USRE38124E1 - Snowmobile suspension - Google Patents

Snowmobile suspension Download PDF

Info

Publication number
USRE38124E1
USRE38124E1 US08/567,344 US56734495A USRE38124E US RE38124 E1 USRE38124 E1 US RE38124E1 US 56734495 A US56734495 A US 56734495A US RE38124 E USRE38124 E US RE38124E
Authority
US
United States
Prior art keywords
slide frame
snowmobile
chassis
pivot
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/567,344
Inventor
Bertrand Mallette
Gerard J. Karpik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bombardier Recreational Products Inc
Polaris Inc
Original Assignee
Bombardier Inc
Polaris Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/804,385 external-priority patent/US5265692A/en
Application filed by Bombardier Inc, Polaris Industries Inc filed Critical Bombardier Inc
Priority to US08/567,344 priority Critical patent/USRE38124E1/en
Assigned to POLARIS INDUSTRIES PARTNERS L.P. reassignment POLARIS INDUSTRIES PARTNERS L.P. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FAST ACTIONS SUPPORT TEAM, INC., D/B/A FAST INC., KARPIK, GERARD
Application granted granted Critical
Publication of USRE38124E1 publication Critical patent/USRE38124E1/en
Assigned to BOMBARDIER RECREATIONAL PRODUCTS INC. reassignment BOMBARDIER RECREATIONAL PRODUCTS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOMBARDIER INC.
Anticipated expiration legal-status Critical
Assigned to BANK OF MONTREAL reassignment BANK OF MONTREAL SECURITY AGREEMENT Assignors: BOMBARDIER RECREATIONAL PRODUCTS INC.
Assigned to BANK OF MONTREAL reassignment BANK OF MONTREAL SECURITY AGREEMENT Assignors: BOMBARDIER RECREATIONAL PRODUCTS INC.
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/104Suspension devices for wheels, rollers, bogies or frames
    • B62D55/116Attitude or position control of chassis by action on suspension, e.g. to compensate for a slope
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/10Independent suspensions
    • B60G2200/17Independent suspensions with a strut contributing to the suspension geometry by being articulated onto the wheel support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/12Mounting of springs or dampers
    • B60G2204/128Damper mount on vehicle body or chassis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/12Mounting of springs or dampers
    • B60G2204/129Damper mount on wheel suspension or knuckle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/421Pivoted lever mechanisms for mounting suspension elements, e.g. Watt linkage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/422Links for mounting suspension elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/32Track vehicles
    • B60G2300/322Snowmobiles

