USRE35688E - Composition and method for treatment of phosphated metal surfaces - Google Patents

Composition and method for treatment of phosphated metal surfaces Download PDF

Info

Publication number
USRE35688E
USRE35688E US08/638,364 US63836496A USRE35688E US RE35688 E USRE35688 E US RE35688E US 63836496 A US63836496 A US 63836496A US RE35688 E USRE35688 E US RE35688E
Authority
US
United States
Prior art keywords
zirconium
solution
concentration
rinse
organosilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/638,364
Inventor
George J. Gorecki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brent America Inc
Original Assignee
Brent America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/197,245 external-priority patent/US5397390A/en
Application filed by Brent America Inc filed Critical Brent America Inc
Priority to US08/638,364 priority Critical patent/USRE35688E/en
Application granted granted Critical
Publication of USRE35688E publication Critical patent/USRE35688E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Definitions

  • This invention relates to the treatment of metal surfaces prior to a finishing operation, such as the application of a siccative organic coating (also known as an "organic coating", “organic finish”, or simply, “paint”).
  • a siccative organic coating also known as an "organic coating", “organic finish”, or simply, “paint”
  • this invention relates to the treatment of conversion-coated metal with an aqueous solution comprised of a selected organosilane and a zirconium ion. Treatment of conversion-coated metal with such a solution improves paint adhesion and corrosion resistance.
  • siccative coatings to metal substrates (e.g., steel, aluminum, zinc and their alloys) are protection of the metal surface from corrosion and for aesthetic reasons. It is well-known, however, that many organic coatings adhere poorly to metals in their normal state. As a result, corrosion-resistance characteristics of the siccative coating are substantially diminished. It is therefore a typical procedure in the metal finishing industry to subject metals to a pre-treatment process whereby a conversion coating is formed on the metal surface. This conversion coating acts as a protective layer, slowing the onset of the degradation of the base metal, owing to the conversion coating being less soluble in a corrosive environment than is the base metal. The conversion coating is also effective by serving as a recipient for a subsequent siccative coating.
  • metal substrates e.g., steel, aluminum, zinc and their alloys
  • the conversion coating has a greater surface area than does the base metal and thus provides for a greater number of adhesion sites for the interaction between the conversion coating and the organic finish.
  • Typical examples of such conversion coatings include, but are not limited to, iron phosphate coatings, zinc phosphate coatings, and chromate conversion coatings. These conversion coatings and others are well-known in the art and will not be descried in any further detail.
  • This may be accomplished by altering the electrochemical state of the conversion-coated substrate by rendering it more passive or it may be accomplished by forming a barrier film which prevents a corrosive medium from reaching the metal surface.
  • the most effective final rinses in general use today are aqueous solutions containing chromic acid, partially reduced to render a solution comprised of a combination of hexavalent and trivalent chromium. Final rinses of this type have long been known to provide the highest levels of paint adhesion and corrosion resistance. Chromium-containing final rinses, however, have a serious drawback due to their inherent toxicity and hazardous nature.
  • U.S. Pat. No. 3,695,942 describes a method of treating conversion-coated metal with an aqueous solution containing soluble zirconium compounds.
  • U.S. Pat. No. 4,650,526 describes a method of treating phosphated metal surfaces with an aqueous mixture of an aluminum zirconium complex, an organofunctional ligand and a zirconium oxyhalide. The treated metal could be optionally rinsed with deionized water prior to painting.
  • 5,053,081 describes a final rinse composition comprising an aqueous solution containing 3-aminopropyl triethoxysilane and a titanium chelate.
  • the treatment method described claimed to improve paint adhesion and corrosion resistance is not limited.
  • the composition is comprised of an aqueous solution containing a selected organosilane and zirconium ion and provides levels of paint adhesion and corrosion resistance comparable to or exceeding those provided by chromium-containing final rinses.
  • the presently preferred embodiment of the invention includes a rinse solution for the treatment of conversion-coated metal substrates for improving the adhesion and corrosion resistance of siccative coatings, comprising an aqueous solution of zirconium ion and an organosilane selected from the group consisting of 3-glycidoxypropyltrimethoxysilane, methyltrimethoxysilane, . . ⁇ -methacryloxytrimethoxysilane,.!. phenyltrimethoxysilane, and mixtures thereof, with the zirconium ion concentration selected to provide a pH about 2.0 to 9.0.
  • the invention also includes a method for treating such materials by applying the rinse solution to the substrate.
  • the rinse solution of the invention is an aqueous solution containing a selected organosilane compound and zirconium ion. It is intended that the rinse solution be applied to conversion-coated metal.
  • the formation of conversion coatings on metal substrates is well-known within the metal finishing industry. In general, this process is usually described as a process requiring several pretreatment stages. The actual number of stages is typically dependent on the final use of the painted metal article. The number of pretreatment steps normally varies anywhere from two to nine stages.
  • a representative example of a pretreatment process involves a five-stage operation where the metal to be ultimately painted goes through a cleaning stage, a water rinse, a conversion coating stage, a water rinse and a final rinse stage. Modifications to the pretreatment process can be made according to specific needs.
  • surfactants can be incorporated into some conversion coating baths so that cleaning and the formation of the conversion coating can be achieved simultaneously. In other cases it may be necessary to increase the number of pretreatment stages so as to accommodate more pretreatment steps.
  • Examples of the types of conversion coatings that can be formed on metal substrates are iron phosphates and zinc phosphates. Iron phosphating is usually accomplished in no more than five pretreatment stages, while zinc phosphating usually requires a minimum of six pretreatment stages. The number of rinse stages between the actual pretreatment steps can be adjusted to insure that rinsing is complete and effective and so that the chemical pretreatment from one stage is not carried on the metal surface to subsequent stages, thereby possibly contaminating them.
  • the method of application of the pretreatment operation can be either an immersion or a spray operation.
  • immersion operations the metal articles are submersed in the various pretreatment baths for defined intervals before moving on to the next pretreatment stage.
  • a spray operation is one where the pretreatment solutions and rinses are circulated by means of a pump through risers fashioned with spray nozzles.
  • the metal articles to be treated normally proceed through the pretreatment operation by means of a continuous conveyor.
  • Virtually all pretreatment processes can be modified to run in spray mode or immersion mode, and the choice is usually made based on the final requirements of the painted metal article. It is to be understood that the invention described here can be applied to any conversion-coated metal surface and can be applied either as a spray process or an immersion process.
  • the rinse solution of the invention is comprised of an aqueous solution of a selected organosilane and zirconium ion.
  • the rinse solution is an aqueous solution containing zirconium ion, whose source can be a zirconium salt, such as hexafluorozirconic acid, zirconium basic sulfate, zirconium hydroxychloride, zirconium basic carbonate, zirconium oxychloride, zirconium acetate, zirconium fluoride, zirconium hydroxide, zirconium orthosulfate, zirconium oxide, zirconium potassium carbonate and mixtures thereof; and any one of four organosilanes: 3-glycidoxypropyltrimethoxysilane, methyltrimethoxysilane, . . ⁇ -methacryloxytrimethoxysilane,.!. phenyltrimethoxysilane, and mixtures thereof.
  • the rinse solution is prepared by making an aqueous solution containing zirconium ion such that the pH of the resulting solution is in the range of about 2.0 to 9.0.
  • zirconium-containing salts such as zirconium basic sulfate, zirconium hydroxychloride, zirconium basic carbonate, zirconium oxychloride are used as the zirconium source, the salts must be dissolved in 50% hydrofluoric acid in order to effect dissolution.
  • the rinse solution of the invention typically contains zirconium ion in the concentration range of at least about 0.005% w/w, i.e. percent by weight. There is no significant upper limit to the zirconium ion concentration.
  • the pH of the zirconium solution is measured; if the pH is outside the desired range, water or zirconium salt is added to change the pH to fall within the desired range. Hence the amount of zirconium ion present in the finished solution is a function of the pH.
  • the concentration is not likely to exceed 1.0% w/w.
  • a selected organosilane is added to the zirconium-containing solution described above in the concentration range of about 0.1 to 6% w/w.
  • the solution is then mixed for at least 30 minutes to complete the hydrolysis of the selected organosilane, after which time the rinse solution is ready to be applied to conversion-coated metal.
