USRE39172E1 - Method for preparing two-layer bicomposite collagen material for preventing post-operative adhesions - Google Patents
Method for preparing two-layer bicomposite collagen material for preventing post-operative adhesions Download PDFInfo
- Publication number
- USRE39172E1 USRE39172E1 US10/761,055 US76105500A USRE39172E US RE39172 E1 USRE39172 E1 US RE39172E1 US 76105500 A US76105500 A US 76105500A US RE39172 E USRE39172 E US RE39172E
- Authority
- US
- United States
- Prior art keywords
- collagen
- solution
- fibrous layer
- porous fibrous
- polymeric porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/32—Proteins, polypeptides; Degradation products or derivatives thereof, e.g. albumin, collagen, fibrin, gelatin
- A61L15/325—Collagen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/043—Proteins; Polypeptides; Degradation products thereof
- A61L31/044—Collagen
Definitions
- the present invention concerns a bicomposite material based on collagen, which is biocompatible, non-toxic and biodegradable, comprising uniquely or mainly a layer forming a collagenic film and a layer forming a fibrous polymer compress or sponge with a high level of porosity.
- the material according to the invention can be used in surgery, notably in visceral surgery, and is specifically applied for the simultaneous achievement of hemostasis and prevention of post-surgical adhesion, while promoting the healing of the injured tissue.
- Patents FR-A-2 628 634 and U.S. Pat. No. A-5,201,745 describe patches for use in visceral surgery made of a biomaterial consisting of two layers of collagen superposed and closely associated, these being a porous adhesive layer of fibrous collagen and a collagen film or collagenic material such as gelatine.
- the film seals the membrane or patch and increases mechanical cohesion, also helping to prevent the formation of post-operative adhesions.
- the porous layer of fibrous collagen notably plays the part of a hemostatic compress.
- a double-layered collagenic membrane has been proposed in patent applications EP-A-O 686 402 and WO 96/08277 (COLETICA) with the aim of obtaining anti-adhesive properties.
- the collagens and collagenic materials used in such patches or membranes may be obtained from native collagen or from different types of atelocollagens or pepsin-treated collagens, notably type I bovine collagens, and type I, III, III+I and IV human collagens. These collagens can be partly oxidized, for example to increase their adhesive power, and the layer forming the film may include other materials, mixed with the collagenic material, used, for example to strengthen its mechanical resistance and improve its anti-adhesion properties. It is not easy to produce these patches or membranes, however. Indeed, on the one hand it is essential to guarantee an excellent bond between the layer forming the film and the layer forming the fibrous compress, while retaining each layer's individuality on the other.
- the layer of fibrous material when the layer of fibrous material is brought into contact with the liquid collagenic material destined to form the film, on contact with the liquid, the collagenic fibres tend to become impregnated so that an excellent bond is indeed obtained between the two layers but it is very difficult to control formation of the film and respect the porosity of the supporting layer.
- Hemostatic sponges composed of native bovine collagen are commercially available, as for example Colgen® (Immuno AG), Pangen® (Fournier) and Surgicoll® (Biodynamics); but these are not covered on one side with an impermeable film, acting as a barrier and they have several disadvantages:
- the present invention therefore aims to considerably perfect the previously described bicomposite collagenic materials, and to improve their hemostatic properties considerably, while retaining and, if necessary, even improving their properties which aim to prevent post-operative adhesions.
- the invention also aims to provide a hemostatic bicomposite collagenic material which can, in addition, prevent post-operative adhesions and facilitate healing.
- Another of the invention's aims is to produce such a material which particularly promotes colonization by the body's specific cells and is likely to be completely biodegradable within a short time and easy to control by making simple changes to the manufacturing process.
- the invention also aims to provide a biocompatible bicomposite material which is non-toxic and not sticky to the touch when dry, to facilitate handling, but which can develop adhesive properties in a physiological environment, in particular in contact with blood.
- Another of the invention's aim is to provide a particularly economic process to obtain such a bicomposite material.
- the invention aims to produce a bicomposite collagenic material which is biocompatible, non-toxic and biodegradable in less than a month, characterized in that it comprises solely or principally two closely linked layers, these being a layer forming a film based on a collagenic constituent, notably collagen which has at least partially lost its helical structure, or gelatine, and a layer forming a porous compress, substantially uncompacted, based on a polymer constituent.
- the film preferably comprises at least one macromolecular hydrophilic additive which does not react chemically with collagen.
- the second layer can be made of a porous compress, substantially uncompacted, of non-denatured collagen.
- the invention also aims to provide a preferred process for producing these materials.
- This process is based on the discovery that, when a liquid solution based on a collagenic constituent destined to form a film is left to gel, there is an instant, during gelling, when the porous layer of polymer constituent forming the compress can be laid on the surface of the gelling material, and the under part of the said porous layer partly penetrates the gel, while at least partly retaining a structure which guarantees almost perfect adhesion between the film to be constituted and the porous layer, while preserving almost all the individual properties of the porous layer and the film.
- the invention therefore aims to provide a process for obtaining a bicomposite material according to the invention, characterized in that a solution of collagenic constituent is poured onto a suitable inert support, to a thickness destined to form a film, and in that a substantially uncompacted compress made of a polymer constituent is applied onto the said solution during gelification, and then in that the material obtained is dried or left to dry.
- FIG. 1 is a photograph illustrating structures of the bicomposite material depicting a specimen of Example 7 in accordance with the present invention.
- FIG. 2 is a photograph showing a specimen of Example 7 made from the compress as in Example 3 with the film being produced as in Example 8 in accordance with the present invention.
- an aqueous solution of the collagenic constituent destined to form the film of the above-mentioned bicomposite material is prepared.
- collagenic constituent preferably designates collagen which has at least partially lost its helical structure through heating or any other method, or gelatine.
- gelatine here includes commercial gelatine made of collagen which has been denatured by heating and in which the chains are at least partially hydrolyzed (molecular weight lower than 100 kDa).
- the collagenic constituent used for the purposes of the invention is preferably formed of non-hydrolyzed collagen, mainly composed of a chains (molecular weight around 100 kDa).
- ⁇ chains means complete a chains or fragments of these complete ⁇ chains produced by the loss of a small number of amino acids.
- non-hydrolyzed means that less than 10% of the collagenic chains has a molecular weight below about 100 kDa.
- heating is used to denature the helical structure of the collagen, the heating must be moderate and provided under gentle conditions so as to avoid degradation by hydrolytic cleavage of the gelatine thus formed.
- the collagen used can be of human or animal origin. It may particularly be type I bovine collagen, or type I or type III human collagen or mixtures in any proportions of the last two types.
- Native collagen is used by preference, in acid solution or after processing, to eliminate the telopeptides, notably by pepsin digestion.
- the collagen can also be modified by oxidative cleavage.
- periodic acid or one of its salts can be used, applying the technique described by M. TARDY et al. (FR-A-2 601 371 and U.S. Pat. No. 4,931,546).
- this technique consists of mixing the collagen in acid solution with a solution of periodic acid or one of its salts at a concentration of between 1 and 10 ⁇ 5 M, preferably between 5 10 ⁇ 3 and 10 ⁇ 1 M, at a temperature of between 10 and 25° C. for 10 minutes to 72 hours.
- This process breaks down some of the collagen's components, these being hydroxylysine and the sugars, thus creating reactive sites without causing crosslinking.
- the oxidative cleavage of collagen allows moderate cross-linking later in the collagenic material but the invention does not exclude the possibility of providing this function by other means of moderate cross-linking, for example by beta or gamma irradiation, or other agents of moderate cross-linking, for example chemical reagents at suitably low and non-toxic doses.
- the film part of the bicomposite material according to the invention is made of collagen which is not oxidized or a mixture in any proportions of non-oxidized and oxidized collagens.
- a solution of collagenic constituent as defined above is used, and this may be partially or completely modified by oxidative cleavage, giving a collagen concentration of 5 to 50 g/l.
- the collagen or gelatine concentration is preferably 30 g/l.
- the solution of oxidized collagen, non-oxidized collagen or a mixture thereof, thus prepared, is heated, for example to a temperature in excess of 37° C., preferably to a temperature of between 40 and 50° C., for at least one hour. This results in the collagen's helical structure being at least partially denatured.
- a final preparation can notably be obtained which is similar to gelatine but with a molecular weight of elementary chains equal or greater than 100 kDa.
- Heating the collagen solution to a temperature above 37° C. leads to the gradual loss of the collagen's helical structure, but the invention does not exclude the possibility of achieving this by other physical or chemical means, for example by ultrasonication, or by the addition of chaotropic agents.
- At least one macromolecular hydrophilic additive is added to the previous preparation, this being preferably chemically unreactive with the collagenic constituent.
- “Chemically unreactive with the collagenic constituent” here means a hydrophilic compound which is not likely to react with the collagen present, notably which does not form covalent bonds with it during cross-linking.
- the macromolecular hydrophilic additive according to the invention advantageously has a molecular weight in excess of 3,000 Daltons.
- It may consist of synthetic hydrophilic polymers, preferably of a molecular weight between 3,000 and 20,000 Daltons. Polyethylene glycol is particularly preferred.
- It may also consist of polysaccharides, of which starch, dextran and cellulose can be mentioned.
- Oxidized forms of these polysaccharides can also be used, revealing carboxylic functions in these molecules.
- Mucopolysaccharides can also be used for the purposes of the invention, but are not preferred because their particular animal origin makes them difficult to prepare so that they meet the standards of traceability.
- the hydrophilic additive is selected according to various parameters, notably concerning its application, price, safety, biodegradability and/or ease of elimination.
- the concentration of hydrophilic additive(s) is 2 to 10 times less than that of the collagenic constituent.
- glycerine is added to the mixture of collagenic constituent/hydrophilic additive(s).
- the concentration of glycerin is advantageously between 3 and 8 g/l, not exceeding one third of the collagenic constituent concentration.
- the concentration of collagenic constituent, hydrophilic additive(s) and glycerine, when present, are preferably between 2 and 10% for the collagenic constituent, 0.6 and 4% for the hydrophilic additive(s) and 0.3 and 2.5% for glycerine respectively.
- the collagenic preparation is fluidised at a temperature of 30 to 50° C.
- a substantially non compacted porous compress based on a polymer constituent is also prepared.
- polymer constituent means a fibrous, non toxic polymer with hemostatic and/or heating properties. It may be non-denatured collagen or collagen which has at least partially lost its helical structure through heating or any other method, consisting mainly of non-hydrolyzed ⁇ chains, of molecular weight close to 100 kDa. It may also consist of polysaccharides such as chitin or chitosan, or polysaccharides modified by oxidation of alcohol functions into carboxylic functions such as oxidized cellulose.
- non-denatured collagen means collagen which has not lost its helical structure.
- the collagen used for this second layer of bicomposite material according to the invention consists of native collagen or atelocollagen, notably as obtained through pepsin digestion and/or after moderate heating as defined previously.
- the origin and type of collagen are as indicated for the film described above.
- substantially non compacted porous compress means a compress made of polymer fibres with a porous structure such as is obtained by freeze-drying for example, or an even more porous compress which can then have been slightly compacted.
- the said layer forming a porous compress has a density of not more than 75 mg/cm 2 and preferably below 20 mg/cm 2 .
- FIGS. 1 and 2 The porosity of these materials is illustrated in FIGS. 1 and 2 .
- the size of the pores varies from 20 to 300 ⁇ m and is generally between 100 and 200 ⁇ m.
- the porous compress can be obtained preferably by freeze-drying, from an aqueous acid solution of collagen at a concentration of 2 to 50 g/l and a temperature of 4 to 25° C.
- the concentration of collagen is preferably 10 g/l.
- This solution is advantageously neutralized to a pH of around 7 to 8.
- the porous compress can also be obtained by freeze-drying a fluid foam prepared from a solution of collagen or heated collagen, emulsified in the presence of a volume of air in variable respective quantities (volume of air:water varying from 1 to 10).
- the porous fibrous layer made of a polymer constituent is preferably at least 0.2 cm thick and is particularly preferred between 0.3 and 1.5 cm thick.
- the actual bicomposite material is prepared by assembling the film-forming layer and the porous compress as detailed below.
- the process according to the invention involves pouring the solution of collagenic constituent, destined to form the film, possibly containing the hydrophilic additive(s) and glycerine, onto an adequate, substantially flat support, distributing it evenly.
- the support is inert in that it does not react with the above-mentioned components and is not involved in the cross-linking process. It is preferably hydrophobic, for example, PVC or polystyrene.
- this support can also consist of a strippable material which will remain slightly adhesive and which can then be separated at the time of surgical use.
- This support may itself also consist of a film, for example dried collagen, onto which the solution is poured, or a layer of collagenic material gel in a distinctly more advanced state of gelification.
- the density of the thin layer applied is preferably between 0.1 and 0.3 g/cm 2 .
- This collagenic solution is poured at a temperature advantageously between 4 and 30° C., and preferably between 18 and 25° C.
- porous layer onto the solution during gelification means laying the porous layer onto the gel, with application continuing by simple gravity or optionally, by slight compression but not enough to cause any significant compaction of the porous layer.
- the moment at which the porous layer is applied to the solution during gelification is such that the gel is still soft and allows the porous layer or compress to penetrate over a distance which is advantageously around 0.05 to 2 mm and preferably around 0.1 to 0.5 mm.
- This moment can be determined empirically by applying compresses or bits of compresses to the gel at various times.
- the porous layer is applied 5 to 30 minutes after the solution has been poured over the surface holding it.
- the collagenic solution destined to form the film includes oxidized collagen, it is polymerized while the bicomposite material is drying.
- This drying occurs favourably at a temperature of 4 to 30° C., preferably between 18 and 25° C.
- the material can be dried in a jet of sterile air if necessary.
- the bicomposite material according to the invention can be separated from its support.
- it may include or incorporate a film or layer of collagenic material onto which the collagenic solution has been poured.
- hemostatic compresses such as are available commercially. Examples of these are compresses based on oxidized cellulose (Surgicel® or Interceed® compresses) or those based on chitin or chitosan.
- the bicomposite material according to the invention is stable at ambient temperature and remains stable for long enough to be handled at temperatures which may rise to 37-40° C.
- the film of collagenic material is preferably less than 100 ⁇ m thick, and more preferably between 30 and 75 ⁇ m.
- the porous compress is preferably between 0.2 cm and 1.5 cm thick, and still more preferably between 0.3 cm and 1.2 cm.
- the bicomposite material conforming to the invention can be subjected to various routine processes such as sterilization, etc.
- Sterilization is favourably provided by irradiation with beta (electronic irradiation) or gamma (irradiation using radioactive cobalt) rays.
- the present invention has led to the production of bicomposite materials in which a layer of fibrous polymer, notably non-denatured collagen, which is extremely porous and may be very thick, to form an efficient compress or sponge, is very closely bound to a thin collagenic film, which is well delimited and has suitable properties and dimensions.
- fibrous polymer notably non-denatured collagen, which is extremely porous and may be very thick
- the biomaterial obtained is easy to handle. It does not stick to surgical instruments or gloves when dry.
- the material according to the invention is a local hemostatic, the active principle of which is the polymer constituent, notably non-denatured collagen or oxidized cellulose, which contributes, like endogenous collagen, to the hemostatic and healing process. It is preferably applied with pressure to the site of haemorrhage until hemostasis is obtained.
