-shaped permanent magnet 10, a magnetic yoke 35, and a shaft 15 for supporting the ring-shaped permanent magnet 10. A stator comprises magnetic plates 31 surrounding the ring-shaped permanent magnet 10 from the outer side, and Hall devices 21, 22 inserted in gaps between the magnetic plates 31. The ring-shaped permanent magnet 10 is magnetized in the radial direction, and looking round an outer circumferential surface of the ring-shaped permanent magnet 10, it is magnetized into a double-pole magnet. More specifically, the ring-shaped permanent magnet 10 is magnetized outward in the radial direction in one circumferential region of 180°, and magnetized inward in the radial direction in the other circumferential region. Magnetic plates sub-members 31a of the magnetic plates 31, which form magnetic poles closest to the rotor, serve to collect the magnetic flux generated from the ring-shaped permanent magnet 10, and magnetic field distribution in the magnetic plate sub-members 31a do not directly affect signal outputs of the Hall devices 21, 22. Therefore, shapes of surfaces 31b of the magnetic plate sub-members 31a directly facing the ring-shaped permanent magnet 10 are not required to be even in the rotating direction of the ring-shaped permanent magnet 10. The magnetic flux collected by the magnetic plate sub-member 31a of one magnetic plate 31 passes an associated magnetic plate submember 31c and then the Hall device 21. Thereafter, the magnetic flux passes a magnetic plate sub-member 31c and the magnetic plate sub-member 31a of the other magnetic plate 31, and is then returned to the ring-shaped permanent magnet 10. While the magnetic plate sub-member 31a and the magnetic plate sub-member 31c are arranged on the same plane in this embodiment, the present invention is not limited to such an arrangement. Looking FIG. 14 from the observer side, the magnetic plate sub-member 31c may be arranged on the front or rear side of the ring-shaped permanent magnet 10 so as to provide a three-dimensional structure.
FIG. 16 shows an eighth embodiment of the present invention. A non-contact rotational position sensor 800 of this eighth embodiment differs from that of the above first embodiment in that two pairs of magnetic plates 50, 51 having protruded portions 50a, 51a, shown in FIG. 15, are employed instead of the magnetic plates 11, 12, 13 and 14 and the protruded magnetic substance portions 16, 17, 18 and 19, the protruded portions 50a, 51a being bent substantially vertical to planes of the magnetic plates 50, 51. A ring-shaped permanent magnet 10 is sandwiched between the vertically spaced magnetic plates 50, 51 from above and below as shown in FIG. 16. On that occasion, Hall devices 21, 22 are held between the protruded portions 50a, 51a of the magnetic plates 50, 51. Magnetic paths substantially equivalent to those in the above first embodiment were thereby formed to provide the function of a non-contact rotational position sensor. According to this eighth embodiment, since punching of the magnetic plates 50, 51 and bending of the protruded portions 50a, 51a are just required, the productivity can be increased as compared with the above first embodiment in which the protruded magnetic substance portions 16, 17, 18 and 19 are provided on the magnetic plates 11, 12, 13 and 14.
A description will now be made of a ninth embodiment in which the first embodiment of the present invention is applied to an actual apparatus. Referring to FIG. 17, a rotating-axis penetrating hole 42, through which a rotating axis is to be extended to the outside, is formed in a housing cover 41 of a target apparatus for which a rotational angle is to be detected. The magnetic plates 13, 14, including the protruded magnetic substance portions 16, 18 provided thereon, and the Hall devices 21, 22 are mounted onto an outer surface of the housing cover 41. An integral assembly of the ring-shaped permanent magnet 10 and the shaft 15 is coupled to the rotating axis of the target apparatus. Another integral unit of the magnetic plates 11, 12 and a housing cover 40 of a rotational position sensor 900 is then attached to the outer side of the above integral unit. As a method of integrating the magnetic plates 11, 12 and the housing cover 40 of the rotational position sensor 900 into a one-piece unit, the so-called insert molding is superior in productivity. With this method, the housing cover 40 is made of a resin, for example, and the resin is molded into the housing cover 40 with the magnetic plates 11, 12 embedded therein.
In the above-described embodiments, the magnetic plates 11, 12, 13, 14 and 30 are illustrated as being rectangular plates. However, the magnetic plates for use in the present invention are not limited to a rectangular shape, but may have any of other suitable shapes such as a disk, semi-disk, sector, and a trapezoid.
There are various non-contact rotational position sensors using permanent magnets, including the sensor of the present invention. When those non-contact rotational position sensors are assembled in target apparatus, there is a possibility that any magnetic substance may exist in the vicinity of the assembled non-contact rotational position sensors. In such a case, an output signal of a magnetic sensitive device, such as a Hall device, is adversely affected by the presence of a magnetic substance. In a tenth embodiment, therefore, a shield cover 45 provided with a magnetic substance is attached to a housing cover 40 of a non-contact rotational position sensor 1000, as shown in FIG. 18. This arrangement is advantageous in reducing an effect of any external magnetic substance upon an output signal of a magnetic sensitive device, such as a Hall device.
One embodiment of a throttle valve assembly, to which the non-contact rotational position sensor of the present invention is attached, will be described below with reference to FIGS. 19 and 20.