  • the addition of the silane does not affect the pH of the solution.
  • . .A preferred version of the invention is an aqueous solution containing 0.005 to 0.1% w/w zirconium ion and 0.1 to 4% w/w of ⁇ -methacryloxytrimethoxysilane.
  • the resulting solution can be effectively operated at pH 2.0 to 7.0..!.
  • Another preferred version of the invention is an aqueous solution containing 0.005 to 0.1% w/w zirconium ion and 0.1 to 4% w/w 3-glycidoxypropyltrimethoxysilane, with the resulting solution being effectively operated at pH 2.0 to 7.0.
  • Another preferred version of the invention is an aqueous solution containing 0.005 to 0.1% w/w zirconium ion and 0.1 to 2% w/w phenyltrimethoxysilane, with the resulting solution being effectively operated at pH 2.0 to 6.0.
  • An especially preferred version of the invention is an aqueous solution containing 0.005 to 0.1% w/w zirconium ion and 0.25 to 6% w/w methyltrimethoxysilane, with the resulting solution being effectively operated at pH 2.5 to 8.8.
  • . .Another especially preferred version of the invention is an aqueous solution containing 0.005 to 0. 1% w/w zirconium ion and 0.25 to 1% w/w ⁇ -methacryloxytrimethoxysilane, with the resulting solution being effectively operated at pH 2.5 to 4.0..!.
  • Another especially preferred version of the invention is an aqueous solution containing 0.005 to 0.1% w/w zirconium ion and 0.5 to 2% w/w 3-glycidoxypropyltrimethoxysilane, with the resulting solution being effectively operated at pH 2.8 to 6.0.
  • Another especially preferred version of the invention is an aqueous solution containing 0.005 to 0.1% w/w zirconium ion and 0.1 to 0.5% w/w phenyltrimethoxysilane, with the resulting solution being effectively operated at pH 2.0 to 6.0.
  • the rinse solution of the invention can be applied by various means, so long as contact between the rinse solution and the conversion-coated substrate is effected.
  • the preferred methods of application of the rinse solution of the invention are by immersion or by spray.
  • the conversion-coated metal article is submersed in the rinse solution of the invention for a time interval from about 15 sec to 3 min, preferably 45 sec to 1 min.
  • a spray operation the conversion-coated metal article comes in contact with the rinse solution of the invention by means of pumping the rinse solution through risers fashioned with spray nozzles.
  • the application interval for the spray operation is about 15 sec to 3 min, preferably 45 sec to 1 min.
  • the rinse solution of the invention can be applied at temperatures from about 40° F. to 180° F., preferably 60° F.
  • the conversion-coated metal article treated with the rinse solution of the invention can be dried by various means, preferably oven drying at about 270° F. for about 5 min.
  • the conversion-coated metal article, now treated with the rinse solution of the invention, is ready for application of the siccative coating.
  • Comparative examples demonstrate the utility of the rinse solution of the invention.
  • Comparative examples include conversion-coated metal substrates treated with a chromium-containing rinse and conversion-coated metal substrates treated with an organosilane-organotitanate final rinse solution as described in U.S. Pat. No. 5,053,081, specifically 3-glycidoxypropyltrimethoxysilane at 0.35% w/w, TYZOR® CLA at 0.5% w/w.
  • the TYZOR® CLA is used to promote adhesion.
  • All treated and painted metal samples were subjected to accelerated corrosion testing. In general, the testing was performed according to the guidelines specified in ASTM B-117-85. Specifically, three identical specimens were prepared for each pretreatment system. The painted metal samples received a single, diagonal scribe which broke through the organic finish and penetrated to bare metal. All unpainted edges were covered with electrical tape. The specimens remained in the salt spray cabinet for an interval that was commensurate with the type of siccative coating that was being tested. Once removed from the salt spray cabinet, the metal samples were rinsed with tap water, dried by blotting with paper towels and evaluated. The evaluation was performed by scraping away the loose paint and corrosion products from the scribe area with the flat end of a spatula.
  • the scraping was performed in such a manner so as only to remove loose paint and leave adhering paint intact.
  • removal of the loose paint and corrosion products from the scribe was accomplished by means of a tape pull as specified in ASTM B-117-85.
  • the scribe areas on the specimens were then measured to determine the amount of paint lost due to corrosion creepage.
  • Each scribe line was measured at eight intervals, approximately 1 mm apart, measured across the entire width of the scribe area. The eight values were averaged for each specimen and the averages of the three identical specimens were averaged to arrive at the final result.
  • the creepage values reported in the following tables reflect these final results.
  • the salt spray results are described in Table I.
  • the values represent total creepage about the scribe area in mm.
  • the numbers in parentheses represent the exposure interval for that particular organic finish.
  • Example 1 Another set of cold-rolled steel test panels was prepared using the parameters described in Example 1. The conversion-coated test panels were painted with the three organic finishes that were used in Example 1. The various final rinses are summarized as follows.
  • the salt spray results are described in Table II.
  • the values represent total creepage about the scribe area in mm.
  • the numbers in parentheses represent the exposure interval for that particular organic finish.
  • Example 1 Another set of cold-rolled steel test panels was prepared using the parameters described in Example 1. The conversion-coated test panels were painted with the three organic finishes that were used in Example 1. The various final rinses are summarized as follows.
  • methyltrimethoxysilane 1% w/w, pH 2.95, Zr concentration, 0.060% w/w.
  • the salt spray results are described in Table III.
  • the values represent total creepage about the scribe area in mm.
  • the numbers in parentheses represent the exposure interval for that particular organic finish.
  • Example 2 Another set of cold-rolled steel test panels was prepared using the parameters described in Example 1.
  • the conversion-coated test panels were painted with an epoxy organic finish, a baking enamel, a high-solid polyester, a melamine-polyester, and a red oxide primer/polyester topcoat system.
  • the various final rinses are summarized as follows.
  • methyltrimethoxysilane 0.5% w/w, pH 4.0, Zr concentration, 0.10% w/w.
  • the salt spray results are described in Table IV.
  • the values represent total creepage about the scribe area in mm.
  • the numbers in parentheses represent the exposure interval for that particular organic finish.
  • Example 2 Another set of cold-rolled steel test panels was prepared using the parameters described in Example 1.
  • the conversion-coated test panels were painted with an epoxy organic finish, an acrylic urethane, a melamine-polyester, a baking enamel, and a high-solids polyester.
  • the various final rinses are summarized as follows.
  • the salt spray results are described in Table V.
  • the values represent total creepage about the scribe area in mm.
  • the numbers in parentheses represent the exposure interval for that particular organic finish.
  • Example 2 Another set of cold-rolled steel test panels was prepared using the parameters described in Example 1.
  • the conversion-coated test panels were painted with a baking enamel, a high-solids polyester, an alkyd epoxy melamine, an acrylic topcoat, and a red oxide primer/polyester topcoat system.
  • the various final rinses are summarized as follows.
  • methyltrimethoxysilane 0.5% w/w, pH 4.0, Zr concentration, 0.040% w/w.
  • the salt spray results are described in Table VI.
  • the values represent total creepage about the scribe area in mm.
  • the numbers in parentheses represent the exposure interval for that particular organic finish.
  • a set of cold-rolled steel test panels was prepared in a five-stage spray operation.
  • the panels were cleaned with Ardrox, Inc. Chem Clean 1303, a commercially available alkaline cleaning compound. Once rendered water-break-free, the test panels were rinsed in tap water and phosphated with Ardrox, Inc. Chem Cote 3026, a commercially available iron phosphate.
  • the phosphating bath was operated at about 9.0 points, 120° F. 1 min contact time, pH 4.5. After phosphating, the panels were rinsed in tap water and treated with various final rinse solutions for 1 min.
  • the comparative chromium-containing rinse was Ardrox, Inc. Chem Seal 3603, a commercially available product. This bath was run at 0.25% v/v.
  • the comparative chromium-free rinse (27) was Ardrox, Inc. Chem Seal 3610, operated at 0.25% v/v, pH 4.5.
  • the conversion-coated test panels were painted with a urethane powder coating, an epoxy powder coating, an alkyd polyester urethane coating, and a melamine polyester coating.
  • Chem Seal 3610 comparative chromium-free final rinse.
  • the salt spray results are described in Table VII.
  • the values represent total creepage about the scribe area in mm.
  • the numbers in parentheses represent the exposure interval for that particular organic finish.
  • Example 1 Another set of cold-rolled steel test panels was prepared using the parameters described in Example 1. The conversion-coated test panels were painted with the three organic finishes that were used in Example 1. The various final rinses are summarized as follows.
  • phenyltrimethoxysilane 0.1% w/w, pH 4.32, Zr concentration, 0.14% w/w.
  • phenyltrimethoxysilane 1.0% w/w, pH 3.12, Zr concentration, 0.08% w/w.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

