USRE35648E - Sensor guide construction and use thereof - Google Patents
Sensor guide construction and use thereof Download PDFInfo
- Publication number
- USRE35648E USRE35648E US08/501,810 US50181095A USRE35648E US RE35648 E USRE35648 E US RE35648E US 50181095 A US50181095 A US 50181095A US RE35648 E USRE35648 E US RE35648E
- Authority
- US
- United States
- Prior art keywords
- sensor element
- wire
- tube
- sensor
- disposed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6847—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
- A61B5/6851—Guide wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/0215—Measuring pressure in heart or blood vessels by means inserted into the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/0215—Measuring pressure in heart or blood vessels by means inserted into the body
- A61B5/02154—Measuring pressure in heart or blood vessels by means inserted into the body by optical transmission
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/03—Detecting, measuring or recording fluid pressure within the body other than blood pressure, e.g. cerebral pressure; Measuring pressure in body tissues or organs
- A61B5/036—Detecting, measuring or recording fluid pressure within the body other than blood pressure, e.g. cerebral pressure; Measuring pressure in body tissues or organs by means introduced into body tracts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/09—Guide wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/09—Guide wires
- A61M2025/09175—Guide wires having specific characteristics at the distal tip
Definitions
- the present invention relates to guide construction and the use thereof.
- the known sensor guide construction comprises a cannula tube for establishing an air channel from the sensor to atmospheric pressure.
- the drawback of the cannula tube is that it easily takes form when it passes strong bends.
- the known sensor guide construction requires the mounting of several tubes, having different dimensions, over each other to obtain different flexibility and that security threads are attached in the ends of the tubes. This kind of tube assembly is also described in EP A2 313 836 and involves a complex production process.
- An object of the invention is to provide a sensor guide construction which is less sensitive to mechanical stress and which is easier to produce from a production technical point of view.
- a sensor guide having a sensor element, an electronic unit, a signal transmitting cable connecting the sensor element to the electronic unit, a flexible tube having the cable and the sensor element disposed therein, a solid metal wire having a plurality of sections of differing thicknesses such that each of the sections has a different flexibility, and a coil which is attached to a distal end of the wire.
- An inside portion of the flexible tube acts as an air channel to establish communication between the sensor element and atmospheric pressure.
- the wire is rigidly disposed in the sensor guide and extends along the entire sensor guide inside of the tube.
- one of the plurality of sections is an enlarged portion having a slot therein and the sensor element is disposed in the slot between the coil and the proximal end of the wire.
- FIG. 1 is a longitudinal section view of a sensor guide construction according to the present invention
- FIG. 2 is a section view similar to FIG. 1 of an alternative embodiment
- FIG. 3 is a section along line A--A in FIG. 1;
- FIG. 4 is a section along line B--B in FIG. 1;
- FIG. 5 is a section view of yet another alternative embodiment
- FIG. 6 is a schematic view showing the mounting of the embodiment shown in FIG. 5;
- FIG. 7 is a schematic top plan view of a solid metal wire having a continuous slot from the position of the sensor element to the proximal end of the wire.
- FIG. 1 a sensor guide construction according to the present invention is shown.
- the sensor guide construction 1 has, in the drawing, been divided into five sections, 2-6, for illustrative purposes.
- the section 2 is the most distal portion, i.e. that portion which is going to be inserted fartherst into the vessel, and section 6 is the most proximal portion, i.e. that portion being situated closest to a not shown electronic unit.
- Section 2 is about 10-50 mm, section 3 about 1-5 mm, section 4 about 200-400 mm, section 5 about 1000-2000 mm and section 6 about 10-100 mm.
- Section 2 comprises a radiopaque coil 8, being made of e.g. platinum, provided with an arced tip 7 being or alternatively welded thereon.
- a radiopaque coil 8 being made of e.g. platinum, provided with an arced tip 7 being or alternatively welded thereon.
- a stainless, solid metal wire 9 which in section 2 is formed like a thin conical tip and functions as a security thread for the platinum coil 8.
- the successive tapering of the metal wire 9 in section 2 towards the arced tip 7 results in that the front portion of the sensor guide construction becomes successiveively softer.
- the tapering is obtained by cylindrical grinding of the metal wire 9.
- a thin outer tube 11 commences which is made of a biocompatible material, e.g. polyimid, and extends downwards in the FIGURE all the way to section 6.
- the tube 11 has been treated to give the sensor guide construction a smooth outer surface with low friction.
- the metal wire 9 is heavily expanded in section 3 and is in this expansion provided with a slot 12 in which a sensor element 14 is arranged, e.g. a pressure gauge. The expansion of the metal wire 9 in which the sensor element 14 is attached decreases the stress, exerted on the sensor element 14 in sharp vessel bends.
- a recess 13 is arranged in the slot 12, providing an extra deep area under the site of the pressure sensitive part of the sensor element 14 so that the sensor element will not experience any mechanical stress if the wire 9 is bent, i.e. the recess forms a clearance for the sensor element 14.
- the recess 13 and the slot 11 are made by spark machining in the metal wire 9.
- the slot 12 has the approximate dimensions 100 ⁇ m width ⁇ 100 ⁇ m depth. The length of the slot can be varied as desired.
- the sensor element 14 is sealed against surrounding blood pressure with a hose 15 covering the expansion of the wire 9
- the hose 15 functions as a soft membrane and is made of a flexible material.
- a signal transmitting cable 16 which can be an optic fiber or electric cables 16.
- the signal transmitting cable 16 extends from the sensor element 14 to a not shown electronic unit being situated below the section 6.
- the metal wire 9 is substantially thinner in the beginning of section 4 to obtain good flexibility of the front portion of the sensor guide construction.
- the air channel 17 begins in section 6 at the proximal end of the tube 11 and extends thereafter inside of the tube 11 to the sensor element 14 in the slot 12.
- the function of the tube 11 is to create the air channel 17 and enclose the cable 16.
- the same tube 11 protects the hose 15, which according to prior art has been protected by a separate short steel tube.
- the metal wire 9 is thicker in order to make it easier to push the sensor guide construction 1 forward in the vessel.
- the metal wire 9 is as coarse as possible to be easy to handle and is here provided with a slot 20 in which the cable 16 is attached with e.g. glue.
- the signal transmitting cable 16 is centrated in this second slot 20 which is especially important if the cable 16 is an optic fiber intended to be connected to another optic fiber by a conncection, as is described in our pending patent application with the title "Fiber optic connection and use thereof" to which is referred.
- the air channel 17 communicates with atmospheric pressure via the slot 20 arranged here since the tube 11 is not covering the whole of this section.
- the front portion of the metal wire 9 is not fastened in the tip 7 but in security thread 18 is arranged inside the tube 11 and at its distal end is attached in section 6 and at its prymid end is attached in the tip 7.
- security thread 18 is arranged inside the tube 11 and at its distal end is attached in section 6 and at its prymid end is attached in the tip 7.
- the front end of the metal wire can be attached in section 5.
- FIG. 3 is a cross section along line A--A in FIG. 1, showing the tube 11, the hose 15, the sensor element 14 in the slot 12 of the metal wire 9 and the opening in the tube 11 in front of the sensor element 14 to enable e.g. pressure measuring.
- FIG. 4 shows the cross section along line B--B in FIG. 1 showing the fiber or cables 16 attached with an inner glueing in the front of the slot 20 of the metal wire 9. It is possible, as shown in FIG. 17, to have a single slot 21 which extends to entire length from the expansion in which the sensor element is attached down to the profined end of wire 9. The cable 16 and the air channel 17 are enclosed in this slot. Alternatively, the air channel can be arranged between the wire 9 and the tube 11 are included the two slots 12 and 20, situated in sections 3 and 6, respectively, as described above.
- FIG. 5 an alternative embodiment of the sensor guide construction according to the present invention is shown in mainly the same scale as the FIG. 1-4.
- the section 3 is substantially thinner in this embodiment than in the former. This means that section 3 of the sensor guide construction can be made smaller, which is advantageous with regard to production and use.
- section 3 of the sensor guide construction according to FIG. 5 is shown in FIG. 6.
- a recess 13 is spark machined. Over this, there is glued or soldered a previously obtained part 19 provided with the slot 12.
- the part 19 is obtained in that the slot having the same dimensions as the slot 12 is sparked out in a tube having the same inner diameter as the outer diameter of the metal wire 9. Thereafter the portion of the tube in which the slot is situated, is cut out, whereby the portion 19 according to FIG. 6 is obtained. It also appears where the sensor element 14, is going to be situated in the ready mounted construction according to FIG. 5.
- the sensor guide construction according to the present invention does not take form after it has been bent. Different flexibility is obtained without complex production since only the coarseness of the metal wire 9 has to be varied. Furthermore the need of several security threads is avoided.
- the metal wire 9 consists preferably of memory metal or stainless steel.
- the sensor element can be fiber optic or electric depending on whether the signal transmitting cable 16 is fiber optic fiber or electric cables.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Surgery (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Cardiology (AREA)
- Physics & Mathematics (AREA)
- Hematology (AREA)
- Vascular Medicine (AREA)
- Physiology (AREA)
- Pulmonology (AREA)
- Anesthesiology (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
A sensor guide has a sensor element, an electronic unit, a signal transmitting cable connecting the sensor element to the electronic unit, a flexible tube having the cable and the sensor element disposed therein, a solid metal wire having a plurality of sections with differing thicknesses such that each of the sections has a different flexibility, and a coil which is attached to a distal end of the wire. An inside portion of the flexible tube acts as an air channel to establish communication between the sensor element and atmospheric pressure. In addition, the wire is rigidly disposed in the sensor guide and extends along the entire sensor guide inside of the tube. Moreover, one of the plurality of sections is an enlarged portion having a slot therein and the sensor element is disclosed in the slot between the coil and the proximal end of the wire.
Description
The present invention relates to guide construction and the use thereof.