- the blood is absorbed by the porous layer of material and concentrated under the material with the film of material acting as a seal barrier. On contact with the polymer, it is transformed into a hemostatic plug and/or a clot.
- the material very quickly adheres to the bleeding wound, through the formation of a hemostatic plug and/or clot by the polymer.
- the considerably improved hemostatic properties of the compress according to the invention are notably due to the possibility of absorbing a very large quantity of blood while preventing it from spreading either transversally or in the plane of the biomaterial.
- the diffusion of blood through the porous compress within the area marked by the wound, increases the area of contact between the hemostatic substance and the platelets. It thus accelerates hemostasis by playing on the various ways of obtaining coagulation, the final phase of which leads to the formation of a network of platelets and fibrin reinforcing the compress's adhesion to the wound.
- the bicomposite collagenic material according to the invention is particularly suitable for preventing post-operative adhesion, particularly in bleeding wounds, because the film prevents adherence, the composite material providing good adhesion in such wounds and there is no blood at the interface.
- the collagenic material of the present invention facilitates healing because of its composite structure, combining a highly porous polymer layer and a collagenic film.
- the porous part of the material can easily be colonized by the surrounding cells.
- the film protects the healing wound for several days as it forms a barrier to bacteria and micro-organisms.
- the power of the film of the material to prevent adhesion is also reinforced by the polymer used for the porous layer of material accelerating healing of the wound.
- the bicomposite collagenic material is therefore useful for hemostasis and the prevention of post-operative adhesions on bleeding wounds, while facilitating healing.
- the macromolecular hydrophilic additive is eliminated by diffusion through the collagenic material, in a few days, the swelling of this material promoting degradation of the collagenic film in less than a month.
- the bicomposite material according to the invention can also be used to promote healing. Its very open porous structure promotes rapid cellular colonization. The film isolates the porous part to make it accessible to specific cells.
- fibroblasts can be cultured in the porous part of the material, in vitro, and epithelial cells can be cultured on the film making two temporarily separate compartments.
- a film of collagenic constituent and a non-compacted porous compress can be bound by a biocompatible, biodegradable and non toxic adhesive agent, so long as this agent can provide a sufficiently strong bond between the film and the compress, although it is only present in small quantities.
- adhesive agents are surgical glues, notably fibrin and collagenic glues described in the patent Tardy et al. U.S. Pat. No. 5,618,551 and application WO 98/15299.
- a compress can be made which is then cut to the size and shape required, or a biomaterial prepared which has the size and shape of the patch required.
- Type I bovine collagen extracted from calf dermis, and possibly rendered soluble through pepsin digestion and, purified by saline precipitation, using the techniques already described.
- Type I or type III human collagen or a mixture of these in any proportions can be used in the same way.
- a 10 g/l solution of collagen is prepared by dissolving 23 g of damp collagen (12% humidity) in 2070 g of ultrafiltered water, at an ambient temperature below 25° C. It is neutralized using sodium hydroxide to a neutral pH, which leads to precipitation of the collagen.
- the suspension is then poured onto freeze-dry plates, with 0.5 to 1 g/cm 2 and dehydrated by freeze-drying, using one cycle lasting about 24 hours.
- freeze-dried collagen compress can be heated to 60° C. for several hours (4 to 15) which provides it with better cohesion and mechanical resistance in certain applications.
- the preparation of collagen compresses with a pH 5-5.5 helps to limit the collagen precipitation phenomenon. It is prepared as in example 1, the only difference being the neutralization of the collagen solution with sodium hydroxide at a pH close to collagen's isoelectric point, i.e. 5 and 5.5.
- Slightly acid compresses are prepared as in example 1, the only difference being that the collagen solution is not neutralized, which avoids any collagen precipitation.
- the 30 g/l oxidized collagen used for this example is prepared according to patent FR-A-2 715 309.
- Type I bovine collagen is used, extracted from calf dermis by solubilization at an acid pH, or pepsin digestion, and purified by saline precipitation according to the techniques already described.
- VITROGEN® The products marketed by COLLAGEN Corp. under the names VITROGEN® or ZYDERM®, may be used in this application.
- Dry collagen fibres are used for preference, obtained by precipitation of an acid solution of collagen by adding NaCl, then washing and drying the precipitate obtained using aqueous solutions of acetone in concentrations increasing from 80% to 100%.
- Type I or type III human collagen or any mixture of these can be used in the same way.
- the 30 g/l solution of collagen is prepared by dissolving it in 0.01 N HCl. Its volume is 49 liters. Periodic acid is added to it at a final concentration of 8 mM, i.e. 1.83 g/l. Oxidation takes place at an ambient temperature close to 22° C. for 3 hours away from light.
- the precipitate is collected by decantation through a fabric filter, with a porosity close to 100 microns, then washed 4 times with a 41 g/l solution of NaCl in 0.01 N HCl. This produces 19 kg of acid saline precipitate. This washing process eliminates all traces of periodic acid or iodine derivatives during oxidation of the collagen.
- a final wash in 100% acetone is used to prepare 3.6 kg of a very dense acetone precipitate of acid, oxidized, non-reticulated collagen, with no trace of undesirable chemical products.
- the acetone paste is diluted with apyrogenic distilled water at 40° C., to obtain a 3% concentration of collagen, for a volume of 44 liters.
- This suspension of oxidized collagen is used to prepare porous compresses in a similar way to examples 1,2 and 3.
- a collagen gel of neutral pH and concentration close to 50 g/l is heated to 45° C. for 10 minutes to fluidify it.
- the emulsion is prepared on freeze-dry plates and gelled by cooling, then frozen and freeze-dried.
- the suspension of a volume of 44 liters described in example 4 is heated for 30 minutes at 50° C., then filtered under sterile conditions through a membrane of 0.45 micron porosity in a drying oven at 40° C.
- the pH of the solution is adjusted to 7.0 by adding a concentrated solution of sodium hydroxide.
- a variant of the preparation of collagen solution used for the film is to take heated non-oxidized collagen or a mixture of heated oxidized collagen, prepared as in example 6, and heated non-oxidized collagen, in any proportions.
- the collagen used for preparing non-oxidized, heated collagen is type I bovine collagen, extracted from calf dermis, possibly solubilized by pepsin digestion and purified by saline precipitation using the techniques already described.
- Type I or type III human collagens or mixtures of these in any proportions can be used in the same way.
- a 30 g/l solution of non-oxidized, heated collagen is prepared by dissolving 65.2 g of damp collagen (12% humidity) in 1940 g of ultrafiltered water at 42° C.
- a sterile concentrated solution of PEG 4000 (polyethylene glycol with a molecular weight of 4000 Daltons), glycerine and possibly oxidized, heated collagen prepared as in example 6 is added to this solution at 42° C. to produce a final concentration of 0.9% PEG, 0.54% glycerine and 2.7% total collagen.
- the pH of the solution is adjusted to 7.0, by adding a concentrated solution of sodium hydroxide.
- An acid solution of heated, non-oxidized collagen, for the film, is prepared as in example 7, with the following differences:
- the collagen solution destined to form the film, as described in examples 4 to 7, is poured in a thin layer with a density of 0.133 g/cm 2 on a flat hydrophobic support such as PVC or polystyrene, at an ambient temperature close to 22° C.
- a collagen compress prepared as in examples 1, 2 or 3 is applied uniformly to the solution of heated collagen, 5 to 20 minutes after it was poured onto the support. This waiting time is the collagen solution gelling time, required for application of the collagen compress, to prevent it dissolving or becoming partially hydrated in the liquid collagen.
- Penetration of the compress into the gelled collagen solution is judged to be less than 0.5 mm.
- the material is then dehydrated in a jet of sterile air, at ambient temperature, which leads to evaporation in about 18 hours.
- the bicomposite material obtained is easy to remove from the support.
- the bicomposite material is then put into an airtight double polyethylene bag.
- the unit is sterilized by gamma irradiation or electron beam (beta) irradiation at a dose of between 25 and 35 KGy.
- the material is stable at ambient temperature.
- the presence of glycerine in the material essentially helps to make the film more flexible and facilitates its use.
- the material can be prepared without glycerine.
- PEG 4000 as macromolecular hydrophilic agent is not limiting.
- PEG 3000, PEG 6000 or polysaccharides such as soluble starch (OSI, France) and Dextran T40 (Pharmacia Fine Chemicals, Sweden) can be used instead.
- FIGS. 1 and 2 are photographs taken under scanning electron microscope, enlarged by 40 and 200 times respectively, illustrating the structure of the bicomposite material prepared as indicated above.
- FIG. 1 shows a specimen of example 9 made from the compress as in example 1 prepared from pepsinated collagen, the film being produced as in example 6.
- FIG. 2 shows a specimen of example 9 made from the compress as in example 3, the film being produced as in example 8.
Landscapes
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Hematology (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Vascular Medicine (AREA)
- Materials For Medical Uses (AREA)
- Medicinal Preparation (AREA)
- Peptides Or Proteins (AREA)
Abstract
A bicomposite material based on collagen is prepared which has two closely bound layers and is biocompatible, non-toxic, hemostatic and biodegradable in less than a month, and can be used in surgery to achieve hemostasis and prevent post-surgical adhesion. To prepare the material, a solution of collagen or gelatin, which may contain glycerine and a hydrophilic additive such as polyethylene glycol or a polysaccharide, is poured onto an inert support to form a layer 30 μm to less than 100 μm thick. Then a polymeric porous fibrous layer is applied during gelling of the collagen or gelatin, and the resultant material is dried. The polymeric porous fibrous layer may be made of collagen or a polysaccharide, and have a density of not more than 75 mg/cm2, a pore size from 30 μm to 300 μm and a thickness of 0.2 cm to 1.5 cm.
Description
The present invention concerns a bicomposite material based on collagen, which is biocompatible, non-toxic and biodegradable, comprising uniquely or mainly a layer forming a collagenic film and a layer forming a fibrous polymer compress or sponge with a high level of porosity.
The material according to the invention can be used in surgery, notably in visceral surgery, and is specifically applied for the simultaneous achievement of hemostasis and prevention of post-surgical adhesion, while promoting the healing of the injured tissue.
Patents FR-A-2 628 634 and U.S. Pat. No. A-5,201,745 (IMEDEX) describe patches for use in visceral surgery made of a biomaterial consisting of two layers of collagen superposed and closely associated, these being a porous adhesive layer of fibrous collagen and a collagen film or collagenic material such as gelatine.
In this type of material, the film seals the membrane or patch and increases mechanical cohesion, also helping to prevent the formation of post-operative adhesions. The porous layer of fibrous collagen notably plays the part of a hemostatic compress.
A double-layered collagenic membrane has been proposed in patent applications EP-A-O 686 402 and WO 96/08277 (COLETICA) with the aim of obtaining anti-adhesive properties.
The collagens and collagenic materials used in such patches or membranes may be obtained from native collagen or from different types of atelocollagens or pepsin-treated collagens, notably type I bovine collagens, and type I, III, III+I and IV human collagens. These collagens can be partly oxidized, for example to increase their adhesive power, and the layer forming the film may include other materials, mixed with the collagenic material, used, for example to strengthen its mechanical resistance and improve its anti-adhesion properties. It is not easy to produce these patches or membranes, however. Indeed, on the one hand it is essential to guarantee an excellent bond between the layer forming the film and the layer forming the fibrous compress, while retaining each layer's individuality on the other. Also, when the layer of fibrous material is brought into contact with the liquid collagenic material destined to form the film, on contact with the liquid, the collagenic fibres tend to become impregnated so that an excellent bond is indeed obtained between the two layers but it is very difficult to control formation of the film and respect the porosity of the supporting layer.
For this purpose, it has been proposed (FR-A-2 628 634), to pour the collagenic material which is to form the film, onto a layer of fibrous collagen which has first been slightly compressed to limit interpenetration between the two layers.
It has also already been proposed (EP-A-O 686 402) to freeze the porous fibrous layer so that it is hydrated and impermeable and pour the liquid collagenic material destined to form the film onto this layer so as to eliminate interpenetration between the two layers, but this level of prevention of interpenetration gives rise to cohesion defects. The process described also gives rise to a two-layer collagengelatine membrane which has been dried or freeze-dried in one piece, which prevents an impermeable film and a highly porous layer from being formed simultaneously. It is also recommended to compress this membrane.
Hemostatic sponges composed of native bovine collagen are commercially available, as for example Colgen® (Immuno AG), Pangen® (Fournier) and Surgicoll® (Biodynamics); but these are not covered on one side with an impermeable film, acting as a barrier and they have several disadvantages:
-
- i) left in the body, they can generate adhesions;
- ii) the blood diffuses through preferential routes in the compress, reducing the area of contact of the collagen with the platelets and consequently the hemostatic effect of the compress;
- iii) they no longer have a hemostatic effect on strongly bleeding wounds (ruptures arterioles for example), because the blood passes through the compress;
- iv) generally produced from acid collagen, they are difficult to handle because they strongly stick to surgical instruments or latex gloves.
Other more complex products, such as TachoComb® (Nycomed) combining collagen, fibrinogen, thrombin and aprotinin provide better hemostasis than collagen sponges, but these products are likely to facilitate the development of post-operative adhesions. They contain thermolabile enzymes and must be stored between 2 and 8° C. The multiplication of components of human or animal origin is also a handicap, because of problems of traceability and registration linked to these products, leading to prohibitive excess cost.
From the point of view of preventing post-operative adhesions, this is particularly difficult with haemorrhagic wounds, especially where bleeding is widespread (Buckman et al., J. Surg. Res., 1976, 20 1-5; Wiseman et al., J. Reprod. Med., 1992, 37, 766-770). Bleeding from wounds strongly affects the efficacy of the products marketed and used to prevent adhesion, such as INTERCEED® TC7 (Johnson & Johnson) (Wiseman et al., J. Reprod. Med., 1992, 37, 766-770). Indeed it can lead to the deposit of fibrin on the anti-adhesive film and then facilitate the development of post-operative adhesions. This results in the necessity to perform the most complete hemostasis possible, using thrombin or any other technique, before applying products such as INTERCEED® TC7 to haemorrhagic wounds. Therefore to prevent adhesion it is advantageous to develop materials which also have hemostatic properties.
The present invention therefore aims to considerably perfect the previously described bicomposite collagenic materials, and to improve their hemostatic properties considerably, while retaining and, if necessary, even improving their properties which aim to prevent post-operative adhesions.
The invention also aims to provide a hemostatic bicomposite collagenic material which can, in addition, prevent post-operative adhesions and facilitate healing.
Another of the invention's aims is to produce such a material which particularly promotes colonization by the body's specific cells and is likely to be completely biodegradable within a short time and easy to control by making simple changes to the manufacturing process.
The invention also aims to provide a biocompatible bicomposite material which is non-toxic and not sticky to the touch when dry, to facilitate handling, but which can develop adhesive properties in a physiological environment, in particular in contact with blood.
Another of the invention's aim is to provide a particularly economic process to obtain such a bicomposite material.
Therefore the invention aims to produce a bicomposite collagenic material which is biocompatible, non-toxic and biodegradable in less than a month, characterized in that it comprises solely or principally two closely linked layers, these being a layer forming a film based on a collagenic constituent, notably collagen which has at least partially lost its helical structure, or gelatine, and a layer forming a porous compress, substantially uncompacted, based on a polymer constituent.
As well as the collagenic constituent, the film preferably comprises at least one macromolecular hydrophilic additive which does not react chemically with collagen.