A rinse solution for the treatment of conversion-coated metal substrates for improving the adhesion and corrosion resistance of siccative coatings, comprising an aqueous solution of zirconium ion and an organosilane selected from the group consisting of . .3-glycidoxypropyltrimethoxysilane,.!. methyltrimethoxysilane, . .γ-methacryloxytrimethoxysilane,.!. phenyltrimethoxysilane, and mixtures thereof, with the zirconium ion concentration selected to provide a pH about 2.0 to 9.0. A method for treating such materials by applying the rinse solution to the substrate.

Description

CROSS-REFERENCE TO RELATED APPLICATION
This application is a continuation-in-part of copending application Ser. No. 08/106,070, filed Aug. 13, 1993.
BACKGROUND OF THE INVENTION
This invention relates to the treatment of metal surfaces prior to a finishing operation, such as the application of a siccative organic coating (also known as an "organic coating", "organic finish", or simply, "paint"). Specifically, this invention relates to the treatment of conversion-coated metal with an aqueous solution comprised of a selected organosilane and a zirconium ion. Treatment of conversion-coated metal with such a solution improves paint adhesion and corrosion resistance.
The primary purposes of applying siccative coatings to metal substrates (e.g., steel, aluminum, zinc and their alloys) are protection of the metal surface from corrosion and for aesthetic reasons. It is well-known, however, that many organic coatings adhere poorly to metals in their normal state. As a result, corrosion-resistance characteristics of the siccative coating are substantially diminished. It is therefore a typical procedure in the metal finishing industry to subject metals to a pre-treatment process whereby a conversion coating is formed on the metal surface. This conversion coating acts as a protective layer, slowing the onset of the degradation of the base metal, owing to the conversion coating being less soluble in a corrosive environment than is the base metal. The conversion coating is also effective by serving as a recipient for a subsequent siccative coating. The conversion coating has a greater surface area than does the base metal and thus provides for a greater number of adhesion sites for the interaction between the conversion coating and the organic finish. Typical examples of such conversion coatings include, but are not limited to, iron phosphate coatings, zinc phosphate coatings, and chromate conversion coatings. These conversion coatings and others are well-known in the art and will not be descried in any further detail.
Normally, the application of an organic finish to a conversion-coated metal surface is not sufficient to provide the highest levels of paint adhesion and corrosion resistance. Painted metal surfaces are able to reach maximum performance levels when the conversion-coated metal surface is treated with a "final rinse", also referred to in the art as a "post-rinse" or a "seal rinse", prior to the painting operation. Final rinses are typically aqueous solutions containing organic or inorganic entities designed to improve paint adhesion and corrosion resistance. The purpose of any final rinse, regardless of its composition, is to form a system with the conversion coating in order to maximize paint adhesion and corrosion resistance. This may be accomplished by altering the electrochemical state of the conversion-coated substrate by rendering it more passive or it may be accomplished by forming a barrier film which prevents a corrosive medium from reaching the metal surface. The most effective final rinses in general use today are aqueous solutions containing chromic acid, partially reduced to render a solution comprised of a combination of hexavalent and trivalent chromium. Final rinses of this type have long been known to provide the highest levels of paint adhesion and corrosion resistance. Chromium-containing final rinses, however, have a serious drawback due to their inherent toxicity and hazardous nature. These concerns make chromium-containing final rinses less desirable from a practical standpoint, when one considers such issues as safe handling of chemicals and the environmental problems associated with the discharge of such solutions into municipal water streams. Thus, it has been a goal of the industry to find chromium-free alternatives which are less toxic and more environmentally benign than chromium-containing final rinses. It has also been desirous to develop chromium-free final rinses which are as effective as chromium-containing final rinses in terms of paint adhesion and corrosion resistance properties.
Much work has already been done in the area of chromium-free final rinses. Some of these have utilized either zirconium chemistry or organosilanes. U.S. Pat. No. 3,695,942 describes a method of treating conversion-coated metal with an aqueous solution containing soluble zirconium compounds. U.S. Pat. No. 4,650,526 describes a method of treating phosphated metal surfaces with an aqueous mixture of an aluminum zirconium complex, an organofunctional ligand and a zirconium oxyhalide. The treated metal could be optionally rinsed with deionized water prior to painting. U.S. Pat. No. 5,053,081 describes a final rinse composition comprising an aqueous solution containing 3-aminopropyl triethoxysilane and a titanium chelate. In all of the above examples, the treatment method described claimed to improve paint adhesion and corrosion resistance.
The levels of paint adhesion and corrosion resistance afforded by the treatment solutions in the above examples do not reach the levels desired by the metal finishing industry, namely the performance characteristics of chromium-containing final rinses. I have found that aqueous solutions containing selected organosilane compounds and zirconium ion provide paint adhesion and corrosion resistance characteristics comparable to those attained with chromium-containing final rinses. In many cases, the performance of conversion-coated metal surfaces treated with organosilane-zirconium solutions in accelerated corrosion tests exceeds that of conversion-coated metal treated with chromium-containing solutions.
SUMMARY OF THE INVENTION
It is an object of this invention to provide a method and composition of an aqueous rinse which will impart an improved level of paint adhesion and corrosion resistance on painted conversion-coated metal. The composition is comprised of an aqueous solution containing a selected organosilane and zirconium ion and provides levels of paint adhesion and corrosion resistance comparable to or exceeding those provided by chromium-containing final rinses.
It is a further object of the invention to provide a method and rinse composition which contains no chromium.
The presently preferred embodiment of the invention includes a rinse solution for the treatment of conversion-coated metal substrates for improving the adhesion and corrosion resistance of siccative coatings, comprising an aqueous solution of zirconium ion and an organosilane selected from the group consisting of 3-glycidoxypropyltrimethoxysilane, methyltrimethoxysilane, . .γ-methacryloxytrimethoxysilane,.!. phenyltrimethoxysilane, and mixtures thereof, with the zirconium ion concentration selected to provide a pH about 2.0 to 9.0.
The invention also includes a method for treating such materials by applying the rinse solution to the substrate.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The rinse solution of the invention is an aqueous solution containing a selected organosilane compound and zirconium ion. It is intended that the rinse solution be applied to conversion-coated metal. The formation of conversion coatings on metal substrates is well-known within the metal finishing industry. In general, this process is usually described as a process requiring several pretreatment stages. The actual number of stages is typically dependent on the final use of the painted metal article. The number of pretreatment steps normally varies anywhere from two to nine stages. A representative example of a pretreatment process involves a five-stage operation where the metal to be ultimately painted goes through a cleaning stage, a water rinse, a conversion coating stage, a water rinse and a final rinse stage. Modifications to the pretreatment process can be made according to specific needs. As an example, surfactants can be incorporated into some conversion coating baths so that cleaning and the formation of the conversion coating can be achieved simultaneously. In other cases it may be necessary to increase the number of pretreatment stages so as to accommodate more pretreatment steps. Examples of the types of conversion coatings that can be formed on metal substrates are iron phosphates and zinc phosphates. Iron phosphating is usually accomplished in no more than five pretreatment stages, while zinc phosphating usually requires a minimum of six pretreatment stages. The number of rinse stages between the actual pretreatment steps can be adjusted to insure that rinsing is complete and effective and so that the chemical pretreatment from one stage is not carried on the metal surface to subsequent stages, thereby possibly contaminating them. It is typical to increase the number of rinse stages when the metal parts to be treated have unusual geometries or areas that are difficult for the rinse water to contact. The method of application of the pretreatment operation can be either an immersion or a spray operation. In immersion operations, the metal articles are submersed in the various pretreatment baths for defined intervals before moving on to the next pretreatment stage. A spray operation is one where the pretreatment solutions and rinses are circulated by means of a pump through risers fashioned with spray nozzles. The metal articles to be treated normally proceed through the pretreatment operation by means of a continuous conveyor. Virtually all pretreatment processes can be modified to run in spray mode or immersion mode, and the choice is usually made based on the final requirements of the painted metal article. It is to be understood that the invention described here can be applied to any conversion-coated metal surface and can be applied either as a spray process or an immersion process.