A sensor mounted on a guide to be used for pressure measuring in stenotic vessels belonging to atherosclerotic patients is described in patent application WO 90/01294. Briefly, the known sensor guide construction comprises a cannula tube for establishing an air channel from the sensor to atmospheric pressure. The drawback of the cannula tube is that it easily takes form when it passes strong bends. Furthermore, the known sensor guide construction requires the mounting of several tubes, having different dimensions, over each other to obtain different flexibility and that security threads are attached in the ends of the tubes. This kind of tube assembly is also described in EP A2 313 836 and involves a complex production process.
In WO 89/10088 there is described a guide wire for catheters, but since this does not comprise a sensor it does not solve the problems with establishing an air channel as described above.
An object of the invention is to provide a sensor guide construction which is less sensitive to mechanical stress and which is easier to produce from a production technical point of view.
The above object is met by providing a sensor guide having a sensor element, an electronic unit, a signal transmitting cable connecting the sensor element to the electronic unit, a flexible tube having the cable and the sensor element disposed therein, a solid metal wire having a plurality of sections of differing thicknesses such that each of the sections has a different flexibility, and a coil which is attached to a distal end of the wire. An inside portion of the flexible tube acts as an air channel to establish communication between the sensor element and atmospheric pressure. In addition, the wire is rigidly disposed in the sensor guide and extends along the entire sensor guide inside of the tube. Moreover, one of the plurality of sections is an enlarged portion having a slot therein and the sensor element is disposed in the slot between the coil and the proximal end of the wire.
The invention will now be described more closely below in connection to the accompanying drawings in which
FIG. 1 is a longitudinal section view of a sensor guide construction according to the present invention;
FIG. 2 is a section view similar to FIG. 1 of an alternative embodiment;
FIG. 3 is a section along line A--A in FIG. 1;
FIG. 4 is a section along line B--B in FIG. 1;
FIG. 5 is a section view of yet another alternative embodiment;
FIG. 6 is a schematic view showing the mounting of the embodiment shown in FIG. 5; and
FIG. 7 is a schematic top plan view of a solid metal wire having a continuous slot from the position of the sensor element to the proximal end of the wire.
In FIG. 1 a sensor guide construction according to the present invention is shown. The sensor guide construction 1 has, in the drawing, been divided into five sections, 2-6, for illustrative purposes. The section 2 is the most distal portion, i.e. that portion which is going to be inserted fartherst into the vessel, and section 6 is the most proximal portion, i.e. that portion being situated closest to a not shown electronic unit. Section 2 is about 10-50 mm, section 3 about 1-5 mm, section 4 about 200-400 mm, section 5 about 1000-2000 mm and section 6 about 10-100 mm.
At the transition between the sections 2 and 3 the lower end of the coil 8 is attached to the wire 9 with glue or alternatively, solder, thereby forming a joint 10. At the joint 10 a thin outer tube 11 commences which is made of a biocompatible material, e.g. polyimid, and extends downwards in the FIGURE all the way to section 6. The tube 11 has been treated to give the sensor guide construction a smooth outer surface with low friction. The metal wire 9 is heavily expanded in section 3 and is in this expansion provided with a slot 12 in which a sensor element 14 is arranged, e.g. a pressure gauge. The expansion of the metal wire 9 in which the sensor element 14 is attached decreases the stress, exerted on the sensor element 14 in sharp vessel bends. Preferably a recess 13 is arranged in the slot 12, providing an extra deep area under the site of the pressure sensitive part of the sensor element 14 so that the sensor element will not experience any mechanical stress if the wire 9 is bent, i.e. the recess forms a clearance for the sensor element 14.
The recess 13 and the slot 11 are made by spark machining in the metal wire 9. The slot 12 has the approximate dimensions 100 μm width×100 μm depth. The length of the slot can be varied as desired. The sensor element 14 is sealed against surrounding blood pressure with a hose 15 covering the expansion of the wire 9 The hose 15 functions as a soft membrane and is made of a flexible material. On the outside of the sensor element 14 and the hose 15, and lying thereover, is an opening arranged in the tube 11, so that the sensor element comes in contact with the environment in order to perform, for example, pressure measuring.
From the sensor element 14 there is arranged a signal transmitting cable 16 which can be an optic fiber or electric cables 16. The signal transmitting cable 16 extends from the sensor element 14 to a not shown electronic unit being situated below the section 6. The metal wire 9 is substantially thinner in the beginning of section 4 to obtain good flexibility of the front portion of the sensor guide construction. Between the tube 11 and the metal wire 9 there is also an air channel 17 giving the sensor guide construction an atmosheric pressure in the slot 12 in which the sensor 14 is arranged. The air channel 17 begins in section 6 at the proximal end of the tube 11 and extends thereafter inside of the tube 11 to the sensor element 14 in the slot 12. The function of the tube 11 is to create the air channel 17 and enclose the cable 16. Furthermore the same tube 11 protects the hose 15, which according to prior art has been protected by a separate short steel tube. In the end of section 4 and in the whole of section 5, the metal wire 9 is thicker in order to make it easier to push the sensor guide construction 1 forward in the vessel. In section 6 the metal wire 9 is as coarse as possible to be easy to handle and is here provided with a slot 20 in which the cable 16 is attached with e.g. glue. The signal transmitting cable 16 is centrated in this second slot 20 which is especially important if the cable 16 is an optic fiber intended to be connected to another optic fiber by a conncection, as is described in our pending patent application with the title "Fiber optic connection and use thereof" to which is referred. In section 6 the air channel 17 communicates with atmospheric pressure via the slot 20 arranged here since the tube 11 is not covering the whole of this section.
In the alternative embodiment shown in FIG. 2, the front portion of the metal wire 9 is not fastened in the tip 7 but in security thread 18 is arranged inside the tube 11 and at its distal end is attached in section 6 and at its prymid end is attached in the tip 7. Alternatively the front end of the metal wire can be attached in section 5.
FIG. 3 is a cross section along line A--A in FIG. 1, showing the tube 11, the hose 15, the sensor element 14 in the slot 12 of the metal wire 9 and the opening in the tube 11 in front of the sensor element 14 to enable e.g. pressure measuring.
FIG. 4 shows the cross section along line B--B in FIG. 1 showing the fiber or cables 16 attached with an inner glueing in the front of the slot 20 of the metal wire 9. It is possible, as shown in FIG. 17, to have a single slot 21 which extends to entire length from the expansion in which the sensor element is attached down to the profined end of wire 9. The cable 16 and the air channel 17 are enclosed in this slot. Alternatively, the air channel can be arranged between the wire 9 and the tube 11 are included the two slots 12 and 20, situated in sections 3 and 6, respectively, as described above.
In FIG. 5, an alternative embodiment of the sensor guide construction according to the present invention is shown in mainly the same scale as the FIG. 1-4. The section 3 is substantially thinner in this embodiment than in the former. This means that section 3 of the sensor guide construction can be made smaller, which is advantageous with regard to production and use.
The production of section 3 of the sensor guide construction according to FIG. 5 is shown in FIG. 6. In a round solid wire 9 a recess 13 is spark machined. Over this, there is glued or soldered a previously obtained part 19 provided with the slot 12. The part 19 is obtained in that the slot having the same dimensions as the slot 12 is sparked out in a tube having the same inner diameter as the outer diameter of the metal wire 9. Thereafter the portion of the tube in which the slot is situated, is cut out, whereby the portion 19 according to FIG. 6 is obtained. It also appears where the sensor element 14, is going to be situated in the ready mounted construction according to FIG. 5.
The sensor guide construction according to the present invention does not take form after it has been bent. Different flexibility is obtained without complex production since only the coarseness of the metal wire 9 has to be varied. Furthermore the need of several security threads is avoided. The metal wire 9 consists preferably of memory metal or stainless steel.
The sensor element can be fiber optic or electric depending on whether the signal transmitting cable 16 is fiber optic fiber or electric cables.
Claims (14)
1. A sensor guide comprising:
a sensor element;
a signal transmitting cable adapted to connect said sensor element to an electronic unit;
a flexible tube having said cable and said sensor element disposed therein, an inside portion of said tube acting as an air channel to establish communication between said sensor element and atomspheric pressure;
a solid metal wire having a distal end, a proximal end, and a plurality of sections each having a different thickness such that each of said plurality of sections has a different flexibility; and
a coil attached to said distal end of said wire
wherein 1) said wire is rigidly disposed a said tube and extends along the entire sensor guide inside said tube, 2) one of said plurality of sections is an enlarged position having a slot therein, and 3) said sensor element is disposed in said slot between said coil and said proximal end.
2. A sensor guide as recited in claim 1, wherein said coil is a radiopague coil and is connected to said tube via a glue or welded joint.
3. A sensor guide as recited in claim 2 wherein said coil is made from platinum.
4. A sensor guide as recited in claim 1, wherein said cable is an optic fiber cable and said sensor element is an optic sensor.
5. A sensor guide as recited in claim 1, wherein said cable is an electric cable and said sensor element is an electric sensor.
6. A sensor guide as recited in claim 1, wherein said wire is made from a memory metal.
7. A sensor guide as recited in claim 1, wherein said sensor element further comprises means for measuring intravascular pressure.
8. A sensor guide as recited in claim 1, further comprising a hose made from a flexible polymer material which is disposed around said enlarged portion of said wire and within said tube, and wherein said tube has an opening therein which is aligned with said sensor element such that said hose is disposed between said tube and said sensor element.
9. A sensor guide comprising:
a sensor element;
a signal transmitting cable adapted to connect said sensor element to an electronic unit;
a flexible tube having said cable and said sensor element disposed therein, an inside portion of said tube acting as an air channel to establish communication between said sensor element and atmospheric pressure;
a solid metal wire having a distal end and a plurality of sections each having a different thickness such that each of said plurality of sections has a different flexibility, said wire being rigidly disposed in said tube and extending along the entire sensor guide inside said tube;
a coil attached to said distal end of said wire; and
a security thread attached to said coil and to said wire, said security thread extending inside of said tube.