Definitions

  • This invention relates to a new or improved snowmobile track belt suspension.
  • Snowmobile track belt suspensions often employ a slide frame pressed into contact with the upper side of the ground engaging run of the track belt loop by spring arrangements associated with suspension arm assemblies by which the slide frame is connected to the snowmobile chassis.
  • suspension arm assemblies by which the slide frame is connected to the snowmobile chassis.
  • two angulated arm assemblies are employed to connect the slide frame to the snowmobile chassis, and these arm assemblies are movable independently of one another to permit the slide frame to accommodate itself to static and dynamic forces arising in operation.
  • Irregularities in the terrain travelled by the snowmobile produce displacements and deflections of the snowmobile front suspension that supports the vehicle on the skis, and of the rear suspension. Depending upon their magnitude, frequency, and strength, these deflections cause more or less discomfort to the operator of the snowmobile.
  • the present inventor theorizes that suspension displacements that produce angular acceleration of the snowmobile and its operator about a transverse horizontal axis produce more discomfort than displacements that merely produce vertical acceleration of the vehicle and its operator.
  • the invention provides a snowmobile suspension comprising: a slide frame carried on downwardly and rearwardly angled front and rear suspension arm assemblies that are supported in the snowmobile chassis, said suspension incorporating spring means acting on said arm assemblies to urge said slide frame downwardly into contact with the ground-engaging run of the snowmobile track belt; said front and rear arm assemblies being substantially equal in length and generally parallelly arranged to position said slide frame substantially horizontally with respect to the snowmobile chassis; said frame arm assembly having upper and lower ends connected to fixed first and second pivots on the snowmobile chassis and on the slide frame respectively; said rear arm assembly having an upper end connected to a third fixed pivot on said snowmobile chassis, and having a lower end connected to a displaceable pivot that is movable longitudinally of said slide frame; movement of said displaceable pivot forwardly of said slide frame being limited by an abutment that is positioned so that the suspension arms form a parallelogram linkage, and which thus prevents the front end of the slide frame from moving to a higher position than the rear end thereof relative to said chassis; guide means on said
  • FIGS. 1A and 1B are generally schematic side elevations of a snowmobile
  • FIG. 2 is a somewhat schematic side elevation of a slide frame and the suspension arm assemblies of a snowmobile track suspension
  • FIGS. 3A and 3B are schematic views illustrating the action of the components of FIG. 2;
  • FIG. 4 is a somewhat more detailed side elevational view of a snowmobile slide frame and suspension arm assemblies
  • FIG. 5 is a somewhat schematic view of the front portion of the suspension of FIG. 4;
  • FIG. 6 is a top rear and side perspective view of the snowmobile slide suspension of FIG. 4 .
  • FIGS. 1A and 1B a snowmobile chassis 10 is schematically illustrated as being supported in the usual manner upon a pair of steerable skis 11 at its forward end and upon the ground engaging run of a driven track belt 12 at its rearward end.
  • FIG. 1A represents the situation that exists with a track suspension of prior art construction wherein the loading point 13 where ground induced forces absorbed by the track suspension are applied to the snowmobile chassis is positioned rearwardly of the snowmobiles center of gravity 14 by a distance l.
  • angular acceleration ⁇ applied to the snowmobile when the track encounters an undulation that generates a force F at the loading point 13 will be directly proportional to the couple T and inversely proportional to the moment of inertia I of the snowmobile about its center of gravity.
  • the couple T is the product of the force F and the distance l, so that accordingly the angular acceleration for a given force F is directly proportional to the distance l.
  • FIG. 1B represents the dynamic condition in which the snowmobile track suspension is re-configured so that under the same operating conditions the force F is applied at a loading point 15 that is spaced further forwardly than in FIG. 1A at a distance l′ from the center of gravity 14 . It will be appreciated that with this configuration the angular acceleration applied to the snowmobile is greatly reduced.
  • the snowmobile track suspension now to be described in relation to FIGS. 2 through 6 has been designed to achieve a reduction in this angular acceleration
  • the track suspension includes an elongate slide frame 21 with an upwardly curved forward end 22 , and carrying at its rear end in known manner, adjustable idler wheels 23 over which the track belt is constrained to pass.
  • the slide frame 21 contacts the upper side of the ground engaging run of the track belt 12 and is in turn connected to the snowmobile chassis 10 by front and rear suspension arm assemblies 24 , 25 .
  • the suspension arm assemblies 24 , 25 are of substantially the same length, and are arranged at a similar orientation, i.e. inclined downwardly from front to rear, being connected at their upper ends to fixed pivots 26 , 27 respectively on the snowmobile chassis 10 .
  • the suspension arm assemblies 24 , 25 extend at substantially the same angle ⁇ to the horizontal as indicated in FIG.
  • the front arm assembly having its lower end attached to a fixed pivot 28 and the rear arm assembly having its lower end attached to a movable pivot 29 .
  • the movable pivot 29 is received in a guide means 30 , being movable longitudinally thereof, and the guide means defining an abutment 31 at its forward end positioned as shown in FIG. 2 .
  • FIG. 2 shows the static position of the track suspension.
  • the front and rear arm assemblies 24 , 25 are of the same length L and are arranged at the same angle ⁇ with respect to the horizontal, the movable pivot 29 being in this condition at the forward end of its range of movement and adjacent the abutment 31 .
  • the slide frame 21 will remain horizontal as it deflects upwardly. Specifically the front end of the slide frame cannot move to a higher location than the rear end during this displacement since the movable pivot 29 is blocked by the abutment 31 .
  • slide frame will be free to assume a position as shown in broken lines in FIG. 3B as might occur as a result of tension in the track 12 or otherwise. This movement is accommodated by rearward displacement of the movable pivot 29 in the guide 30 .
  • the slide frame 21 comprises two transversely spaced elongate runners 35 interconnected by suitable transverse struts 36 .
  • the runners 35 are upwardly curved towards their forward ends and also include on their undersides friction reducing coatings or the like (not shown) for engagement with the snowmobile track belt 12 .
  • the friction generated in this engagement can be further reduced by idler wheels 37 , 38 arranged in pairs at intermediate locations on the slide frame and having lower peripheries projecting slightly below the underside of the slide frame runners 35 .
  • the rear suspension arm assembly 25 as best seen in FIG. 6 comprises a horizontal upper tube 39 interconnected to a horizontal lower tube 40 by laterally spaced upwardly divergent longitudinal members 41 .
  • the outboard ends of the upper tube 39 carry idler wheels 42 to support the return run (not shown) of the track belt 12 , and also support stub shafts 43 which provide the pivot attachment 27 to the snowmobile chassis.
  • the lower tube 40 carries on its outboard ends the movable pivots 29 in the form of slide blocks 29 a of suitable lower friction material, which are longitudinally movable in the guide means 30 .
  • each runner 35 has an upwardly extending lug plate 44 having an elongate slot through which the associated end of the lower tube 40 passes.
  • the guide means 30 is defined by a cover plate 45 that is releasably secured to the lug plate 44 by suitable fastener means.
  • An intermediate cross piece 46 is mounted on the longitudinal members 41 and supports the forward ends of a pair of spaced parallel gusset plates 47 the rear ends of which are supported on the lower tube 40 . Intermediate their ends the gusset plates 47 provide a pivotal mounting 48 for a bell crank plate 50 which has an intermediate pivotal connection 51 to a diagonally arranged strut 52 that is pivotally supported on the slide frame, and a further pivotal connection 53 to the lower end of a combined coiled spring/hydraulic damper unit 54 .
  • the upper end of the damper unit forms a pivotal connection 55 to a radially projecting lug arm 56 that is rigidly attached to the upper tube 39 .
  • damper unit 54 extends below and generally longitudinally of the rear suspension arm assembly 25 .
  • the configuration of the linkage provided by the bell crank 50 , the strut 52 and the lug arm 56 is such that the resistance of the damper unit to upwards deflection of the rear suspension arm assembly 25 is applied at a desired rate.
  • the front suspension arm assembly 24 is similarly configured to the rear suspension arm assembly including upper and lower tubes 39 a and 40 a interconnected by longitudinal members 41 a, the upper tube having stub shafts 43 a at its ends, but not supporting any idler wheels.
  • the lower tube 41 is connected to the pivot axis 28 provided in upwardly projecting lug plates 44 a on the runners 35 .
  • Gusset plates 47 a are supported between a cross piece 46 a and the lower tube 40 a and provide a pivot 48 a for a bell crank plate 50 a which is likewise pivoted at 51 a to a strut 52 a and at 53 a to the lower end of a damper unit 54 a.
  • the upper end of the damper unit has a pivotal connection 55 a to a lug arm 56 a on the upper tube 39 a.
  • FIGS. 4 and 6 For convenience in illustration, the elements are shown in somewhat simplified form in FIGS. 4 and 6, and in particular the damper units 54 , 54 a are shown without their coil springs. These components are of well known design and need not be illustrated in detail.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

In a snowmobile track suspension, the slide frame is supported upon downwardly and rearwardly angled front and rear suspension arm assemblies. The suspension arm assemblies are of similar construction, length, and orientation, having upper ends connected to fixed pivots in the snowmobile chassis and lower ends pivoted to the slide frame. The lower end of the rear suspension arm assembly has a pivot mount that is movable longitudinally of the slide frame. Movement in the forwards direction being blocked by an abutment which ensures that during suspension travel the front end of the slide frame cannot move higher than the rear end thereof.