The rinse solution of the invention is comprised of an aqueous solution of a selected organosilane and zirconium ion. Specifically, the rinse solution is an aqueous solution containing zirconium ion, whose source can be a zirconium salt, such as hexafluorozirconic acid, zirconium basic sulfate, zirconium hydroxychloride, zirconium basic carbonate, zirconium oxychloride, zirconium acetate, zirconium fluoride, zirconium hydroxide, zirconium orthosulfate, zirconium oxide, zirconium potassium carbonate and mixtures thereof; and any one of four organosilanes: 3-glycidoxypropyltrimethoxysilane, methyltrimethoxysilane, . .γ-methacryloxytrimethoxysilane,.!. phenyltrimethoxysilane, and mixtures thereof.
The rinse solution is prepared by making an aqueous solution containing zirconium ion such that the pH of the resulting solution is in the range of about 2.0 to 9.0. When zirconium-containing salts such as zirconium basic sulfate, zirconium hydroxychloride, zirconium basic carbonate, zirconium oxychloride are used as the zirconium source, the salts must be dissolved in 50% hydrofluoric acid in order to effect dissolution. The rinse solution of the invention typically contains zirconium ion in the concentration range of at least about 0.005% w/w, i.e. percent by weight. There is no significant upper limit to the zirconium ion concentration. The pH of the zirconium solution, is measured; if the pH is outside the desired range, water or zirconium salt is added to change the pH to fall within the desired range. Hence the amount of zirconium ion present in the finished solution is a function of the pH. The concentration is not likely to exceed 1.0% w/w. A selected organosilane is added to the zirconium-containing solution described above in the concentration range of about 0.1 to 6% w/w. The solution is then mixed for at least 30 minutes to complete the hydrolysis of the selected organosilane, after which time the rinse solution is ready to be applied to conversion-coated metal. The addition of the silane does not affect the pH of the solution.
. .A preferred version of the invention is an aqueous solution containing 0.005 to 0.1% w/w zirconium ion and 0.1 to 4% w/w of γ-methacryloxytrimethoxysilane. The resulting solution can be effectively operated at pH 2.0 to 7.0..!.
Another preferred version of the invention is an aqueous solution containing 0.005 to 0.1% w/w zirconium ion and 0.1 to 4% w/w 3-glycidoxypropyltrimethoxysilane, with the resulting solution being effectively operated at pH 2.0 to 7.0.
Another preferred version of the invention is an aqueous solution containing 0.005 to 0.1% w/w zirconium ion and 0.1 to 2% w/w phenyltrimethoxysilane, with the resulting solution being effectively operated at pH 2.0 to 6.0.
An especially preferred version of the invention is an aqueous solution containing 0.005 to 0.1% w/w zirconium ion and 0.25 to 6% w/w methyltrimethoxysilane, with the resulting solution being effectively operated at pH 2.5 to 8.8.
. .Another especially preferred version of the invention is an aqueous solution containing 0.005 to 0. 1% w/w zirconium ion and 0.25 to 1% w/w γ-methacryloxytrimethoxysilane, with the resulting solution being effectively operated at pH 2.5 to 4.0..!.
Another especially preferred version of the invention is an aqueous solution containing 0.005 to 0.1% w/w zirconium ion and 0.5 to 2% w/w 3-glycidoxypropyltrimethoxysilane, with the resulting solution being effectively operated at pH 2.8 to 6.0.
Another especially preferred version of the invention is an aqueous solution containing 0.005 to 0.1% w/w zirconium ion and 0.1 to 0.5% w/w phenyltrimethoxysilane, with the resulting solution being effectively operated at pH 2.0 to 6.0.
The rinse solution of the invention can be applied by various means, so long as contact between the rinse solution and the conversion-coated substrate is effected. The preferred methods of application of the rinse solution of the invention are by immersion or by spray. In an immersion operation, the conversion-coated metal article is submersed in the rinse solution of the invention for a time interval from about 15 sec to 3 min, preferably 45 sec to 1 min. In a spray operation, the conversion-coated metal article comes in contact with the rinse solution of the invention by means of pumping the rinse solution through risers fashioned with spray nozzles. The application interval for the spray operation is about 15 sec to 3 min, preferably 45 sec to 1 min. The rinse solution of the invention can be applied at temperatures from about 40° F. to 180° F., preferably 60° F. to 90° F. The conversion-coated metal article treated with the rinse solution of the invention can be dried by various means, preferably oven drying at about 270° F. for about 5 min. The conversion-coated metal article, now treated with the rinse solution of the invention, is ready for application of the siccative coating.
EXAMPLES
The following examples demonstrate the utility of the rinse solution of the invention. Comparative examples include conversion-coated metal substrates treated with a chromium-containing rinse and conversion-coated metal substrates treated with an organosilane-organotitanate final rinse solution as described in U.S. Pat. No. 5,053,081, specifically 3-glycidoxypropyltrimethoxysilane at 0.35% w/w, TYZOR® CLA at 0.5% w/w. The TYZOR® CLA is used to promote adhesion. Throughout the examples, specific parameters for the pretreatment process, for the rinse solution of the invention, for the comparative rinses and the nature of the substrate and the type of siccative coating are described.
All treated and painted metal samples were subjected to accelerated corrosion testing. In general, the testing was performed according to the guidelines specified in ASTM B-117-85. Specifically, three identical specimens were prepared for each pretreatment system. The painted metal samples received a single, diagonal scribe which broke through the organic finish and penetrated to bare metal. All unpainted edges were covered with electrical tape. The specimens remained in the salt spray cabinet for an interval that was commensurate with the type of siccative coating that was being tested. Once removed from the salt spray cabinet, the metal samples were rinsed with tap water, dried by blotting with paper towels and evaluated. The evaluation was performed by scraping away the loose paint and corrosion products from the scribe area with the flat end of a spatula. The scraping was performed in such a manner so as only to remove loose paint and leave adhering paint intact. In the case of some organic finishes, like powder coating, removal of the loose paint and corrosion products from the scribe was accomplished by means of a tape pull as specified in ASTM B-117-85. Once the loose paint was removed, the scribe areas on the specimens were then measured to determine the amount of paint lost due to corrosion creepage. Each scribe line was measured at eight intervals, approximately 1 mm apart, measured across the entire width of the scribe area. The eight values were averaged for each specimen and the averages of the three identical specimens were averaged to arrive at the final result. The creepage values reported in the following tables reflect these final results.
Example 1