10. A sensor guide comprising:
a sensor element;
a signal transmitting cable adapted to connect said sensor element to an electronic unit;
a flexible tube having said cable and said sensor element disposed therein, an inside portion of said tube acting as an air channel to establish communication between said sensor element and atmospheric pressure;
a solid metal wire having a plurality of sections each having a different thickness such that each of said plurality of sections has a different flexibility, said wire being rigidly disposed in said tube and extending along the entire sensor guide inside said tube;
a piece having a slot therein and a bottom surface with the same radius of curvature as an outside radius of curvature of said wire, said piece being attached at said bottom surface to an outer circumference of said wire and said sensor element being disposed in said slot.
11. A sensor guide comprising:
a sensor element;
a signal transmitting cable adopted to connect said sensor element to an electronic unit;
a flexible tube having said cable and said sensor element disposed therein, an inside portion of said tube acting as an air channel to establish communication between said sensor element and atmospheric pressure; and
a solid metal wire having a proximal end and a plurality of sections each having a different thickness such that each of said plurality of sections has a different flexiblity, said wire being rigidly disposed in said tube and extending along the entire sensor guide inside said tube;
wherein said wire has first and second slots therein, said wire is disposed in said tube, said air channel is a space existing between said tube and said wire, said air channel extends from said first slot to said second slot, said sensor element is disposed in said first slot, and said second slot is disposed in a proximal end of said wire and is in communication with atmospheric pressure.
12. A sensor guide comprising;
a sensor element;
a signal transmitting cable adopted to connect said sensor element to an electronic unit;
a flexible tube having said cable and said sensor element disposed therein, an inside portion of said tube acting as an air channel to establish communication between said sensor element and atmospheric pressure;
a solid metal wire having a proximal end and a plurality of sections each having a different thickness such that each of said plurality of sections has a different flexibility, said wire being rigidly disposed in said tube and extending along the entire sensor guide inside said tube;
wherein said wire has a slot therein having first and second ends, said sensor element is disposed in said slot at said first end, said second end is disposed at said proximal end of said wire, and said air channel is defined between an inner surface of said tube and said slot.
13. A sensor guide as recited in claim 10, wherein said slot includes a recessed portion located below said sensor element. .Iadd.
14. A sensor guide comprising:
a sensor element;
a signal transmitting cable adapted to connect said sensor element to an electronic unit;
a flexible tube having said cable and said sensor element disposed therein;
a solid metal wire having a distal end, a proximal end, and a plurality of sections each having a different thickness such that each of said plurality of sections has a different flexibility; and
a coil attached to said distal end of said wire;
wherein 1) said wire is rigidly disposed in said sensor guide and extends along the entire sensor guide inside said tube, 2) one of said plurality of sections is an enlarged portion having a slot therein, and 3) said sensor element is disposed in said slot between said coil and said proximal end. .Iaddend..Iadd.15. A sensor guide as recited in claim 14, wherein said coil is a radiopaque coil and is connected to said tube via a glue or welded joint. .Iaddend..Iadd.16. A sensor guide as recited in claim 15, wherein said coil is made from platinum. .Iaddend..Iadd.17. A sensor guide as recited in claim 14, wherein said cable is an optic fiber cable and said sensor element is an optic sensor. .Iaddend..Iadd.18. A sensor guide as recited in claim 14, wherein said cable is an electric cable and said sensor element is an electric sensor. .Iaddend..Iadd.19. A sensor guide as recited in claim 14, wherein said wire is made from a memory metal. .Iaddend..Iadd.20. A sensor guide as recited in claim 14, wherein said sensor guide further comprises means for measuring intravascular pressure. .Iaddend..Iadd.21. A sensor guide as recited in claim 14, further comprising a hose made from a flexible polymer material which is disposed around said enlarged portion of said wire and within said tube, and wherein said tube has an opening therein which is aligned with said sensor element such that said hose is disposed between said tube and said sensor element. .Iaddend..Iadd.22. A sensor guide comprising:
a sensor element;
a signal transmitting cable adapted to connect said sensor element to an electronic unit;
a flexible tube having said cable and said sensor element disposed therein;
a solid metal wire having a distal end and a plurality of sections each having a different thickness such that each of said plurality of sections has a different flexibility, said wire being rigidly disposed in said sensor guide and extending along the entire sensor guide inside said tube;
a coil attached to said distal end of said wire; and
a security thread attached to said coil and to said wire, said security thread extending inside of said tube. .Iaddend..Iadd.23. A sensor guide comprising:
a sensor element;
a signal transmitting cable adapted to connect said sensor element to an electronic unit;
a flexible tube having said cable and said sensor element disposed therein;
a solid metal wire having a plurality of sections each having a different thickness such that each of said plurality of sections has a different flexibility, said wire being rigidly disposed in said sensor guide and extending along the entire sensor guide inside said tube;
a piece having a slot therein and a bottom surface with the same radius of curvature as an outside radius of curvature of said wire, said piece being attached at said bottom surface to an outer circumference of said wire and said sensor element being disposed in said slot. .Iaddend..Iadd.24. A sensor guide as recited in claim 23, wherein said slot includes a recessed portion located below said sensor element. .Iaddend..Iadd.25. A sensor guide comprising:
a sensor element;
a signal transmitting cable adapted to connect said sensor element to an electronic unit;
a flexible tube having said cable and said sensor element disposed therein; and
a solid metal wire having a proximal end and a plurality of sections each having a different thickness such that each of said plurality of sections has a different flexibility, said wire being rigidly disposed in said tube and extending along the entire sensor guide inside said tube;
wherein said wire has first and second slots therein, said wire is disposed in said tube, said sensor element is disposed in said first slot, and said second slot is disposed in a proximal end of said wire. .Iaddend..Iadd.26. A sensor guide comprising:
a sensor element;
a signal transmitting cable adapted to connect said sensor element to an electronic unit;
a flexible tube having said cable and said sensor element disposed therein;
a solid metal wire having a proximal end and a plurality of sections each having a different thickness such that each of said plurality of sections has a different flexibility, said wire being rigidly disposed in said tube and extending along the entire sensor guide inside said tube;
wherein said wire has a slot therein having first and second ends, said sensor element is disposed in said slot at said first end, said second end is disposed at said proximal end of said wire. .Iaddend.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/501,810 USRE35648E (en) | 1990-07-11 | 1995-07-13 | Sensor guide construction and use thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9002416A SE506135C2 (en) | 1990-07-11 | 1990-07-11 | Sensor and conductor construction |
SE9002416 | 1990-07-11 | ||
US07/728,142 US5226423A (en) | 1990-07-11 | 1991-07-10 | Sensor guide construction and use thereof |
US08/501,810 USRE35648E (en) | 1990-07-11 | 1995-07-13 | Sensor guide construction and use thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/728,142 Reissue US5226423A (en) | 1990-07-11 | 1991-07-10 | Sensor guide construction and use thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE35648E true USRE35648E (en) | 1997-11-04 |
Family
ID=20379990
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/728,142 Ceased US5226423A (en) | 1990-07-11 | 1991-07-10 | Sensor guide construction and use thereof |