A rotating shaft (rotating axis) 203 (corresponding to the shaft 15) is rotatably supported by a body 201. Numeral 200 denotes a throttle valve for controlling an opening area of an air passage formed in the body 201. The throttle valve 200 is fixed to the rotating shaft 203 by screws. Numeral 202 denotes a resin cover fixed to the body 201 by screws (210a-210c).
A through hole 204 is formed in the resin cover 202. A fore end of the rotating shaft 203 is extended to the outside of the resin cover 202 after passing the through hole 204.
A rectangular recess is formed in the resin cover 202 around the through hole 204. Magnetic plates 13, 14 having a hole 51 formed at the center thereof are stuck by bonding to an outer wall surface of the resin cover 202 which defines the rectangular recess. The magnetic plates 13, 14 are horizontally divided from each other, and air gaps similar to those (a1, a2, b1 and b2) shown in FIG. 1 are formed between the magnetic plates 13 and 14.
In a state of the resin cover 202 being attached to the body 201, the fore end of the rotating shaft 203 is extended to the outside beyond the magnetic plates 13, 14.
An annular or semi-annular magnet 10 is fixed to a resin-made attachment piece 110 having an attachment hole formed at the center, and the fore end of the rotating shaft 203 is fixed by press fitting to the central hole of the attachment piece 110.
With such an arrangement, the magnet 10 having an outer diameter greater than the diameter of the hole 51 formed at the center of the two magnetic plates 13, 14 can be attached to the fore end of the rotating shaft 203 on the outer side of the magnetic plates 13, 14.
Numeral 40 denotes a resin-made auxiliary cover for covering an area corresponding to the rectangular recess of the resin cover 202.
Inside the auxiliary cover 40, magnetic plates 11, 12 are bonded by an adhesive to positions to face the magnetic plates 13, 14, respectively. In a state where the auxiliary cover 40 is attached to the resin cover 202, a pair of gaps G2 are formed between the protruded magnetic substance portions 16, 18 provided on the magnetic plates 13, 14 and between the protruded magnetic substance portions 17, 19 provided on the magnetic plates 11, 12.
Hall devices 21, 22 as magnetic sensitive devices are disposed in the gaps G2.
Thus, the same non-contact rotational position sensor as shown in FIG. 1 to FIGS. 5A and 5B can be constructed at the fore end of the rotating shaft of the throttle valve.
In this embodiment, a motor 207 is mounted to the body 201, and a torque of the motor 207 is transmitted to the throttle valve rotating shaft 203 through an intermediate gear 205 and a final stage gear 206 fixed to the rotating shaft 203.
Numeral 208 denotes a stationary shaft for supporting the intermediate gear 205. In this embodiment, the intermediate gear 205 is made of a resin material and the final stage gear 206 is made of a sintered alloy. This material selection is advantageous in that electromagnetic noises generated by the motor 207 are absorbed by the final stage gear 20 made of a magnetic substance and hence can be avoided from adversely affecting a magnetic circuit of the sensor.
That effect can also be obtained by using a magnetic material to form the intermediate gear 205 and/or the stationary shaft 208 for supporting the intermediate gear 205.
Incidentally, when the final stage gear 206 is made of a magnetic material, it must be taken into consideration that the final stage gear 206 acts as part of the magnetic path of the leakage magnetic flux passing the rotating shaft.
Also, even when the final stage gear 206 is made of a resin material, a gear central portion is required to be made of a metal to provide a securing force sufficient to fix the final stage gear 206 onto the rotating shaft with certainty. When such a metal portion is made of a magnetic material, it likewise acts as part of the magnetic path of the leakage magnetic flux passing the rotating shaft of the magnet 10. Accordingly, a magnetic action of the metal portion must also be taken into consideration.
The diameter of the hole 51 formed at the center of the two magnetic plates 13, 14 or the gap between the magnetic material member on the final stage gear side and the magnetic plates 13, 14 must be set in consideration of the above-described points.
In this embodiment, the air gaps G2 between the magnet 10 and the magnetic plates 13, 14 are set to be smaller than any of the air gap between the magnetic plates 13, 14 and the rotating shaft 203 and the air gap between the magnetic plates and the magnetic material member on the side of the final stage gear 206 so that the leakage magnetic flux passing the rotating shaft 203 is minimized.
According to the present invention, the following advantages are achieved. Satisfactory performance of a non-contact rotational position sensor can be obtained while high flexibility in design is ensured, even when confronting surfaces of magnetic paths on the stator side and the rotor side are not shaped such that their lengths are even in a direction perpendicular to the rotor rotating direction. Also, since the magnetic flux can be effectively concentrated to positions where magnetic sensitive devices are attached, a non-contact rotational position sensor having high accuracy and high sensitivity can be obtained. Further, when a used permanent magnet is magnetized in the axial direction of a rotating axis, a sufficient level of detection sensitivity can be provided even with no magnetic material other than the permanent magnet being disposed on the rotor side. The inertial moment of the rotor is therefore reduced. As a result, the load of an actuator for rotating the rotor can be reduced, and hence a response of the rotor can be improved.