Description

BACKGROUND OF THE INVENTION
a) Field of the Invention
This invention relates to a new or improved snowmobile track belt suspension.
b) Description of the Prior Art
Snowmobile track belt suspensions often employ a slide frame pressed into contact with the upper side of the ground engaging run of the track belt loop by spring arrangements associated with suspension arm assemblies by which the slide frame is connected to the snowmobile chassis. Typically, two angulated arm assemblies are employed to connect the slide frame to the snowmobile chassis, and these arm assemblies are movable independently of one another to permit the slide frame to accommodate itself to static and dynamic forces arising in operation.
Irregularities in the terrain travelled by the snowmobile produce displacements and deflections of the snowmobile front suspension that supports the vehicle on the skis, and of the rear suspension. Depending upon their magnitude, frequency, and strength, these deflections cause more or less discomfort to the operator of the snowmobile. The present inventor theorizes that suspension displacements that produce angular acceleration of the snowmobile and its operator about a transverse horizontal axis produce more discomfort than displacements that merely produce vertical acceleration of the vehicle and its operator.
Accordingly it is an object of the invention to provide a snowmobile track belt suspension that will provide a reduced angular acceleration as compared to prior art snowmobile track suspensions.
SUMMARY OF THE INVENTION
The invention provides a snowmobile suspension comprising: a slide frame carried on downwardly and rearwardly angled front and rear suspension arm assemblies that are supported in the snowmobile chassis, said suspension incorporating spring means acting on said arm assemblies to urge said slide frame downwardly into contact with the ground-engaging run of the snowmobile track belt; said front and rear arm assemblies being substantially equal in length and generally parallelly arranged to position said slide frame substantially horizontally with respect to the snowmobile chassis; said frame arm assembly having upper and lower ends connected to fixed first and second pivots on the snowmobile chassis and on the slide frame respectively; said rear arm assembly having an upper end connected to a third fixed pivot on said snowmobile chassis, and having a lower end connected to a displaceable pivot that is movable longitudinally of said slide frame; movement of said displaceable pivot forwardly of said slide frame being limited by an abutment that is positioned so that the suspension arms form a parallelogram linkage, and which thus prevents the front end of the slide frame from moving to a higher position than the rear end thereof relative to said chassis; guide means on said slide frame adapted to accommodate movement of said displaceable pivot rearwardly away from said abutment to permit movement of the rear end of said slide frame to a higher position than the front end thereof relative to said snowmobile chassis.
With such an arrangement it is ensured that the loading imposed upon the track suspension by undulations in the terrain over which the snowmobile travels acts more on the front part of the track suspension than on its rear part, and thus effectively moves the average point of application of the vertical forces forwardly closer to the center of gravity of the vehicle, and accordingly reduces the resulted couple that produces the undesired angular acceleration.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will further be described, by way of example only, with reference to the accompanying drawings wherein:
FIGS. 1A and 1B are generally schematic side elevations of a snowmobile;
FIG. 2 is a somewhat schematic side elevation of a slide frame and the suspension arm assemblies of a snowmobile track suspension;
FIGS. 3A and 3B are schematic views illustrating the action of the components of FIG. 2;
FIG. 4 is a somewhat more detailed side elevational view of a snowmobile slide frame and suspension arm assemblies;
FIG. 5 is a somewhat schematic view of the front portion of the suspension of FIG. 4; and
FIG. 6 is a top rear and side perspective view of the snowmobile slide suspension of FIG. 4.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to FIGS. 1A and 1B, a snowmobile chassis 10 is schematically illustrated as being supported in the usual manner upon a pair of steerable skis 11 at its forward end and upon the ground engaging run of a driven track belt 12 at its rearward end. FIG. 1A represents the situation that exists with a track suspension of prior art construction wherein the loading point 13 where ground induced forces absorbed by the track suspension are applied to the snowmobile chassis is positioned rearwardly of the snowmobiles center of gravity 14 by a distance l.
It will be understood that the angular acceleration α applied to the snowmobile when the track encounters an undulation that generates a force F at the loading point 13 will be directly proportional to the couple T and inversely proportional to the moment of inertia I of the snowmobile about its center of gravity.
In other words
α=T/I
The couple T is the product of the force F and the distance l, so that accordingly the angular acceleration for a given force F is directly proportional to the distance l.
FIG. 1B represents the dynamic condition in which the snowmobile track suspension is re-configured so that under the same operating conditions the force F is applied at a loading point 15 that is spaced further forwardly than in FIG. 1A at a distance l′ from the center of gravity 14. It will be appreciated that with this configuration the angular acceleration applied to the snowmobile is greatly reduced. The snowmobile track suspension now to be described in relation to FIGS. 2 through 6 has been designed to achieve a reduction in this angular acceleration
Referring to FIG. 2, the track suspension includes an elongate slide frame 21 with an upwardly curved forward end 22, and carrying at its rear end in known manner, adjustable idler wheels 23 over which the track belt is constrained to pass. The slide frame 21 contacts the upper side of the ground engaging run of the track belt 12 and is in turn connected to the snowmobile chassis 10 by front and rear suspension arm assemblies 24, 25. The suspension arm assemblies 24, 25 are of substantially the same length, and are arranged at a similar orientation, i.e. inclined downwardly from front to rear, being connected at their upper ends to fixed pivots 26, 27 respectively on the snowmobile chassis 10. The suspension arm assemblies 24, 25 extend at substantially the same angle θ to the horizontal as indicated in FIG. 2, the front arm assembly having its lower end attached to a fixed pivot 28 and the rear arm assembly having its lower end attached to a movable pivot 29. The movable pivot 29 is received in a guide means 30, being movable longitudinally thereof, and the guide means defining an abutment 31 at its forward end positioned as shown in FIG. 2.