US08/501,810 Expired - Lifetime USRE35648E (en) | 1990-07-11 | 1995-07-13 | Sensor guide construction and use thereof |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/728,142 Ceased US5226423A (en) | 1990-07-11 | 1991-07-10 | Sensor guide construction and use thereof |
Country Status (2)
Country | Link |
---|---|
US (2) | US5226423A (en) |
SE (1) | SE506135C2 (en) |
Cited By (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6167763B1 (en) | 1995-06-22 | 2001-01-02 | Radi Medical Systems Ab | Pressure sensor and guide wire assembly for biological pressure measurements |
US6210339B1 (en) * | 1999-03-03 | 2001-04-03 | Endosonics Corporation | Flexible elongate member having one or more electrical contacts |
US6312380B1 (en) | 1998-12-23 | 2001-11-06 | Radi Medical Systems Ab | Method and sensor for wireless measurement of physiological variables |
US6336906B1 (en) | 1998-12-23 | 2002-01-08 | Radi Medical Systems Ab | Sensor and guide wire assembly |
US6475187B1 (en) * | 1998-03-04 | 2002-11-05 | Scimed Life Systems, Inc. | Convertible catheter incorporating distal force transfer mechanism |
US20030088187A1 (en) * | 2001-07-12 | 2003-05-08 | Vahid Saadat | Device for sensing parameters of a hollow body organ |
US6585660B2 (en) | 2001-05-18 | 2003-07-01 | Jomed Inc. | Signal conditioning device for interfacing intravascular sensors having varying operational characteristics to a physiology monitor |
US20030216621A1 (en) * | 2002-05-20 | 2003-11-20 | Jomed N.V. | Multipurpose host system for invasive cardiovascular diagnostic measurement acquisition and display |
US6663570B2 (en) | 2002-02-27 | 2003-12-16 | Volcano Therapeutics, Inc. | Connector for interfacing intravascular sensors to a physiology monitor |
US6692446B2 (en) * | 2000-03-21 | 2004-02-17 | Radi Medical Systems Ab | Passive biotelemetry |
US6767345B2 (en) | 1999-03-01 | 2004-07-27 | Coaxia, Inc. | Partial aortic occlusion devices and methods for renal and coronary perfusion augmentation |
EP1493381A1 (en) | 2003-07-02 | 2005-01-05 | Radi Medical Systems Ab | Sensor and guide wire assembly |
US20050085685A1 (en) * | 1999-03-01 | 2005-04-21 | Coaxia, Inc. | Cerebral perfusion augmentation |
US7021152B2 (en) | 2003-07-18 | 2006-04-04 | Radi Medical Systems Ab | Sensor and guide wire assembly |
EP1695659A1 (en) | 2005-02-24 | 2006-08-30 | Radi Medical Systems Ab | Sensor and guide wire assembly |
US7160255B2 (en) | 2001-07-12 | 2007-01-09 | Vahid Saadat | Method and device for sensing and mapping temperature profile of a hollow body organ |
US20070078352A1 (en) * | 2005-09-30 | 2007-04-05 | Radi Medical System Ab | Method for determining the blood flow in a coronary artery |
US20070106142A1 (en) * | 2003-11-21 | 2007-05-10 | Radi Medical Systems Ab | Sensor and guide wire assembly |
US20070220986A1 (en) * | 2006-03-21 | 2007-09-27 | Radi Medical Systems Ab | Pressure sensor |
US20070255144A1 (en) * | 2004-06-07 | 2007-11-01 | Radi Medical Systems Ab | Powering a Guide Wire Mounted Sensor for Intra-Vascular Measurements of Physiological Variables by Means of Inductive Coupling |
US20080077050A1 (en) * | 2006-09-08 | 2008-03-27 | Radi Medical Systems Ab | Electrical connector for medical device |
US20080132806A1 (en) * | 2006-12-01 | 2008-06-05 | Radi Medical Systems Ab | Sensor and guide wire assembly |
US7472601B1 (en) | 2007-09-21 | 2009-01-06 | Radi Medical Systems Ab | Sensor for intravascular measurements within a living body |
EP2085108A2 (en) | 2008-01-23 | 2009-08-05 | Mediguide Ltd. | Sensor mounted flexible guidewire |
US20100030044A1 (en) * | 1991-03-04 | 2010-02-04 | Abbott Diabetes Care Inc. | Subcutaneous Glucose Electrode |
US20100109104A1 (en) * | 2008-10-30 | 2010-05-06 | Radi Medical Systems Ab | Pressure sensor and wire guide assembly |
US7788139B2 (en) | 2006-07-28 | 2010-08-31 | TrailPay, Inc. | Methods and systems for an alternative payment platform |
US7833194B2 (en) | 1997-03-11 | 2010-11-16 | Carefusion 202, Inc. | Catheter having insertion control mechanism |
US20100318000A1 (en) * | 2007-10-26 | 2010-12-16 | St.Jude Medical Systems Ab | Sensor guide wire |
US20110152721A1 (en) * | 2008-01-23 | 2011-06-23 | Ran Sela | Sensor mounted flexible guidewire |
US7976518B2 (en) | 2005-01-13 | 2011-07-12 | Corpak Medsystems, Inc. | Tubing assembly and signal generator placement control device and method for use with catheter guidance systems |
WO2011092190A1 (en) | 2010-01-29 | 2011-08-04 | St Jude Medical Systems Ab | Medical guide wire assembly |
US20110201906A1 (en) * | 2010-01-29 | 2011-08-18 | St. Jude Medical Systems Ab | Medical guide wire assembly |
US8038628B2 (en) | 2007-05-24 | 2011-10-18 | Radi Medical Systems Ab | Torque device for a sensor guide wire |
WO2011157299A1 (en) | 2010-06-18 | 2011-12-22 | St. Jude Medical Ab | Implantable sensor device and system |
WO2011161212A1 (en) | 2010-06-23 | 2011-12-29 | P2-Science Aps | Combined flow directed intraarterial microcatheter for the infusion of hyperemic agent and concomitant pressure measurements for diagnostic purposes |
WO2012000798A1 (en) | 2010-06-30 | 2012-01-05 | St Jude Medical Systems Ab | Sensor jacket |
WO2012004107A1 (en) | 2010-07-06 | 2012-01-12 | St Jude Medical Systems Ab | Sensor element with an insulation layer |
EP2433674A1 (en) | 2010-09-23 | 2012-03-28 | St. Jude Medical AB | Systems for stimulating a heart |
WO2012041905A1 (en) | 2010-09-29 | 2012-04-05 | St Jude Medical Systems Ab | Sensor guide wire |
WO2012084044A1 (en) | 2010-12-23 | 2012-06-28 | St. Jude Medical Ab | Method and system for optimizing cardiac pacing settings |
EP2491977A1 (en) | 2011-02-28 | 2012-08-29 | St. Jude Medical AB | Method and system for adapting pacing settings of a cardiac stimulator |
WO2013070146A1 (en) | 2011-11-09 | 2013-05-16 | St Jude Medical Systems Ab | Sensor guide wire |
US8463351B2 (en) * | 1998-03-04 | 2013-06-11 | Abbott Diabetes Care Inc. | Electrochemical analyte sensor |
WO2013095289A1 (en) | 2011-12-21 | 2013-06-27 | St. Jude Medical Systems Ab | Biocompatible x-ray opaque polymers for medical device |
WO2015059578A2 (en) | 2013-10-25 | 2015-04-30 | St. Jude Medical Systems Ab | Sensor guide wire device and system including a sensor guide wire device |
US9028441B2 (en) | 2011-09-08 | 2015-05-12 | Corpak Medsystems, Inc. | Apparatus and method used with guidance system for feeding and suctioning |
US9079000B2 (en) | 2011-10-18 | 2015-07-14 | Boston Scientific Scimed, Inc. | Integrated crossing balloon catheter |
US20160022215A1 (en) * | 2014-07-22 | 2016-01-28 | Volcano Corporation | Intravascular devices, systems, and methods having a core wire with multiple flattened sections |
US20160067456A1 (en) * | 2014-09-04 | 2016-03-10 | Volcano Corporation | Pressure guide wire pullback catheter |
WO2017160987A1 (en) | 2016-03-16 | 2017-09-21 | St. Jude Medical Coordination Center Bvba | Core wire having a flattened portion to provide preferential bending |
US9877660B2 (en) | 2013-11-14 | 2018-01-30 | Medtronic Vascular Galway | Systems and methods for determining fractional flow reserve without adenosine or other pharmalogical agent |
US9913585B2 (en) | 2014-01-15 | 2018-03-13 | Medtronic Vascular, Inc. | Catheter for providing vascular pressure measurements |
US9949647B2 (en) | 2004-06-04 | 2018-04-24 | St. Jude Medical Coordination Center Bvba | Sensor and guide wire assembly |
US10130269B2 (en) | 2013-11-14 | 2018-11-20 | Medtronic Vascular, Inc | Dual lumen catheter for providing a vascular pressure measurement |
US10194812B2 (en) | 2014-12-12 | 2019-02-05 | Medtronic Vascular, Inc. | System and method of integrating a fractional flow reserve device with a conventional hemodynamic monitoring system |
US10201284B2 (en) | 2014-06-16 | 2019-02-12 | Medtronic Vascular Inc. | Pressure measuring catheter having reduced error from bending stresses |
US10226185B2 (en) | 2012-05-03 | 2019-03-12 | St. Jude Medical Coordination Center Bvba | Tube and sensor guide wire comprising tube |
US10258240B1 (en) | 2014-11-24 | 2019-04-16 | Vascular Imaging Corporation | Optical fiber pressure sensor |
US10307070B2 (en) | 2014-04-04 | 2019-06-04 | St. Jude Medical Coordination Center Bvba | Intravascular pressure and flow data diagnostic systems, devices, and methods |
US10327645B2 (en) | 2013-10-04 | 2019-06-25 | Vascular Imaging Corporation | Imaging techniques using an imaging guidewire |
US10506934B2 (en) | 2012-05-25 | 2019-12-17 | Phyzhon Health Inc. | Optical fiber pressure sensor |
US10537255B2 (en) | 2013-11-21 | 2020-01-21 | Phyzhon Health Inc. | Optical fiber pressure sensor |
CN110912357A (en) * | 2018-09-18 | 2020-03-24 | 联合汽车电子有限公司 | Wire management fastening device and method |
US10646122B2 (en) | 2017-04-28 | 2020-05-12 | Medtronic Vascular, Inc. | FFR catheter with covered distal pressure sensor and method of manufacture |