The second layer can be made of a porous compress, substantially uncompacted, of non-denatured collagen.
The invention also aims to provide a preferred process for producing these materials.
This process is based on the discovery that, when a liquid solution based on a collagenic constituent destined to form a film is left to gel, there is an instant, during gelling, when the porous layer of polymer constituent forming the compress can be laid on the surface of the gelling material, and the under part of the said porous layer partly penetrates the gel, while at least partly retaining a structure which guarantees almost perfect adhesion between the film to be constituted and the porous layer, while preserving almost all the individual properties of the porous layer and the film.
The inventors noted most surprisingly that:
-
- the collagen film can be formed by dehydration of the liquid layer of collagen in spite of the presence of a freeze-dried porous layer on top of it;
- the upper porous layer is not degraded or changed by association with the film in the process of formation.
The invention therefore aims to provide a process for obtaining a bicomposite material according to the invention, characterized in that a solution of collagenic constituent is poured onto a suitable inert support, to a thickness destined to form a film, and in that a substantially uncompacted compress made of a polymer constituent is applied onto the said solution during gelification, and then in that the material obtained is dried or left to dry.
The process according to the invention will be described in greater detail below:
To implement this process, an aqueous solution of the collagenic constituent destined to form the film of the above-mentioned bicomposite material is prepared.
According to the invention, the term “collagenic constituent” preferably designates collagen which has at least partially lost its helical structure through heating or any other method, or gelatine.
The term “gelatine” here includes commercial gelatine made of collagen which has been denatured by heating and in which the chains are at least partially hydrolyzed (molecular weight lower than 100 kDa).
The collagenic constituent used for the purposes of the invention is preferably formed of non-hydrolyzed collagen, mainly composed of a chains (molecular weight around 100 kDa).
In the context of the invention α chains means complete a chains or fragments of these complete α chains produced by the loss of a small number of amino acids.
The term “non-hydrolyzed” as used according to the invention means that less than 10% of the collagenic chains has a molecular weight below about 100 kDa.
If heating is used to denature the helical structure of the collagen, the heating must be moderate and provided under gentle conditions so as to avoid degradation by hydrolytic cleavage of the gelatine thus formed.
Commercial gelatine can be used for the invention but is not preferred.
The collagen used can be of human or animal origin. It may particularly be type I bovine collagen, or type I or type III human collagen or mixtures in any proportions of the last two types.
Native collagen is used by preference, in acid solution or after processing, to eliminate the telopeptides, notably by pepsin digestion.
The collagen can also be modified by oxidative cleavage. For this purpose periodic acid or one of its salts can be used, applying the technique described by M. TARDY et al. (FR-A-2 601 371 and U.S. Pat. No. 4,931,546).
It is recalled briefly that this technique consists of mixing the collagen in acid solution with a solution of periodic acid or one of its salts at a concentration of between 1 and 10−5 M, preferably between 5 10−3 and 10−1 M, at a temperature of between 10 and 25° C. for 10 minutes to 72 hours.
This process breaks down some of the collagen's components, these being hydroxylysine and the sugars, thus creating reactive sites without causing crosslinking.
The oxidative cleavage of collagen allows moderate cross-linking later in the collagenic material but the invention does not exclude the possibility of providing this function by other means of moderate cross-linking, for example by beta or gamma irradiation, or other agents of moderate cross-linking, for example chemical reagents at suitably low and non-toxic doses.
For some applications, the film part of the bicomposite material according to the invention, is made of collagen which is not oxidized or a mixture in any proportions of non-oxidized and oxidized collagens.
In a preferred embodiment of the invention, a solution of collagenic constituent as defined above is used, and this may be partially or completely modified by oxidative cleavage, giving a collagen concentration of 5 to 50 g/l. The collagen or gelatine concentration is preferably 30 g/l.
The solution of oxidized collagen, non-oxidized collagen or a mixture thereof, thus prepared, is heated, for example to a temperature in excess of 37° C., preferably to a temperature of between 40 and 50° C., for at least one hour. This results in the collagen's helical structure being at least partially denatured.
A final preparation can notably be obtained which is similar to gelatine but with a molecular weight of elementary chains equal or greater than 100 kDa.
Heating the collagen solution to a temperature above 37° C. leads to the gradual loss of the collagen's helical structure, but the invention does not exclude the possibility of achieving this by other physical or chemical means, for example by ultrasonication, or by the addition of chaotropic agents.
According to a variant of the invention, at least one macromolecular hydrophilic additive is added to the previous preparation, this being preferably chemically unreactive with the collagenic constituent.
“Chemically unreactive with the collagenic constituent” here means a hydrophilic compound which is not likely to react with the collagen present, notably which does not form covalent bonds with it during cross-linking.
The macromolecular hydrophilic additive according to the invention advantageously has a molecular weight in excess of 3,000 Daltons.
It may consist of synthetic hydrophilic polymers, preferably of a molecular weight between 3,000 and 20,000 Daltons. Polyethylene glycol is particularly preferred.
It may also consist of polysaccharides, of which starch, dextran and cellulose can be mentioned.
Oxidized forms of these polysaccharides can also be used, revealing carboxylic functions in these molecules.
Mucopolysaccharides can also be used for the purposes of the invention, but are not preferred because their particular animal origin makes them difficult to prepare so that they meet the standards of traceability.
The hydrophilic additive is selected according to various parameters, notably concerning its application, price, safety, biodegradability and/or ease of elimination.
The concentration of hydrophilic additive(s) is 2 to 10 times less than that of the collagenic constituent.
According to a variant execution of the invention, glycerine is added to the mixture of collagenic constituent/hydrophilic additive(s).
In this case, the concentration of glycerin is advantageously between 3 and 8 g/l, not exceeding one third of the collagenic constituent concentration.
In the collagenic preparation, the concentration of collagenic constituent, hydrophilic additive(s) and glycerine, when present, are preferably between 2 and 10% for the collagenic constituent, 0.6 and 4% for the hydrophilic additive(s) and 0.3 and 2.5% for glycerine respectively.
The collagenic preparation is fluidised at a temperature of 30 to 50° C.
It is advantageously neutralized to a neutral pH to avoid hydrolyzing the collagen by heating and to obtain a film of physiological pH while permitting pre-cross-linking of the collagen if the mixture contains oxidized collagen as indicated previously.
For implementation of the process according to the invention, a substantially non compacted porous compress, based on a polymer constituent is also prepared.
The term “polymer constituent” according to the invention means a fibrous, non toxic polymer with hemostatic and/or heating properties. It may be non-denatured collagen or collagen which has at least partially lost its helical structure through heating or any other method, consisting mainly of non-hydrolyzed α chains, of molecular weight close to 100 kDa. It may also consist of polysaccharides such as chitin or chitosan, or polysaccharides modified by oxidation of alcohol functions into carboxylic functions such as oxidized cellulose.
The term “non-denatured collagen” means collagen which has not lost its helical structure.
The collagen used for this second layer of bicomposite material according to the invention, consists of native collagen or atelocollagen, notably as obtained through pepsin digestion and/or after moderate heating as defined previously.
These may have been previously chemically modified by oxidation, methylation, succinylation or any other known process.
The origin and type of collagen are as indicated for the film described above.
The term “substantially non compacted porous compress” means a compress made of polymer fibres with a porous structure such as is obtained by freeze-drying for example, or an even more porous compress which can then have been slightly compacted.
Defined in another form, the said layer forming a porous compress has a density of not more than 75 mg/cm2 and preferably below 20 mg/cm2.
The porosity of these materials is illustrated in FIGS. 1 and 2 .
The size of the pores varies from 20 to 300 μm and is generally between 100 and 200 μm.
The porous compress can be obtained preferably by freeze-drying, from an aqueous acid solution of collagen at a concentration of 2 to 50 g/l and a temperature of 4 to 25° C. The concentration of collagen is preferably 10 g/l.
This solution is advantageously neutralized to a pH of around 7 to 8.
The porous compress can also be obtained by freeze-drying a fluid foam prepared from a solution of collagen or heated collagen, emulsified in the presence of a volume of air in variable respective quantities (volume of air:water varying from 1 to 10).
The porous fibrous layer made of a polymer constituent is preferably at least 0.2 cm thick and is particularly preferred between 0.3 and 1.5 cm thick.
The actual bicomposite material is prepared by assembling the film-forming layer and the porous compress as detailed below.
In its simplest method of implementation, the process according to the invention involves pouring the solution of collagenic constituent, destined to form the film, possibly containing the hydrophilic additive(s) and glycerine, onto an adequate, substantially flat support, distributing it evenly.
The support is inert in that it does not react with the above-mentioned components and is not involved in the cross-linking process. It is preferably hydrophobic, for example, PVC or polystyrene.
However, this support can also consist of a strippable material which will remain slightly adhesive and which can then be separated at the time of surgical use.
This support may itself also consist of a film, for example dried collagen, onto which the solution is poured, or a layer of collagenic material gel in a distinctly more advanced state of gelification.
The density of the thin layer applied is preferably between 0.1 and 0.3 g/cm2.
This collagenic solution is poured at a temperature advantageously between 4 and 30° C., and preferably between 18 and 25° C.
This solution is left to gel and a porous compress prepared as indicated above is applied to the said solution during gelification.
Application of the porous layer onto the solution during gelification means laying the porous layer onto the gel, with application continuing by simple gravity or optionally, by slight compression but not enough to cause any significant compaction of the porous layer.
The moment at which the porous layer is applied to the solution during gelification is such that the gel is still soft and allows the porous layer or compress to penetrate over a distance which is advantageously around 0.05 to 2 mm and preferably around 0.1 to 0.5 mm.
This moment can be determined empirically by applying compresses or bits of compresses to the gel at various times.
Generally, when the solution which is gelling is at a temperature of between 4 and 30° C., the porous layer is applied 5 to 30 minutes after the solution has been poured over the surface holding it.
It is left to dry or dried in order to obtain the bicomposite material according to the invention.
When the collagenic solution destined to form the film includes oxidized collagen, it is polymerized while the bicomposite material is drying.
This drying occurs favourably at a temperature of 4 to 30° C., preferably between 18 and 25° C.
The material can be dried in a jet of sterile air if necessary.
After drying, the bicomposite material according to the invention can be separated from its support. In a variant, it may include or incorporate a film or layer of collagenic material onto which the collagenic solution has been poured.
The process described above may be implemented in a similar way using other types of hemostatic compresses, notably compresses such as are available commercially. Examples of these are compresses based on oxidized cellulose (Surgicel® or Interceed® compresses) or those based on chitin or chitosan.
The bicomposite material according to the invention is stable at ambient temperature and remains stable for long enough to be handled at temperatures which may rise to 37-40° C.
The film of collagenic material is preferably less than 100 μm thick, and more preferably between 30 and 75 μm.
The porous compress is preferably between 0.2 cm and 1.5 cm thick, and still more preferably between 0.3 cm and 1.2 cm.
According to the envisaged applications, the bicomposite material conforming to the invention can be subjected to various routine processes such as sterilization, etc.
Sterilization is favourably provided by irradiation with beta (electronic irradiation) or gamma (irradiation using radioactive cobalt) rays.
The bicomposite material according to the invention can be used as it is or cut to sizes appropriate for the envisaged application.
The present invention has led to the production of bicomposite materials in which a layer of fibrous polymer, notably non-denatured collagen, which is extremely porous and may be very thick, to form an efficient compress or sponge, is very closely bound to a thin collagenic film, which is well delimited and has suitable properties and dimensions.
It was then established that such a two-layer material displayed a set of particularly surprising hemostatic, anti-post-operative adhesion and biodegradability qualities.
The biomaterial obtained is easy to handle. It does not stick to surgical instruments or gloves when dry.
It displays acceptable mechanical resistance while retaining a certain flexibility, provided by the hydrophilic elements in the film of composite material.
The material according to the invention is a local hemostatic, the active principle of which is the polymer constituent, notably non-denatured collagen or oxidized cellulose, which contributes, like endogenous collagen, to the hemostatic and healing process. It is preferably applied with pressure to the site of haemorrhage until hemostasis is obtained. The blood is absorbed by the porous layer of material and concentrated under the material with the film of material acting as a seal barrier. On contact with the polymer, it is transformed into a hemostatic plug and/or a clot.
The material very quickly adheres to the bleeding wound, through the formation of a hemostatic plug and/or clot by the polymer.
It is thought that the considerably improved hemostatic properties of the compress according to the invention are notably due to the possibility of absorbing a very large quantity of blood while preventing it from spreading either transversally or in the plane of the biomaterial. In addition, the diffusion of blood through the porous compress, within the area marked by the wound, increases the area of contact between the hemostatic substance and the platelets. It thus accelerates hemostasis by playing on the various ways of obtaining coagulation, the final phase of which leads to the formation of a network of platelets and fibrin reinforcing the compress's adhesion to the wound.
On the contrary, the two-layer collagenic materials of the prior art described above, are insufficiently porous so that the blood cannot penetrate. This favours the lateral leakage of blood under the compress which does not provide good adhesion. Because of this, it is much harder to stop the bleeding.
The bicomposite collagenic material according to the invention is particularly suitable for preventing post-operative adhesion, particularly in bleeding wounds, because the film prevents adherence, the composite material providing good adhesion in such wounds and there is no blood at the interface.
Apart from their hemostatic properties and the prevention of post-operative adhesions, the collagenic material of the present invention facilitates healing because of its composite structure, combining a highly porous polymer layer and a collagenic film.
The porous part of the material can easily be colonized by the surrounding cells. The film protects the healing wound for several days as it forms a barrier to bacteria and micro-organisms.
The power of the film of the material to prevent adhesion is also reinforced by the polymer used for the porous layer of material accelerating healing of the wound.
According to the invention, the bicomposite collagenic material is therefore useful for hemostasis and the prevention of post-operative adhesions on bleeding wounds, while facilitating healing.
In addition, the macromolecular hydrophilic additive is eliminated by diffusion through the collagenic material, in a few days, the swelling of this material promoting degradation of the collagenic film in less than a month.
The bicomposite material according to the invention can also be used to promote healing. Its very open porous structure promotes rapid cellular colonization. The film isolates the porous part to make it accessible to specific cells.
As an example, fibroblasts can be cultured in the porous part of the material, in vitro, and epithelial cells can be cultured on the film making two temporarily separate compartments.
However, although this is not preferred, a film of collagenic constituent and a non-compacted porous compress can be bound by a biocompatible, biodegradable and non toxic adhesive agent, so long as this agent can provide a sufficiently strong bond between the film and the compress, although it is only present in small quantities.
Examples of adhesive agents are surgical glues, notably fibrin and collagenic glues described in the patent Tardy et al. U.S. Pat. No. 5,618,551 and application WO 98/15299.
This invention will now be described in detail with the aid of non-limiting examples showing different possible combinations of the materials and their hemostatic powers and ability to prevent post-operative tissular adhesions.
According to the invention, a compress can be made which is then cut to the size and shape required, or a biomaterial prepared which has the size and shape of the patch required.
Preparation of Collagen Compresses With a Neutral pH:
The collagen used in type I bovine collagen, extracted from calf dermis, and possibly rendered soluble through pepsin digestion and, purified by saline precipitation, using the techniques already described. Type I or type III human collagen or a mixture of these in any proportions can be used in the same way.