FIG. 2 shows the static position of the track suspension. The front and rear arm assemblies 24, 25 are of the same length L and are arranged at the same angle θ with respect to the horizontal, the movable pivot 29 being in this condition at the forward end of its range of movement and adjacent the abutment 31. In this condition it will be seen that when the front suspension arm 24 is pivoted upwardly about pivot 26, the rear suspension arm 25 is constrained to follow the same movement since the arms are forced to act as a parallelogram linkage. Accordingly the slide frame 21 will remain horizontal as it deflects upwardly. Specifically the front end of the slide frame cannot move to a higher location than the rear end during this displacement since the movable pivot 29 is blocked by the abutment 31.
However the slide frame will be free to assume a position as shown in broken lines in FIG. 3B as might occur as a result of tension in the track 12 or otherwise. This movement is accommodated by rearward displacement of the movable pivot 29 in the guide 30.
The structure of the slide frame 21 and the suspension arm assemblies 24, 25 and their associated components is more clearly illustrated in relation to FIGS. 4, 5 and 6. Referring to FIG. 6 it will be seen that the slide frame 21 comprises two transversely spaced elongate runners 35 interconnected by suitable transverse struts 36. In conventional manner, the runners 35 are upwardly curved towards their forward ends and also include on their undersides friction reducing coatings or the like (not shown) for engagement with the snowmobile track belt 12. The friction generated in this engagement can be further reduced by idler wheels 37, 38 arranged in pairs at intermediate locations on the slide frame and having lower peripheries projecting slightly below the underside of the slide frame runners 35.
The rear suspension arm assembly 25 as best seen in FIG. 6 comprises a horizontal upper tube 39 interconnected to a horizontal lower tube 40 by laterally spaced upwardly divergent longitudinal members 41. The outboard ends of the upper tube 39 carry idler wheels 42 to support the return run (not shown) of the track belt 12, and also support stub shafts 43 which provide the pivot attachment 27 to the snowmobile chassis.
The lower tube 40 carries on its outboard ends the movable pivots 29 in the form of slide blocks 29a of suitable lower friction material, which are longitudinally movable in the guide means 30. As shown, each runner 35 has an upwardly extending lug plate 44 having an elongate slot through which the associated end of the lower tube 40 passes. The guide means 30 is defined by a cover plate 45 that is releasably secured to the lug plate 44 by suitable fastener means.
An intermediate cross piece 46 is mounted on the longitudinal members 41 and supports the forward ends of a pair of spaced parallel gusset plates 47 the rear ends of which are supported on the lower tube 40. Intermediate their ends the gusset plates 47 provide a pivotal mounting 48 for a bell crank plate 50 which has an intermediate pivotal connection 51 to a diagonally arranged strut 52 that is pivotally supported on the slide frame, and a further pivotal connection 53 to the lower end of a combined coiled spring/hydraulic damper unit 54. The upper end of the damper unit forms a pivotal connection 55 to a radially projecting lug arm 56 that is rigidly attached to the upper tube 39.
From this it will be seen that the damper unit 54 extends below and generally longitudinally of the rear suspension arm assembly 25. The configuration of the linkage provided by the bell crank 50, the strut 52 and the lug arm 56 is such that the resistance of the damper unit to upwards deflection of the rear suspension arm assembly 25 is applied at a desired rate.
The front suspension arm assembly 24 is similarly configured to the rear suspension arm assembly including upper and lower tubes 39a and 40a interconnected by longitudinal members 41a, the upper tube having stub shafts 43a at its ends, but not supporting any idler wheels. The lower tube 41 is connected to the pivot axis 28 provided in upwardly projecting lug plates 44a on the runners 35. Gusset plates 47a are supported between a cross piece 46a and the lower tube 40a and provide a pivot 48a for a bell crank plate 50a which is likewise pivoted at 51a to a strut 52a and at 53a to the lower end of a damper unit 54a. The upper end of the damper unit has a pivotal connection 55a to a lug arm 56a on the upper tube 39a.
For convenience in illustration, the elements are shown in somewhat simplified form in FIGS. 4 and 6, and in particular the damper units 54, 54a are shown without their coil springs. These components are of well known design and need not be illustrated in detail.
From the foregoing description and a consideration of the drawings, and in particular FIGS. 2, 3a and 3b, it will be evident that under uniform loading applied to the suspension from the slide frame 21, the arm assemblies 24 and 25 will occupy the relative positions shown in FIG. 2, i.e. will be parallel, so that the slide frame 21 will lie essentially parallel to the line between the upper pivots 26 and 27, and, as shown in broken lines in FIG. 3a, will maintain this parallel relationship during variations in the magnitude of the uniform loading. As will be apparent, this parallelogram linkage will be maintained even in the event that the slide frame 22 is subjected to non-uniform loading where the load point is offset towards the front end. This is because, by virtue of the parallelogram arrangement of the suspension and the fact that the movable pivot 29 at the lower end of the rear suspension arm assembly 25 is in engagement with the abutment 31, the forward lower pivot 28 is prevented from moving to a higher level relative to the chassis than the level of the movable pivot 29. However in the event that a non-uniform loading is applied to the chassis 21 offset towards the rear end thereof, it will be evident that the rear suspension arm assembly 25 can deflect upwardly to a greater extent than the front suspension arm assembly 24, as illustrated schematically in FIG. 3b, this increased deflection being accommodated by the fact that the movable pivot 29 can in this made move rearwardly in the guide 30.