US10648918B2 (en) | 2011-08-03 | 2020-05-12 | Lightlab Imaging, Inc. | Systems, methods and apparatus for determining a fractional flow reserve (FFR) based on the minimum lumen area (MLA) and the constant |
US10702170B2 (en) | 2013-07-01 | 2020-07-07 | Zurich Medical Corporation | Apparatus and method for intravascular measurements |
US10835183B2 (en) | 2013-07-01 | 2020-11-17 | Zurich Medical Corporation | Apparatus and method for intravascular measurements |
US10888232B2 (en) | 2011-08-20 | 2021-01-12 | Philips Image Guided Therapy Corporation | Devices, systems, and methods for assessing a vessel |
US10898090B2 (en) | 2015-02-26 | 2021-01-26 | St. Jude Medical Coordination Center Bvba | Pressure sensor and guide wire with self wetting tube |
US10973418B2 (en) | 2014-06-16 | 2021-04-13 | Medtronic Vascular, Inc. | Microcatheter sensor design for minimizing profile and impact of wire strain on sensor |
US11122980B2 (en) | 2011-08-20 | 2021-09-21 | Imperial College Of Science, Technology And Medicine | Devices, systems, and methods for visually depicting a vessel and evaluating treatment options |
US11185244B2 (en) | 2018-08-13 | 2021-11-30 | Medtronic Vascular, Inc. | FFR catheter with suspended pressure sensor |
US11219741B2 (en) | 2017-08-09 | 2022-01-11 | Medtronic Vascular, Inc. | Collapsible catheter and method for calculating fractional flow reserve |
US11235124B2 (en) | 2017-08-09 | 2022-02-01 | Medtronic Vascular, Inc. | Collapsible catheter and method for calculating fractional flow reserve |
US11241154B2 (en) | 2011-05-31 | 2022-02-08 | Lightlab Imaging, Inc. | Multimodal imaging system, apparatus, and methods |
US11272850B2 (en) | 2016-08-09 | 2022-03-15 | Medtronic Vascular, Inc. | Catheter and method for calculating fractional flow reserve |
US11330989B2 (en) | 2014-06-16 | 2022-05-17 | Medtronic Vascular, Inc. | Microcatheter sensor design for mounting sensor to minimize induced strain |
US11330994B2 (en) | 2017-03-08 | 2022-05-17 | Medtronic Vascular, Inc. | Reduced profile FFR catheter |
Families Citing this family (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5439000A (en) * | 1992-11-18 | 1995-08-08 | Spectrascience, Inc. | Method of diagnosing tissue with guidewire |
US5450853A (en) * | 1993-10-22 | 1995-09-19 | Scimed Life Systems, Inc. | Pressure sensor |
US6673025B1 (en) | 1993-12-01 | 2004-01-06 | Advanced Cardiovascular Systems, Inc. | Polymer coated guidewire |
US5669383A (en) * | 1994-07-28 | 1997-09-23 | Sims Deltec, Inc. | Polyimide sheath for a catheter detector and method |
DE69534748T2 (en) * | 1994-09-02 | 2006-11-02 | Volcano Corp. (n.d, Ges.d.Staates Delaware), Rancho Cordova | ULTRAMINIATUR PRESSURE SENSOR AND GUIDE WIRE THEREFORE |
SE9600334D0 (en) | 1996-01-30 | 1996-01-30 | Radi Medical Systems | Combined flow, pressure and temperature sensor |
US7455646B2 (en) | 1997-06-04 | 2008-11-25 | Advanced Cardiovascular Systems, Inc. | Polymer coated guide wire |
US7494474B2 (en) * | 1997-06-04 | 2009-02-24 | Advanced Cardiovascular Systems, Inc. | Polymer coated guidewire |
US6059759A (en) * | 1997-10-14 | 2000-05-09 | Merit Medical Systems, Inc. | Infusion catheter systems with tactile sensing feedback |
US6106486A (en) * | 1997-12-22 | 2000-08-22 | Radi Medical Systems Ab | Guide wire |
US9066695B2 (en) | 1998-04-30 | 2015-06-30 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US6949816B2 (en) * | 2003-04-21 | 2005-09-27 | Motorola, Inc. | Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same |
US8465425B2 (en) * | 1998-04-30 | 2013-06-18 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8480580B2 (en) | 1998-04-30 | 2013-07-09 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8974386B2 (en) | 1998-04-30 | 2015-03-10 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8688188B2 (en) * | 1998-04-30 | 2014-04-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US6175752B1 (en) | 1998-04-30 | 2001-01-16 | Therasense, Inc. | Analyte monitoring device and methods of use |
US8346337B2 (en) | 1998-04-30 | 2013-01-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US6089103A (en) * | 1998-05-06 | 2000-07-18 | Radi Medical Systems Ab | Method of flow measurements |
EP1479407B1 (en) * | 1998-12-23 | 2006-03-01 | Radi Medical Systems Ab | Sensor and guide wire assembly |
US6182513B1 (en) | 1998-12-23 | 2001-02-06 | Radi Medical Systems Ab | Resonant sensor and method of making a pressure sensor comprising a resonant beam structure |
US11331150B2 (en) | 1999-10-28 | 2022-05-17 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation |
US8644907B2 (en) | 1999-10-28 | 2014-02-04 | Medtronic Navigaton, Inc. | Method and apparatus for surgical navigation |
US7366562B2 (en) * | 2003-10-17 | 2008-04-29 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation |
ATE232695T1 (en) | 2000-03-21 | 2003-03-15 | Radi Medical Systems | RESONANCE BASED PRESSURE TRANSDUCER SYSTEM |
US6560471B1 (en) | 2001-01-02 | 2003-05-06 | Therasense, Inc. | Analyte monitoring device and methods of use |
US6673023B2 (en) | 2001-03-23 | 2004-01-06 | Stryker Puerto Rico Limited | Micro-invasive breast biopsy device |
US20020138021A1 (en) * | 2001-03-23 | 2002-09-26 | Devonrex, Inc. | Micro-invasive tissue removal device |
US20020138091A1 (en) * | 2001-03-23 | 2002-09-26 | Devonrex, Inc. | Micro-invasive nucleotomy device and method |
FR2824636B1 (en) * | 2001-05-10 | 2003-09-05 | Schlumberger Services Petrol | MICROELECTRONIC PRESSURE SENSOR WITH RESONATOR SUPPORTING HIGH PRESSURES |
JP4222775B2 (en) * | 2001-06-15 | 2009-02-12 | ラディ・メディカル・システムズ・アクチェボラーグ | Measuring device that can be inserted into living organisms |
US8579825B2 (en) * | 2001-06-15 | 2013-11-12 | Radi Medical Systems Ab | Electrically conductive guide wire |
WO2004087238A1 (en) * | 2003-03-31 | 2004-10-14 | Radi Medical Systems Ab | Method and device in connection with pressure measurement |
US20040225232A1 (en) * | 2003-05-09 | 2004-11-11 | Radi Medical Systems Ab | Sensor guide wire |
ATE300233T1 (en) * | 2003-05-09 | 2005-08-15 | Radi Medical Systems | GUIDE WIRE UNIT WITH SENSOR |
US8277386B2 (en) | 2004-09-27 | 2012-10-02 | Volcano Corporation | Combination sensor guidewire and methods of use |
ATE469600T1 (en) * | 2006-04-28 | 2010-06-15 | Radi Medical Systems | SENSOR AND GUIDE WIRE ASSEMBLY |
US20070255145A1 (en) * | 2006-04-28 | 2007-11-01 | Radi Medical Systems Ab | Sensor and guide wire assembly |
EP1927316B1 (en) * | 2006-12-01 | 2012-10-17 | Radi Medical Systems Ab | Sensor and guide wire assembly |
WO2009054802A1 (en) * | 2007-10-26 | 2009-04-30 | Radi Medical Systems Ab | Sensor guide wire with micro-cable winding |
US8504139B2 (en) | 2009-03-10 | 2013-08-06 | Medtronic Xomed, Inc. | Navigating a surgical instrument |
US9226689B2 (en) | 2009-03-10 | 2016-01-05 | Medtronic Xomed, Inc. | Flexible circuit sheet |
US9226688B2 (en) | 2009-03-10 | 2016-01-05 | Medtronic Xomed, Inc. | Flexible circuit assemblies |
CA2942656C (en) | 2010-04-30 | 2019-11-05 | Medtronic Xomed, Inc. | Navigated malleable surgical instrument |
EP2637727B1 (en) | 2010-11-09 | 2024-02-07 | Opsens Inc. | Guidewire with internal pressure sensor |
US10617374B2 (en) | 2011-01-28 | 2020-04-14 | Medtronic Navigation, Inc. | Method and apparatus for image-based navigation |
US9974501B2 (en) | 2011-01-28 | 2018-05-22 | Medtronic Navigation, Inc. | Method and apparatus for image-based navigation |
US10492868B2 (en) | 2011-01-28 | 2019-12-03 | Medtronic Navigation, Inc. | Method and apparatus for image-based navigation |
US9750486B2 (en) | 2011-10-25 | 2017-09-05 | Medtronic Navigation, Inc. | Trackable biopsy needle |
US10463259B2 (en) | 2011-10-28 | 2019-11-05 | Three Rivers Cardiovascular Systems Inc. | System and apparatus comprising a multi-sensor catheter for right heart and pulmonary artery catheterization |
US20140243688A1 (en) | 2011-10-28 | 2014-08-28 | Three Rivers Cardiovascular Systems Inc. | Fluid temperature and flow sensor apparatus and system for cardiovascular and other medical applications |
JP6041427B2 (en) * | 2012-08-31 | 2016-12-07 | 朝日インテック株式会社 | Guide wire with sensor |
CA2882198A1 (en) * | 2012-08-31 | 2014-03-06 | Volcano Corporation | Mounting structures for components of intravascular devices |
US20140276117A1 (en) * | 2013-03-15 | 2014-09-18 | Volcano Corporation | Intravascular Devices, Systems, and Methods |
US10278729B2 (en) | 2013-04-26 | 2019-05-07 | Medtronic Xomed, Inc. | Medical device and its construction |
CN103720463B (en) * | 2013-12-31 | 2015-08-26 | 上海交通大学 | Based on intelligent pressure seal wire and the transducer production method of flexible MEMS sensor |
EP3166478A4 (en) * | 2014-07-13 | 2018-02-14 | Three Rivers Cardiovascular Systems Inc. | System and apparatus comprising a multisensor guidewire for use in interventional cardiology |