A 10 g/l solution of collagen is prepared by dissolving 23 g of damp collagen (12% humidity) in 2070 g of ultrafiltered water, at an ambient temperature below 25° C. It is neutralized using sodium hydroxide to a neutral pH, which leads to precipitation of the collagen.
The suspension is then poured onto freeze-dry plates, with 0.5 to 1 g/cm2 and dehydrated by freeze-drying, using one cycle lasting about 24 hours.
Finally, in a variant, the freeze-dried collagen compress can be heated to 60° C. for several hours (4 to 15) which provides it with better cohesion and mechanical resistance in certain applications.
Preparation of Collagen Compresses With a pH of 5-5.5:
The preparation of collagen compresses with a pH 5-5.5 helps to limit the collagen precipitation phenomenon. It is prepared as in example 1, the only difference being the neutralization of the collagen solution with sodium hydroxide at a pH close to collagen's isoelectric point, i.e. 5 and 5.5.
Preparation of Collagen Compresses With an Acid pH:
Slightly acid compresses are prepared as in example 1, the only difference being that the collagen solution is not neutralized, which avoids any collagen precipitation.
Preparation of a Solution of Oxidized Collagen:
The 30 g/l oxidized collagen used for this example, is prepared according to patent FR-A-2 715 309. Type I bovine collagen is used, extracted from calf dermis by solubilization at an acid pH, or pepsin digestion, and purified by saline precipitation according to the techniques already described.
The products marketed by COLLAGEN Corp. under the names VITROGEN® or ZYDERM®, may be used in this application.
Dry collagen fibres are used for preference, obtained by precipitation of an acid solution of collagen by adding NaCl, then washing and drying the precipitate obtained using aqueous solutions of acetone in concentrations increasing from 80% to 100%.
Type I or type III human collagen or any mixture of these can be used in the same way.
The 30 g/l solution of collagen is prepared by dissolving it in 0.01 N HCl. Its volume is 49 liters. Periodic acid is added to it at a final concentration of 8 mM, i.e. 1.83 g/l. Oxidation takes place at an ambient temperature close to 22° C. for 3 hours away from light.
Then an equal volume of a solution of sodium chloride is added to the solution to obtain a final concentration of 41 g/l NaCl.
After waiting for 30 minutes, the precipitate is collected by decantation through a fabric filter, with a porosity close to 100 microns, then washed 4 times with a 41 g/l solution of NaCl in 0.01 N HCl. This produces 19 kg of acid saline precipitate. This washing process eliminates all traces of periodic acid or iodine derivatives during oxidation of the collagen.
Then, several washes in an aqueous solution of 80% acetone are used to concentrate the collagen precipitate and eliminate the salts present.
A final wash in 100% acetone is used to prepare 3.6 kg of a very dense acetone precipitate of acid, oxidized, non-reticulated collagen, with no trace of undesirable chemical products.
The acetone paste is diluted with apyrogenic distilled water at 40° C., to obtain a 3% concentration of collagen, for a volume of 44 liters. This suspension of oxidized collagen is used to prepare porous compresses in a similar way to examples 1,2 and 3.
Preparation of a Solution of Heated Collagen:
A collagen gel of neutral pH and concentration close to 50 g/l is heated to 45° C. for 10 minutes to fluidify it.
4 volumes of air or other gas are incorporated into the solution of heated collagen through 2 syringes mounted opposite each other and connected to produce the emulsion, by successively pulling and pushing the plungers, which mix the respected contents of each syringe evenly.
The emulsion is prepared on freeze-dry plates and gelled by cooling, then frozen and freeze-dried.
Preparation of a Solution of Oxidized, Heated Collagen Designed to Form a Film
The suspension of a volume of 44 liters described in example 4, is heated for 30 minutes at 50° C., then filtered under sterile conditions through a membrane of 0.45 micron porosity in a drying oven at 40° C.
As soon as this solution is homogeneous and at 35° C., a sterile concentrated solution of PEG 4000 (polyethylene glycol with a molecular weight of 4000 Daltons) and glycerine is added to it to produce a final concentration of 0.9% PEG, 0.54% glycerine and 2.7% oxidized collagen.
As soon as these additions have been made, the pH of the solution is adjusted to 7.0 by adding a concentrated solution of sodium hydroxide.
Preparation of a Solution Including a Mixture of Non-oxidized, Heated Collagen and Oxidized Collagen, Designed to Form a Film:
A variant of the preparation of collagen solution used for the film, is to take heated non-oxidized collagen or a mixture of heated oxidized collagen, prepared as in example 6, and heated non-oxidized collagen, in any proportions.
The collagen used for preparing non-oxidized, heated collagen is type I bovine collagen, extracted from calf dermis, possibly solubilized by pepsin digestion and purified by saline precipitation using the techniques already described. Type I or type III human collagens or mixtures of these in any proportions can be used in the same way.
A 30 g/l solution of non-oxidized, heated collagen is prepared by dissolving 65.2 g of damp collagen (12% humidity) in 1940 g of ultrafiltered water at 42° C. A sterile concentrated solution of PEG 4000 (polyethylene glycol with a molecular weight of 4000 Daltons), glycerine and possibly oxidized, heated collagen prepared as in example 6 is added to this solution at 42° C. to produce a final concentration of 0.9% PEG, 0.54% glycerine and 2.7% total collagen. The pH of the solution is adjusted to 7.0, by adding a concentrated solution of sodium hydroxide.
Preparation of an Acid Solution of Non-oxidized Heated Collagen Designed to Form a Film:
An acid solution of heated, non-oxidized collagen, for the film, is prepared as in example 7, with the following differences:
-
- i) the collagen used is only non-oxidized heated collagen, the preparation of which is described in example 1;
- ii) the mixture used for the film, of which the final concentrations of PEG, glycerine and collagen are 0.9%, 0.54% and 2.7% respectively, is acid.
Preparation of a Bicomposite Material from a Collagen Compress:
The collagen solution destined to form the film, as described in examples 4 to 7, is poured in a thin layer with a density of 0.133 g/cm2 on a flat hydrophobic support such as PVC or polystyrene, at an ambient temperature close to 22° C.
A collagen compress, prepared as in examples 1, 2 or 3 is applied uniformly to the solution of heated collagen, 5 to 20 minutes after it was poured onto the support. This waiting time is the collagen solution gelling time, required for application of the collagen compress, to prevent it dissolving or becoming partially hydrated in the liquid collagen.
Penetration of the compress into the gelled collagen solution is judged to be less than 0.5 mm.
The material is then dehydrated in a jet of sterile air, at ambient temperature, which leads to evaporation in about 18 hours.
The bicomposite material obtained is easy to remove from the support.
It can be cut to the dimensions required for the application concerned, without weakening it.
The bicomposite material is then put into an airtight double polyethylene bag.
The unit is sterilized by gamma irradiation or electron beam (beta) irradiation at a dose of between 25 and 35 KGy.
The material is stable at ambient temperature.
The presence of glycerine in the material essentially helps to make the film more flexible and facilitates its use. The material can be prepared without glycerine.
The use of PEG 4000 as macromolecular hydrophilic agent is not limiting. PEG 3000, PEG 6000 or polysaccharides such as soluble starch (OSI, France) and Dextran T40 (Pharmacia Fine Chemicals, Sweden) can be used instead.
Preparation of a Bicomposite Material Using an Oxidized Cellulose Compress:
The procedure is the same as for example 9 but using a porous compress based on oxidized cellulose as is available on the market under the name Interceed® or Surgicel®.
Claims (30)
1. A method for obtaining a bicomposite material which has two closely bound layers and is biocompatible, non-toxic and biodegradable in less than one month, said method comprising the steps of:
(i) pouring a solution of collagen or gelatin onto an inert support so as to form a 30 μm to less than 100 μm-thick layer film after drying step (iii);
(ii) applying to the solution during gelling of the collagen or gelatin a polymeric porous fibrous layer having a density of no more than 75 mg/cm2, a pore size from 20 μm to 300 μm and a thickness of 0.2 cm to 1.5 cm; and
(iii) drying or leaving to dry the material obtained from step (ii) to provide said bicomposite material.
2. The method according to claim 1 , wherein the solution of collagen in step (i) has a concentration of collagen of between 5 and 50 g/l.
3. The method according to claim 2 , wherein the solution of collagen in step (i) is an acid solution of native collagen.
4. The method according to claim 1 , wherein the solution of collagen in step (i) includes collagen modified by oxidative cleavage.
5. The method according to claim 4 , wherein the solution of collagen in step (i) is modified by treatment with periodic acid or one of its salts.
6. The method according to claim 1 , wherein the solution of collagen in step (i) is heated to a temperature of between 40° and 50° C.
7. The method according to claim 1 , wherein at least one macromolecular hydrophilic additive; chemically unreactive with respect to the collagen or gelatin, is added to the solution of collagen in step (i).
8. The method according to claim 7 , wherein the concentration of hydrophilic additive(s) is 2 to 10 times less than the concentration of collagen in the solution in step (i).
9. The method according to claim 7 , wherein glycerine is added to the solution of collagen in step (i).
10. The method according to claim 9 , wherein the concentration of glycerine is between 3 and 8 g/l and does not exceed one third of the concentration of collagen of the solution in step (i).
11. The method according to claim 1 , wherein the collagen solution in step (i) is an aqueous solution containing 2 to 10% of collagen or gelatin, 0.6 to 4% of hydrophilic additive(s) and 0.3 to 2.5% of glycerine.
12. The method according to claim 1 , wherein the solution in step (i) is neutralized.
13. The method according to claim 1 , wherein the support in step (i) is a PVC or polystyrene support.
14. The method according to claim 1 , wherein the solution in step (i) has a density of between 0.1 and 0.3 g/cm2.
15. The method according to claim 1 , wherein the collagen or gelatin solution in step (i) is poured at a temperature of 4 to 30° C.
16. The method according to claim 1 , wherein the polymeric porous fibrous layer in step (ii) is made of collagen.
17. The method according to claim 16 , wherein the polymeric porous fibrous layer of step (ii) is prepared from an aqueous acid solution of collagen, the concentration of which is 2 to 50 g/l when the collagen is not denatured.
18. The method according to claim 17 , wherein the aqueous acid solution of collagen is neutralized to a pH of around 7 to 8.
19. The method according to claim 17 , wherein the solution of collagen used to prepare the polymeric porous fibrous layer of step (ii) is freeze-dried.
20. The method according to claim 19 , wherein the solution of collagen used to prepare the polymeric porous fibrous layer of step (ii) is spread in a layer with a density of between 0.2 and 1.5 mg/cm2 for freeze-drying.
21. The method according to claim 1 , wherein the polymeric porous fibrous layer of step (ii) is made of polysaccharide.
22. The method according to claim 1 , wherein the polymeric porous fibrous layer of step (ii) is made of polysaccharide modified by oxidation of the alcohol functions into carboxylic function.
23. The method according to claim 1 , wherein, when the polymeric porous fibrous layer is applied to the solution of collagen or gelatin during gelling, the polymeric porous fibrous layer of step (ii) is allowed to penetrate for around 0.05 to 2 mm in the gel which is forming.
24. The method according to claim 1 , wherein the material obtained is dried in a jet of sterile air in step (iii).
25. The method according to claim 1 , wherein the polymeric porous fibrous layer is produced by freeze-drying a collagenic emulsion and a gas.
26. The method according to claim 1 , wherein the material obtained is sterilized in step (iii).
27. The method according to claim 7 , wherein the macromolecular hydrophilic additive has a molecular weight of between 3,000 and 20,000 Daltons.
28. The method according to claim 7 , wherein the macromolecular hydrophilic additive is polyethylene glycol.
29. The method according to claim 7 , wherein the hydrophilic additive is chosen from the group consisting of polysaccharides and mucopolysaccharides.