Claims (5)

What I claim as my invention is:
1. A snowmobile suspension comprising: a slide frame carried on downwardly and rearwardly angled front and rear suspension arm assemblies that are supported in the snowmobile chassis, said suspension incorporating spring means acting on said arm assemblies to urge said slide frame downwardly into contact with the ground-engaging run of the snowmobile track belt;
said front and rear arm assemblies being substantially equal in length and generally parallelly arranged to position said slide frame substantially horizontally with respect to the snowmobile chassis;
said front arm assembly having upper and lower ends connected to fixed first and second pivots on the snowmobile chassis and on the slide frame respectively;
said rear arm assembly having an upper end connected to a third fixed pivot on said snowmobile chassis, and having a lower end connected to a displaceable pivot that is movable longitudinally of said slide frame;
said slide frame defining an abutment that establishes a forwardmost position of said displaceable pivot relative to said slide frame, said abutment being located such that in said forwardmost position of the displaceable pivot, the front and rear arm assemblies define with said slide frame and said chassis a parallelogram linkage which prevents said second pivot from moving to a higher position that than said displaceable pivot relative to said chassis;
guide means on said slide frame adapted to accommodate movement of said displaceable pivot rearwardly away from said abutment to permit movement of said displaceable pivot to a higher position than said second fixed pivot relative to said snowmobile chassis.
2. A snowmobile suspension as claimed in claim 1 wherein said slide frame comprises two laterally spaced longitudinally extending rails with upwardly curved front ends, each rail having an upwardly projecting lug forward of the mid point in its length, said lugs being horizontally aligned;
said front arm assembly comprising horizontal upper and lower tubes spaced apart and interconnected by transversely spaced longitudinal members to form a rigid structure, said upper tube forming said first fixed pivot with said chassis and said lower tube forming said second fixed pivot with said lugs of said slide frame;
said spring means comprising a combined coil spring and hydraulic damper unit centrally arranged longitudinally of said front arm assembly, said upper tube rigidly supporting a radially extending short lug arm that forms a pivotal connection with the upper end of said damper unit, the lower end of said damper unit being connected to a linkage system that is coupled to said slide frame and to said front arm assembly, said linkage being so configured as to apply to said damping unit a compressive displacement as upwards displacement of the slide frame increases.
3. A snowmobile suspension as claimed in claim 2 wherein the rear suspension arm assembly likewise comprises horizontal upper and lower tubes spaced apart and interconnected by transversely spaced longitudinal members to form a rigid structure in which said upper tube forms said third fixed pivot with said chassis and said lower tube forms said displaceable pivot, each end of the rear suspension arm assembly lower tube carrying a slide block, each slide block being received in a respective longitudinally extending guideway carried on an upwardly projecting lug plate on the respective slide rail.
4. A snowmobile suspension as claimed in claim 3 wherein each end of the lower tube of the rear suspension arm assembly defines a cylindrical stub shaft that is pivotally received in a low-friction slide block, said stub shaft projecting through an elongate slot in said lug plate, and said guideway being defined between said lug plate and a cover plate that is detachably secured thereto.
5. A snowmobile suspension comprising: a slide frame carried on downwardly and rearwardly angled front and rear suspension arm assemblies that are supported in the snowmobile chassis, said suspension incorporating spring means acting to urge said slide frame downwardly into contact with the ground-engaging run of the snowmobile track belt;
said front and rear arm assemblies being substantially equal in length and generally parallelly arranged to position said slide frame substantially horizontally with respect to the snowmobile chassis;
said front arm assembly having upper and lower ends connected to fixed first and second pivots on the snowmobile chassis and on the slide frame respectively;
said rear arm assembly having an upper end connected to a third fixed pivot on said snowmobile chassis, and having a lower end connected by a connection to a displaceable pivot that is connected to said slide frame in such a manner as to be movable longitudinally of said slide frame;
said slide frame defining an abutment that establishes a forwardmost position of said displaceable pivot relative to said slide frame, said abutment being located such that in said forwardmost position of the displaceable pivot, the front and rear arm assemblies define with said slide frame and said chassis a parallelogram linkage which limits the height to which the front end of the slide frame can be moved relative to the height of the rear end thereof during upward displacement of said slide frame relative to said chassis;
the connection between said displaceable pivot and said slide frame being adapted to accommodate movement of said displaceable pivot rearwardly away from said abutment to permit movement of said displaceable pivot to a higher relative position than said second fixed pivot during upwards displacement of said slide frame relative to said snowmobile chassis.
US08/567,344 1991-12-10 1995-11-30 Snowmobile suspension Expired - Lifetime USRE38124E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/567,344 USRE38124E1 (en) 1991-12-10 1995-11-30 Snowmobile suspension

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/804,385 US5265692A (en) 1991-12-11 1991-12-10 Snowmobile suspension
US08/567,344 USRE38124E1 (en) 1991-12-10 1995-11-30 Snowmobile suspension

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US07/804,385 Reissue US5265692A (en) 1991-12-10 1991-12-10 Snowmobile suspension

Publications (1)