Claims (21)

1. A non-contact rotational position sensor comprising:
a permanent magnet having a circular or arc-shaped outer circumference;
a shaft for supporting and fixing said permanent magnet;
upper and lower magnetic plates sandwiching said permanent magnet from above and below, at least one of said upper and lower magnetic plates being horizontally separated from each other with an air gap formed therebetween;
at least one protruded magnetic substance portion disposed between said upper and lower magnetic plates; and
a magnetic sensitive device disposed on a protruded surface of said a protruded magnetic substance portion,
said permanent magnet and said shaft constituting a rotor which is rotatable relative to said upper and lower magnetic plates vertically spaced from each other,
said permanent magnetic magnet being magnetized substantially in the direction of a rotating axis, whereby the amount of magnetic flux passing said magnetic sensitive device is varied with rotation of said permanent magnet,
wherein said upper and lower magnetic plates sandwiching said permanent magnet from above and below are formed of magnetic plates each having protruded portions at opposite ends instead of providing said protruded magnetic substance portion on at least one of said upper and lower magnetic plates , said protruded portions being bent to form pairs of comprise upper and lower protruded portions pairs, and said magnetic sensitive device is inserted arranged in an air gap formed between protruded surfaces of every two of said upper and lower pairs of protruded portions. ;
said upper magnetic plate is comprised of a first upper magnetic plate and a second upper magnetic plate; said lower magnetic plate is comprised of a first lower magnetic plate and a second lower magnetic plate; said permanent magnet consists of two permanent magnets, in which the first of the permanent magnets is magnetized in one direction, and the second of the permanent magnets is magnetized in a direction opposite to the one direction; a first area in which the magnetic field of the first permanent magnet has the one direction and a first area in which magnetic field of the second permanent magnet has the opposite direction being positioned between said first upper magnetic plate and said first lower magnetic plate; and a second area in which the magnetic field of the first permanent magnet has the one direction and a second area in which the magnetic field of the second permanent magnet has the opposite direction being positioned between said second upper magnetic plate and said second lower magnetic plate;
whereby the first upper magnetic plate and the first lower magnetic plate thus form a linear magnetic circuit between the permanent magnet and the protruded magnetic substance portion independent of a rotating position of said permanent magnet, and the second upper magnetic plate and said second lower magnetic plate thus form a linear magnetic circuit between said permanent magnet and the protruded magnetic substance portion independent of the rotating position of the permanent magnet.
2. A non-contact rotational position sensor comprising:
a rotating axis;
an annular or semi-annular magnet fixed to said rotating axis;
magnetic substance assemblies arranged in opposing relation to sandwich said magnet therebetween with a spacing greater than a thickness of said magnet left between said magnetic substance assemblies in the an axial direction of said rotating axis, such that a uniform air gap is formed between said magnet and a surface of each of said magnetic substance assemblies confronting facing said magnet;
a pair of small air gaps formed in defined by said magnetic substance assemblies and being smaller than said uniform air gap; and
a magnetic sensitive device disposed in each said small air gap,
wherein said magnetic substance assemblies comprise a pair of rectangularly-shaped magnetic plates, and at least one of said pair of rectangular magnetic plates has a split is divided by a separating air gap formed along an imaginary plane passing an axial center line of through said rotating axis, said air gap splitting said rectangular magnetic plate into two parts ; the at least one pair of magnetic plates comprising upper and lower magnetic plates in which the upper magnetic plate is comprised of a first upper magnetic plate and a second upper magnetic plate, the lower magnetic plate is comprised of a first lower magnetic plate and a second lower magnetic plate, the magnet is comprised of two magnets with the first of the being magnetized in one direction, and the second of the magnets being magnetized in a direction opposite to the one direction; a first area in which a magnetic field of the first magnet has the one direction and a first area in which a magnetic field of the second magnet has the opposite direction being positioned between first upper magnetic plate and the first lower magnetic plate; and a second area in which the magnetic field of the first magnet has the one direction and a second area in which the magnetic field of the second magnet has the opposite direction being positioned between second upper magnetic plate and the second lower magnetic plate; whereby the first upper magnetic plate and the first lower magnetic plate thus form a linear magnetic circuit between the magnet and the protruded magnetic substance portion independent of the rotational position of the magnet, and the second upper magnetic plate and the second lower magnetic plate thus form a linear magnetic circuit between said magnet and a protruded magnetic substance portion independent of the rotational position of the magnet.
3. A non-contact rotational position sensor comprising:
a rotating axis;
an annular or semi-annular magnet fixed to said rotating axis;
magnetic substance assemblies arranged in opposing relation to sandwich said magnet therebetween with a spacing greater than a thickness of said magnet left arranged between said magnetic substance assemblies in the an axial direction of said rotating axis, such that a uniform air gap is formed between said magnet and a surface of each of said magnetic substance assemblies confronting facing said magnet;
a pair of small air gaps formed in defined by said magnetic substance assemblies and being smaller than said uniform air gap; and
a magnetic sensitive device disposed in each said small air gap,