30. The method according to claim 7 , wherein the hydrophilic additive is an oxidized polysaccharide.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9811701A FR2783429B1 (en) | 1998-09-18 | 1998-09-18 | BICOMPOSITE COLLAGENIC MATERIAL, ITS OBTAINING PROCESS AND ITS THERAPEUTIC APPLICATIONS |
PCT/FR1999/002212 WO2000016821A1 (en) | 1998-09-18 | 1999-09-16 | Bi-composite collagen material, method for obtaining same and therapeutic applications |
US09/554,509 US6596304B1 (en) | 1998-09-18 | 1999-09-16 | Method for preparing two-layer bicomposite collagen material for preventing post-operative adhesions |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE39172E1 true USRE39172E1 (en) | 2006-07-11 |
Family
ID=9530607
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/761,055 Expired - Lifetime USRE39172E1 (en) | 1998-09-18 | 1999-09-16 | Method for preparing two-layer bicomposite collagen material for preventing post-operative adhesions |
US09/554,509 Ceased US6596304B1 (en) | 1998-09-18 | 1999-09-16 | Method for preparing two-layer bicomposite collagen material for preventing post-operative adhesions |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/554,509 Ceased US6596304B1 (en) | 1998-09-18 | 1999-09-16 | Method for preparing two-layer bicomposite collagen material for preventing post-operative adhesions |
Country Status (11)
Country | Link |
---|---|
US (2) | USRE39172E1 (en) |
EP (1) | EP1030698B1 (en) |
JP (1) | JP5175412B2 (en) |
AT (1) | ATE258448T1 (en) |
AU (1) | AU757891B2 (en) |
BR (1) | BR9907121A (en) |
CA (1) | CA2310132C (en) |
DE (1) | DE69914451T2 (en) |
ES (1) | ES2214880T3 (en) |
FR (1) | FR2783429B1 (en) |
WO (1) | WO2000016821A1 (en) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090004239A1 (en) * | 2007-06-27 | 2009-01-01 | Sebastien Ladet | Dural repair material |
US20090068250A1 (en) * | 2007-09-07 | 2009-03-12 | Philippe Gravagna | Bioresorbable and biocompatible compounds for surgical use |
US8062330B2 (en) | 2007-06-27 | 2011-11-22 | Tyco Healthcare Group Lp | Buttress and surgical stapling apparatus |
US9242026B2 (en) * | 2008-06-27 | 2016-01-26 | Sofradim Production | Biosynthetic implant for soft tissue repair |
US9308068B2 (en) | 2007-12-03 | 2016-04-12 | Sofradim Production | Implant for parastomal hernia |
US9445883B2 (en) | 2011-12-29 | 2016-09-20 | Sofradim Production | Barbed prosthetic knit and hernia repair mesh made therefrom as well as process for making said prosthetic knit |
US9499927B2 (en) | 2012-09-25 | 2016-11-22 | Sofradim Production | Method for producing a prosthesis for reinforcing the abdominal wall |
US9526603B2 (en) | 2011-09-30 | 2016-12-27 | Covidien Lp | Reversible stiffening of light weight mesh |
US9554887B2 (en) | 2011-03-16 | 2017-01-31 | Sofradim Production | Prosthesis comprising a three-dimensional and openworked knit |
US9622843B2 (en) | 2011-07-13 | 2017-04-18 | Sofradim Production | Umbilical hernia prosthesis |
US9750837B2 (en) | 2012-09-25 | 2017-09-05 | Sofradim Production | Haemostatic patch and method of preparation |
US9839505B2 (en) | 2012-09-25 | 2017-12-12 | Sofradim Production | Prosthesis comprising a mesh and a strengthening means |
US9867909B2 (en) | 2011-09-30 | 2018-01-16 | Sofradim Production | Multilayer implants for delivery of therapeutic agents |
US9877820B2 (en) | 2014-09-29 | 2018-01-30 | Sofradim Production | Textile-based prosthesis for treatment of inguinal hernia |
US9931198B2 (en) | 2015-04-24 | 2018-04-03 | Sofradim Production | Prosthesis for supporting a breast structure |
US9932695B2 (en) | 2014-12-05 | 2018-04-03 | Sofradim Production | Prosthetic porous knit |
US9980802B2 (en) | 2011-07-13 | 2018-05-29 | Sofradim Production | Umbilical hernia prosthesis |
US10080639B2 (en) | 2011-12-29 | 2018-09-25 | Sofradim Production | Prosthesis for inguinal hernia |
US10159555B2 (en) | 2012-09-28 | 2018-12-25 | Sofradim Production | Packaging for a hernia repair device |
US10184032B2 (en) | 2015-02-17 | 2019-01-22 | Sofradim Production | Method for preparing a chitosan-based matrix comprising a fiber reinforcement member |
US10213283B2 (en) | 2013-06-07 | 2019-02-26 | Sofradim Production | Textile-based prosthesis for laparoscopic surgery |
US10327882B2 (en) | 2014-09-29 | 2019-06-25 | Sofradim Production | Whale concept—folding mesh for TIPP procedure for inguinal hernia |
US10363690B2 (en) | 2012-08-02 | 2019-07-30 | Sofradim Production | Method for preparing a chitosan-based porous layer |
US10405960B2 (en) | 2013-06-07 | 2019-09-10 | Sofradim Production | Textile-based prothesis for laparoscopic surgery |
US10549015B2 (en) | 2014-09-24 | 2020-02-04 | Sofradim Production | Method for preparing an anti-adhesion barrier film |
US10646321B2 (en) | 2016-01-25 | 2020-05-12 | Sofradim Production | Prosthesis for hernia repair |
US10675137B2 (en) | 2017-05-02 | 2020-06-09 | Sofradim Production | Prosthesis for inguinal hernia repair |
US10682215B2 (en) | 2016-10-21 | 2020-06-16 | Sofradim Production | Method for forming a mesh having a barbed suture attached thereto and the mesh thus obtained |
US10743976B2 (en) | 2015-06-19 | 2020-08-18 | Sofradim Production | Synthetic prosthesis comprising a knit and a non porous film and method for forming same |
US10865505B2 (en) | 2009-09-04 | 2020-12-15 | Sofradim Production | Gripping fabric coated with a bioresorbable impenetrable layer |
US11471257B2 (en) | 2018-11-16 | 2022-10-18 | Sofradim Production | Implants suitable for soft tissue repair |
US12064330B2 (en) | 2020-04-28 | 2024-08-20 | Covidien Lp | Implantable prothesis for minimally invasive hernia repair |
Families Citing this family (520)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2801313A1 (en) | 1999-05-19 | 2001-05-25 | Coletica | COLLAGENIC PRODUCT CONTAINING COLLAGEN OF MARINE ORIGIN WITH LOW ODOR AND PREFERREDLY WITH IMPROVED MECHANICAL PROPERTIES, AS WELL AS ITS USE IN THE FORM OF COMPOSITIONS OR COSMETIC OR PHARMACEUTICAL PRODUCTS |
FR2809313B1 (en) * | 2000-05-26 | 2005-11-18 | Coletica | PROCESSES FOR THE PREPARATION OF NEW COLLAGEN-BASED MEDIA FOR TISSUE ENGINEERING AND BIOMATERIALS OBTAINED |
WO2001091821A1 (en) * | 2000-05-26 | 2001-12-06 | Coletica | Collagen-based supports for tissue engineering and preparation of biomaterials |
FR2809412A1 (en) | 2000-05-26 | 2001-11-30 | Coletica | Use of aquatic collagen for making supports for tissue engineering, particularly skin or tissue equivalents for surgical repair, studying aging processes and screening |
US6974679B2 (en) | 2000-05-26 | 2005-12-13 | Coletica | Support with collagen base for tissue engineering and manufacture of biomaterials |
US6599526B2 (en) * | 2000-08-18 | 2003-07-29 | The University Of North Texas Health Science Center At Fort Worth | Pericardial anti-adhesion patch |
US7041868B2 (en) * | 2000-12-29 | 2006-05-09 | Kimberly-Clark Worldwide, Inc. | Bioabsorbable wound dressing |
MXPA04002810A (en) * | 2001-09-26 | 2005-06-06 | Rheogene Holdings Inc | Leafhopper ecdysone receptor nucleic acids, polypeptides, and uses thereof. |
US20070084897A1 (en) | 2003-05-20 | 2007-04-19 | Shelton Frederick E Iv | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
FR2870450B1 (en) * | 2004-05-18 | 2007-04-20 | David Jean Marie Nocca | ADJUSTABLE PROSTHETIC STRIP |
US7758654B2 (en) * | 2004-05-20 | 2010-07-20 | Kensey Nash Corporation | Anti-adhesion device |
US11896225B2 (en) | 2004-07-28 | 2024-02-13 | Cilag Gmbh International | Staple cartridge comprising a pan |
US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
US8215531B2 (en) | 2004-07-28 | 2012-07-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a medical substance dispenser |
GB0505202D0 (en) * | 2005-03-14 | 2005-04-20 | Intercytex Ltd | Skin equivalent culture |
US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US20070194079A1 (en) | 2005-08-31 | 2007-08-23 | Hueil Joseph C | Surgical stapling device with staple drivers of different height |
US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
US8365976B2 (en) | 2006-09-29 | 2013-02-05 | Ethicon Endo-Surgery, Inc. | Surgical staples having dissolvable, bioabsorbable or biofragmentable portions and stapling instruments for deploying the same |
US7669746B2 (en) | 2005-08-31 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
US7934630B2 (en) | 2005-08-31 | 2011-05-03 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US10159482B2 (en) | 2005-08-31 | 2018-12-25 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
WO2007056185A2 (en) * | 2005-11-04 | 2007-05-18 | Ceramatec, Inc. | Process of making ceramic, mineral and metal beads from powder |
US20070106317A1 (en) | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
GB2433029A (en) * | 2005-12-09 | 2007-06-13 | Ethicon Inc | Wound dressings comprising oxidized cellulose and human recombinant collagen |
US9861359B2 (en) | 2006-01-31 | 2018-01-09 | Ethicon Llc | Powered surgical instruments with firing system lockout arrangements |
US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US8186555B2 (en) | 2006-01-31 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with mechanical closure system |
US20110295295A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument having recording capabilities |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US20120292367A1 (en) | 2006-01-31 | 2012-11-22 | Ethicon Endo-Surgery, Inc. | Robotically-controlled end effector |
US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
US20110024477A1 (en) | 2009-02-06 | 2011-02-03 | Hall Steven G | Driven Surgical Stapler Improvements |
US8708213B2 (en) | 2006-01-31 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US7753904B2 (en) | 2006-01-31 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
US8236010B2 (en) | 2006-03-23 | 2012-08-07 | Ethicon Endo-Surgery, Inc. | Surgical fastener and cutter with mimicking end effector |
US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
US8322455B2 (en) | 2006-06-27 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Manually driven surgical cutting and fastening instrument |
DE102006038252A1 (en) * | 2006-08-16 | 2008-02-21 | Lohmann & Rauscher Gmbh & Co. Kg | Preparation with marine collagen for proteinase inhibition |
US20080069855A1 (en) * | 2006-08-21 | 2008-03-20 | Bonutti Peter M | Method of inhibiting the formation of adhesions and scar tissue and reducing blood loss |
US10568652B2 (en) | 2006-09-29 | 2020-02-25 | Ethicon Llc | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
CN100453122C (en) * | 2006-09-29 | 2009-01-21 | 沈晶 | Hemostatic particles and preparation method thereof |
US10130359B2 (en) | 2006-09-29 | 2018-11-20 | Ethicon Llc | Method for forming a staple |
US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
JP5518288B2 (en) * | 2006-11-30 | 2014-06-11 | 有限会社ナイセム | Anti-adhesion medical material |
BRPI0722363B8 (en) * | 2006-12-22 | 2021-06-22 | Laboratoire Medidom S A | implantable laminated cartilage patch patch |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US8652120B2 (en) | 2007-01-10 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
US8632535B2 (en) | 2007-01-10 | 2014-01-21 | Ethicon Endo-Surgery, Inc. | Interlock and surgical instrument including same |
US8827133B2 (en) | 2007-01-11 | 2014-09-09 | Ethicon Endo-Surgery, Inc. | Surgical stapling device having supports for a flexible drive mechanism |
US11039836B2 (en) | 2007-01-11 | 2021-06-22 | Cilag Gmbh International | Staple cartridge for use with a surgical stapling instrument |
US7604151B2 (en) | 2007-03-15 | 2009-10-20 | Ethicon Endo-Surgery, Inc. | Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features |
US8893946B2 (en) | 2007-03-28 | 2014-11-25 | Ethicon Endo-Surgery, Inc. | Laparoscopic tissue thickness and clamp load measuring devices |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US11857181B2 (en) | 2007-06-04 | 2024-01-02 | Cilag Gmbh International | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US7753245B2 (en) | 2007-06-22 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments |
US8408439B2 (en) | 2007-06-22 | 2013-04-02 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with an articulatable end effector |
US20090004455A1 (en) * | 2007-06-27 | 2009-01-01 | Philippe Gravagna | Reinforced composite implant |
US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
US20090036907A1 (en) * | 2007-07-30 | 2009-02-05 | Yves Bayon | Bioresorbable knit |
US8198087B2 (en) | 2007-07-30 | 2012-06-12 | Sofradim Production Sas | Tissue engineering support |
US8834578B2 (en) * | 2007-07-30 | 2014-09-16 | Sofradim Production | Bioresorbable implant |
US8561870B2 (en) | 2008-02-13 | 2013-10-22 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument |
US7905381B2 (en) | 2008-09-19 | 2011-03-15 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with cutting member arrangement |
US8657174B2 (en) | 2008-02-14 | 2014-02-25 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument having handle based power source |
US7819298B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with control features operable with one hand |
BRPI0901282A2 (en) | 2008-02-14 | 2009-11-17 | Ethicon Endo Surgery Inc | surgical cutting and fixation instrument with rf electrodes |
US8636736B2 (en) | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
US7866527B2 (en) | 2008-02-14 | 2011-01-11 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with interlockable firing system |
US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
US8758391B2 (en) | 2008-02-14 | 2014-06-24 | Ethicon Endo-Surgery, Inc. | Interchangeable tools for surgical instruments |
US11272927B2 (en) | 2008-02-15 | 2022-03-15 | Cilag Gmbh International | Layer arrangements for surgical staple cartridges |
US9585657B2 (en) | 2008-02-15 | 2017-03-07 | Ethicon Endo-Surgery, Llc | Actuator for releasing a layer of material from a surgical end effector |
CN104491845A (en) | 2008-04-18 | 2015-04-08 | 科尔普兰特有限公司 | Methods Of Generating And Using Procollagen |
DE102008022319A1 (en) * | 2008-04-30 | 2009-11-05 | Aesculap Ag | Implant, in particular for restoring and / or regenerating human and / or animal tissue |
PL3476312T3 (en) | 2008-09-19 | 2024-03-11 | Ethicon Llc | Surgical stapler with apparatus for adjusting staple height |
US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
US9005230B2 (en) | 2008-09-23 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US8210411B2 (en) | 2008-09-23 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument |
US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
AU2009305115B2 (en) | 2008-10-17 | 2014-09-25 | Sofradim Production | Auto-sealant matrix for tissue repair |
US8517239B2 (en) | 2009-02-05 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising a magnetic element driver |
CA2751664A1 (en) | 2009-02-06 | 2010-08-12 | Ethicon Endo-Surgery, Inc. | Driven surgical stapler improvements |
US8453907B2 (en) | 2009-02-06 | 2013-06-04 | Ethicon Endo-Surgery, Inc. | Motor driven surgical fastener device with cutting member reversing mechanism |
US8444036B2 (en) | 2009-02-06 | 2013-05-21 | Ethicon Endo-Surgery, Inc. | Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector |
CA2784432C (en) | 2009-12-16 | 2019-01-15 | Baxter Healthcare S.A. | Hemostatic sponge |
US8220688B2 (en) | 2009-12-24 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
US8851354B2 (en) | 2009-12-24 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument that analyzes tissue thickness |
AU2011231259A1 (en) | 2010-03-26 | 2012-11-15 | Sofradim Production | Implant for tissue repair |