Publication Number Publication Date
USRE38124E1 true USRE38124E1 (en) 2003-05-27

Family

ID=27074451

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/567,344 Expired - Lifetime USRE38124E1 (en) 1991-12-10 1995-11-30 Snowmobile suspension

Country Status (1)

Country Link
US (1) USRE38124E1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6926108B1 (en) 2002-09-03 2005-08-09 Great Lakes Sound & Vibration, Inc. Snowmobile rear suspension system
US6971466B1 (en) 2004-01-30 2005-12-06 Sno-Bear Industries, Llc Torque compensating rear undercarriage for track driven vehicles
US20060180370A1 (en) * 2002-09-03 2006-08-17 Polakowski Stephen E Snowmobile rear suspension system
US20070199753A1 (en) * 2006-02-24 2007-08-30 Polaris Industries Inc. Snowmobile frame assembly
US20070221424A1 (en) * 2006-02-24 2007-09-27 Polaris Industries Inc. Snowmobile rear suspension
US20070227796A1 (en) * 2005-09-28 2007-10-04 Simmons Val J Suspension for tracked vehicles
US20070246283A1 (en) * 2006-02-24 2007-10-25 Polaris Industries Inc. Snowmobile drive assembly
US20090008990A1 (en) * 2005-03-01 2009-01-08 Guy Sibilleau Rail slides for track suspension systems
US7673711B1 (en) 2002-06-04 2010-03-09 Polaris Industries Inc. Tracked vehicle
US20100071982A1 (en) * 2007-01-17 2010-03-25 Polaris Industries Inc. Snowmobile and rear suspension for snowmobile
US7975794B2 (en) 2005-09-28 2011-07-12 Simmons, Inc. Suspension for tracked vehicles
US9248886B1 (en) * 2006-02-24 2016-02-02 Polaris Industries Inc. Suspension architecture for a snowmobile
US9346518B2 (en) 2013-07-30 2016-05-24 Great Lakes Sound & Vibration, Inc. Snowmobile suspension systems
US9506407B2 (en) 2014-01-10 2016-11-29 Polaris Industries Inc. Engine having active exhaust valve position control system and method
US9540072B2 (en) 2012-02-09 2017-01-10 Polaris Industries Inc. Snowmobile
US9809195B2 (en) 2008-10-10 2017-11-07 Polaris Industries Inc. Snowmobile
US9845004B2 (en) 2014-01-10 2017-12-19 Polaris Industries Inc. Snowmobile
WO2018093318A1 (en) * 2016-11-18 2018-05-24 BAE Systems Hägglunds Aktiebolag A tracked vehicle comprising a tiltable suspended track assembly
US10005506B2 (en) 2015-02-27 2018-06-26 Great Lakes Sound & Vibration, Inc. Suspension arrangements for vehicles
US10358187B2 (en) 2014-01-10 2019-07-23 Polaris Industries Inc. Snowmobile
US10377446B2 (en) 2013-11-29 2019-08-13 Bombardier Recreational Products Inc. Rear suspension assembly for a snowmobile
US10493846B2 (en) 2007-05-16 2019-12-03 Polaris Industries Inc. All terrain vehicle
US10730551B2 (en) 2016-08-09 2020-08-04 Polaris Industries Inc. Tracked all-terrain vehicle
US10793181B2 (en) 2018-02-13 2020-10-06 Polaris Industries Inc. All-terrain vehicle

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA895747A (en) * 1972-03-21 D. Reese Gerald Suspension system for tracked vehicle
US3658392A (en) * 1969-01-10 1972-04-25 Bombardier Ltd Tracked vehicle suspension
US3727709A (en) * 1971-09-27 1973-04-17 Rupp Industries Snowmobile construction
US3788412A (en) * 1972-05-17 1974-01-29 Coleman Co Snowmobile suspension system
CA944001A (en) * 1971-09-19 1974-03-19 Dayco Corporation Snowmobile slide rail suspension
US3879092A (en) * 1973-12-19 1975-04-22 Outboard Marine Corp Snowmobile track suspension system
US3933213A (en) 1974-04-11 1976-01-20 Brunswick Corporation Variable response snowmobile suspension system
US3944005A (en) * 1973-12-28 1976-03-16 Yamaha Hatsudoki Kabushiki Kaisha Suspension device for vehicles
US3945663A (en) 1973-07-27 1976-03-23 Jonas Woodhead Limited Oleo/pneumatic levelling struts
US3966181A (en) * 1974-03-11 1976-06-29 Bombardier Limited Suspension spring adjuster
CA994395A (en) * 1972-11-15 1976-08-03 Marcel Vincent Snowmobile suspension system
US4057916A (en) 1975-11-17 1977-11-15 Roemer Benjamin C Snowmobile trail leveler
CA1026807A (en) * 1974-04-01 1978-02-21 Brunswick Corporation Suspension apparatus for ground engaging drive tracks
US4131266A (en) 1977-10-19 1978-12-26 Jackson Machine Products Adjustable shock absorber
US4222453A (en) * 1978-11-17 1980-09-16 Arctic Enterprises, Inc. Rear suspension system for a snowmobile
US4226408A (en) 1978-02-01 1980-10-07 Honda Giken Kogyo Kabushiki Kaisha Hydraulic shock absorber for vehicles
US4311302A (en) 1978-12-22 1982-01-19 Fichtel & Sachs Ag Shock absorber device
US4407386A (en) 1981-12-31 1983-10-04 Yamaha Hatsudoki Kabushiki Kaisha Snowmobile suspension unit
US4411342A (en) 1979-02-23 1983-10-25 Tokico Ltd. Hydraulic damper
US4442926A (en) 1980-06-06 1984-04-17 Tokiko Kabushiki Kaisha Simplified hydraulic damper
US4518056A (en) 1981-08-11 1985-05-21 Yamaha Hatsudoki Kabushiki Kaisha Snowmobile
US4700815A (en) 1984-01-20 1987-10-20 Quinton Hazell Plc Vehicle suspension system
US4987965A (en) 1990-01-17 1991-01-29 Bombardier Inc. Snowmobile suspension
US5370198A (en) 1992-09-25 1994-12-06 Karpik; Gerard J. Long travel suspension for tracked vehicle