wherein said pair of small air gaps are formed in symmetrical positions with respect to said rotating axis situated therebetween, the at least one pair of magnetic plates comprising upper and lower magnetic plates in which the upper magnetic plate is comprised of a first upper magnetic plate and a second upper magnetic plate, the lower magnetic plate is comprised of a first lower magnetic plate and a second lower magnetic plate, the magnet is comprised of two magnets with the first of the being magnetized in one direction, and the second of the magnets being magnetized in a direction opposite to the one direction; a first area in which a magnetic field of the first magnet has the one direction and a first area in which a magnetic field of the second magnet has the opposite direction being positioned between first upper magnetic plate and the first lower magnetic plate; and a second area in which the magnetic field of the first magnet has the one direction and a second area in which the magnetic field of the second magnet has the opposite direction being positioned between second upper magnetic plate and the second lower magnetic plate; whereby the first upper magnetic plate and the first lower magnetic plate thus form a linear magnetic circuit between the magnet and the protruded magnetic substance portion independent of the rotational position of the magnet, and the second upper magnetic plate and the second lower magnetic plate thus form a linear magnetic circuit between said magnet and a protruded magnetic substance portion independent of the rotational position of the magnet.
4. A non-contact rotational position sensor according to claim 3, wherein said pair of small air gaps are each formed between confronting surfaces of a pair of protrusions protruded from said magnetic plate substance assemblies in directions in which said protrusions come closer to each other.
5. A throttle valve assembly comprising:
an annular or semi-annular magnet attached to one end of a throttle valve;
a resin cover attached to a body in which said throttle valve is mounted;
an auxiliary caver cover attached to said resin cover;
magnetic path forming members attached to said resin cover and said auxiliary cover, respectively, and forming magnetic paths with said annular or semi-annular magnet situated therebetween;
a magnetic flux converging portion formed in each of said magnetic paths and concentrating a magnetic flux passing said magnetic path to a particular predetermined position; and
a magnetic sensitive device attached to said magnetic flux converging portion and detecting change of the magnetic flux in said magnetic flux converging portion caused upon rotation of said throttle valve, the magnetic path members comprising upper and lower magnetic plates in which the upper magnetic plate is comprised of a first upper magnetic plate and a second upper magnetic plate, the lower magnetic plate is comprised of a first lower magnetic plate and a second lower magnetic plate, the magnet is comprised of two magnets with the first of the being magnetized in one direction, and the second of the magnets being magnetized in a direction opposite to the one direction; a first area in which a magnetic field of the first magnet has the one direction and a first area in which a magnetic field of the second magnet has the opposite direction being positioned between first upper magnetic plate and the first lower magnetic plate; and a second area in which the magnetic field of the first magnet has the one direction and a second area in which the magnetic field of the second magnet has the opposite direction being positioned between second upper magnetic plate and the second lower magnetic plate; whereby the first upper magnetic plate and the first lower magnetic plate thus form a linear magnetic circuit between the magnet and the protruded magnetic substance portion independent of the rotational position of the magnet, and the second upper magnetic plate and the second lower magnetic plate form a linear magnetic circuit between said magnet and a protruded magnetic substance portion independent of the rotational position of the magnet.
6. A throttle valve assembly according to claim 5, further comprising:
a motor for driving said throttle valve; and
a magnetic substance arranged between said motor and said magnetic paths.
7. A throttle valve assembly according to claim 6, wherein said magnetic substance is in the form of a gear for transmitting rotation of said motor to a rotating shaft of said throttle valve, or in the form of a rotating shaft of said gear.
8. A throttle valve assembly according to claim 5, wherein said resin cover has a hole for insertion of a rotating shaft provided with said throttle valve fitted thereon;
said magnetic path forming member attached to the side of said resin cover has a hole formed at the center thereof and having a diameter greater than a diameter of said rotating shaft, but smaller than a diameter of said annular or semi-annular magnet; and
said annular or semi-annular magnet is detachably attached to an end of said rotating shaft inserted through said hole in said magnetic path forming member.
9. A non-contact rotational position sensor comprising:
two permanent magnets having a circular or arc-shaped outer circumference;
a shaft for supporting and fixing said permanent magnet;
upper and lower magnetic plates sandwiching said permanent magnet from above and below, at least one of said upper and lower magnetic plates being horizontally separated from each other with an air gap formed therebetween;
at least one protruded magnetic substance portion disposed between said upper and lower magnetic plates; and
a magnetic sensitive device disposed on a protruded surface of said protruded magnetic substance portion,
said permanent magnet and said shaft constituting a rotor which is rotatable relative to said upper and lower magnetic plates vertically spaced from each other,
said permanent magnet being magnetized substantially in the direction of a rotating axis, whereby the amount of magnetic flux passing said magnetic sensitive device is varied with rotation of said permanent magnet, said upper magnetic plate is comprised of a first upper magnetic plate and a second upper magnetic plate; said lower magnetic plate is comprised of a first lower magnetic plate and a second lower magnetic plate; the first of the permanent magnets being magnetized in one direction and the second of the permanent magnets being magnetized in a direction opposite to the one direction; a first area in which a magnetic field of the first permanent magnet has the one direction and a first area in which a magnetic field of the second permanent magnet has the opposite direction being positioned between said first upper magnetic plate and said first lower magnetic plate; and a second area in which the magnetic field of the first permanent magnet has the one direction and a second area in which the magnetic field of the second permanent magnet has the opposite direction being positioned between said second upper magnetic plate and said second lower magnetic plate; whereby the first upper magnetic plate and the first lower magnetic plate thus form a linear magnetic circuit between the permanent magnet and the protruded magnetic substance portion independent of a rotating position of said permanent magnet, and the second upper magnetic plate and said second lower magnetic plate thus form a linear magnetic circuit between said permanent magnet and the protruded magnetic substance portion independent of the rotating position of the permanent magnet.
10. A non-contact rotational position sensor according to claim 9 , wherein said permanent magnet is in the form of a ring.
11. A non-contact rotational position sensor according to claim 9 , wherein said permanent magnet is in the form of an arc having a certain width in the radial direction.