Cold-rolled steel test panels from Advanced Coating Technologies, Hillsdale, Michigan were processed through a five-stage pretreatment operation. The panels were cleaned with Ardrox, Inc. Chem Clean 1303, a commercially available alkaline cleaning compound. Once rendered water-break-free, the test panels were rinsed in tap water and phosphated with Ardrox, Inc. Chem Cote 3011, a commercially available iron phosphate. The phosphating bath was operated at about 6.2 points, 140° F., 3 min contact time, pH 4.8. After phosphating, the panels were rinsed in tap water and treated with various final rinse solutions for 1 min. The comparative chromium-containing rinse was Ardrox, Inc. Chem Seal 3603, a commercially available product. This bath was run at 0.25% w/w. In accordance with normal practice in the metal finishing industry, panels treated with the chromium-containing final rinse (1) were rinsed with deionized water prior to dry-off. The comparative chromium-free final rinse (2) contained 0.35% w/w 3-glycidoxypropyltrimethoxysilane and 0.5% w/w TYZOR.® CLA. All panels were then dried in an oven at 270° F. for 5 min. The panels were painted with a high-solids alkyd organic finish, an acrylic urethane and a melamine-polyester- The various rinses studied are summarized as follows.
1. Chem Seal 3603, Chromium-containing final rinse.
2. Comparative chromium-free final rinse.
. .3. γmethacryloxytrimethoxysilane, 0.25% w/w, pH 2.94, Zr concentration, 0.075% w/w.
4. γ-methacryloxytrimethoxysilane, 0.5% w/w, pH 2.98, Zr concentration, 0.33% w/w.
5. γ-methacryloxytrimethoxysilane, 0.5% w/w, pH 3.94, Zr concentration, 0.33% w/w.
6. γ-methacryloxytrimethoxysilane, 1% w/w, pH 3.37, Zr concentration, 0.080% w/w.
7. γ-methacryloxytrimethoxysilane, 2% w/w, pH 2.05, Zr concentration, 0.090% w/w..!.
The salt spray results are described in Table I. The values represent total creepage about the scribe area in mm. The numbers in parentheses represent the exposure interval for that particular organic finish.
Example 2
Another set of cold-rolled steel test panels was prepared using the parameters described in Example 1. The conversion-coated test panels were painted with the three organic finishes that were used in Example 1. The various final rinses are summarized as follows.
1. Chem Seal 3603, chromium-containing final rinse.
2. Comparative chromium-free final rinse.
8. 3-glycidoxypropyltrimethoxysilane, 0.25% w/w, pH 3.10, Zr concentration, 0.060% w/w.
9. 3-glycidoxypropyltrimethoxysilane, 0.5% w/w, pH 2.81, Zr concentration, 0.075% w/w.
10. 3-glycidoxypropyltrimethoxysilane, 1% w/w, pH 3.68, Zr concentration, 0.065% w/w.
11. 3-glycidoxypropyltrimethoxysilane, 1% w/w, pH 5.41, Zr concentration, 0.075% w/w.
12. 3-glycidoxypropyltrimethoxysilane, 2% w/w, pH 3.55, Zr concentration, 0.060% w/w.
13. 3-glycidoxypropyltrimethoxysilane, 2% w/w, pH 5.56, Zr concentration, 0.060% w/w.
The salt spray results are described in Table II. The values represent total creepage about the scribe area in mm. The numbers in parentheses represent the exposure interval for that particular organic finish.
Example 3
Another set of cold-rolled steel test panels was prepared using the parameters described in Example 1. The conversion-coated test panels were painted with the three organic finishes that were used in Example 1. The various final rinses are summarized as follows.
1. Chem Seal 3603, chromium-containing final rinse.
2. Comparative chromium-free final rinse.
14. methyltrimethoxysilane, 0.5% w/w, pH 2.96, Zr concentration, 0.075% w/w.
15. methyltrimethoxysilane, 0.5% w/w, pH 4.39, Zr concentration, 0.075% w/w.
16. methyltrimethoxysilane, 0.5% w/w, pH 5.37, Zr concentration, 0.075% w/w.
17. methyltrimethoxysilane, 1% w/w, pH 2.95, Zr concentration, 0.060% w/w.
18. methyltrimethoxysilane, 1% w/w, pH 4.84, Zr concentration, 0.060% w/w.
19. methyltrimethoxysilane, 2% w/w, pH 2.83, Zr concentration, 0.080% w/w.
20. methyltrimethoxysilane, 4% w/w, pH 5.25, Zr concentration, 0.085% w/w.
21. methyltrimethoxysilane, 4% w/w, pH 8.17, Zr concentration, 0.080% w/w.
22. methyltrimethoxysilane, 6% w/w, pH 4.05, Zr concentration, 0.068% w/w.
The salt spray results are described in Table III. The values represent total creepage about the scribe area in mm. The numbers in parentheses represent the exposure interval for that particular organic finish.
Example 4
Another set of cold-rolled steel test panels was prepared using the parameters described in Example 1. The conversion-coated test panels were painted with an epoxy organic finish, a baking enamel, a high-solid polyester, a melamine-polyester, and a red oxide primer/polyester topcoat system. The various final rinses are summarized as follows.
1. Chem Seal 3603, chromium-containing final rinse.
. .23. γ-methacryloxytrimethoxysilane, 0.5% w/w, pH 4.0, Zr concentration, 0.15% w/w..!.
24. 3-glycidoxypropyltrimethoxysilane, 0.5% w/w, pH 4.0, Zr concentration, 0.25% w/w.
25. methyltrimethoxysilane, 0.5% w/w, pH 4.0, Zr concentration, 0.10% w/w.
The salt spray results are described in Table IV. The values represent total creepage about the scribe area in mm. The numbers in parentheses represent the exposure interval for that particular organic finish.
Example 5
Another set of cold-rolled steel test panels was prepared using the parameters described in Example 1. The conversion-coated test panels were painted with an epoxy organic finish, an acrylic urethane, a melamine-polyester, a baking enamel, and a high-solids polyester. The various final rinses are summarized as follows.
1. Chem Seal 3603, chromium-containing final rinse.
24. 3-glycidoxypropyltrimethoxysilane, 0.5% w/w, pH 4.0, Zr concentration, 0.090% w/w.
25. methyltrimethoxysilane, 0.5% w/w, pH 4.0, Zr concentration, 0.045% w/w.
The salt spray results are described in Table V. The values represent total creepage about the scribe area in mm. The numbers in parentheses represent the exposure interval for that particular organic finish.
Example 6
Another set of cold-rolled steel test panels was prepared using the parameters described in Example 1. The conversion-coated test panels were painted with a baking enamel, a high-solids polyester, an alkyd epoxy melamine, an acrylic topcoat, and a red oxide primer/polyester topcoat system. The various final rinses are summarized as follows.
1. Chem Seal 3603, chromium-containing final rinse.
25. methyltrimethoxysilane, 0.5% w/w, pH 4.0, Zr concentration, 0.040% w/w.
26. methyltrimethoxysilane, 0.25% w/w, pH 4.0, Zr concentration, 0.040% w/w.
The salt spray results are described in Table VI. The values represent total creepage about the scribe area in mm. The numbers in parentheses represent the exposure interval for that particular organic finish.
Example 7
A set of cold-rolled steel test panels was prepared in a five-stage spray operation. The panels were cleaned with Ardrox, Inc. Chem Clean 1303, a commercially available alkaline cleaning compound. Once rendered water-break-free, the test panels were rinsed in tap water and phosphated with Ardrox, Inc. Chem Cote 3026, a commercially available iron phosphate. The phosphating bath was operated at about 9.0 points, 120° F. 1 min contact time, pH 4.5. After phosphating, the panels were rinsed in tap water and treated with various final rinse solutions for 1 min. The comparative chromium-containing rinse was Ardrox, Inc. Chem Seal 3603, a commercially available product. This bath was run at 0.25% v/v. The comparative chromium-free rinse (27) was Ardrox, Inc. Chem Seal 3610, operated at 0.25% v/v, pH 4.5. The conversion-coated test panels were painted with a urethane powder coating, an epoxy powder coating, an alkyd polyester urethane coating, and a melamine polyester coating.
1. Chem Seal 3603, chromium-containing final rinse.
27. Chem Seal 3610, comparative chromium-free final rinse.
28. methyltrimethoxysilane, 0.25% w/w, pH 4.6, Zr concentration, 0.55% w/w.
29. methyltrimethoxysilane, 0.5% w/w, pH 4.5, Zr concentration, 0.55% w/w.
The salt spray results are described in Table VII. The values represent total creepage about the scribe area in mm. The numbers in parentheses represent the exposure interval for that particular organic finish.
Example 8
Another set of cold-rolled steel test panels was prepared using the parameters described in Example 1. The conversion-coated test panels were painted with the three organic finishes that were used in Example 1. The various final rinses are summarized as follows.
1. Chem Seal 3603, chromium-containing final rinse.
30. phenyltrimethoxysilane, 0.1% w/w, pH 4.32, Zr concentration, 0.14% w/w.
31. phenyltrimethoxysilane, 0.25% w/w, pH 4.96, Zr concentration, 0.06% w/w.
32. phenyltrimethoxysilane, 0.25% w/w, pH 2.36, Zr concentration, 0.26% w/w.
33. phenyltrimethoxysilane, 0.5% w/w, pH 2.87, Zr concentration, 0.11% w/w.
34. phenyltrimethoxysilane, 0.5% w/w, pH 5.52, Zr concentration, 0.11% w/w.
35. phenyltrimethoxysilane, 1.0% w/w, pH 3.12, Zr concentration, 0.08% w/w.
36. phenyltrimethoxysilane, 2.0% w/w, pH 3.56, Zr concentration, 0.075% w/w.
The results from accelerated corrosion testing demonstrated in Examples 1 to 8 show that rinse solutions containing a selected organosilane and zirconium ion provided substantially better performance than either of the comparative chromium-free rinses, Rinses No. 2 and No. 26. The results demonstrated in Examples 1 to 8 also show that rinse solutions containing a selected organosilane and zirconium ion provided, in many cases, corrosion resistance comparable to that of a chromium-containing rinse, such as Final Rinse No. 1. In several instances, rinse solutions containing a selected organosilane and zirconium ion provided significantly higher levels of corrosion resistance than that achieved with a chromium-containing rinse.