JP5672811B2 (en) * | 2010-07-22 | 2015-02-18 | ニプロ株式会社 | Method for producing collagen membrane |
JP5672812B2 (en) * | 2010-07-22 | 2015-02-18 | ニプロ株式会社 | Collagen membrane and method for producing collagen membrane |
US8783543B2 (en) | 2010-07-30 | 2014-07-22 | Ethicon Endo-Surgery, Inc. | Tissue acquisition arrangements and methods for surgical stapling devices |
US9517063B2 (en) | 2012-03-28 | 2016-12-13 | Ethicon Endo-Surgery, Llc | Movable member for use with a tissue thickness compensator |
US9433419B2 (en) | 2010-09-30 | 2016-09-06 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator comprising a plurality of layers |
US9414838B2 (en) | 2012-03-28 | 2016-08-16 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprised of a plurality of materials |
US9307989B2 (en) | 2012-03-28 | 2016-04-12 | Ethicon Endo-Surgery, Llc | Tissue stapler having a thickness compensator incorportating a hydrophobic agent |
US9700317B2 (en) | 2010-09-30 | 2017-07-11 | Ethicon Endo-Surgery, Llc | Fastener cartridge comprising a releasable tissue thickness compensator |
US9364233B2 (en) | 2010-09-30 | 2016-06-14 | Ethicon Endo-Surgery, Llc | Tissue thickness compensators for circular surgical staplers |
US8857694B2 (en) | 2010-09-30 | 2014-10-14 | Ethicon Endo-Surgery, Inc. | Staple cartridge loading assembly |
US20120248169A1 (en) * | 2010-09-30 | 2012-10-04 | Ethicon Endo-Surgery, Inc. | Methods for forming tissue thickness compensator arrangements for surgical staplers |
US9332974B2 (en) | 2010-09-30 | 2016-05-10 | Ethicon Endo-Surgery, Llc | Layered tissue thickness compensator |
US9301753B2 (en) | 2010-09-30 | 2016-04-05 | Ethicon Endo-Surgery, Llc | Expandable tissue thickness compensator |
US9220501B2 (en) | 2010-09-30 | 2015-12-29 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensators |
US11925354B2 (en) | 2010-09-30 | 2024-03-12 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
US9314246B2 (en) | 2010-09-30 | 2016-04-19 | Ethicon Endo-Surgery, Llc | Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent |
CN103140178B (en) | 2010-09-30 | 2015-09-23 | 伊西康内外科公司 | Comprise the closure system keeping matrix and alignment matrix |
US9241714B2 (en) | 2011-04-29 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator and method for making the same |
US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
US9320523B2 (en) | 2012-03-28 | 2016-04-26 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising tissue ingrowth features |
US11812965B2 (en) | 2010-09-30 | 2023-11-14 | Cilag Gmbh International | Layer of material for a surgical end effector |
US20120080498A1 (en) | 2010-09-30 | 2012-04-05 | Ethicon Endo-Surgery, Inc. | Curved end effector for a stapling instrument |
US9629814B2 (en) | 2010-09-30 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator configured to redistribute compressive forces |
US8695866B2 (en) | 2010-10-01 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a power control circuit |
BR112013027794B1 (en) | 2011-04-29 | 2020-12-15 | Ethicon Endo-Surgery, Inc | CLAMP CARTRIDGE SET |
US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
US9050084B2 (en) | 2011-09-23 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Staple cartridge including collapsible deck arrangement |
US9056092B2 (en) * | 2011-12-02 | 2015-06-16 | Ethicon, Inc. | Hemostatic bioabsorbable device with polyethylene glycol binder |
US9044230B2 (en) | 2012-02-13 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
RU2644272C2 (en) | 2012-03-28 | 2018-02-08 | Этикон Эндо-Серджери, Инк. | Limitation node with tissue thickness compensator |
BR112014024102B1 (en) | 2012-03-28 | 2022-03-03 | Ethicon Endo-Surgery, Inc | CLAMP CARTRIDGE ASSEMBLY FOR A SURGICAL INSTRUMENT AND END ACTUATOR ASSEMBLY FOR A SURGICAL INSTRUMENT |
US9198662B2 (en) | 2012-03-28 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator having improved visibility |
JP6105041B2 (en) | 2012-03-28 | 2017-03-29 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | Tissue thickness compensator containing capsules defining a low pressure environment |
US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
US9101385B2 (en) | 2012-06-28 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Electrode connections for rotary driven surgical tools |
US9282974B2 (en) | 2012-06-28 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Empty clip cartridge lockout |
US9226751B2 (en) | 2012-06-28 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Surgical instrument system including replaceable end effectors |
RU2636861C2 (en) | 2012-06-28 | 2017-11-28 | Этикон Эндо-Серджери, Инк. | Blocking of empty cassette with clips |
US9561038B2 (en) | 2012-06-28 | 2017-02-07 | Ethicon Endo-Surgery, Llc | Interchangeable clip applier |
US11278284B2 (en) | 2012-06-28 | 2022-03-22 | Cilag Gmbh International | Rotary drive arrangements for surgical instruments |
US9289256B2 (en) | 2012-06-28 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
US9072536B2 (en) | 2012-06-28 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Differential locking arrangements for rotary powered surgical instruments |
US9119657B2 (en) | 2012-06-28 | 2015-09-01 | Ethicon Endo-Surgery, Inc. | Rotary actuatable closure arrangement for surgical end effector |
US9028494B2 (en) | 2012-06-28 | 2015-05-12 | Ethicon Endo-Surgery, Inc. | Interchangeable end effector coupling arrangement |
US20140001231A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Firing system lockout arrangements for surgical instruments |
US9125662B2 (en) | 2012-06-28 | 2015-09-08 | Ethicon Endo-Surgery, Inc. | Multi-axis articulating and rotating surgical tools |
BR112014032776B1 (en) | 2012-06-28 | 2021-09-08 | Ethicon Endo-Surgery, Inc | SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM |
US20140005718A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Multi-functional powered surgical device with external dissection features |
US9386984B2 (en) | 2013-02-08 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Staple cartridge comprising a releasable cover |
US9782169B2 (en) | 2013-03-01 | 2017-10-10 | Ethicon Llc | Rotary powered articulation joints for surgical instruments |
BR112015021082B1 (en) | 2013-03-01 | 2022-05-10 | Ethicon Endo-Surgery, Inc | surgical instrument |
MX368026B (en) | 2013-03-01 | 2019-09-12 | Ethicon Endo Surgery Inc | Articulatable surgical instruments with conductive pathways for signal communication. |
US9345481B2 (en) | 2013-03-13 | 2016-05-24 | Ethicon Endo-Surgery, Llc | Staple cartridge tissue thickness sensor system |
US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
US9883860B2 (en) | 2013-03-14 | 2018-02-06 | Ethicon Llc | Interchangeable shaft assemblies for use with a surgical instrument |
US9795384B2 (en) | 2013-03-27 | 2017-10-24 | Ethicon Llc | Fastener cartridge comprising a tissue thickness compensator and a gap setting element |
US9572577B2 (en) | 2013-03-27 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Fastener cartridge comprising a tissue thickness compensator including openings therein |
US9332984B2 (en) | 2013-03-27 | 2016-05-10 | Ethicon Endo-Surgery, Llc | Fastener cartridge assemblies |
BR112015026109B1 (en) | 2013-04-16 | 2022-02-22 | Ethicon Endo-Surgery, Inc | surgical instrument |
US10136887B2 (en) | 2013-04-16 | 2018-11-27 | Ethicon Llc | Drive system decoupling arrangement for a surgical instrument |
US9574644B2 (en) | 2013-05-30 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Power module for use with a surgical instrument |
JP6416260B2 (en) | 2013-08-23 | 2018-10-31 | エシコン エルエルシー | Firing member retractor for a powered surgical instrument |
US10624634B2 (en) | 2013-08-23 | 2020-04-21 | Ethicon Llc | Firing trigger lockout arrangements for surgical instruments |
US9700311B2 (en) | 2013-11-08 | 2017-07-11 | Ethicon Llc | Tissue ingrowth materials and method of using the same |
US20150173749A1 (en) | 2013-12-23 | 2015-06-25 | Ethicon Endo-Surgery, Inc. | Surgical staples and staple cartridges |
US20150173756A1 (en) | 2013-12-23 | 2015-06-25 | Ethicon Endo-Surgery, Inc. | Surgical cutting and stapling methods |
US9724092B2 (en) | 2013-12-23 | 2017-08-08 | Ethicon Llc | Modular surgical instruments |
US9839428B2 (en) | 2013-12-23 | 2017-12-12 | Ethicon Llc | Surgical cutting and stapling instruments with independent jaw control features |
US9962161B2 (en) | 2014-02-12 | 2018-05-08 | Ethicon Llc | Deliverable surgical instrument |
TWI547529B (en) * | 2014-02-14 | 2016-09-01 | 瀚醫生技股份有限公司 | Method for forming dual layer composite material and dual layer composite material thereby |
FR3017537B1 (en) * | 2014-02-19 | 2016-03-25 | Sofradim Production | METHOD FOR MANUFACTURING AN IMPLANTABLE FILM AND PROSTHETIC COMPRISING SUCH A FILM |
JP6462004B2 (en) | 2014-02-24 | 2019-01-30 | エシコン エルエルシー | Fastening system with launcher lockout |
US9693777B2 (en) | 2014-02-24 | 2017-07-04 | Ethicon Llc | Implantable layers comprising a pressed region |
US9750499B2 (en) | 2014-03-26 | 2017-09-05 | Ethicon Llc | Surgical stapling instrument system |
BR112016021943B1 (en) | 2014-03-26 | 2022-06-14 | Ethicon Endo-Surgery, Llc | SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE |
US9826977B2 (en) | 2014-03-26 | 2017-11-28 | Ethicon Llc | Sterilization verification circuit |
US9913642B2 (en) | 2014-03-26 | 2018-03-13 | Ethicon Llc | Surgical instrument comprising a sensor system |
US10004497B2 (en) | 2014-03-26 | 2018-06-26 | Ethicon Llc | Interface systems for use with surgical instruments |
US9801628B2 (en) | 2014-09-26 | 2017-10-31 | Ethicon Llc | Surgical staple and driver arrangements for staple cartridges |
CN106456176B (en) | 2014-04-16 | 2019-06-28 | 伊西康内外科有限责任公司 | Fastener cartridge including the extension with various configuration |
US10561422B2 (en) | 2014-04-16 | 2020-02-18 | Ethicon Llc | Fastener cartridge comprising deployable tissue engaging members |
JP6612256B2 (en) | 2014-04-16 | 2019-11-27 | エシコン エルエルシー | Fastener cartridge with non-uniform fastener |
BR112016023807B1 (en) | 2014-04-16 | 2022-07-12 | Ethicon Endo-Surgery, Llc | CARTRIDGE SET OF FASTENERS FOR USE WITH A SURGICAL INSTRUMENT |
US20150297225A1 (en) | 2014-04-16 | 2015-10-22 | Ethicon Endo-Surgery, Inc. | Fastener cartridges including extensions having different configurations |
US10045781B2 (en) | 2014-06-13 | 2018-08-14 | Ethicon Llc | Closure lockout systems for surgical instruments |
BR112017004361B1 (en) | 2014-09-05 | 2023-04-11 | Ethicon Llc | ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT |
US10016199B2 (en) | 2014-09-05 | 2018-07-10 | Ethicon Llc | Polarity of hall magnet to identify cartridge type |
US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
US10105142B2 (en) | 2014-09-18 | 2018-10-23 | Ethicon Llc | Surgical stapler with plurality of cutting elements |
US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
KR101536134B1 (en) * | 2014-09-26 | 2015-07-14 | 세원셀론텍(주) | soft tissue recovery matrix a method of manufacturing |
MX2017003960A (en) | 2014-09-26 | 2017-12-04 | Ethicon Llc | Surgical stapling buttresses and adjunct materials. |
US10076325B2 (en) | 2014-10-13 | 2018-09-18 | Ethicon Llc | Surgical stapling apparatus comprising a tissue stop |
US9924944B2 (en) | 2014-10-16 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising an adjunct material |
US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US10517594B2 (en) | 2014-10-29 | 2019-12-31 | Ethicon Llc | Cartridge assemblies for surgical staplers |
WO2016073453A1 (en) | 2014-11-03 | 2016-05-12 | Modern Meadow, Inc. | Reinforced engineered biomaterials and methods of manufacture thereof |
US9844376B2 (en) | 2014-11-06 | 2017-12-19 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
US10188385B2 (en) | 2014-12-18 | 2019-01-29 | Ethicon Llc | Surgical instrument system comprising lockable systems |
US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
US10117649B2 (en) | 2014-12-18 | 2018-11-06 | Ethicon Llc | Surgical instrument assembly comprising a lockable articulation system |
US10245027B2 (en) | 2014-12-18 | 2019-04-02 | Ethicon Llc | Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge |
RU2703684C2 (en) | 2014-12-18 | 2019-10-21 | ЭТИКОН ЭНДО-СЕРДЖЕРИ, ЭлЭлСи | Surgical instrument with anvil which is selectively movable relative to staple cartridge around discrete fixed axis |
US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
US10182816B2 (en) | 2015-02-27 | 2019-01-22 | Ethicon Llc | Charging system that enables emergency resolutions for charging a battery |
US10180463B2 (en) | 2015-02-27 | 2019-01-15 | Ethicon Llc | Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band |
US10226250B2 (en) | 2015-02-27 | 2019-03-12 | Ethicon Llc | Modular stapling assembly |
US9808246B2 (en) | 2015-03-06 | 2017-11-07 | Ethicon Endo-Surgery, Llc | Method of operating a powered surgical instrument |
US10052044B2 (en) | 2015-03-06 | 2018-08-21 | Ethicon Llc | Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures |
US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
US10045776B2 (en) | 2015-03-06 | 2018-08-14 | Ethicon Llc | Control techniques and sub-processor contained within modular shaft with select control processing from handle |
US9901342B2 (en) | 2015-03-06 | 2018-02-27 | Ethicon Endo-Surgery, Llc | Signal and power communication system positioned on a rotatable shaft |
JP2020121162A (en) | 2015-03-06 | 2020-08-13 | エシコン エルエルシーEthicon LLC | Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement |
US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
US10617412B2 (en) | 2015-03-06 | 2020-04-14 | Ethicon Llc | System for detecting the mis-insertion of a staple cartridge into a surgical stapler |
US10687806B2 (en) | 2015-03-06 | 2020-06-23 | Ethicon Llc | Adaptive tissue compression techniques to adjust closure rates for multiple tissue types |
US9924961B2 (en) | 2015-03-06 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Interactive feedback system for powered surgical instruments |
US9895148B2 (en) | 2015-03-06 | 2018-02-20 | Ethicon Endo-Surgery, Llc | Monitoring speed control and precision incrementing of motor for powered surgical instruments |
US10441279B2 (en) | 2015-03-06 | 2019-10-15 | Ethicon Llc | Multiple level thresholds to modify operation of powered surgical instruments |
US10433844B2 (en) | 2015-03-31 | 2019-10-08 | Ethicon Llc | Surgical instrument with selectively disengageable threaded drive systems |
KR101878774B1 (en) * | 2015-04-15 | 2018-07-17 | 주식회사 삼양바이오팜 | Multifunctional hemostatic material and method for preparing the same |
CN104857578B (en) * | 2015-04-21 | 2018-06-05 | 北京湃生生物科技有限公司 | A kind of tissue regeneration membrane of high intensity and preparation method thereof |
US10405863B2 (en) | 2015-06-18 | 2019-09-10 | Ethicon Llc | Movable firing beam support arrangements for articulatable surgical instruments |
US10617418B2 (en) | 2015-08-17 | 2020-04-14 | Ethicon Llc | Implantable layers for a surgical instrument |
US10980538B2 (en) | 2015-08-26 | 2021-04-20 | Ethicon Llc | Surgical stapling configurations for curved and circular stapling instruments |
MX2022009705A (en) | 2015-08-26 | 2022-11-07 | Ethicon Llc | Surgical staples comprising hardness variations for improved fastening of tissue. |
BR112018003693B1 (en) | 2015-08-26 | 2022-11-22 | Ethicon Llc | SURGICAL STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPPING INSTRUMENT |
MX2022006192A (en) | 2015-09-02 | 2022-06-16 | Ethicon Llc | Surgical staple configurations with camming surfaces located between portions supporting surgical staples. |