12. A non-contact rotational position sensor according to claim 9 , wherein said permanent magnet is in the form of a disk.
13. A non-contact rotational position sensor according to claim 9 , wherein each of air gaps between said permanent magnet and said upper and lower magnetic plates has a width of not less than 0.5 mm.
14. A non-contact rotational position sensor according to claim 9 , wherein the magnetic flux density in at least the magnetic plates is not higher than 0.5 T.
15. A non-contact rotational position sensor according to claim 9 , wherein said magnetic sensitive device is a Hall device or a Hall IC.
16. A non-contact rotational position sensor according to claim 9 , wherein said magnetic plate and a member for fixing said magnetic plate are comprise a one-piece resin-molded unit.
17. A non-contact rotational position sensor according to claim 9 , wherein at least one hole is formed in said magnetic plate near said protruded magnetic substance portion.
18. A non-contact rotational position sensor comprising:
a permanent magnet having a circular or arc-shaped outer circumference;
a shaft for supporting and fixing said permanent magnet;
magnetic plates sandwiching said permanent magnet from opposite outer sides in the radial direction;
a magnetic circuit having a portion for converging a magnetic flux generated from said permanent magnet;
an air gap formed at a fore end of the magnetic flux converging portion of said magnetic circuit; and
a magnetic sensitive device disposed in said air gap,
said permanent magnet and said shaft constituting a rotor which is rotatable relative to said magnetic plates arranged outwardly of said permanent magnet in the radial direction,
said permanent magnet being magnetized substantially in the radial direction, whereby the amount of magnetic flux passing said magnetic sensitive device is varied with rotation of said permanent magnet the at least one pair of magnetic plates comprising upper and lower magnetic plates in which the upper magnetic plate is comprised of a first upper magnetic plate and a second upper magnetic plate, the lower magnetic plate is comprised of a first lower magnetic plate and a second lower magnetic plate, the magnet is comprised of two magnets with the first of the being magnetized in one direction and the second of the magnets being magnetized in a direction opposite to the one direction; a first area in which a magnetic field of the first magnet has the one direction and a first area in which a magnetic field of the second magnet has the opposite direction being positioned between first upper magnetic plate and the first lower magnetic plate; and a second area in which the magnetic field of the first magnet has the one direction and a second area in which the magnetic field of the second magnet has the opposite direction being positioned between second upper magnetic plate and the second lower magnetic plate; whereby the first upper magnetic plate and the first lower magnetic plate thus form a linear magnetic circuit between the magnet and the protruded magnetic substance portion independent of the rotational position of the magnet, and the second upper magnetic plate and the second lower magnetic plate thus form a linear magnetic circuit between said magnet and a protruded magnetic substance portion independent of the rotational position of the magnet.
19. A non-contact rotational position sensor comprising:
a rotating axis;
an annular or semi-annular magnet fixed to said rotating axis;
magnetic substance assemblies arranged in opposing relation to sandwich said magnet therebetween with a spacing greater than a thickness of said magnet left between said magnetic substance assemblies in an axial direction of said rotating axis, such that a uniform air gap is defined between said magnet and a surface of each of said magnetic substance assemblies confronting said magnet;
a pair of small air gaps defined between said magnetic substance assemblies and being smaller than said uniform air gap; and
a magnetic sensitive device disposed in said small air gap, the magnetic substance assemblies comprising upper and lower magnetic plates in which the upper magnetic plate is comprised of a first upper magnetic plate and a second upper magnetic plate, the lower magnetic plate is comprised of a first lower magnetic plate and a second lower magnetic plate, the magnet is comprised of two magnets with the first of the being magnetized in one direction and the second of the magnets being magnetized in a direction opposite to the one direction; a first area in which a magnetic field of the first magnet has the one direction and a first area in which a magnetic field of the second magnet has the opposite direction being positioned between first upper magnetic plate and the first lower magnetic plate; and a second area in which the magnetic field of the first magnet has the one direction and a second area in which the magnetic field of the second magnet has the opposite direction being positioned between second upper magnetic plate and the second lower magnetic plate; whereby the first upper magnetic plate and the first lower magnetic plate thus form a linear magnetic circuit between the magnet and the protruded magnetic substance portion independent of the rotational position of the magnet, and the second upper magnetic plate and the second lower magnetic plate thus form a linear magnetic circuit between said magnet and a protruded magnetic substance portion independent of the rotational position of the magnet.
20. A non-contact rotational position sensor according to claim 19 , wherein said pair of magnetic plates are each rectangular in shape.
21. A non-contact rotational position sensor according to claim 19 , wherein:
at least one of said pair of magnetic plates has a split air gap formed along an imaginary plane passing an axial center line of said rotating axis, said air gap splitting said magnetic plate into two parts; and
said pair of small air gaps are formed in symmetrical positions with respect to said split air gap situated therebetween.
US10/797,702 2001-01-10 2004-03-10 Non-contact rotational position sensor and throttle valve assembly including non-contact rotational position sensor Expired - Lifetime USRE40523E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/797,702 USRE40523E1 (en) 2001-01-10 2004-03-10 Non-contact rotational position sensor and throttle valve assembly including non-contact rotational position sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001002045A JP3757118B2 (en) 2001-01-10 2001-01-10 Non-contact rotational position sensor and throttle valve assembly having non-contact rotational position sensor
US09/820,327 US6559637B2 (en) 2001-01-10 2001-03-29 Non-contact rotational position sensor and throttle valve assembly including non-contact rotational position sensor
US10/797,702 USRE40523E1 (en) 2001-01-10 2004-03-10 Non-contact rotational position sensor and throttle valve assembly including non-contact rotational position sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/820,327 Reissue US6559637B2 (en) 2001-01-10 2001-03-29 Non-contact rotational position sensor and throttle valve assembly including non-contact rotational position sensor