The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described, or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed.
              TABLE I                                                     
______________________________________                                    
Final      Alkyd       Urethane   Polyester                               
Rinse No.  (168 hr)    (216 hr)   (240 hr)                                
______________________________________                                    
1           3.6 mm      1.8 mm     3.3 mm                                 
2          32.3        22.2       40.0                                    
. .3        2.5         2.0        4.6                                    
4           2.2         8.9        3.2                                    
5           2.3        10.8        3.2                                    
6           1.7         7.4        3.0                                    
7           2.6         5.4        3.4.!.                                 
______________________________________                                    
              TABLE II                                                    
______________________________________                                    
Final      Alkyd       Urethane   Polyester                               
Rinse No.  (168 hr)    (216 hr)   (240 hr)                                
______________________________________                                    
 1          2.3 mm      1.8 mm     2.1 mm                                 
 2         36.3        23.2       40.0                                    
 8          0.9         1.9        2.2                                    
 9          1.2         1.1        1.1                                    
10          1.2         1.8        1.2                                    
11          1.8         2.3        2.3                                    
12          1.3         2.6        1.6                                    
13          1.6         2.4        2.3                                    
______________________________________                                    
              TABLE III                                                   
______________________________________                                    
Final      Alkyd       Urethane   Polyester                               
Rinse No.  (168 hr)    (216 hr)   (240 hr)                                
______________________________________                                    
 1          2.3 mm      1.8 mm     2.1 mm                                 
 2         36.3        23.2       40.0                                    
14          1.5         2.0        1.1                                    
15          0.9         1.8        1.2                                    
16          1.5         3.8        1.6                                    
17          0.8         2.0        0.9                                    
18          1.1         5.5        1.3                                    
19          1.0         3.9        1.2                                    
20          0.5        10.9        0.8                                    
21          0.3        11.6        1.0                                    
22          2.6         2.6        1.7                                    
______________________________________                                    
              TABLE IV                                                    
______________________________________                                    
Final                   High-Solid                                        
                                 Melamine-                                
                                         Primer-                          
Rinse Epoxy    Enamel   Polyester                                         
                                 Polyester                                
                                         Topcoat                          
No.   (504 hr) (168 hr) (243 hr) (216 hr)                                 
                                         (262 hr)                         
______________________________________                                    
 1    1.3 mm   3.8 mm   1.5 mm   2.2 mm  2.6 mm                           
. .23 1.1      0.9      1.9      1.7     1.9.!.                           
24    1.4      0.5      1.1      0.7     5.8                              
25    1.4      0.3      0.6      0.4     1.6                              
______________________________________                                    
              TABLE V                                                     
______________________________________                                    
Final          Acrylic  High-Solid                                        
                                 Melamine-                                
                                        Baking                            
Rinse Epoxy    Urethane Polyester                                         
                                 Polyester                                
                                        Enamel                            
No.   (502 hr) (191 hr) (169 hr) (262 hr)                                 
                                        (214 hr)                          
______________________________________                                    
 1    2.2 mm   2.8 mm   5.4 mm   3.1 mm 3.1 mm                            
24    2.0      1.8      0.5      0.8    1.3                               
25    1.6      1.6      1.1      1.1    1.1                               
______________________________________                                    
              TABLE VI                                                    
______________________________________                                    
      Alkyd                                                               
Final Epoxy              High-Solid     Primer-                           
Rinse Melamine  Enamel   Polyester                                        
                                  Acrylic                                 
                                        Topcoat                           
No.   (607 hr)  (266 hr) (170 hr) (216 hr)                                
                                        (266 hr)                          
______________________________________                                    
 1    2.0 mm    13.4 mm  4.7 mm   3.4 mm                                  
                                        4.6 mm                            
25    1.2        0.8     0.6      1.9   1.5                               
26    1.4        0.7     1.0      3.8   2.9                               
______________________________________                                    
              TABLE VII                                                   
______________________________________                                    
Final  Urethane  Epoxy    Alkyd Polyester                                 
                                     Melamine                             
Rinse  Powder    Powder   Urethane   Polyester                            
No.    (502 hr)  (672 hr) (168 hr)   (264 hr)                             
______________________________________                                    
 1     0.9 mm    1.7 mm   5.6 mm      5.0 mm                              
27     4.1       N/A*     N/A        24.1                                 
28     0.9       N/A      N/A        N/A                                  
29     0.9       1.6      4.4         4.2                                 
______________________________________                                    
 *Data not available.                                                     
              TABLE VIII                                                  
______________________________________                                    
Final      Alkyd       Urethane   Polyester                               
Rinse No.  (168 hr)    (240 hr)   (240 hr)                                
______________________________________                                    
 1         2.8 mm      1.6 mm     2.4 mm                                  
30         2.7         1.1        1.9                                     
31         2.3         1.0        1.3                                     
32         2.5         2.0        2.6                                     
33         2.3         1.5        1.9                                     
34         2.7         1.0        1.5                                     
35         3.5         0.9        1.5                                     
36         3.2         0.6        2.3                                     
______________________________________                                    