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA895747A (en) * 1972-03-21 D. Reese Gerald Suspension system for tracked vehicle
US3658392A (en) * 1969-01-10 1972-04-25 Bombardier Ltd Tracked vehicle suspension
CA944001A (en) * 1971-09-19 1974-03-19 Dayco Corporation Snowmobile slide rail suspension
US3727709A (en) * 1971-09-27 1973-04-17 Rupp Industries Snowmobile construction
CA956674A (en) * 1971-09-27 1974-10-22 Neil A. Newman Snowmobile construction
US3788412A (en) * 1972-05-17 1974-01-29 Coleman Co Snowmobile suspension system
CA994395A (en) * 1972-11-15 1976-08-03 Marcel Vincent Snowmobile suspension system
US3945663A (en) 1973-07-27 1976-03-23 Jonas Woodhead Limited Oleo/pneumatic levelling struts
CA1029425A (en) * 1973-12-19 1978-04-11 Edgar Rose Snowmobile track suspension system
US3879092A (en) * 1973-12-19 1975-04-22 Outboard Marine Corp Snowmobile track suspension system
US3944005A (en) * 1973-12-28 1976-03-16 Yamaha Hatsudoki Kabushiki Kaisha Suspension device for vehicles
US3966181A (en) * 1974-03-11 1976-06-29 Bombardier Limited Suspension spring adjuster
CA1026807A (en) * 1974-04-01 1978-02-21 Brunswick Corporation Suspension apparatus for ground engaging drive tracks
US3933213A (en) 1974-04-11 1976-01-20 Brunswick Corporation Variable response snowmobile suspension system
US4057916A (en) 1975-11-17 1977-11-15 Roemer Benjamin C Snowmobile trail leveler
US4131266A (en) 1977-10-19 1978-12-26 Jackson Machine Products Adjustable shock absorber
US4226408A (en) 1978-02-01 1980-10-07 Honda Giken Kogyo Kabushiki Kaisha Hydraulic shock absorber for vehicles
US4222453A (en) * 1978-11-17 1980-09-16 Arctic Enterprises, Inc. Rear suspension system for a snowmobile
US4311302A (en) 1978-12-22 1982-01-19 Fichtel & Sachs Ag Shock absorber device
US4411342A (en) 1979-02-23 1983-10-25 Tokico Ltd. Hydraulic damper
US4442926A (en) 1980-06-06 1984-04-17 Tokiko Kabushiki Kaisha Simplified hydraulic damper
US4518056A (en) 1981-08-11 1985-05-21 Yamaha Hatsudoki Kabushiki Kaisha Snowmobile
US4407386A (en) 1981-12-31 1983-10-04 Yamaha Hatsudoki Kabushiki Kaisha Snowmobile suspension unit
US4700815A (en) 1984-01-20 1987-10-20 Quinton Hazell Plc Vehicle suspension system
US4987965A (en) 1990-01-17 1991-01-29 Bombardier Inc. Snowmobile suspension
US5370198A (en) 1992-09-25 1994-12-06 Karpik; Gerard J. Long travel suspension for tracked vehicle