Publications (1)

Publication Number Publication Date
USRE40523E1 true USRE40523E1 (en) 2008-09-30

Family

ID=18870607

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/820,327 Ceased US6559637B2 (en) 2001-01-10 2001-03-29 Non-contact rotational position sensor and throttle valve assembly including non-contact rotational position sensor
US10/797,702 Expired - Lifetime USRE40523E1 (en) 2001-01-10 2004-03-10 Non-contact rotational position sensor and throttle valve assembly including non-contact rotational position sensor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/820,327 Ceased US6559637B2 (en) 2001-01-10 2001-03-29 Non-contact rotational position sensor and throttle valve assembly including non-contact rotational position sensor

Country Status (5)

Country Link
US (2) US6559637B2 (en)
EP (1) EP1223409B1 (en)
JP (1) JP3757118B2 (en)
KR (1) KR100424375B1 (en)
DE (1) DE60131245T2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170092447A1 (en) * 2015-09-28 2017-03-30 Cooper Technologies Company Nested magnetic controls for industrial enclosures
US11098818B2 (en) 2017-02-10 2021-08-24 Halliburton Energy Services, Inc. Magnetic index positioner
US11239015B2 (en) 2015-09-28 2022-02-01 Eaton Intelligent Power Limited Magnetic controls for industrial enclosures

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7042210B2 (en) * 1999-12-14 2006-05-09 Matsushita Electric Industrial Co., Ltd. Non-contact magnetic position sensor
US6693424B2 (en) * 2001-06-08 2004-02-17 Denso Corporation Magnetic rotation angle sensor
DE10204199A1 (en) * 2002-02-01 2003-08-07 Pierburg Gmbh Control device for a motor for adjusting an actuator
EP1509745A4 (en) * 2002-05-15 2006-12-20 American Electronic Components Through the hole rotary position sensor
JP2004020527A (en) * 2002-06-20 2004-01-22 Nippon Soken Inc Torque sensor
JP4169536B2 (en) * 2002-06-26 2008-10-22 株式会社日本自動車部品総合研究所 Actuator
JP2004150905A (en) * 2002-10-30 2004-05-27 Hitachi Ltd Non-contact type rotational position sensor, and electronically controlled throttle valve system having non-contact type rotational position sensor
JP2004332603A (en) * 2003-05-07 2004-11-25 Hitachi Ltd Rotation angle detection device, electronic control throttle valve device, manufacturing method for sensor detecting rotation angle of throttle valve stem, and internal combustion engine
JP4233920B2 (en) * 2003-05-15 2009-03-04 株式会社デンソー Rotation angle detector
WO2004113845A1 (en) * 2003-06-20 2004-12-29 Mikuni Corp. Non-contact position sensor
JP4233958B2 (en) * 2003-08-29 2009-03-04 株式会社日本自動車部品総合研究所 Rotation angle detector
JP4545406B2 (en) * 2003-09-03 2010-09-15 三菱電機株式会社 Position detection device
US6957801B2 (en) * 2003-09-30 2005-10-25 Honeywell International, Inc. Valve having an integrated actuator assembly
JP4224382B2 (en) 2003-11-18 2009-02-12 株式会社日立製作所 Rotational position sensor and electronically controlled throttle device for internal combustion engine
FR2872896B1 (en) * 2004-07-09 2008-01-11 Moving Magnet Tech POSITION SENSOR, PARTICULARLY FOR MEASURING THE TORSION OF A STEERING COLUMN
JP4720233B2 (en) * 2005-03-18 2011-07-13 株式会社デンソー Rotation angle detector
US8427139B2 (en) * 2005-05-25 2013-04-23 Continental Tire Canada, Inc. Dual pole magnet structure having two magnets 90 degrees out of phase for position sensing in an actuator
JP2007040722A (en) * 2005-07-29 2007-02-15 Tsuda Industries Co Ltd Position sensor and shift lever unit using the position sensor
JP4494368B2 (en) * 2006-05-23 2010-06-30 愛三工業株式会社 Electronically controlled throttle device
US7609056B2 (en) * 2006-09-11 2009-10-27 Fisher Controls International Llc Apparatus to determine the position of an actuator
DE102006048771A1 (en) * 2006-10-12 2008-04-17 Sensitec Gmbh Encoders on a magnetic basis
US7521922B2 (en) * 2006-11-07 2009-04-21 Key Safety Systems, Inc. Linear position sensor
JP5128120B2 (en) * 2006-12-18 2013-01-23 古河電気工業株式会社 Rotation sensor
JP5041401B2 (en) * 2006-12-18 2012-10-03 古河電気工業株式会社 Rotation sensor
KR100866904B1 (en) * 2007-01-19 2008-11-04 인지컨트롤스 주식회사 Position Sensor Which Uses The Change Of The Magnetic Field's Angle
US20080252285A1 (en) * 2007-02-28 2008-10-16 Caterpillar Inc. Machine with a rotary position-sensing system
KR101047479B1 (en) * 2007-03-29 2011-07-07 (주)캠시스 Rotation axis displacement measuring device
US8823294B2 (en) * 2007-06-27 2014-09-02 Brooks Automation, Inc. Commutation of an electromagnetic propulsion and guidance system
JP5663304B2 (en) 2007-06-27 2015-02-04 ブルックス オートメーション インコーポレイテッド Multi-dimensional position sensor
CN101855811B (en) 2007-06-27 2013-11-20 布鲁克斯自动化公司 Motor stator with lift capability and reduced cogging characteristics
JP5416104B2 (en) * 2007-06-27 2014-02-12 ブルックス オートメーション インコーポレイテッド Position feedback for self-bearing motors
US8283813B2 (en) 2007-06-27 2012-10-09 Brooks Automation, Inc. Robot drive with magnetic spindle bearings
US9752615B2 (en) 2007-06-27 2017-09-05 Brooks Automation, Inc. Reduced-complexity self-bearing brushless DC motor
JP2011514652A (en) 2007-07-17 2011-05-06 ブルックス オートメーション インコーポレイテッド Substrate processing apparatus with motor integrated in chamber wall
DE102008042912A1 (en) * 2008-10-16 2010-04-22 Robert Bosch Gmbh Sensor device for detecting the rotational position of a rotating component
US8212566B2 (en) * 2009-07-24 2012-07-03 Agilent Technologies, Inc. Angular position sensing based on magnetically induced beam deformation
FR2961284B1 (en) * 2010-06-09 2013-04-19 Ksb Sas POSITION SENSOR VALVE
WO2013010292A1 (en) * 2011-07-21 2013-01-24 Honeywell International Inc. Non-contact rotational position sensor system
KR20130032505A (en) * 2011-09-23 2013-04-02 에스케이하이닉스 주식회사 Semiconductor system
CN103575305A (en) * 2012-07-24 2014-02-12 联创汽车电子有限公司 Special non-contact throttle position sensor for motorcycles
KR101987169B1 (en) * 2012-12-17 2019-06-10 엘지이노텍 주식회사 Motor
CN105366547B (en) * 2014-08-06 2017-11-24 宜昌市凯诺电气有限公司 A kind of non-contact measurement apparatus and method of crane rotation position
DE212015000272U1 (en) * 2014-12-26 2017-07-17 Nanjing Huamin Electronics Co., Ltd. Magnetic circuit structure of a magnetically sensitive torque sensor
DE102016118376B4 (en) 2016-09-28 2023-10-26 Infineon Technologies Ag Magnetic angle sensor device and method of operation
US11022463B2 (en) * 2016-12-27 2021-06-01 Kabushiki Kaisha Tokai Rika Denki Seisakusho Position sensor and shift lever device
US11231180B2 (en) 2017-02-17 2022-01-25 Lg Electronics Inc. Knob assembly for cook top
US10935249B2 (en) 2017-02-17 2021-03-02 Lg Electronics Inc. Knob assembly for cook top
DE102017106479A1 (en) * 2017-03-27 2018-09-27 Fritz Kübler GmbH Shielding system for magnetic encoder sensor system
JP7366848B2 (en) * 2020-07-03 2023-10-23 Tdk株式会社 Angle detection device, angle detection device system, park lock system, and pedal system
CN112367062A (en) * 2020-09-25 2021-02-12 佛山市皓科控制技术有限公司 Two-wire system 4-20MA current loop output non-contact magnetic-sensing potentiometer
US12084985B2 (en) * 2020-11-16 2024-09-10 Kenneth Knecht Digital shaft positioning for a turbine rotor