Claims (13)

I claim:
1. A rinse solution for the treatment of conversion-coated metal substrates for improving the adhesion and corrosion resistance of siccative coatings, comprising an aqueous solution of zirconium ion and an organosilane in a concentration of about 0.1 to 6.0% w/w and selected from the group consisting of . .3-glycidoxypropyltrimethoxysilane,.!. methyltrimethoxysilane, . .γ-methacryloxytrimethoxysilane,.!. phenyltrimethoxysilane, and mixtures thereof, with the zirconium ion concentration selected to provide a pH for the entire solution about 2.0 to 9.0. . .2. A rinse solution as defined in claim 1 wherein the zirconium ion concentration in the rinse solution is at least about 0.005% w/w and the organosilane is about 0.1 to 4.0% w/w γ-methacryloxytrimethoxysilane..!.. .3. A rinse solution as defined in claim 1 wherein the zirconium ion concentration in the rinse solution is at least about 0.005% w/w and the organosilane is about 0.25 to 1.0% w/w γ-methacryloxytrimethoxysilane, with a pH about 2.5 to 4.0..!.. .4. A rinse solution as defined in claim 1 wherein the zirconium ion concentration in the rinse solution is at least about 0.005% w/w and the organosilane is about 0.1 to 6.0% w/w 3-glycidoxypropyltrimethoxysilane..!.. .5. A rinse solution as defined in claim 1 wherein the zirconium ion concentration in the rinse solution is at least about 0.005% w/w and the organosilane is about 0.5 to 2.0% w/w
3-glycidoxypropyltrimethoxysilane, with a pH about 2.8 to 6.0..!.6. A rinse solution as defined in claim 1 wherein the zirconium ion concentration in the rinse solution is at least about 0.005% w/w and the organosilane is about 0.25 to 6.0% w/w methyltrimethoxysilane, with a pH
about 2.5 to 8.8. 7. A rinse solution as defined in claim 1 wherein the zirconium ion is from a zirconium ion source selected from the group consisting of hexafluorozirconic acid, zirconium basic sulfate, zirconium hydroxychloride, zirconium basic carbonate, zirconium oxychloride, zirconium acetate, zirconium fluoride, zirconium hydroxide, zirconium orthosulfate, zirconium oxide, zirconium potassium carbonate and mixtures
thereof. 8. A rinse solution as defined in claim 1 wherein the zirconium
ion concentration is at least about 0.005% w/w. 9. A rinse solution as defined in claim 1 wherein the zirconium ion concentration in the rinse solution is at least about 0.005% w/w and the organosilane is about 0.1 to
2.0% w/w phenyltrimethoxysilane, with a pH about 2.0 to 6.0. 10. A rinse solution as defined in claim 1 wherein the zirconium ion concentration in the rinse solution is at least about 0.005% w/w and the organosilane is about 0.1 to 0.5% w/w phenyltrimethoxysilane, with a pH about 2.0 to 6.0.
1. In a method for treating conversion-coated metal substrates for improving the adhesion and corrosion resistance of siccative coatings, wherein the improvement comprises:
providing an aqueous solution of zirconium ion and an organosilane in a concentration of about 0.1 to 6.0% w/w and selected from the group consisting of . .3-glycidoxypropyltrimethoxysilane,.!. methyltrimethoxysilane, . .γ-methacryloxytrimethoxysilane,.!.phenyltrimethoxysilane, and mixtures thereof;
selecting the zirconium ion concentration to provide a pH of the solution of about 2.0 to 9.0; and
applying the solution to the substrate. . .12. The method as defined in claim 11 wherein the zirconium ion concentration in the solution is at least about 0.005% w/w and the organosilane concentration in the solution is about 0.1 to 4.0% w/w γ-methacryloxytrimethoxysilane..!.. .13. The method as defined in claim 11 wherein the zirconium ion concentration in the solution is at least about 0.005% w/w and the organosilane concentration in the solution is about 0.25 to 1.0% w/w γ-methacryloxytrimethoxysilane, with a pH about 2.5 to 4.0..!.. .14. The method as defined in claim 11 wherein the zirconium ion concentration in the solution is at least about 0.005% w/w and the organosilane concentration in the solution is about 0.1 to 6.0% w/w 3-glycidoxypropyltrimethoxysilane..!.. .15. The method as defined in claim 11 wherein the zirconium ion concentration in the solution is at least about 0.005% w/w and the organosilane concentration in the solution is about 0.5 to 2.0% w/w 3-glycidoxypropyltrimethoxysilane, with a pH about
2.8 to 6.0..!.16. The method as defined in claim 11 wherein the zirconium ion concentration in the solution is at least about 0.005% w/w and the organosilane concentration in the solution is about 0.25 to 6.0% w/w
methyltrimethoxysilane, with a pH about 2.5 to 8.8. 17. The method as defined in claim 11 wherein the zirconium ion is from a zirconium ion source selected from the group consisting of hexafluorozirconic acid, zirconium basic sulfate, zirconium hydroxychloride, zirconium basic carbonate, zirconium oxychloride, zirconium acetate, zirconium fluoride, zirconium hydroxide, zirconium orthosulfate, zirconium oxide, zirconium
potassium carbonate and mixtures thereof. 18. The method as defined in claim 11 wherein the zirconium ion concentration is at least about 0.005%
w/w. 19. The method as defined in claim 11 wherein the zirconium ion concentration in the solution is at least about 0.005% w/w and the organosilane concentration in the solution is about 0.1 to 2.0% w/w
phenyltrimethoxysilane, with a pH about 2.0 to 6.0. 20. The method as defined in claim 11 wherein the zirconium ion concentration in the solution is at least about 0.005% w/w and the organosilane concentration in the solution is about 0.1 to 0.5% w/w phenyltrimethoxysilane, with a pH about 2.0 to 6.0.
US08/638,364 1993-08-13 1996-04-26 Composition and method for treatment of phosphated metal surfaces Expired - Lifetime USRE35688E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/638,364 USRE35688E (en) 1993-08-13 1996-04-26 Composition and method for treatment of phosphated metal surfaces

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10607093A 1993-08-13 1993-08-13
US08/197,245 US5397390A (en) 1993-08-13 1994-02-16 Composition and method for treatment of phosphated metal surfaces
US08/638,364 USRE35688E (en) 1993-08-13 1996-04-26 Composition and method for treatment of phosphated metal surfaces

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US10607093A Continuation-In-Part 1993-08-13 1993-08-13
US08/197,245 Reissue US5397390A (en) 1993-08-13 1994-02-16 Composition and method for treatment of phosphated metal surfaces

Publications (1)

Publication Number Publication Date
USRE35688E true USRE35688E (en) 1997-12-16

Family

ID=46202903

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/638,364 Expired - Lifetime USRE35688E (en) 1993-08-13 1996-04-26 Composition and method for treatment of phosphated metal surfaces

Country Status (1)

Country Link
US (1) USRE35688E (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004032594A2 (en) * 2002-10-10 2004-04-22 Nalco Company Chrome free final rinse for phosphated metal surfaces
US20070190259A1 (en) * 2000-10-11 2007-08-16 Klaus Bittner Process for coating metallic surfaces with an aqueous composition, the aqueous composition and use of the coated substrates
US9347134B2 (en) 2010-06-04 2016-05-24 Prc-Desoto International, Inc. Corrosion resistant metallate compositions