WO2017136746A1 (en) | 2016-02-03 | 2017-08-10 | Cormetrics Llc | Modular sensing guidewire |
JP6880583B2 (en) * | 2016-07-11 | 2021-06-02 | ニプロ株式会社 | Pressure measuring device |
US11272847B2 (en) | 2016-10-14 | 2022-03-15 | Hemocath Ltd. | System and apparatus comprising a multi-sensor catheter for right heart and pulmonary artery catheterization |
US11617542B2 (en) | 2017-11-08 | 2023-04-04 | Murata Manufacturing Co., Ltd. | Electrical interconnection for a catheter |
US11452533B2 (en) | 2019-01-10 | 2022-09-27 | Abbott Cardiovascular Systems Inc. | Guide wire tip having roughened surface |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3710781A (en) * | 1970-10-12 | 1973-01-16 | T Huthcins | Catheter tip pressure transducer |
JPS4893187A (en) * | 1972-03-10 | 1973-12-03 | ||
US3946724A (en) * | 1973-04-09 | 1976-03-30 | Thomson Medical-Telco | Device for measuring pressure |
JPS57136434A (en) * | 1981-02-17 | 1982-08-23 | Hitachi Cable | Optical fiber cathetel |
JPS5980257A (en) * | 1982-11-01 | 1984-05-09 | テルモ株式会社 | Cathetel and production thereof |
US4787396A (en) * | 1987-06-18 | 1988-11-29 | Fiberoptic Sensor Technologies, Inc. | Fiberoptic pressure transducer |
EP0313836A2 (en) * | 1987-09-30 | 1989-05-03 | Advanced Cardiovascular Systems, Inc. | Pressure monitoring guidewire |
US4873986A (en) * | 1987-04-01 | 1989-10-17 | Utah Medical Products | Disposable apparatus for monitoring intrauterine pressure and fetal heart rate |
WO1989010088A1 (en) * | 1988-04-18 | 1989-11-02 | Target Therapeutics | Catheter guide wire |
WO1990001294A1 (en) * | 1988-07-29 | 1990-02-22 | Radisensor Ab | Miniaturized pressure sensor |
US4953553A (en) * | 1989-05-11 | 1990-09-04 | Advanced Cardiovascular Systems, Inc. | Pressure monitoring guidewire with a flexible distal portion |
US5069226A (en) * | 1989-04-28 | 1991-12-03 | Tokin Corporation | Catheter guidewire with pseudo elastic shape memory alloy |
-
1990
- 1990-07-11 SE SE9002416A patent/SE506135C2/en not_active IP Right Cessation
-
1991
- 1991-07-10 US US07/728,142 patent/US5226423A/en not_active Ceased
-
1995
- 1995-07-13 US US08/501,810 patent/USRE35648E/en not_active Expired - Lifetime
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3710781A (en) * | 1970-10-12 | 1973-01-16 | T Huthcins | Catheter tip pressure transducer |
JPS4893187A (en) * | 1972-03-10 | 1973-12-03 | ||
US3946724A (en) * | 1973-04-09 | 1976-03-30 | Thomson Medical-Telco | Device for measuring pressure |
JPS57136434A (en) * | 1981-02-17 | 1982-08-23 | Hitachi Cable | Optical fiber cathetel |
JPS5980257A (en) * | 1982-11-01 | 1984-05-09 | テルモ株式会社 | Cathetel and production thereof |
US4873986A (en) * | 1987-04-01 | 1989-10-17 | Utah Medical Products | Disposable apparatus for monitoring intrauterine pressure and fetal heart rate |
US4787396A (en) * | 1987-06-18 | 1988-11-29 | Fiberoptic Sensor Technologies, Inc. | Fiberoptic pressure transducer |
EP0313836A2 (en) * | 1987-09-30 | 1989-05-03 | Advanced Cardiovascular Systems, Inc. | Pressure monitoring guidewire |
WO1989010088A1 (en) * | 1988-04-18 | 1989-11-02 | Target Therapeutics | Catheter guide wire |
WO1990001294A1 (en) * | 1988-07-29 | 1990-02-22 | Radisensor Ab | Miniaturized pressure sensor |
US5069226A (en) * | 1989-04-28 | 1991-12-03 | Tokin Corporation | Catheter guidewire with pseudo elastic shape memory alloy |
US4953553A (en) * | 1989-05-11 | 1990-09-04 | Advanced Cardiovascular Systems, Inc. | Pressure monitoring guidewire with a flexible distal portion |
Cited By (165)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100030047A1 (en) * | 1991-03-04 | 2010-02-04 | Abbott Diabetes Care Inc. | Subcutaneous Glucose Electrode |
US8588881B2 (en) | 1991-03-04 | 2013-11-19 | Abbott Diabetes Care Inc. | Subcutaneous glucose electrode |
US20100030044A1 (en) * | 1991-03-04 | 2010-02-04 | Abbott Diabetes Care Inc. | Subcutaneous Glucose Electrode |
US20100030048A1 (en) * | 1991-03-04 | 2010-02-04 | Abbott Diabetes Care Inc. | Subcutaneous Glucose Electrode |
US8741590B2 (en) | 1991-03-04 | 2014-06-03 | Abbott Diabetes Care Inc. | Subcutaneous glucose electrode |
US6167763B1 (en) | 1995-06-22 | 2001-01-02 | Radi Medical Systems Ab | Pressure sensor and guide wire assembly for biological pressure measurements |
US7833194B2 (en) | 1997-03-11 | 2010-11-16 | Carefusion 202, Inc. | Catheter having insertion control mechanism |
US8706180B2 (en) | 1998-03-04 | 2014-04-22 | Abbott Diabetes Care Inc. | Electrochemical analyte sensor |
US8463351B2 (en) * | 1998-03-04 | 2013-06-11 | Abbott Diabetes Care Inc. | Electrochemical analyte sensor |
US6475187B1 (en) * | 1998-03-04 | 2002-11-05 | Scimed Life Systems, Inc. | Convertible catheter incorporating distal force transfer mechanism |
US6517481B2 (en) | 1998-12-23 | 2003-02-11 | Radi Medical Systems Ab | Method and sensor for wireless measurement of physiological variables |
US6312380B1 (en) | 1998-12-23 | 2001-11-06 | Radi Medical Systems Ab | Method and sensor for wireless measurement of physiological variables |
US6336906B1 (en) | 1998-12-23 | 2002-01-08 | Radi Medical Systems Ab | Sensor and guide wire assembly |
US7468027B2 (en) | 1999-03-01 | 2008-12-23 | Coaxia, Inc. | Partial aortic occlusion devices and methods for cerebral perfusion augmentation |
US6767345B2 (en) | 1999-03-01 | 2004-07-27 | Coaxia, Inc. | Partial aortic occlusion devices and methods for renal and coronary perfusion augmentation |
US7166097B2 (en) | 1999-03-01 | 2007-01-23 | Coaxia, Inc. | Cerebral perfusion augmentation |
US7993324B2 (en) | 1999-03-01 | 2011-08-09 | Coaxia, Inc. | Cerebral perfusion augmentation |
US20050085685A1 (en) * | 1999-03-01 | 2005-04-21 | Coaxia, Inc. | Cerebral perfusion augmentation |
US20090247884A1 (en) * | 1999-03-01 | 2009-10-01 | Barbut Denise R | Cerebral perfusion augmentation |
US20060047262A1 (en) * | 1999-03-01 | 2006-03-02 | Barbut Denise R | Partial aortic occlusion devices and methods for cerebral perfusion augmentation |
US20050091833A1 (en) * | 1999-03-03 | 2005-05-05 | Kiepen Horst F. | Flexible elongate member having one or more electrical contacts |
US7676910B2 (en) | 1999-03-03 | 2010-03-16 | Volcano Corporation | Flexible elongate member having one or more electrical contacts |
US6210339B1 (en) * | 1999-03-03 | 2001-04-03 | Endosonics Corporation | Flexible elongate member having one or more electrical contacts |
US6692446B2 (en) * | 2000-03-21 | 2004-02-17 | Radi Medical Systems Ab | Passive biotelemetry |
US7867195B2 (en) | 2001-04-24 | 2011-01-11 | Coaxia, Inc. | Partial aortic occlusion devices and methods for cerebral perfusion augmentation |
US20110106132A1 (en) * | 2001-04-24 | 2011-05-05 | Barbut Denise R | Partial aortic occlusion devices and methods for cerebral perfusion augmentation |
US20070135793A1 (en) * | 2001-04-24 | 2007-06-14 | Coaxia, Inc. | Partial aortic occlusion devices and methods for cerebral perfusion augmentation |
US8888740B2 (en) | 2001-04-24 | 2014-11-18 | Zoll Circulation, Inc. | Partial aortic occlusion devices and methods for cerebral perfusion augmentation |
US20050124849A1 (en) * | 2001-04-24 | 2005-06-09 | Barbut Denise R. | Partial aortic occlusion devices and methods for cerebral perfusion augmentation |
US7150736B2 (en) | 2001-04-24 | 2006-12-19 | Coaxia, Inc. | Cerebral perfusion augmentation |
US20050159640A1 (en) * | 2001-04-24 | 2005-07-21 | Coaxia, Inc. | Cerebral perfusion augmentation |
EP2025360A2 (en) | 2001-04-24 | 2009-02-18 | Coaxia, Inc. | Partial aortic occlusion devices and methods for cerebral perfusion augmentation |
US6585660B2 (en) | 2001-05-18 | 2003-07-01 | Jomed Inc. | Signal conditioning device for interfacing intravascular sensors having varying operational characteristics to a physiology monitor |
US6939313B2 (en) | 2001-07-12 | 2005-09-06 | Vahid Saadat | Device for sensing parameters of a hollow body organ |
US20030088187A1 (en) * | 2001-07-12 | 2003-05-08 | Vahid Saadat | Device for sensing parameters of a hollow body organ |
US7160255B2 (en) | 2001-07-12 | 2007-01-09 | Vahid Saadat | Method and device for sensing and mapping temperature profile of a hollow body organ |
US20050240116A1 (en) * | 2001-07-12 | 2005-10-27 | Vahid Saadat | Device for sensing parameters of a hollow body organ |
US6663570B2 (en) | 2002-02-27 | 2003-12-16 | Volcano Therapeutics, Inc. | Connector for interfacing intravascular sensors to a physiology monitor |
US7274956B2 (en) | 2002-02-27 | 2007-09-25 | Volcano Corporation | Connector for interfacing intravascular sensors to a physiology monitor |
US20040082866A1 (en) * | 2002-02-27 | 2004-04-29 | Mott Eric V. | Connector for interfacing intravascular sensors to a physiology monitor |
US20070060822A1 (en) * | 2002-05-20 | 2007-03-15 | Volcano Corp. | Multipurpose host system for invasive cardiovascular diagnostic measurement acquisition and display |