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4789826A (en) * 1987-03-19 1988-12-06 Ampex Corporation System for sensing the angular position of a rotatable member using a hall effect transducer
US5164668A (en) 1991-12-06 1992-11-17 Honeywell, Inc. Angular position sensor with decreased sensitivity to shaft position variability
US5444369A (en) * 1993-02-18 1995-08-22 Kearney-National, Inc. Magnetic rotational position sensor with improved output linearity
JPH08126380A (en) 1994-10-19 1996-05-17 Shibaura Eng Works Co Ltd Magnetic sensor and motor employing it
US5528139A (en) * 1990-12-05 1996-06-18 Moving Magnet Technologie Sa Magnetic position and speed sensor with hall probe in an air gap
US5544000A (en) * 1992-05-22 1996-08-06 Nippondenso Co., Ltd. Electric control apparatus
US5659246A (en) * 1994-05-17 1997-08-19 Mitsubishi Denki Kabushiki Kaisha Magnetic sensor having an engaging portion
EP0798541A1 (en) 1996-03-29 1997-10-01 Sagem Sa Magnetic position sensor
WO1997043602A1 (en) 1996-05-11 1997-11-20 Itt Manufacturing Enterprises, Inc. Device for detecting rotary movements
US5789917A (en) * 1990-12-05 1998-08-04 Moving Magnet Technologie Sa Magnetic position sensor with hall probe formed in an air gap of a stator
JP2920179B2 (en) * 1994-02-01 1999-07-19 エムエムティ エス.エィ. Magnetic position sensor with Hall element
DE19944019A1 (en) 1998-09-19 2000-03-23 Unisia Jecs Corp Rotation angle sensor to detect degree of opening of throttle valve of acceleration device in motor vehicle; has two yokes rotatable about magnet and signal generator to detect magnetic flux density through yokes
US6137288A (en) * 1998-05-08 2000-10-24 Luetzow; Robert Herman Magnetic rotational position sensor
EP1065473A2 (en) 1999-06-28 2001-01-03 Denso Corporation Angular position detecting apparatus
US6201388B1 (en) * 1997-11-10 2001-03-13 Invensys Building Systems, Inc. Device for determining the angular position of a rotating member utilizing a magnetic hall effect transducer