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3695942A (en) * 1970-12-02 1972-10-03 Amchem Prod Zirconium rinse for phosphate coated metal surfaces
US3850732A (en) * 1970-12-02 1974-11-26 Amchem Prod Zirconium rinse for phosphate coated metal surfaces
EP0032306A1 (en) * 1979-12-26 1981-07-22 Amchem Products, Inc. a Corporation organised under the Laws of the State of Delaware United States of America Aluminium-coating solution, process and concentrate
JPS56125464A (en) * 1980-03-10 1981-10-01 Ichikoh Ind Ltd Curable composition for coating metal surface
FR2487381A1 (en) * 1980-07-23 1982-01-29 Produits Ind Cie Fse Aq. acid soln. for surface treating aluminium - contains titanium and/or zirconium cpd. and polyelectrolyte dispersant
US4339310A (en) * 1980-11-25 1982-07-13 Hooker Chemicals & Plastics Corp. Method of surface treatment of tin plated cans and tin plated steel sheets
US4457790A (en) * 1983-05-09 1984-07-03 Parker Chemical Company Treatment of metal with group IV B metal ion and derivative of polyalkenylphenol
EP0153973A1 (en) * 1982-09-30 1985-09-11 Nihon Parkerizing Co., Ltd. Process for heating metal surfaces
US4650526A (en) * 1986-03-18 1987-03-17 Man-Gill Chemical Company Post treatment of phosphated metal surfaces by aluminum zirconium metallo-organic complexes
US4900362A (en) * 1988-03-16 1990-02-13 Shin-Etsu Chemical Co., Ltd. Primer composition
US5053081A (en) * 1990-04-02 1991-10-01 Oakite Products, Inc. Composition and method for treatment of conversion coated metal surfaces with an aqueous solution of 3-aminopropyltriethoxy silane and titanium chelate
US5167706A (en) * 1990-12-04 1992-12-01 American Standard Inc. Silane primer composition
US5192364A (en) * 1990-06-26 1993-03-09 Shin-Etsu Chemical Co., Ltd. Primer compositions
US5209788A (en) * 1990-11-21 1993-05-11 Ppg Industries, Inc. Non-chrome final rinse for phosphated metal
US5221371A (en) * 1991-09-03 1993-06-22 Lockheed Corporation Non-toxic corrosion resistant conversion coating for aluminum and aluminum alloys and the process for making the same
US5248334A (en) * 1988-12-12 1993-09-28 Dow Corning Corporation Primer composition, coating method and coated silicone substrates
US5324545A (en) * 1991-11-21 1994-06-28 Ewald Dorken Ag Dip-coating method for protecting chromatized or passivated zinc coatings on steel or the like
WO1996017109A1 (en) * 1994-12-01 1996-06-06 Brent International Plc Composition and method for treatment of conversion-coated metal surfaces

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3695942A (en) * 1970-12-02 1972-10-03 Amchem Prod Zirconium rinse for phosphate coated metal surfaces
US3850732A (en) * 1970-12-02 1974-11-26 Amchem Prod Zirconium rinse for phosphate coated metal surfaces
EP0032306A1 (en) * 1979-12-26 1981-07-22 Amchem Products, Inc. a Corporation organised under the Laws of the State of Delaware United States of America Aluminium-coating solution, process and concentrate
JPS56125464A (en) * 1980-03-10 1981-10-01 Ichikoh Ind Ltd Curable composition for coating metal surface
FR2487381A1 (en) * 1980-07-23 1982-01-29 Produits Ind Cie Fse Aq. acid soln. for surface treating aluminium - contains titanium and/or zirconium cpd. and polyelectrolyte dispersant
US4339310A (en) * 1980-11-25 1982-07-13 Hooker Chemicals & Plastics Corp. Method of surface treatment of tin plated cans and tin plated steel sheets
EP0153973A1 (en) * 1982-09-30 1985-09-11 Nihon Parkerizing Co., Ltd. Process for heating metal surfaces
US4457790A (en) * 1983-05-09 1984-07-03 Parker Chemical Company Treatment of metal with group IV B metal ion and derivative of polyalkenylphenol
US4650526A (en) * 1986-03-18 1987-03-17 Man-Gill Chemical Company Post treatment of phosphated metal surfaces by aluminum zirconium metallo-organic complexes
US4900362A (en) * 1988-03-16 1990-02-13 Shin-Etsu Chemical Co., Ltd. Primer composition
US5248334A (en) * 1988-12-12 1993-09-28 Dow Corning Corporation Primer composition, coating method and coated silicone substrates
US5053081A (en) * 1990-04-02 1991-10-01 Oakite Products, Inc. Composition and method for treatment of conversion coated metal surfaces with an aqueous solution of 3-aminopropyltriethoxy silane and titanium chelate
US5192364A (en) * 1990-06-26 1993-03-09 Shin-Etsu Chemical Co., Ltd. Primer compositions
US5209788A (en) * 1990-11-21 1993-05-11 Ppg Industries, Inc. Non-chrome final rinse for phosphated metal
US5167706A (en) * 1990-12-04 1992-12-01 American Standard Inc. Silane primer composition
US5221371A (en) * 1991-09-03 1993-06-22 Lockheed Corporation Non-toxic corrosion resistant conversion coating for aluminum and aluminum alloys and the process for making the same
US5324545A (en) * 1991-11-21 1994-06-28 Ewald Dorken Ag Dip-coating method for protecting chromatized or passivated zinc coatings on steel or the like
WO1996017109A1 (en) * 1994-12-01 1996-06-06 Brent International Plc Composition and method for treatment of conversion-coated metal surfaces

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Advanced Inorganic Chemistry, A Comprehensive Text, p. 828 (4th Edition) No Date!.
Advanced Inorganic Chemistry, A Comprehensive Text, p. 828 (4th Edition) No Date . *
CRC Handbook Of Chemistry and Physics, p. 145. (70th Edition) (1989) No Month!.
CRC Handbook Of Chemistry and Physics, p. 145. (70th Edition) (1989) No Month . *
English translation of EP 0153973 (Sep. 1985).
PCT International Search Report (Nov. 1994).
PCT International Search Report PCT/GB02805 (Mar. 1996).
PCT Written Opinion (May 1995). *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070190259A1 (en) * 2000-10-11 2007-08-16 Klaus Bittner Process for coating metallic surfaces with an aqueous composition, the aqueous composition and use of the coated substrates
WO2004032594A2 (en) * 2002-10-10 2004-04-22 Nalco Company Chrome free final rinse for phosphated metal surfaces
US6733579B1 (en) 2002-10-10 2004-05-11 Nalco Company Chrome free final rinse for phosphated metal surfaces
WO2004032594A3 (en) * 2002-10-10 2004-07-01 Nalco Co Chrome free final rinse for phosphated metal surfaces
US9347134B2 (en) 2010-06-04 2016-05-24 Prc-Desoto International, Inc. Corrosion resistant metallate compositions

Similar Documents

Publication Publication Date Title
US5397390A (en) Composition and method for treatment of phosphated metal surfaces
US5531820A (en) Composition and method for treatment of phosphated metal surfaces
US5662746A (en) Composition and method for treatment of phosphated metal surfaces
EP1404894B1 (en) Corrosion resistant coatings for aluminum and aluminum alloys
MXPA97004031A (en) Composition and method for the treatment of metal surfaces covered by convers
JPS6315991B2 (en)
US4600447A (en) After-passivation of phosphated metal surfaces
KR20130126658A (en) Metal pretreatment composition containing zirconium, copper, and metal chelating agents and related coatings on metal substrates
CA2500801C (en) Chrome free final rinse for phosphated metal surfaces
USRE35688E (en) Composition and method for treatment of phosphated metal surfaces
US5888315A (en) Composition and process for forming an underpaint coating on metals
CA2204280C (en) Composition and method for treatment of conversion-coated metal surfaces
AU699822B2 (en) Composition and process for forming an underpaint coating on metals
Lampman Chemical Conversion Coatings
MXPA98006824A (en) Composition and method for treating fosfata metal surfaces
EP1120479A2 (en) Method of coating aluminum wheels and clear coated aluminium wheels

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12