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7673711B1 (en) 2002-06-04 2010-03-09 Polaris Industries Inc. Tracked vehicle
US8167073B2 (en) 2002-09-03 2012-05-01 Great Lakes Sound & Vibration, Inc. Snowmobile rear suspension system
US20060180370A1 (en) * 2002-09-03 2006-08-17 Polakowski Stephen E Snowmobile rear suspension system
US7128180B2 (en) 2002-09-03 2006-10-31 Great Lakes Sound & Vibration, Inc. Snowmobile rear suspension system
US6926108B1 (en) 2002-09-03 2005-08-09 Great Lakes Sound & Vibration, Inc. Snowmobile rear suspension system
US20050183899A1 (en) * 2002-09-03 2005-08-25 Great Lakes Sound & Vibration, Inc. Snowmobile rear suspension system
US7594557B2 (en) * 2002-09-03 2009-09-29 Great Lakes Sound & Vibration, Inc. Snowmobile rear suspension system
US20090294197A1 (en) * 2002-09-03 2009-12-03 Great Lakes Sound & Vibration, Inc. Snowmobile Rear Suspension System
US6971466B1 (en) 2004-01-30 2005-12-06 Sno-Bear Industries, Llc Torque compensating rear undercarriage for track driven vehicles
US20090008990A1 (en) * 2005-03-01 2009-01-08 Guy Sibilleau Rail slides for track suspension systems
US20070227796A1 (en) * 2005-09-28 2007-10-04 Simmons Val J Suspension for tracked vehicles
US7975794B2 (en) 2005-09-28 2011-07-12 Simmons, Inc. Suspension for tracked vehicles
US7533750B2 (en) 2005-09-28 2009-05-19 Simmons, Inc. Suspension for tracked vehicles
US20070199753A1 (en) * 2006-02-24 2007-08-30 Polaris Industries Inc. Snowmobile frame assembly
US9248886B1 (en) * 2006-02-24 2016-02-02 Polaris Industries Inc. Suspension architecture for a snowmobile
US7694768B2 (en) 2006-02-24 2010-04-13 Polaris Industries, Inc. Snowmobile drive assembly
US7891454B2 (en) 2006-02-24 2011-02-22 Polaris Industries Inc. Snowmobile frame assembly
US20070246283A1 (en) * 2006-02-24 2007-10-25 Polaris Industries Inc. Snowmobile drive assembly
US20070221424A1 (en) * 2006-02-24 2007-09-27 Polaris Industries Inc. Snowmobile rear suspension
US8820458B2 (en) 2006-02-24 2014-09-02 Polaris Industries Inc. Snowmobile rear suspension
US8978794B2 (en) 2007-01-17 2015-03-17 Polaris Industries Inc. Snowmobile and rear suspension for snowmobile
US20100071982A1 (en) * 2007-01-17 2010-03-25 Polaris Industries Inc. Snowmobile and rear suspension for snowmobile
US10974595B2 (en) 2007-05-16 2021-04-13 Polaris Industries Inc. All terrain vehicle
US10493846B2 (en) 2007-05-16 2019-12-03 Polaris Industries Inc. All terrain vehicle
US11772601B2 (en) 2008-10-10 2023-10-03 Polaris Industries Inc. Vehicle security system
US9809195B2 (en) 2008-10-10 2017-11-07 Polaris Industries Inc. Snowmobile
US9540072B2 (en) 2012-02-09 2017-01-10 Polaris Industries Inc. Snowmobile
US11505263B2 (en) 2012-02-09 2022-11-22 Polaris Industries Inc. Snowmobile
US9346518B2 (en) 2013-07-30 2016-05-24 Great Lakes Sound & Vibration, Inc. Snowmobile suspension systems
US10377446B2 (en) 2013-11-29 2019-08-13 Bombardier Recreational Products Inc. Rear suspension assembly for a snowmobile
US10358187B2 (en) 2014-01-10 2019-07-23 Polaris Industries Inc. Snowmobile
US11286019B2 (en) 2014-01-10 2022-03-29 Polaris Industries Inc. Snowmobile
US9845004B2 (en) 2014-01-10 2017-12-19 Polaris Industries Inc. Snowmobile
US9506407B2 (en) 2014-01-10 2016-11-29 Polaris Industries Inc. Engine having active exhaust valve position control system and method
US10005506B2 (en) 2015-02-27 2018-06-26 Great Lakes Sound & Vibration, Inc. Suspension arrangements for vehicles
US10730551B2 (en) 2016-08-09 2020-08-04 Polaris Industries Inc. Tracked all-terrain vehicle
WO2018093318A1 (en) * 2016-11-18 2018-05-24 BAE Systems Hägglunds Aktiebolag A tracked vehicle comprising a tiltable suspended track assembly
SE540471E (en) * 2016-11-18 2022-07-26 Bae Systems Haegglunds Ab Tracked vehicle arranged with distance adjustment means for tilting the vehicle track assembly
US12065204B2 (en) * 2016-11-18 2024-08-20 BAE Systems Hägglunds Aktiebolag Tracked vehicle comprising a tiltable suspended track assembly
US10793181B2 (en) 2018-02-13 2020-10-06 Polaris Industries Inc. All-terrain vehicle

Similar Documents

Publication Publication Date Title
US5265692A (en) Snowmobile suspension
USRE38124E1 (en) Snowmobile suspension
US6715575B2 (en) Track tensioning system for a tracked vehicle
US3933213A (en) Variable response snowmobile suspension system
US3860257A (en) Self-tracking bogie assembly for a tractor or trailer vehicle
US4462480A (en) Snowmobile rear suspension unit
CA2191008C (en) Rear suspension system for a land vehicle
US3788412A (en) Snowmobile suspension system
US8499877B1 (en) Suspension architecture for a snowmobile
US4407386A (en) Snowmobile suspension unit
US3613811A (en) Tracked vehicle suspension system
US5427404A (en) Stiff beam suspension system
US3773126A (en) Snowmobile suspension system
US6263991B1 (en) Snowmobile
US3658392A (en) Tracked vehicle suspension
US4301884A (en) Track suspension and drive for snowmobile
US3721308A (en) Snowmobile suspension system
US3913694A (en) Suspension apparatus for ground engaging drive tracks
US20010023787A1 (en) Shock linkage assembly for a snowmobile suspension system
US3719242A (en) Snowmobile track support system
US4305476A (en) Constant track tension system for snowmobiles
US4284161A (en) Suspension system for snowmobiles
US3966004A (en) Single link slide rail suspension system
US3658145A (en) Novel suspension for track-laying vehicles
US20050077784A1 (en) Vehicle track with idler and roller suspension

Legal Events

Date Code Title Description
AS Assignment

Owner name: POLARIS INDUSTRIES PARTNERS L.P., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KARPIK, GERARD;FAST ACTIONS SUPPORT TEAM, INC., D/B/A FAST INC.;REEL/FRAME:008412/0037

Effective date: 19960920

AS Assignment

Owner name: BOMBARDIER RECREATIONAL PRODUCTS INC., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BOMBARDIER INC.;REEL/FRAME:014294/0436

Effective date: 20031218

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: BANK OF MONTREAL, CANADA

Free format text: SECURITY AGREEMENT;ASSIGNOR:BOMBARDIER RECREATIONAL PRODUCTS INC.;REEL/FRAME:031159/0540

Effective date: 20130822

AS Assignment

Owner name: BANK OF MONTREAL, CANADA

Free format text: SECURITY AGREEMENT;ASSIGNOR:BOMBARDIER RECREATIONAL PRODUCTS INC.;REEL/FRAME:031156/0144

Effective date: 20130822