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4789826A (en) * 1987-03-19 1988-12-06 Ampex Corporation System for sensing the angular position of a rotatable member using a hall effect transducer
US6043645A (en) * 1990-12-05 2000-03-28 Moving Magnet Technologie Sa Magnetic position and speed sensor having a hall probe
US5528139A (en) * 1990-12-05 1996-06-18 Moving Magnet Technologie Sa Magnetic position and speed sensor with hall probe in an air gap
US5789917A (en) * 1990-12-05 1998-08-04 Moving Magnet Technologie Sa Magnetic position sensor with hall probe formed in an air gap of a stator
JP2842482B2 (en) * 1990-12-05 1999-01-06 ムーヴィング マグネット テクノロジィーズ エス.エイ. Magnetic position and velocity sensor with Hall element
US5164668A (en) 1991-12-06 1992-11-17 Honeywell, Inc. Angular position sensor with decreased sensitivity to shaft position variability
US5544000A (en) * 1992-05-22 1996-08-06 Nippondenso Co., Ltd. Electric control apparatus
US5444369A (en) * 1993-02-18 1995-08-22 Kearney-National, Inc. Magnetic rotational position sensor with improved output linearity
JP2920179B2 (en) * 1994-02-01 1999-07-19 エムエムティ エス.エィ. Magnetic position sensor with Hall element
US5659246A (en) * 1994-05-17 1997-08-19 Mitsubishi Denki Kabushiki Kaisha Magnetic sensor having an engaging portion
JPH08126380A (en) 1994-10-19 1996-05-17 Shibaura Eng Works Co Ltd Magnetic sensor and motor employing it
EP0798541A1 (en) 1996-03-29 1997-10-01 Sagem Sa Magnetic position sensor
WO1997043602A1 (en) 1996-05-11 1997-11-20 Itt Manufacturing Enterprises, Inc. Device for detecting rotary movements
US6201388B1 (en) * 1997-11-10 2001-03-13 Invensys Building Systems, Inc. Device for determining the angular position of a rotating member utilizing a magnetic hall effect transducer
US6137288A (en) * 1998-05-08 2000-10-24 Luetzow; Robert Herman Magnetic rotational position sensor
DE19944019A1 (en) 1998-09-19 2000-03-23 Unisia Jecs Corp Rotation angle sensor to detect degree of opening of throttle valve of acceleration device in motor vehicle; has two yokes rotatable about magnet and signal generator to detect magnetic flux density through yokes
JP2000097606A (en) 1998-09-19 2000-04-07 Unisia Jecs Corp Rotation angle detector
EP1065473A2 (en) 1999-06-28 2001-01-03 Denso Corporation Angular position detecting apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170092447A1 (en) * 2015-09-28 2017-03-30 Cooper Technologies Company Nested magnetic controls for industrial enclosures
US10312908B2 (en) * 2015-09-28 2019-06-04 Eaton Intelligent Power Limited Nested magnetic controls for industrial enclosures
US11239015B2 (en) 2015-09-28 2022-02-01 Eaton Intelligent Power Limited Magnetic controls for industrial enclosures
US11098818B2 (en) 2017-02-10 2021-08-24 Halliburton Energy Services, Inc. Magnetic index positioner

Also Published As

Publication number Publication date
DE60131245D1 (en) 2007-12-20
KR100424375B1 (en) 2004-03-24
US6559637B2 (en) 2003-05-06
EP1223409A3 (en) 2003-11-19
EP1223409A2 (en) 2002-07-17
DE60131245T2 (en) 2008-08-21
US20020089324A1 (en) 2002-07-11
JP2002206913A (en) 2002-07-26
JP3757118B2 (en) 2006-03-22
KR20020060551A (en) 2002-07-18
EP1223409B1 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
USRE40523E1 (en) Non-contact rotational position sensor and throttle valve assembly including non-contact rotational position sensor
US8222777B2 (en) Rotary single-phase electromagnetic servo actuator comprising an actuator and a position sensor
JP3596667B2 (en) Rotation angle detector
US6928887B2 (en) Torque sensor
US7375510B2 (en) Rotational position sensor and electronically controlled throttle device and internal combustion engine
US6841993B2 (en) Bearing provided with rotation sensor and motor employing the same
US6946831B2 (en) Noncontact rotary position sensor and electric control throttle valve apparatus having noncontact rotary position
JP5102083B2 (en) Rotation sensor unit
US6275027B1 (en) Rotation angle sensor
US7071683B2 (en) Rotation angle sensing device having enlarged detectable angle range
JP4960174B2 (en) Non-contact rotation angle detection sensor
JP3438692B2 (en) Rotation angle detector
JP2006038872A (en) Throttle valve assembly having noncontact type rotation position sensor
JP2004245703A (en) Rotational angle detection device
JP2001133210A (en) Mon-contact type position sensor
JP2004257894A (en) Rotation angle detection device
JP3632037B2 (en) Rotation angle detector
JP2004271451A (en) Rotational angle detector
JPH0729733Y2 (en) Brushless motor
JP2000074613A (en) Rotational angle sensor
JP2001141412A (en) Non-contact type rotating angle sensor and sensor core
JP2002350179A (en) Rotation detector
JP2000097607A (en) Rotation angle detector
JPH08101222A (en) Magnetic rotation-sensor device
JP2002031505A (en) Non-contact rotation angle sensor and its sensor core

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 8

SULP Surcharge for late payment

Year of fee payment: 7

FPAY Fee payment

Year of fee payment: 12