US7134994B2 (en) | 2002-05-20 | 2006-11-14 | Volcano Corporation | Multipurpose host system for invasive cardiovascular diagnostic measurement acquisition and display |
US8636659B2 (en) | 2002-05-20 | 2014-01-28 | Volcano Corporation | Multipurpose host system for invasive cardiovascular diagnostic measurement acquisition and display |
US20030216621A1 (en) * | 2002-05-20 | 2003-11-20 | Jomed N.V. | Multipurpose host system for invasive cardiovascular diagnostic measurement acquisition and display |
US8562537B2 (en) | 2002-05-20 | 2013-10-22 | Volcano Corporation | Multipurpose host system for invasive cardiovascular diagnostic measurement acquisition and display |
US8556820B2 (en) | 2002-05-20 | 2013-10-15 | Volcano Corporation | Multipurpose host system for invasive cardiovascular diagnostic measurement acquisition and display |
EP1493381A1 (en) | 2003-07-02 | 2005-01-05 | Radi Medical Systems Ab | Sensor and guide wire assembly |
US20050000294A1 (en) * | 2003-07-02 | 2005-01-06 | Radi Medical Systems Ab | Sensor and guide wire assembly |
US6993974B2 (en) | 2003-07-02 | 2006-02-07 | Radi Medical Systems Ab | Sensor and guide wire assembly |
US7021152B2 (en) | 2003-07-18 | 2006-04-04 | Radi Medical Systems Ab | Sensor and guide wire assembly |
US20070106142A1 (en) * | 2003-11-21 | 2007-05-10 | Radi Medical Systems Ab | Sensor and guide wire assembly |
US8403868B2 (en) | 2003-11-21 | 2013-03-26 | Radi Medical Systems Ab | Sensor and guide wire assembly |
US7931603B2 (en) * | 2003-11-21 | 2011-04-26 | Radi Medical Systems Ab | Sensor and guide wire assembly |
US9949647B2 (en) | 2004-06-04 | 2018-04-24 | St. Jude Medical Coordination Center Bvba | Sensor and guide wire assembly |
US7645233B2 (en) | 2004-06-07 | 2010-01-12 | Radi Medical Systems Ab | Powering a guide wire mounted sensor for intra-vascular measurements of physiological variables by means of inductive coupling |
US20070255144A1 (en) * | 2004-06-07 | 2007-11-01 | Radi Medical Systems Ab | Powering a Guide Wire Mounted Sensor for Intra-Vascular Measurements of Physiological Variables by Means of Inductive Coupling |
US7263894B2 (en) | 2004-06-07 | 2007-09-04 | Radi Medical Systems Ab | Sensor and guide wire assembly |
US9889277B2 (en) | 2005-01-13 | 2018-02-13 | Avent, Inc. | Tubing assembly and signal generator placement control device and method for use with catheter guidance systems |
US9579488B2 (en) | 2005-01-13 | 2017-02-28 | Corpak Medsystems, Inc. | Tubing assembly and signal generator placement control device and method for use with catheter guidance systems |
US9131956B2 (en) | 2005-01-13 | 2015-09-15 | Corpak Medsystems, Inc. | Tubing assembly and signal generator placement control device and method for use with catheter guidance systems |
US7976518B2 (en) | 2005-01-13 | 2011-07-12 | Corpak Medsystems, Inc. | Tubing assembly and signal generator placement control device and method for use with catheter guidance systems |
US10549074B2 (en) | 2005-01-13 | 2020-02-04 | Avent, Inc. | Tubing assembly and signal generation placement device and method for use with catheter guidance systems |
US7343811B2 (en) | 2005-02-24 | 2008-03-18 | Radi Medical Systems Ab | Sensor and guide wire assembly |
US20060207335A1 (en) * | 2005-02-24 | 2006-09-21 | Radi Medical Systems Ab | Sensor and guide wire assembly |
EP1695659A1 (en) | 2005-02-24 | 2006-08-30 | Radi Medical Systems Ab | Sensor and guide wire assembly |
US7775988B2 (en) | 2005-09-30 | 2010-08-17 | Radi Medical Systems Ab | Method for determining the blood flow in a coronary artery |
US8715200B2 (en) | 2005-09-30 | 2014-05-06 | Radi Medical Systems Ab | System for determining the blood flow in a coronary artery |
US20070078352A1 (en) * | 2005-09-30 | 2007-04-05 | Radi Medical System Ab | Method for determining the blood flow in a coronary artery |
US20100286537A1 (en) * | 2005-09-30 | 2010-11-11 | Radi Medical Systems Ab | System for determining the blood flow in a coronary artery |
US7331236B2 (en) | 2006-03-21 | 2008-02-19 | Radi Medical Systems Ab | Pressure sensor |
US20070220986A1 (en) * | 2006-03-21 | 2007-09-27 | Radi Medical Systems Ab | Pressure sensor |
US10424010B2 (en) | 2006-07-28 | 2019-09-24 | Visa International Service Association | Methods for an alternative payment platform |
US10387948B2 (en) | 2006-07-28 | 2019-08-20 | Trialpay, Inc. | Methods for an alternative payment platform |
US7788139B2 (en) | 2006-07-28 | 2010-08-31 | TrailPay, Inc. | Methods and systems for an alternative payment platform |
US10733664B2 (en) | 2006-07-28 | 2020-08-04 | Trialpay, Inc. | Methods for an alternative payment platform |
US11676201B2 (en) | 2006-07-28 | 2023-06-13 | Trialpay, Inc. | Methods for an alternative payment platform |
US11836790B2 (en) | 2006-07-28 | 2023-12-05 | Trialpay, Inc. | Methods for an alternative payment platform |
US20080077050A1 (en) * | 2006-09-08 | 2008-03-27 | Radi Medical Systems Ab | Electrical connector for medical device |
US7967761B2 (en) | 2006-12-01 | 2011-06-28 | Radi Medical Systems Ab | Sensor and guide wire assembly |
US20080132806A1 (en) * | 2006-12-01 | 2008-06-05 | Radi Medical Systems Ab | Sensor and guide wire assembly |
US8038628B2 (en) | 2007-05-24 | 2011-10-18 | Radi Medical Systems Ab | Torque device for a sensor guide wire |
US7472601B1 (en) | 2007-09-21 | 2009-01-06 | Radi Medical Systems Ab | Sensor for intravascular measurements within a living body |
US20100318000A1 (en) * | 2007-10-26 | 2010-12-16 | St.Jude Medical Systems Ab | Sensor guide wire |
US20110152721A1 (en) * | 2008-01-23 | 2011-06-23 | Ran Sela | Sensor mounted flexible guidewire |
US8343076B2 (en) | 2008-01-23 | 2013-01-01 | MediGuide, Ltd. | Sensor mounted flexible guidewire |
US8936559B2 (en) | 2008-01-23 | 2015-01-20 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Sensor mounted flexible guidewire |
US10071230B2 (en) | 2008-01-23 | 2018-09-11 | Mediguide Ltd. | Sensor mounted flexible guidewire |
US10065023B2 (en) | 2008-01-23 | 2018-09-04 | Mediguide Ltd. | Guidewire interconnecting apparatus |
US9144395B2 (en) | 2008-01-23 | 2015-09-29 | MediGuide, Ltd. | Guidewire interconnecting apparatus |
US9095685B2 (en) | 2008-01-23 | 2015-08-04 | Mediguide Ltd. | Sensor mounted flexible guidewire |
EP2085108A2 (en) | 2008-01-23 | 2009-08-05 | Mediguide Ltd. | Sensor mounted flexible guidewire |
US8858468B2 (en) | 2008-01-23 | 2014-10-14 | Mediguide Ltd. | Guidewire interconnecting apparatus |
US20100109104A1 (en) * | 2008-10-30 | 2010-05-06 | Radi Medical Systems Ab | Pressure sensor and wire guide assembly |
US20110213220A1 (en) * | 2010-01-29 | 2011-09-01 | St. Jude Medical Systems Ab | Medical guide wire assembly |
US8617088B2 (en) | 2010-01-29 | 2013-12-31 | St. Jude Medical Systems Ab | Medical guide wire assembly |
WO2011092202A1 (en) | 2010-01-29 | 2011-08-04 | St Jude Medical Systems Ab | Medical guide wire assembly |
US8696600B2 (en) | 2010-01-29 | 2014-04-15 | St. Jude Medical Systems Ab | Medical guide wire assembly |
WO2011092190A1 (en) | 2010-01-29 | 2011-08-04 | St Jude Medical Systems Ab | Medical guide wire assembly |
US20110201906A1 (en) * | 2010-01-29 | 2011-08-18 | St. Jude Medical Systems Ab | Medical guide wire assembly |
WO2011157299A1 (en) | 2010-06-18 | 2011-12-22 | St. Jude Medical Ab | Implantable sensor device and system |
WO2011161212A1 (en) | 2010-06-23 | 2011-12-29 | P2-Science Aps | Combined flow directed intraarterial microcatheter for the infusion of hyperemic agent and concomitant pressure measurements for diagnostic purposes |
US11998356B2 (en) | 2010-06-30 | 2024-06-04 | St. Jude Medical Coordination Center Bvba | Sensor jacket |
EP3417772A1 (en) | 2010-06-30 | 2018-12-26 | St. Jude Medical Coordination Center BVBA | Sensor jacket |
US10426404B2 (en) | 2010-06-30 | 2019-10-01 | St. Jude Medical Coordination Center Bvba | Sensor jacket |
US11547359B2 (en) | 2010-06-30 | 2023-01-10 | St. Jude Medical Coordination Center Bvba | Sensor jacket |
WO2012000798A1 (en) | 2010-06-30 | 2012-01-05 | St Jude Medical Systems Ab | Sensor jacket |
WO2012004107A1 (en) | 2010-07-06 | 2012-01-12 | St Jude Medical Systems Ab | Sensor element with an insulation layer |
US9332923B2 (en) | 2010-07-06 | 2016-05-10 | St. Jude Medical Coordination Center Bvba | Sensor element with an insulation layer |
EP3031391A1 (en) | 2010-07-06 | 2016-06-15 | St. Jude Medical Coordination Center BVBA | Sensor element |
US9763622B2 (en) | 2010-07-06 | 2017-09-19 | St. Jude Medical Coordination Center Bvba | Sensor element with an insulation layer |
EP2433674A1 (en) | 2010-09-23 | 2012-03-28 | St. Jude Medical AB | Systems for stimulating a heart |
US10314541B2 (en) | 2010-09-29 | 2019-06-11 | St. Jude Medical Coordination Center Bvba | Sensor guide wire |
WO2012041905A1 (en) | 2010-09-29 | 2012-04-05 | St Jude Medical Systems Ab | Sensor guide wire |