US10357252B2 (en) | 2015-09-02 | 2019-07-23 | Ethicon Llc | Surgical staple configurations with camming surfaces located between portions supporting surgical staples |
ES2842501T5 (en) | 2015-09-21 | 2023-04-13 | Modern Meadow Inc | Fiber Reinforced Fabric Composite Materials |
US10076326B2 (en) | 2015-09-23 | 2018-09-18 | Ethicon Llc | Surgical stapler having current mirror-based motor control |
US10327769B2 (en) | 2015-09-23 | 2019-06-25 | Ethicon Llc | Surgical stapler having motor control based on a drive system component |
US10085751B2 (en) | 2015-09-23 | 2018-10-02 | Ethicon Llc | Surgical stapler having temperature-based motor control |
US10363036B2 (en) | 2015-09-23 | 2019-07-30 | Ethicon Llc | Surgical stapler having force-based motor control |
US10105139B2 (en) | 2015-09-23 | 2018-10-23 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
US10238386B2 (en) | 2015-09-23 | 2019-03-26 | Ethicon Llc | Surgical stapler having motor control based on an electrical parameter related to a motor current |
US10299878B2 (en) | 2015-09-25 | 2019-05-28 | Ethicon Llc | Implantable adjunct systems for determining adjunct skew |
US10980539B2 (en) | 2015-09-30 | 2021-04-20 | Ethicon Llc | Implantable adjunct comprising bonded layers |
US11890015B2 (en) | 2015-09-30 | 2024-02-06 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
US10736633B2 (en) | 2015-09-30 | 2020-08-11 | Ethicon Llc | Compressible adjunct with looping members |
US10524788B2 (en) | 2015-09-30 | 2020-01-07 | Ethicon Llc | Compressible adjunct with attachment regions |
US10265068B2 (en) | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
JP7016117B2 (en) * | 2016-01-18 | 2022-02-21 | コスメディ製薬株式会社 | Collagen cosmetics |
CN108882932B (en) | 2016-02-09 | 2021-07-23 | 伊西康有限责任公司 | Surgical instrument with asymmetric articulation configuration |
US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
US20170224332A1 (en) | 2016-02-09 | 2017-08-10 | Ethicon Endo-Surgery, Llc | Surgical instruments with non-symmetrical articulation arrangements |
US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10258331B2 (en) | 2016-02-12 | 2019-04-16 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
CA2978672C (en) | 2016-02-15 | 2021-04-27 | Modern Meadow, Inc. | Method for biofabricating composite material |
US10485542B2 (en) | 2016-04-01 | 2019-11-26 | Ethicon Llc | Surgical stapling instrument comprising multiple lockouts |
US10617413B2 (en) | 2016-04-01 | 2020-04-14 | Ethicon Llc | Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts |
US10405859B2 (en) | 2016-04-15 | 2019-09-10 | Ethicon Llc | Surgical instrument with adjustable stop/start control during a firing motion |
US10335145B2 (en) | 2016-04-15 | 2019-07-02 | Ethicon Llc | Modular surgical instrument with configurable operating mode |
US10357247B2 (en) | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10456137B2 (en) | 2016-04-15 | 2019-10-29 | Ethicon Llc | Staple formation detection mechanisms |
US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10426467B2 (en) | 2016-04-15 | 2019-10-01 | Ethicon Llc | Surgical instrument with detection sensors |
US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
US10433840B2 (en) | 2016-04-18 | 2019-10-08 | Ethicon Llc | Surgical instrument comprising a replaceable cartridge jaw |
US20170296173A1 (en) | 2016-04-18 | 2017-10-19 | Ethicon Endo-Surgery, Llc | Method for operating a surgical instrument |
US10702270B2 (en) | 2016-06-24 | 2020-07-07 | Ethicon Llc | Stapling system for use with wire staples and stamped staples |
USD850617S1 (en) | 2016-06-24 | 2019-06-04 | Ethicon Llc | Surgical fastener cartridge |
USD847989S1 (en) | 2016-06-24 | 2019-05-07 | Ethicon Llc | Surgical fastener cartridge |
USD826405S1 (en) | 2016-06-24 | 2018-08-21 | Ethicon Llc | Surgical fastener |
CN109310431B (en) | 2016-06-24 | 2022-03-04 | 伊西康有限责任公司 | Staple cartridge comprising wire staples and punch staples |
US20180168615A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
US20180168647A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling instruments having end effectors with positive opening features |
US10667809B2 (en) | 2016-12-21 | 2020-06-02 | Ethicon Llc | Staple cartridge and staple cartridge channel comprising windows defined therein |
US10588631B2 (en) | 2016-12-21 | 2020-03-17 | Ethicon Llc | Surgical instruments with positive jaw opening features |
US10448950B2 (en) | 2016-12-21 | 2019-10-22 | Ethicon Llc | Surgical staplers with independently actuatable closing and firing systems |
JP6983893B2 (en) | 2016-12-21 | 2021-12-17 | エシコン エルエルシーEthicon LLC | Lockout configuration for surgical end effectors and replaceable tool assemblies |
US10945727B2 (en) | 2016-12-21 | 2021-03-16 | Ethicon Llc | Staple cartridge with deformable driver retention features |
US10426471B2 (en) | 2016-12-21 | 2019-10-01 | Ethicon Llc | Surgical instrument with multiple failure response modes |
US11684367B2 (en) | 2016-12-21 | 2023-06-27 | Cilag Gmbh International | Stepped assembly having and end-of-life indicator |
US10993715B2 (en) | 2016-12-21 | 2021-05-04 | Ethicon Llc | Staple cartridge comprising staples with different clamping breadths |
US20180168625A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling instruments with smart staple cartridges |
US10485543B2 (en) | 2016-12-21 | 2019-11-26 | Ethicon Llc | Anvil having a knife slot width |
JP7086963B2 (en) | 2016-12-21 | 2022-06-20 | エシコン エルエルシー | Surgical instrument system with end effector lockout and launch assembly lockout |
US11191539B2 (en) | 2016-12-21 | 2021-12-07 | Cilag Gmbh International | Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system |
US11134942B2 (en) | 2016-12-21 | 2021-10-05 | Cilag Gmbh International | Surgical stapling instruments and staple-forming anvils |
US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
US10675026B2 (en) | 2016-12-21 | 2020-06-09 | Ethicon Llc | Methods of stapling tissue |
US10898186B2 (en) | 2016-12-21 | 2021-01-26 | Ethicon Llc | Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls |
US10893864B2 (en) | 2016-12-21 | 2021-01-19 | Ethicon | Staple cartridges and arrangements of staples and staple cavities therein |
CN110087565A (en) | 2016-12-21 | 2019-08-02 | 爱惜康有限责任公司 | Surgical stapling system |
US10582928B2 (en) | 2016-12-21 | 2020-03-10 | Ethicon Llc | Articulation lock arrangements for locking an end effector in an articulated position in response to actuation of a jaw closure system |
US10687810B2 (en) | 2016-12-21 | 2020-06-23 | Ethicon Llc | Stepped staple cartridge with tissue retention and gap setting features |
US10881401B2 (en) | 2016-12-21 | 2021-01-05 | Ethicon Llc | Staple firing member comprising a missing cartridge and/or spent cartridge lockout |
JP7010956B2 (en) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | How to staple tissue |
US10610224B2 (en) | 2016-12-21 | 2020-04-07 | Ethicon Llc | Lockout arrangements for surgical end effectors and replaceable tool assemblies |
US10390841B2 (en) | 2017-06-20 | 2019-08-27 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US10327767B2 (en) | 2017-06-20 | 2019-06-25 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US10881396B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Surgical instrument with variable duration trigger arrangement |
US10368864B2 (en) | 2017-06-20 | 2019-08-06 | Ethicon Llc | Systems and methods for controlling displaying motor velocity for a surgical instrument |
US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
US10624633B2 (en) | 2017-06-20 | 2020-04-21 | Ethicon Llc | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument |
US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
US10813639B2 (en) | 2017-06-20 | 2020-10-27 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions |
US11071554B2 (en) | 2017-06-20 | 2021-07-27 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements |
US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
US10646220B2 (en) | 2017-06-20 | 2020-05-12 | Ethicon Llc | Systems and methods for controlling displacement member velocity for a surgical instrument |
US10888321B2 (en) | 2017-06-20 | 2021-01-12 | Ethicon Llc | Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument |
USD879809S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with changeable graphical user interface |
US11090046B2 (en) | 2017-06-20 | 2021-08-17 | Cilag Gmbh International | Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument |
USD890784S1 (en) | 2017-06-20 | 2020-07-21 | Ethicon Llc | Display panel with changeable graphical user interface |
US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
USD879808S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with graphical user interface |
US10980537B2 (en) | 2017-06-20 | 2021-04-20 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations |
US10307170B2 (en) | 2017-06-20 | 2019-06-04 | Ethicon Llc | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
US10772629B2 (en) | 2017-06-27 | 2020-09-15 | Ethicon Llc | Surgical anvil arrangements |
US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
US20180368844A1 (en) | 2017-06-27 | 2018-12-27 | Ethicon Llc | Staple forming pocket arrangements |
US10856869B2 (en) | 2017-06-27 | 2020-12-08 | Ethicon Llc | Surgical anvil arrangements |
US11058424B2 (en) | 2017-06-28 | 2021-07-13 | Cilag Gmbh International | Surgical instrument comprising an offset articulation joint |
USD869655S1 (en) | 2017-06-28 | 2019-12-10 | Ethicon Llc | Surgical fastener cartridge |
US10639037B2 (en) | 2017-06-28 | 2020-05-05 | Ethicon Llc | Surgical instrument with axially movable closure member |
US10211586B2 (en) | 2017-06-28 | 2019-02-19 | Ethicon Llc | Surgical shaft assemblies with watertight housings |
US10716614B2 (en) | 2017-06-28 | 2020-07-21 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies with increased contact pressure |
US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
USD854151S1 (en) | 2017-06-28 | 2019-07-16 | Ethicon Llc | Surgical instrument shaft |
USD851762S1 (en) | 2017-06-28 | 2019-06-18 | Ethicon Llc | Anvil |
EP4070740A1 (en) | 2017-06-28 | 2022-10-12 | Cilag GmbH International | Surgical instrument comprising selectively actuatable rotatable couplers |
US10903685B2 (en) | 2017-06-28 | 2021-01-26 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
US11007022B2 (en) | 2017-06-29 | 2021-05-18 | Ethicon Llc | Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument |
US10898183B2 (en) | 2017-06-29 | 2021-01-26 | Ethicon Llc | Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing |
US10398434B2 (en) | 2017-06-29 | 2019-09-03 | Ethicon Llc | Closed loop velocity control of closure member for robotic surgical instrument |
US10258418B2 (en) | 2017-06-29 | 2019-04-16 | Ethicon Llc | System for controlling articulation forces |
US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
USD907647S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US10796471B2 (en) | 2017-09-29 | 2020-10-06 | Ethicon Llc | Systems and methods of displaying a knife position for a surgical instrument |
US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
USD917500S1 (en) | 2017-09-29 | 2021-04-27 | Ethicon Llc | Display screen or portion thereof with graphical user interface |
US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
US10765429B2 (en) | 2017-09-29 | 2020-09-08 | Ethicon Llc | Systems and methods for providing alerts according to the operational state of a surgical instrument |
USD907648S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US10729501B2 (en) | 2017-09-29 | 2020-08-04 | Ethicon Llc | Systems and methods for language selection of a surgical instrument |
CA3079532A1 (en) | 2017-10-19 | 2019-04-25 | C.R.Bard, Inc. | Self-gripping hernia prosthesis |
US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
US10779903B2 (en) | 2017-10-31 | 2020-09-22 | Ethicon Llc | Positive shaft rotation lock activated by jaw closure |
US10779825B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments |
US11033267B2 (en) | 2017-12-15 | 2021-06-15 | Ethicon Llc | Systems and methods of controlling a clamping member firing rate of a surgical instrument |
US10743874B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Sealed adapters for use with electromechanical surgical instruments |
US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
US10869666B2 (en) | 2017-12-15 | 2020-12-22 | Ethicon Llc | Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument |
US10828033B2 (en) | 2017-12-15 | 2020-11-10 | Ethicon Llc | Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto |
US10687813B2 (en) | 2017-12-15 | 2020-06-23 | Ethicon Llc | Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments |
US10743875B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member |
US11071543B2 (en) | 2017-12-15 | 2021-07-27 | Cilag Gmbh International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
US10966718B2 (en) | 2017-12-15 | 2021-04-06 | Ethicon Llc | Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments |
US11006955B2 (en) | 2017-12-15 | 2021-05-18 | Ethicon Llc | End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments |
US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
US10716565B2 (en) | 2017-12-19 | 2020-07-21 | Ethicon Llc | Surgical instruments with dual articulation drivers |
US11020112B2 (en) | 2017-12-19 | 2021-06-01 | Ethicon Llc | Surgical tools configured for interchangeable use with different controller interfaces |
USD910847S1 (en) | 2017-12-19 | 2021-02-16 | Ethicon Llc | Surgical instrument assembly |
US10729509B2 (en) | 2017-12-19 | 2020-08-04 | Ethicon Llc | Surgical instrument comprising closure and firing locking mechanism |
US11045270B2 (en) | 2017-12-19 | 2021-06-29 | Cilag Gmbh International | Robotic attachment comprising exterior drive actuator |
AU2020204063B2 (en) * | 2017-12-21 | 2023-05-11 | Chitogel Limited | Multi-layer haemostat patch comprising beta-chitin |
WO2019119019A1 (en) * | 2017-12-21 | 2019-06-27 | Wormald Peter John | Multi-layer haemostat patch comprising beta-chitin |
US11129680B2 (en) | 2017-12-21 | 2021-09-28 | Cilag Gmbh International | Surgical instrument comprising a projector |
US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
US11364027B2 (en) | 2017-12-21 | 2022-06-21 | Cilag Gmbh International | Surgical instrument comprising speed control |
US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
US11045192B2 (en) | 2018-08-20 | 2021-06-29 | Cilag Gmbh International | Fabricating techniques for surgical stapler anvils |
US11039834B2 (en) | 2018-08-20 | 2021-06-22 | Cilag Gmbh International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
US10856870B2 (en) | 2018-08-20 | 2020-12-08 | Ethicon Llc | Switching arrangements for motor powered articulatable surgical instruments |
US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
US10842492B2 (en) | 2018-08-20 | 2020-11-24 | Ethicon Llc | Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system |
US10779821B2 (en) | 2018-08-20 | 2020-09-22 | Ethicon Llc | Surgical stapler anvils with tissue stop features configured to avoid tissue pinch |
US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
USD914878S1 (en) | 2018-08-20 | 2021-03-30 | Ethicon Llc | Surgical instrument anvil |
US11083458B2 (en) | 2018-08-20 | 2021-08-10 | Cilag Gmbh International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
US10912559B2 (en) | 2018-08-20 | 2021-02-09 | Ethicon Llc | Reinforced deformable anvil tip for surgical stapler anvil |