WO2012084044A1 (en) | 2010-12-23 | 2012-06-28 | St. Jude Medical Ab | Method and system for optimizing cardiac pacing settings |
EP2491977A1 (en) | 2011-02-28 | 2012-08-29 | St. Jude Medical AB | Method and system for adapting pacing settings of a cardiac stimulator |
US11241154B2 (en) | 2011-05-31 | 2022-02-08 | Lightlab Imaging, Inc. | Multimodal imaging system, apparatus, and methods |
US10648918B2 (en) | 2011-08-03 | 2020-05-12 | Lightlab Imaging, Inc. | Systems, methods and apparatus for determining a fractional flow reserve (FFR) based on the minimum lumen area (MLA) and the constant |
US10888232B2 (en) | 2011-08-20 | 2021-01-12 | Philips Image Guided Therapy Corporation | Devices, systems, and methods for assessing a vessel |
US11122980B2 (en) | 2011-08-20 | 2021-09-21 | Imperial College Of Science, Technology And Medicine | Devices, systems, and methods for visually depicting a vessel and evaluating treatment options |
US9918907B2 (en) | 2011-09-08 | 2018-03-20 | Avent, Inc. | Method for electromagnetic guidance of feeding and suctioning tube assembly |
US9028441B2 (en) | 2011-09-08 | 2015-05-12 | Corpak Medsystems, Inc. | Apparatus and method used with guidance system for feeding and suctioning |
US9079000B2 (en) | 2011-10-18 | 2015-07-14 | Boston Scientific Scimed, Inc. | Integrated crossing balloon catheter |
WO2013070146A1 (en) | 2011-11-09 | 2013-05-16 | St Jude Medical Systems Ab | Sensor guide wire |
US9044202B2 (en) | 2011-11-09 | 2015-06-02 | St. Jude Medical Coordination Center Bvba | Sensor guide wire |
WO2013095289A1 (en) | 2011-12-21 | 2013-06-27 | St. Jude Medical Systems Ab | Biocompatible x-ray opaque polymers for medical device |
US10226185B2 (en) | 2012-05-03 | 2019-03-12 | St. Jude Medical Coordination Center Bvba | Tube and sensor guide wire comprising tube |
US11172833B2 (en) | 2012-05-25 | 2021-11-16 | Phyzhon Health Inc. | Optical fiber pressure sensor guidewire |
US10506934B2 (en) | 2012-05-25 | 2019-12-17 | Phyzhon Health Inc. | Optical fiber pressure sensor |
US10835183B2 (en) | 2013-07-01 | 2020-11-17 | Zurich Medical Corporation | Apparatus and method for intravascular measurements |
US11471061B2 (en) | 2013-07-01 | 2022-10-18 | Zurich Medical Corporation | Apparatus and method for intravascular measurements |
US10702170B2 (en) | 2013-07-01 | 2020-07-07 | Zurich Medical Corporation | Apparatus and method for intravascular measurements |
US11298026B2 (en) | 2013-10-04 | 2022-04-12 | Phyzhon Health Inc. | Imaging techniques using an imaging guidewire |
US10327645B2 (en) | 2013-10-04 | 2019-06-25 | Vascular Imaging Corporation | Imaging techniques using an imaging guidewire |
US10470713B2 (en) | 2013-10-25 | 2019-11-12 | St. Jude Medical Coordination Center Bvba | Sensor guide wire device and system including a sensor guide wire device |
WO2015059578A2 (en) | 2013-10-25 | 2015-04-30 | St. Jude Medical Systems Ab | Sensor guide wire device and system including a sensor guide wire device |
US10130269B2 (en) | 2013-11-14 | 2018-11-20 | Medtronic Vascular, Inc | Dual lumen catheter for providing a vascular pressure measurement |
US9877660B2 (en) | 2013-11-14 | 2018-01-30 | Medtronic Vascular Galway | Systems and methods for determining fractional flow reserve without adenosine or other pharmalogical agent |
US10537255B2 (en) | 2013-11-21 | 2020-01-21 | Phyzhon Health Inc. | Optical fiber pressure sensor |
US11696692B2 (en) | 2013-11-21 | 2023-07-11 | Phyzhon Health Inc. | Optical fiber pressure sensor |
US9913585B2 (en) | 2014-01-15 | 2018-03-13 | Medtronic Vascular, Inc. | Catheter for providing vascular pressure measurements |
US11559218B2 (en) | 2014-04-04 | 2023-01-24 | St. Jude Medical Coordination Center Bvba | Intravascular pressure and flow data diagnostic systems, devices, and methods |
US10307070B2 (en) | 2014-04-04 | 2019-06-04 | St. Jude Medical Coordination Center Bvba | Intravascular pressure and flow data diagnostic systems, devices, and methods |
US10201284B2 (en) | 2014-06-16 | 2019-02-12 | Medtronic Vascular Inc. | Pressure measuring catheter having reduced error from bending stresses |
US11330989B2 (en) | 2014-06-16 | 2022-05-17 | Medtronic Vascular, Inc. | Microcatheter sensor design for mounting sensor to minimize induced strain |
US10973418B2 (en) | 2014-06-16 | 2021-04-13 | Medtronic Vascular, Inc. | Microcatheter sensor design for minimizing profile and impact of wire strain on sensor |
US11701012B2 (en) | 2014-06-16 | 2023-07-18 | Medtronic Vascular, Inc. | Microcatheter sensor design for minimizing profile and impact of wire strain on sensor |
US12053265B2 (en) | 2014-06-16 | 2024-08-06 | Medtronic Vascular, Inc. | Microcatheter sensor design for mounting sensor to minimize induced strain |
US11850030B2 (en) | 2014-06-16 | 2023-12-26 | Medtronic Vascular, Inc. | Pressure measuring catheter having reduced error from bending stresses |
US20160022215A1 (en) * | 2014-07-22 | 2016-01-28 | Volcano Corporation | Intravascular devices, systems, and methods having a core wire with multiple flattened sections |
US11246533B2 (en) * | 2014-07-22 | 2022-02-15 | Philips Image Guided Therapy Corporation | Intravascular devices, systems, and methods having a core wire with multiple flattened sections |
US20160067456A1 (en) * | 2014-09-04 | 2016-03-10 | Volcano Corporation | Pressure guide wire pullback catheter |
US10537715B2 (en) * | 2014-09-04 | 2020-01-21 | Volcano Corporation | Pressure guide wire pullback catheter |
US10258240B1 (en) | 2014-11-24 | 2019-04-16 | Vascular Imaging Corporation | Optical fiber pressure sensor |
US10194812B2 (en) | 2014-12-12 | 2019-02-05 | Medtronic Vascular, Inc. | System and method of integrating a fractional flow reserve device with a conventional hemodynamic monitoring system |
US12064225B2 (en) | 2015-02-26 | 2024-08-20 | St. Jude Medical Coordination Center Bvba | Pressure sensor and guide wire with hydrophilic material |
US10898090B2 (en) | 2015-02-26 | 2021-01-26 | St. Jude Medical Coordination Center Bvba | Pressure sensor and guide wire with self wetting tube |
WO2017160987A1 (en) | 2016-03-16 | 2017-09-21 | St. Jude Medical Coordination Center Bvba | Core wire having a flattened portion to provide preferential bending |
US10792473B2 (en) | 2016-03-16 | 2020-10-06 | St. Jude Medical Coordination Center Bvba | Core wire having a flattened portion to provide preferential bending |
US11272850B2 (en) | 2016-08-09 | 2022-03-15 | Medtronic Vascular, Inc. | Catheter and method for calculating fractional flow reserve |
US11330994B2 (en) | 2017-03-08 | 2022-05-17 | Medtronic Vascular, Inc. | Reduced profile FFR catheter |
US10646122B2 (en) | 2017-04-28 | 2020-05-12 | Medtronic Vascular, Inc. | FFR catheter with covered distal pressure sensor and method of manufacture |
US11235124B2 (en) | 2017-08-09 | 2022-02-01 | Medtronic Vascular, Inc. | Collapsible catheter and method for calculating fractional flow reserve |
US11219741B2 (en) | 2017-08-09 | 2022-01-11 | Medtronic Vascular, Inc. | Collapsible catheter and method for calculating fractional flow reserve |
US11185244B2 (en) | 2018-08-13 | 2021-11-30 | Medtronic Vascular, Inc. | FFR catheter with suspended pressure sensor |
CN110912357A (en) * | 2018-09-18 | 2020-03-24 | 联合汽车电子有限公司 | Wire management fastening device and method |
Also Published As
Publication number | Publication date |
---|---|
SE9002416L (en) | 1992-01-15 |
US5226423A (en) | 1993-07-13 |
SE506135C2 (en) | 1997-11-17 |
SE9002416D0 (en) | 1990-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE35648E (en) | Sensor guide construction and use thereof | |
US6142958A (en) | Sensor and guide wire assembly | |
US6112598A (en) | Pressure sensor and guide wire assembly for biological pressure measurements | |
JP2719425B2 (en) | Miniature type pressure sensor | |
US6132388A (en) | Guide wire tip | |
JP3062428B2 (en) | Pressure measurement guidewire | |
US4554929A (en) | Catheter guide wire with short spring tip and method of using the same | |
EP2085108B9 (en) | Sensor mounted flexible guidewire | |
EP2413787B1 (en) | Sensor guide wire | |
CA2025949C (en) | Joint construction for a medical guide wire | |
US9566418B2 (en) | Sensor guide wire with micro-cable winding | |
US4763647A (en) | Dual coil steerable guidewire | |
EP1479407B1 (en) | Sensor and guide wire assembly | |
EP2209419B1 (en) | Sensor guide wire | |
US20100318000A1 (en) | Sensor guide wire | |
EP0879615A1 (en) | Pressure monitoring guide wire | |
US20040225232A1 (en) | Sensor guide wire | |
US5249580A (en) | Method for ultrasound imaging | |
CN111031904A (en) | Pressure catheter and guidewire assembly | |
EP1475036B1 (en) | Sensor guide wire | |
JPWO2020219457A5 (en) | ||
JPH10309319A (en) | Guide wire for catheter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 8 |
|
SULP | Surcharge for late payment |
Year of fee payment: 7 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 12 |