US11352497B2 (en) | 2019-01-17 | 2022-06-07 | Modern Meadow, Inc. | Layered collagen materials and methods of making the same |
JP7303511B2 (en) * | 2019-02-18 | 2023-07-05 | 青葉化成株式会社 | Medical material and its manufacturing method |
US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147551B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
US11219455B2 (en) | 2019-06-28 | 2022-01-11 | Cilag Gmbh International | Surgical instrument including a lockout key |
US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
US11350938B2 (en) | 2019-06-28 | 2022-06-07 | Cilag Gmbh International | Surgical instrument comprising an aligned rfid sensor |
US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
US11051807B2 (en) | 2019-06-28 | 2021-07-06 | Cilag Gmbh International | Packaging assembly including a particulate trap |
US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
US11857182B2 (en) | 2020-07-28 | 2024-01-02 | Cilag Gmbh International | Surgical instruments with combination function articulation joint arrangements |
US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
USD1013170S1 (en) | 2020-10-29 | 2024-01-30 | Cilag Gmbh International | Surgical instrument assembly |
US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
US11826047B2 (en) | 2021-05-28 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising jaw mounts |
CN113577373A (en) * | 2021-07-30 | 2021-11-02 | 南京嘉合玉颜生物科技有限公司 | Preparation method of absorbable gelatin sponge |
US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
US11957337B2 (en) | 2021-10-18 | 2024-04-16 | Cilag Gmbh International | Surgical stapling assembly with offset ramped drive surfaces |
US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
CN115337465B (en) * | 2022-10-18 | 2023-02-17 | 上海明悦医疗科技有限公司 | Anti-adhesion membrane material and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5201745A (en) * | 1988-03-15 | 1993-04-13 | Imedex | Visceral surgery patch |
WO1993010731A1 (en) * | 1991-12-06 | 1993-06-10 | Kensey Nash Corporation | Pads, methods of making, and methods of use for wound dressing, surgical reinforcement and hemostasis promotion |
WO1998034656A1 (en) * | 1997-02-06 | 1998-08-13 | Imedex Biomateriaux | Collagenic material useful in particular for preventing post-operative adhesions |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4570629A (en) * | 1982-03-17 | 1986-02-18 | University Of Illinois Foundation | Hydrophilic biopolymeric copolyelectrolytes, and biodegradable wound dressing comprising same |
JPH0618583B2 (en) * | 1988-07-25 | 1994-03-16 | テルモ株式会社 | Artificial skin and its manufacturing method |
FR2628634B1 (en) * | 1988-03-15 | 1990-07-13 | Imedex | VISCERAL SURGERY PATCH |
JPH0271749A (en) * | 1988-09-07 | 1990-03-12 | Terumo Corp | Artificial skin |
JPH04129563A (en) * | 1990-09-19 | 1992-04-30 | Terumo Corp | Artificial skin and its manufacture |
JPH04266763A (en) * | 1991-02-22 | 1992-09-22 | Terumo Corp | Artificial skin |
JPH0654899A (en) * | 1991-05-02 | 1994-03-01 | Kanebo Ltd | Production of two-layer type protein sheet |
JPH05184661A (en) * | 1991-10-09 | 1993-07-27 | Terumo Corp | Artificial skin |
JPH05176983A (en) * | 1991-12-26 | 1993-07-20 | Kanebo Ltd | Two-layer type protein sheet and its production |
FR2715309B1 (en) * | 1994-01-24 | 1996-08-02 | Imedex | Adhesive composition, for surgical use, based on collagen modified by oxidative cutting and not crosslinked. |
FR2720945B1 (en) * | 1994-06-08 | 1996-08-30 | Coletica | Post-operative anti-adhesion collagen membrane. |
FR2724563A1 (en) * | 1994-09-15 | 1996-03-22 | Coletica | USE OF COLLAGENIC MEMBRANES AS PERITONEAL REGENERATION PROSTHESES |
GB2314842B (en) * | 1996-06-28 | 2001-01-17 | Johnson & Johnson Medical | Collagen-oxidized regenerated cellulose complexes |
-
1998
- 1998-09-18 FR FR9811701A patent/FR2783429B1/en not_active Expired - Fee Related
-
1999
- 1999-09-16 US US10/761,055 patent/USRE39172E1/en not_active Expired - Lifetime
- 1999-09-16 JP JP2000573782A patent/JP5175412B2/en not_active Expired - Fee Related
- 1999-09-16 BR BR9907121-5A patent/BR9907121A/en not_active Application Discontinuation
- 1999-09-16 WO PCT/FR1999/002212 patent/WO2000016821A1/en active IP Right Grant
- 1999-09-16 EP EP99942991A patent/EP1030698B1/en not_active Expired - Lifetime
- 1999-09-16 US US09/554,509 patent/US6596304B1/en not_active Ceased
- 1999-09-16 AT AT99942991T patent/ATE258448T1/en not_active IP Right Cessation
- 1999-09-16 DE DE69914451T patent/DE69914451T2/en not_active Expired - Lifetime
- 1999-09-16 CA CA002310132A patent/CA2310132C/en not_active Expired - Fee Related
- 1999-09-16 AU AU56295/99A patent/AU757891B2/en not_active Ceased
- 1999-09-16 ES ES99942991T patent/ES2214880T3/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5201745A (en) * | 1988-03-15 | 1993-04-13 | Imedex | Visceral surgery patch |
WO1993010731A1 (en) * | 1991-12-06 | 1993-06-10 | Kensey Nash Corporation | Pads, methods of making, and methods of use for wound dressing, surgical reinforcement and hemostasis promotion |
WO1998034656A1 (en) * | 1997-02-06 | 1998-08-13 | Imedex Biomateriaux | Collagenic material useful in particular for preventing post-operative adhesions |
US6391939B2 (en) * | 1997-02-06 | 2002-05-21 | Imedex Biomateriaux | Collagenic material useful in particular for preventing post-operative adhesions |
Cited By (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090004239A1 (en) * | 2007-06-27 | 2009-01-01 | Sebastien Ladet | Dural repair material |
US8496683B2 (en) | 2007-06-27 | 2013-07-30 | Covidien Lp | Buttress and surgical stapling apparatus |
US8932619B2 (en) * | 2007-06-27 | 2015-01-13 | Sofradim Production | Dural repair material |
US9005243B2 (en) | 2007-06-27 | 2015-04-14 | Covidien Lp | Buttress and surgical stapling apparatus |
US8062330B2 (en) | 2007-06-27 | 2011-11-22 | Tyco Healthcare Group Lp | Buttress and surgical stapling apparatus |
US20090068250A1 (en) * | 2007-09-07 | 2009-03-12 | Philippe Gravagna | Bioresorbable and biocompatible compounds for surgical use |
US9750846B2 (en) | 2007-09-07 | 2017-09-05 | Sofradim Production Sas | Bioresorbable and biocompatible compounds for surgical use |
US9308068B2 (en) | 2007-12-03 | 2016-04-12 | Sofradim Production | Implant for parastomal hernia |
US10368971B2 (en) | 2007-12-03 | 2019-08-06 | Sofradim Production | Implant for parastomal hernia |
US10070948B2 (en) | 2008-06-27 | 2018-09-11 | Sofradim Production | Biosynthetic implant for soft tissue repair |
US9242026B2 (en) * | 2008-06-27 | 2016-01-26 | Sofradim Production | Biosynthetic implant for soft tissue repair |
US10865505B2 (en) | 2009-09-04 | 2020-12-15 | Sofradim Production | Gripping fabric coated with a bioresorbable impenetrable layer |
US11970798B2 (en) | 2009-09-04 | 2024-04-30 | Sofradim Production | Gripping fabric coated with a bioresorbable impenetrable layer |
US11612472B2 (en) | 2011-03-16 | 2023-03-28 | Sofradim Production | Prosthesis comprising a three-dimensional and openworked knit |
US10472750B2 (en) | 2011-03-16 | 2019-11-12 | Sofradim Production | Prosthesis comprising a three-dimensional and openworked knit |
US9554887B2 (en) | 2011-03-16 | 2017-01-31 | Sofradim Production | Prosthesis comprising a three-dimensional and openworked knit |
US11039912B2 (en) | 2011-07-13 | 2021-06-22 | Sofradim Production | Umbilical hernia prosthesis |
US9622843B2 (en) | 2011-07-13 | 2017-04-18 | Sofradim Production | Umbilical hernia prosthesis |
US11903807B2 (en) | 2011-07-13 | 2024-02-20 | Sofradim Production | Umbilical hernia prosthesis |
US10709538B2 (en) | 2011-07-13 | 2020-07-14 | Sofradim Production | Umbilical hernia prosthesis |
US9980802B2 (en) | 2011-07-13 | 2018-05-29 | Sofradim Production | Umbilical hernia prosthesis |
US9867909B2 (en) | 2011-09-30 | 2018-01-16 | Sofradim Production | Multilayer implants for delivery of therapeutic agents |
US9526603B2 (en) | 2011-09-30 | 2016-12-27 | Covidien Lp | Reversible stiffening of light weight mesh |
US10342652B2 (en) | 2011-12-29 | 2019-07-09 | Sofradim Production | Barbed prosthetic knit and hernia repair mesh made therefrom as well as process for making said prosthetic knit |
US11471256B2 (en) | 2011-12-29 | 2022-10-18 | Sofradim Production | Prosthesis for inguinal hernia |
US9445883B2 (en) | 2011-12-29 | 2016-09-20 | Sofradim Production | Barbed prosthetic knit and hernia repair mesh made therefrom as well as process for making said prosthetic knit |
US11266489B2 (en) | 2011-12-29 | 2022-03-08 | Sofradim Production | Barbed prosthetic knit and hernia repair mesh made therefrom as well as process for making said prosthetic knit |
US10080639B2 (en) | 2011-12-29 | 2018-09-25 | Sofradim Production | Prosthesis for inguinal hernia |
US11925543B2 (en) | 2011-12-29 | 2024-03-12 | Sofradim Production | Barbed prosthetic knit and hernia repair mesh made therefrom as well as process for making said prosthetic knit |
US10363690B2 (en) | 2012-08-02 | 2019-07-30 | Sofradim Production | Method for preparing a chitosan-based porous layer |
US9750837B2 (en) | 2012-09-25 | 2017-09-05 | Sofradim Production | Haemostatic patch and method of preparation |
US9839505B2 (en) | 2012-09-25 | 2017-12-12 | Sofradim Production | Prosthesis comprising a mesh and a strengthening means |
US9499927B2 (en) | 2012-09-25 | 2016-11-22 | Sofradim Production | Method for producing a prosthesis for reinforcing the abdominal wall |
US10159555B2 (en) | 2012-09-28 | 2018-12-25 | Sofradim Production | Packaging for a hernia repair device |
US12059338B2 (en) | 2013-06-07 | 2024-08-13 | Sofradim Production | Textile-based prothesis for laparoscopic surgery |
US10405960B2 (en) | 2013-06-07 | 2019-09-10 | Sofradim Production | Textile-based prothesis for laparoscopic surgery |
US11304790B2 (en) | 2013-06-07 | 2022-04-19 | Sofradim Production | Textile-based prothesis for laparoscopic surgery |
US11622845B2 (en) | 2013-06-07 | 2023-04-11 | Sofradim Production | Textile-based prothesis for laparoscopic surgery |
US10213283B2 (en) | 2013-06-07 | 2019-02-26 | Sofradim Production | Textile-based prosthesis for laparoscopic surgery |
US10549015B2 (en) | 2014-09-24 | 2020-02-04 | Sofradim Production | Method for preparing an anti-adhesion barrier film |
US12070534B2 (en) | 2014-09-24 | 2024-08-27 | Sofradim Production | Method for preparing an anti-adhesion barrier film |
US9877820B2 (en) | 2014-09-29 | 2018-01-30 | Sofradim Production | Textile-based prosthesis for treatment of inguinal hernia |
US11589974B2 (en) | 2014-09-29 | 2023-02-28 | Sofradim Production | Textile-based prosthesis for treatment of inguinal hernia |
US10653508B2 (en) | 2014-09-29 | 2020-05-19 | Sofradim Production | Textile-based prosthesis for treatment of inguinal hernia |
US10327882B2 (en) | 2014-09-29 | 2019-06-25 | Sofradim Production | Whale concept—folding mesh for TIPP procedure for inguinal hernia |
US11291536B2 (en) | 2014-09-29 | 2022-04-05 | Sofradim Production | Whale concept-folding mesh for TIPP procedure for inguinal hernia |
US12091788B2 (en) | 2014-12-05 | 2024-09-17 | Sofradim Production | Prosthetic porous knit |
US11359313B2 (en) | 2014-12-05 | 2022-06-14 | Sofradim Production | Prosthetic porous knit |
US9932695B2 (en) | 2014-12-05 | 2018-04-03 | Sofradim Production | Prosthetic porous knit |
US11713526B2 (en) | 2014-12-05 | 2023-08-01 | Sofradim Production | Prosthetic porous knit |
US10745835B2 (en) | 2014-12-05 | 2020-08-18 | Sofradim Production | Prosthetic porous knit |
US10184032B2 (en) | 2015-02-17 | 2019-01-22 | Sofradim Production | Method for preparing a chitosan-based matrix comprising a fiber reinforcement member |
US10815345B2 (en) | 2015-02-17 | 2020-10-27 | Sofradim Production | Method for preparing a chitosan-based matrix comprising a fiber reinforcement member |
US10660741B2 (en) | 2015-04-24 | 2020-05-26 | Sofradim Production | Prosthesis for supporting a breast structure |
US11439498B2 (en) | 2015-04-24 | 2022-09-13 | Sofradim Production | Prosthesis for supporting a breast structure |
US9931198B2 (en) | 2015-04-24 | 2018-04-03 | Sofradim Production | Prosthesis for supporting a breast structure |
US11826242B2 (en) | 2015-06-19 | 2023-11-28 | Sofradim Production | Synthetic prosthesis comprising a knit and a non porous film and method for forming same |
US10743976B2 (en) | 2015-06-19 | 2020-08-18 | Sofradim Production | Synthetic prosthesis comprising a knit and a non porous film and method for forming same |
US10646321B2 (en) | 2016-01-25 | 2020-05-12 | Sofradim Production | Prosthesis for hernia repair |
US11389282B2 (en) | 2016-01-25 | 2022-07-19 | Sofradim Production | Prosthesis for hernia repair |
US11696819B2 (en) | 2016-10-21 | 2023-07-11 | Sofradim Production | Method for forming a mesh having a barbed suture attached thereto and the mesh thus obtained |
US10682215B2 (en) | 2016-10-21 | 2020-06-16 | Sofradim Production | Method for forming a mesh having a barbed suture attached thereto and the mesh thus obtained |
US11672636B2 (en) | 2017-05-02 | 2023-06-13 | Sofradim Production | Prosthesis for inguinal hernia repair |
US10675137B2 (en) | 2017-05-02 | 2020-06-09 | Sofradim Production | Prosthesis for inguinal hernia repair |
US11471257B2 (en) | 2018-11-16 | 2022-10-18 | Sofradim Production | Implants suitable for soft tissue repair |
US12064330B2 (en) | 2020-04-28 | 2024-08-20 | Covidien Lp | Implantable prothesis for minimally invasive hernia repair |
Also Published As
Publication number | Publication date |
---|---|
AU5629599A (en) | 2000-04-10 |
ES2214880T3 (en) | 2004-09-16 |
JP5175412B2 (en) | 2013-04-03 |
ATE258448T1 (en) | 2004-02-15 |
CA2310132C (en) | 2008-01-29 |
US6596304B1 (en) | 2003-07-22 |
EP1030698A1 (en) | 2000-08-30 |
FR2783429A1 (en) | 2000-03-24 |
WO2000016821A1 (en) | 2000-03-30 |
FR2783429B1 (en) | 2002-04-12 |
BR9907121A (en) | 2000-10-03 |
CA2310132A1 (en) | 2000-03-30 |
EP1030698B1 (en) | 2004-01-28 |
JP2002526207A (en) | 2002-08-20 |
AU757891B2 (en) | 2003-03-13 |
DE69914451T2 (en) | 2004-11-04 |
DE69914451D1 (en) | 2004-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE39172E1 (en) | Method for preparing two-layer bicomposite collagen material for preventing post-operative adhesions | |
AU2001295765B2 (en) | Self-adhesive hydratable matrix for topical therapeutic use | |
US6706684B1 (en) | Method for preparing a collagen material with controlled in vivo degradation | |
CA2691413C (en) | Reinforced composite implant | |
CA2435159C (en) | A method of preparing a collagen sponge | |
US7098315B2 (en) | Method of preparing a collagen sponge, a device for extracting a part of a collagen foam, and an elongated collagen sponge | |
US4606337A (en) | Resorptive sheet material for closing and healing wounds and method of making the same | |
US6022557A (en) | Material on the basis of collagen fibers for covering wounds | |
AU2001295765A1 (en) | Self-adhesive hydratable matrix for topical therapeutic use | |
CN102939113A (en) | Hemostatic sponge | |
AU2002249528A1 (en) | A method of preparing a collagen sponge, a device for extracting a part of a collagen foam, and an elongated collagen sponge | |
AU2001297782A1 (en) | Expandable foam-like biomaterials and methods | |
CA1213520A (en) | Hydrophilic biopolymeric copolyelectrolytes, and biodegradable dressings comprising same | |
ZA200305591B (en) | A method of preparing a collagen sponge, a device for extracting a part of a collagen foam, and an elongated collagen sponge. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |