USRE35234E - Modular air scrubber system - Google Patents
Modular air scrubber system Download PDFInfo
- Publication number
- USRE35234E USRE35234E US07/928,407 US92840792A USRE35234E US RE35234 E USRE35234 E US RE35234E US 92840792 A US92840792 A US 92840792A US RE35234 E USRE35234 E US RE35234E
- Authority
- US
- United States
- Prior art keywords
- scrubber
- air
- tower
- solution
- modular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D47/00—Separating dispersed particles from gases, air or vapours by liquid as separating agent
- B01D47/12—Washers with plural different washing sections
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D47/00—Separating dispersed particles from gases, air or vapours by liquid as separating agent
- B01D47/14—Packed scrubbers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/30—Details relating to random packing elements
- B01J2219/302—Basic shape of the elements
- B01J2219/30207—Sphere
Definitions
- the present invention relates to air scrubber systems in general, and in particular, to a multi-stage, modular air scrubber system which can be custom tailored to effectively handle many air treatment applications.
- the air scrubber system comprises at least three scrubbing modules or towers configured to remove hydrogen sulfide through counter current contact of contaminated air with an aqueous, alkaline scrubbing solution.
- Each scrubbing tower includes a substantially L-shaped housing, formed with an upper portion which includes a column packed with contact media, and a lower portion which includes liquid sump containing a scrubbing solution.
- a liquid recirculation system is provided for each module which comprises a continuously operating submersible pump located in the lower portion of the tower, appropriate plumbing, and a spray discharge head comprising a plurality of nozzles for discharging scrubbing solution onto the contact media in the upper portion of the tower.
- Access to the packed column is provided by way of a sealing lid mounted atop the scrubber unit, while access to the liquid sump section is provided by way of a removable cover located directly above the sump.
- an air inlet is provided in the first of three modules, for supplying air from a wet well to the lower portion of the first module, but above the level of scrubbing solution.
- Apertures are also provided in the upper portions of adjacent, facing side walls of the modules which permits air to flow from the first to third modules in succession.
- the second and third modules are provided with partitions in their respective upper portions which create flow paths for the air between the upper and lower portions of these modules.
- the third module is also provided with an air outlet in its upper portion, leading to an outlet duct, air blower and exhaust stack.
- a scrubber solution inlet is provided in the lower portion of the third inlet, and spillways are formed in the adjacent, facing walls of the lower portions of the second and third modules, while a scrubber solution drain is provided in the lower portion of the first module. Because the scrubber solution inlet, spillways and drain are at successively lower heights in the respective module walls, the scrubber solution passes through the system in a direction opposite the air flow direction.
- the air scrubber system in accordance with one exemplary embodiment of the invention also provides for intimate mixing of water and a suitable alkaline chemical, for example, to form an aqueous scrubbing solution prior to introduction of the solution into the appropriate scrubber module.
- the system also provides for delivery of the aqueous scrubbing solution to the scrubber towers at a predetermined rate, adjustable within predetermined limits, in conventional fashion.
- Both air scrubber solution feed and chemical feed controls are preferably housed in an accessible control panel located proximate to the modules.
- Spent scrubbing solution is disposed of via a sewage system which forms no part of this invention per se.
- contaminated air to be treated is conveyed from a source successively through the three air scrubber towers with the aid of the blower at the outlet side of the system, where cleaned air is discharged to atmosphere via the stack. More specifically, the air is constrained to flow upwardly through the contact media of the first module, downwardly through the passageway formed in the second module adjacent the contact media to the lower portion, then upwardly through the contact media in the second module. After similar flow through the third module, the air is drawn into the outlet duct and exhausted to atmosphere.
- scrubbing solution is passed successively through the towers in the opposite direction, i.e., in a counterflow arrangement. Specifically, scrubbing solution is fed into the lower portion of the third module, spilling over into the second and first modules. Simultaneously, solution is pumped from the lower portion of each module up into the upper portion of the respective modules to be distributed across the contact media via the spray head discharge nozzles. Cleansing of the air in this exemplary embodiment occurs within the upper portion of each tower as the air flows upwardly through the contact media while scrubbing solution flows downwardly through the contact media.
- an additional smaller contact media column is provided above the spray head assembly, in the third, or outlet module to provide demisting of the air prior to discharge to atmosphere.
- each of the scrubbing towers is essentially identical in construction, addition or subtraction of individual towers, for increasing or decreasing scrubbing capacity, is easily accomplished.
- the flow paths may be reversed or altered inlets and outlets may be changed, and contact media size and composition may be altered in accordance with job requirements with minimal effort.
- one or more types of scrubbing solutions or treatment fluids may be utilized, e.g., caustic or hypochlorite solution, either alone or in combination, depending on the process.
- caustic or hypochlorite solution e.g., caustic or hypochlorite solution
- the same modules may be utilized in any number of air treatment processes, providing a degree of versatility and flexibility heretofore unavailable in the art.
- FIG. 1 is a front view of a modular air scrubber system in accordance with one exemplary embodiment of the invention
- FIG. 2 is a top view of the modular air scrubber system shown in FIG. 1;
- FIG. 3 is a partial front section view taken along the line A--A of FIG. 2;
- FIG. 4 is a front cross-sectional view taken along the line B--B of FIG. 2;
- FIG. 5 is a side cross-sectional view taken along the line C--C of FIG. 2;
- FIG. 6 is a side cross-sectional view taken along the line D--D of FIG. 2;
- FIG. 7 is a partial plan view with access cover removed
- FIG. 8 is a schematic flow diagram illustrating the operation of the air scrubber system in accordance with one exemplary embodiment of this invention.
- intermediate modules such as that shown at 14 between the two end modules 12 and 16 will be identical in both exterior and interior construction.
- One end module is modified in certain respects in its capacity as a first, or inlet module, while the other end module is modified in other respects in its capacity as a last, or outlet module.
- modules have essentially the same outer wall construction as will be described in connection with module 14 below.
- module 14 comprises a rearward vertical wall 18; an upper forward vertical wall 20 and a lower forward vertical wall 22 connected by a forward horizontal wall 24; a pair of substantially L-shaped vertical side walls 26 and 28; and a horizontal top wall 30 which, in a preferred arrangement is constructed as a removable cover.
- the forward horizontal wall 24 is provided with an access opening 32 normally closed by a cover 34.
- the cover 34 may be of any suitable design, with a conventional screw thread or friction connection to an opening provided in the module.
- the modules may be designated as having upper and lower portions, the upper portion extending above a horizontal plane passing through the module along the forward horizontal wall 24, and the lower portion extending below the same plane.
- an upper portion designated 36 and lower portion designated 38 extend on either side of a horizontal plane 40.
- each lower portion 38 there is mounted a submersible pump P, preferably 1/2 HP, for supplying a treatment liquid to the upper portion of the respective module, as will be explained further herein.
- a submersible pump P preferably 1/2 HP
- each module contains appropriate conventional contact media 42 supported on a perforated, preferably plastic floor 46 which is located adjacent but slightly above the plane 40.
- modules 12 and 14 the media extends in columnar form about 3 feet vertically within the upper portions of the modules, leaving substantial space above the contact media for a purpose described further below.
- a first media column 48 extends approximately half the vertical distance of the upper portion 36.
- a second, and finer media column 50 is located in vertically spaced relationship to the first media column 48.
- partitions 52, 54 respectively, which extend vertically through the upper portions of the modules, from front to back, to thereby define passageways in conjunction with closely adjacent, respective sidewalls 26.
- adjacent i.e., facing, sidewalls 26, 28 of modules 12, 14 and 16 are provided with aligned apertures 56 adjacent their upper ends, and establish a flow path for the air from the first to the third module. Specifically, a flow path from the upper portion of module 12 through the first pair of apertures 56 and through the passageway defined by partitions 52 and sidewall 26 of module 14 to the lower portion 38 of module 14.
- the air then flows upwardly through the contact media in module 14, through the second pair of apertures 56, at the interface of the second and third modules, 14, 16, and downwardly through the passageway created by partition 54 and sidewall 28 in module 16 and into the lower portion of module 16. After similar upward flow in module 16, the air is discharged as discussed in further detail below.
- each of the modules 12, 14 and 16 comprises a reservoir for a scrubbing solution S which is supplied to the contact media from above the latter.
- a conduit 58 extends upwardly from each pump P to a spray head assembly 60 which includes a plurality of nozzles 62 which discharge scrubbing solution onto the contact media columns 42 and 48.
- the spray head assembly 60 is located in the vertical space between the media columns 48 and 50.
- the triplex unit 10, the first or inlet module 12 is provided with an air intake 64 in its lower portion, but above the normal level of scrubbing solution therein.
- the air intake is connected, via a duct 66 to a wet well 68 (see FIG. 8).
- wet well in the context of this invention means any chamber room, tank etc., generally containing a liquid and a head space above the liquid and containing contaminated air. Examples are manholes, water treatment of sewage chambers, or other sources of noxious odors.
- the last, or outlet module 16 is provided with an outlet 70 in sidewall 28 adjacent the top wall 24.
- the outlet connects to a duct 72 which directs the air to the inlet side of a blower 74, which in turn, exhausts the treated air into the atmosphere via a vertical stack 76.
- the third module 16 is provided with a scrubber solution inlet 78 in the lower portion of sidewall 28. Openings, or spillways 80 are provided in adjacent, i.e., facing, sidewalls 26, 28 at the respective interfaces between the third and second modules 16, 14 and the second and first modules 14, 12.
- the first module 12 is provided with a drain 82, also in its lower portion. As can be seen best in FIG. 3, inlet 78, spillways 80 and drain 82 are located at progressively lower heights within the lower portions of the modules, thereby causing the scrubber solution to flow through the system from the third module to the first module in a direction opposite to the flow of air.
- a water feed inlet 84 feeds water to a control unit 88 which meters a chemical solution from scrubber storage solution tank 86 into the water at a rate determined by the degree of scrubbing treatment required.
- the resulting "scrubbing" solution is introduced into the lower portion 34 of the outlet module 16 via conduit 90 and inlet 78.
- the solution spills over into each of the adjacent modules via spillways or openings 80 (FIG. 3) until the solution reaches desired levels above the submersible pumps P but below the horizontal plane 40. Because the spillways 80 are at decreasing heights in the module walls, in a direction from the outlet side to the inlet side of the triplex unit 10 (as best seen in FIG. 3), it will be appreciated that the scrubbing solution introduced in module 16 will eventually pass to modules 14 and 12 from which spent solution is directed back to the wet well 68 via the drain 82.
- a counterflow air scrubbing system is provided, the operation of which is described further below in connection with the schematic flow diagram illustrated in FIG. 8.
- air contaminated with hydrogen sulfide is introduced into module 12 and caused to flow through the triplex unit under the suction provided by the blower 74.
- the air enters the lower portion of module 12, flows upwardly through the contact media 42, passes through the openings or apertures 56 at the interface of modules 12, 14 and flows downwardly through the chamber or passageway created between the module sidewall and the partition 52 in the module 14.
- the air is again caused to flow upwardly through the contact media 42 in module 14 and thereafter, through the aligned openings 56 at the interface of modules 14, 16 and downwardly into the lower portion of the last or outlet module 16, where it is caused to flow upwardly through the contact media layers 48 and 50, and out of the unit via exhaust duct 72 and stack 76 with the aid of blower 74.
- scrubbing solution in the lower reservoir portions of each module is pumped up to the respective spray head nozzles 62 for discharge onto the contact media 42 or 48 so that the upwardly flowing air is contacted by the downwardly flowing scrubbing solution.
- inlet 78, spillways 80 and drain 82 the scrubbing solution is caused to flow opposite the flow of air to be treated, with spent scrubbing solution drained back to the wet well 68.
- the triplex unit is capable of removing 300 ppm H 2 S via counter current contact of the contaminated air with an aqueous, alkaline scrubbing solution.
- the unit will achieve greater than 50% removal of the H 2 S in the first module, greater than 80% in the second module, and greater than 90% (or up to 300 ppm) in the third module.
- each module has a volume of about 16 cubic feet, while the lower portion of each is capable of holding about 80 gallons of scrubbing solution.
- the submersible pumps P are capable of continuous operation, and are used in conjunction with standard 1" PVC plumbing and two anti-clog stainless steel nozzles 62 in the spray head assemblies 60.
- the pumps P have a capacity range from about 10 gallons per minute to 50 gallons per minute and a discharge pressure of up to 10 psi.
- the scrubber modules be made of a non-corrosive polyolefin material and that all internal scrubber components be constructed of polyolefin or stainless steel.
- the preferred overall dimension of the triplex unit is about 60" ⁇ 50" ⁇ 95".
- All scrubber solution feed conduits are preferably constructed of polyolefin and resistant to alkaline chemical and solution.
- the scrubbing solution feed system described above is capable of providing continuous delivery of an aqueous solution to the scrubber towers at a rate normally not to exceed 1.0 gallons per minute, and adjustable via variable control flow meter to within 10% of the limit.
- the scrubbing solution feed system also provides for the intimate mixing of water and, for example, an alkaline chemical prior to introduction into the scrubber, via the control unit 88.
- the metering of the chemical solution into the feed water is accomplished preferably by the use of a bellows-type positive displacement feed pump (see FIG. 8) in the control unit with a polypropylene bellows and Kel-F inlet and outlet poppet valves.
- the contaminated air is conveyed from a source of odors under vacuum preferably via a 6" diameter PVC inlet pipe to the scrubber.
- the clean air is exited through the blower 74 to the atmosphere, again via a 6" diameter PVC pipe.
- Air flow is preferably maintained between 150 and 300 cu./ft. per minute on a continuous basis by the centrifugal blower 74.
- the blower 74 is preferably one which operates at 1725 rpm via a shaft drive to a 115 volt, 1/3 HP electric motor. Again, it is preferred that the blower housing and internal parts thereof be constructed of polyolefin and stainless steel materials.
- air sampling ports are provided on both sides of the system to monitor scrubber performance and air flow.
- the control unit 88 is preferably constructed of fiberglass and stainless steel, while the chemical storage tank 86 is preferably constructed of polyolefin.
- the volume of the chemical storage tank should be designed to provide for 90 days continuous operation, but should not exceed 300 gallons.
- the modular system of this invention is easily adaptable to many scrubbing processes designed for individual pollutant and air flow requirements.
- the invention has been described above in conjunction with one exemplary use, i.e., the removal of H 2 S from contaminated air, the system may be rearranged and/or modified to provide maximum removal efficiency in many different scrubbing applications.
- a single scrubbing solution as described may be used in the modular arrangement or, different solutions (e.g., caustic and hypochlorite) may be utilized individually, or in conjunction with each other, in one or more scrubbing units.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Treating Waste Gases (AREA)
- Gas Separation By Absorption (AREA)
Abstract
Description
Claims (27)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/928,407 USRE35234E (en) | 1988-12-09 | 1992-08-12 | Modular air scrubber system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/281,746 US4948402A (en) | 1988-12-09 | 1988-12-09 | Modular air scrubber system |
US07/928,407 USRE35234E (en) | 1988-12-09 | 1992-08-12 | Modular air scrubber system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/281,746 Reissue US4948402A (en) | 1988-12-09 | 1988-12-09 | Modular air scrubber system |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE35234E true USRE35234E (en) | 1996-05-14 |
Family
ID=23078626
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/281,746 Ceased US4948402A (en) | 1988-12-09 | 1988-12-09 | Modular air scrubber system |
US07/928,407 Expired - Lifetime USRE35234E (en) | 1988-12-09 | 1992-08-12 | Modular air scrubber system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/281,746 Ceased US4948402A (en) | 1988-12-09 | 1988-12-09 | Modular air scrubber system |
Country Status (1)
Country | Link |
---|---|
US (2) | US4948402A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6207460B1 (en) | 1999-01-14 | 2001-03-27 | Extraction Systems, Inc. | Detection of base contaminants in gas samples |
US20030116018A1 (en) * | 2001-12-25 | 2003-06-26 | Hiroshi Echizen | Wet-process gas treatment method and wet-process gas treatment apparatus |
US20050189281A1 (en) * | 2002-06-14 | 2005-09-01 | Cornell Research Foundation, Inc. | Cellular microbead filter for use in water recirculating system |
US7147689B1 (en) | 2004-04-30 | 2006-12-12 | Miller Charles K | Apparatus and method for removing volatile organics from vented gases |
US20070221586A1 (en) * | 2005-06-27 | 2007-09-27 | Ruprecht John C | High pressure oil removing filter |
US20080041796A1 (en) * | 2005-06-27 | 2008-02-21 | Ruprecht John C | High back pressure filter for removing non-water component(s) from water |
US10239016B2 (en) | 2016-12-07 | 2019-03-26 | Nuorganics LLC | Systems and methods for nitrogen recovery from a gas stream |
US10513466B2 (en) | 2017-01-16 | 2019-12-24 | Nuorganics LLC | System and method for recovering nitrogenous compounds from a gas stream |
US11247918B2 (en) * | 2017-12-08 | 2022-02-15 | Westech Engineering, Llc | Multi-media clarification systems and methods |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6174498B1 (en) | 1991-10-28 | 2001-01-16 | Us Filter/Rj Environmental, Inc. | Odor control system |
US5876662A (en) * | 1991-10-28 | 1999-03-02 | Us Filter/Rj Environmental, Inc. | Odor control system |
US5186728A (en) * | 1992-03-31 | 1993-02-16 | Shell Oil Company | Process for removing volatile organic materials |
NL9300385A (en) * | 1993-03-03 | 1994-10-03 | Vam Nv | Method for cleaning gases, in particular air, using organic filter material and device for applying the method. |
DE4411078A1 (en) * | 1994-03-30 | 1995-10-05 | Gutehoffnungshuette Man | Filters for separating pollutants from flue gases |
SE509082C2 (en) * | 1997-03-03 | 1998-11-30 | Eero Erma | Electrostatic separator for purifying flue gases |
AU1451901A (en) * | 1999-11-01 | 2001-05-14 | James D. Getty | Modular chemical abatement system and method for semiconductor manufacturing |
US6372021B1 (en) | 2000-09-12 | 2002-04-16 | General Electric Company | Extractive removal of methanol from cumene-to-phenol process vent gas |
US7379487B2 (en) | 2005-02-14 | 2008-05-27 | Neumann Information Systems, Inc. | Two phase reactor |
US7866638B2 (en) | 2005-02-14 | 2011-01-11 | Neumann Systems Group, Inc. | Gas liquid contactor and effluent cleaning system and method |
US8864876B2 (en) * | 2005-02-14 | 2014-10-21 | Neumann Systems Group, Inc. | Indirect and direct method of sequestering contaminates |
US8113491B2 (en) * | 2005-02-14 | 2012-02-14 | Neumann Systems Group, Inc. | Gas-liquid contactor apparatus and nozzle plate |
US8398059B2 (en) | 2005-02-14 | 2013-03-19 | Neumann Systems Group, Inc. | Gas liquid contactor and method thereof |
US20060185517A1 (en) * | 2005-02-22 | 2006-08-24 | Nagel Daniel J | Multi-stage odor scrubber |
US8226893B2 (en) * | 2008-06-24 | 2012-07-24 | Mclauchlan Robert A | Automated sulfur recovery loop |
NZ592100A (en) * | 2008-09-26 | 2013-11-29 | Neumann Systems Group Inc | Gas liquid contactor and effluent cleaning system and method |
US20100129895A1 (en) * | 2008-11-21 | 2010-05-27 | Martin Crawford | Biofiltration system for odor control |
EP2520352B1 (en) * | 2011-05-02 | 2021-06-30 | General Electric Technology GmbH | Gas/liquid contacting vessel and the use thereof in a flue gas treatment system |
JP5896929B2 (en) * | 2013-01-22 | 2016-03-30 | 信越化学工業株式会社 | Waste gas treatment system and waste gas treatment method for chlorosilanes |
CN106076104B (en) * | 2016-08-23 | 2018-07-06 | 无锡西玖环保科技有限公司 | A kind of dual-purpose exhaust gas washing tower |
DE102018127371B4 (en) * | 2018-11-02 | 2021-12-30 | Das Environmental Expert Gmbh | Device and method for wet cleaning of a gas stream |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL25116C (en) * | ||||
US973120A (en) * | 1909-04-24 | 1910-10-18 | Ernest F Lloyd | Gas-scrubber. |
US1657822A (en) * | 1924-12-19 | 1928-01-31 | Frechou Emile Marcel Eugene | Process and device for the purification of hard water by base-exchanging bodies |
US1790975A (en) * | 1931-02-03 | dallas etal | ||
US1993175A (en) * | 1932-07-01 | 1935-03-05 | Walter J Libbey | Process and apparatus for filters |
US2585440A (en) * | 1949-07-11 | 1952-02-12 | Daniel T Collins | Water sealed air washer |
US2603354A (en) * | 1952-07-15 | Process and apparatus for obtaining | ||
US2716489A (en) * | 1946-05-07 | 1955-08-30 | Way Alben Warren | Apparatus for separating solids from a liquid body |
US2879893A (en) * | 1957-10-02 | 1959-03-31 | Pfaudler Permutit Inc | Interlocking means for battery of liquid treating units |
US3122594A (en) * | 1958-07-29 | 1964-02-25 | Aluminium Lab Ltd | Apparatus and procedure for contact between fluids |
US3282432A (en) * | 1963-02-18 | 1966-11-01 | Greenleaf Entpr Inc | Multiple unit backwashing filter |
US3312348A (en) * | 1963-10-31 | 1967-04-04 | Greenleaf Entpr Inc | Multiple unit backwashing gravity flow filter |
US3768234A (en) * | 1969-12-17 | 1973-10-30 | Universal Oil Prod Co | Venturi scrubber system including control of liquid flow responsive to gas flow rate |
US3907523A (en) * | 1972-12-26 | 1975-09-23 | Krebs Engineers | Method for removing SO{HD 2 {B from gases |
US3936281A (en) * | 1973-03-30 | 1976-02-03 | Sudoldenburger Tierfrischmehl-Anlagengesellschaft | Method and apparatus for deodorizing waste gases |
US4039307A (en) * | 1976-02-13 | 1977-08-02 | Envirotech Corporation | Countercurrent flow horizontal spray absorber |
US4157962A (en) * | 1977-11-18 | 1979-06-12 | Fischbach Phillip C | Filtration method and apparatus |
US4251486A (en) * | 1977-11-16 | 1981-02-17 | Senju Sohda | Method and apparatus for decomposing injurious substances |
US4588535A (en) * | 1983-04-01 | 1986-05-13 | Leonhard Foidl | Installation for the treatment of combustion gases |
US4642188A (en) * | 1985-05-29 | 1987-02-10 | Dover Corporation | Backwash apparatus for multi element filter unit |
US4734108A (en) * | 1985-05-31 | 1988-03-29 | Cox James P | Gas scrubbing apparatus and process |
-
1988
- 1988-12-09 US US07/281,746 patent/US4948402A/en not_active Ceased
-
1992
- 1992-08-12 US US07/928,407 patent/USRE35234E/en not_active Expired - Lifetime
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL25116C (en) * | ||||
US1790975A (en) * | 1931-02-03 | dallas etal | ||
US2603354A (en) * | 1952-07-15 | Process and apparatus for obtaining | ||
US973120A (en) * | 1909-04-24 | 1910-10-18 | Ernest F Lloyd | Gas-scrubber. |
US1657822A (en) * | 1924-12-19 | 1928-01-31 | Frechou Emile Marcel Eugene | Process and device for the purification of hard water by base-exchanging bodies |
US1993175A (en) * | 1932-07-01 | 1935-03-05 | Walter J Libbey | Process and apparatus for filters |
US2716489A (en) * | 1946-05-07 | 1955-08-30 | Way Alben Warren | Apparatus for separating solids from a liquid body |
US2585440A (en) * | 1949-07-11 | 1952-02-12 | Daniel T Collins | Water sealed air washer |
US2879893A (en) * | 1957-10-02 | 1959-03-31 | Pfaudler Permutit Inc | Interlocking means for battery of liquid treating units |
US3122594A (en) * | 1958-07-29 | 1964-02-25 | Aluminium Lab Ltd | Apparatus and procedure for contact between fluids |
US3282432A (en) * | 1963-02-18 | 1966-11-01 | Greenleaf Entpr Inc | Multiple unit backwashing filter |
US3312348A (en) * | 1963-10-31 | 1967-04-04 | Greenleaf Entpr Inc | Multiple unit backwashing gravity flow filter |
US3768234A (en) * | 1969-12-17 | 1973-10-30 | Universal Oil Prod Co | Venturi scrubber system including control of liquid flow responsive to gas flow rate |
US3907523A (en) * | 1972-12-26 | 1975-09-23 | Krebs Engineers | Method for removing SO{HD 2 {B from gases |
US3936281A (en) * | 1973-03-30 | 1976-02-03 | Sudoldenburger Tierfrischmehl-Anlagengesellschaft | Method and apparatus for deodorizing waste gases |
US4039307A (en) * | 1976-02-13 | 1977-08-02 | Envirotech Corporation | Countercurrent flow horizontal spray absorber |
US4251486A (en) * | 1977-11-16 | 1981-02-17 | Senju Sohda | Method and apparatus for decomposing injurious substances |
US4157962A (en) * | 1977-11-18 | 1979-06-12 | Fischbach Phillip C | Filtration method and apparatus |
US4588535A (en) * | 1983-04-01 | 1986-05-13 | Leonhard Foidl | Installation for the treatment of combustion gases |
US4642188A (en) * | 1985-05-29 | 1987-02-10 | Dover Corporation | Backwash apparatus for multi element filter unit |
US4734108A (en) * | 1985-05-31 | 1988-03-29 | Cox James P | Gas scrubbing apparatus and process |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6207460B1 (en) | 1999-01-14 | 2001-03-27 | Extraction Systems, Inc. | Detection of base contaminants in gas samples |
US7288140B2 (en) | 2001-12-25 | 2007-10-30 | Canon Kabushiki Kaisha | Wet process gas treatment apparatus |
US20030116018A1 (en) * | 2001-12-25 | 2003-06-26 | Hiroshi Echizen | Wet-process gas treatment method and wet-process gas treatment apparatus |
US6821317B2 (en) | 2001-12-25 | 2004-11-23 | Canon Kabushiki Kaisha | Wet-process gas treatment method and wet-process gas treatment apparatus |
US20050081720A1 (en) * | 2001-12-25 | 2005-04-21 | Canon Kabushiki Kaisha | Wet process gas treatment apparatus |
US20050189281A1 (en) * | 2002-06-14 | 2005-09-01 | Cornell Research Foundation, Inc. | Cellular microbead filter for use in water recirculating system |
US7147689B1 (en) | 2004-04-30 | 2006-12-12 | Miller Charles K | Apparatus and method for removing volatile organics from vented gases |
US20070221586A1 (en) * | 2005-06-27 | 2007-09-27 | Ruprecht John C | High pressure oil removing filter |
US20080041796A1 (en) * | 2005-06-27 | 2008-02-21 | Ruprecht John C | High back pressure filter for removing non-water component(s) from water |
US10239016B2 (en) | 2016-12-07 | 2019-03-26 | Nuorganics LLC | Systems and methods for nitrogen recovery from a gas stream |
US10513466B2 (en) | 2017-01-16 | 2019-12-24 | Nuorganics LLC | System and method for recovering nitrogenous compounds from a gas stream |
US10934223B2 (en) | 2017-01-16 | 2021-03-02 | Nuorganics LLC | System and method for recovering nitrogenous compounds from a gas stream |
US11247918B2 (en) * | 2017-12-08 | 2022-02-15 | Westech Engineering, Llc | Multi-media clarification systems and methods |
Also Published As
Publication number | Publication date |
---|---|
US4948402A (en) | 1990-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE35234E (en) | Modular air scrubber system | |
KR101628076B1 (en) | a dust clearing device | |
KR100975099B1 (en) | Multi scrubber | |
EP0641242A1 (en) | Filter system for smoke or polluted air | |
KR102383963B1 (en) | Apparatus and method for wet cleaning a gas stream | |
KR101882803B1 (en) | A chemical solution type deodorizing device having a salt and impurity removing function | |
US8308146B2 (en) | Gaseous effluent treatment apparatus | |
KR102352706B1 (en) | Odor removing apparatus and stall odor removing apparatus using plasma | |
US6174498B1 (en) | Odor control system | |
US6123750A (en) | Spray and aeration system for removing volatile compounds | |
JPH08281039A (en) | Air cleaner | |
EP1525044A1 (en) | Method of purifying air, apparatus for purifying air and building provided with this apparatus | |
KR102504879B1 (en) | Deodorization system with automatic water control system | |
CN110090546A (en) | Emission-control equipment | |
KR200309268Y1 (en) | An air purifier by waterwashing | |
JP2006175336A (en) | Wet gas purifier | |
KR102295025B1 (en) | Fog spray type chemical scrubber deodorizer with double chemical container | |
US20210285247A1 (en) | Pool gutter and air exhaust assembly | |
EP1815917A2 (en) | A device for the abatement of fumes and odours from the gaseous effluent of industrial kitchens | |
KR101745896B1 (en) | Apparatus for renediating with multistage polluted ground water by VOCs | |
KR20220077301A (en) | Air purifier | |
KR102504874B1 (en) | Combined deodorization system with backwash structure and ozone facility | |
CN221471306U (en) | Water curtain filtering and dust removing mechanism | |
KR20220129891A (en) | Scrubber | |
CN118001870A (en) | Efficient multi-stage treatment device for composite gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: UNITED STATES FILTER CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:U.S. FILTER DISTRIBUTION GROUP, INC.;REEL/FRAME:013184/0634 Effective date: 20020808 |
|
AS | Assignment |
Owner name: U.S. FILTER DISTRIBUTION GROUP, INC., TEXAS Free format text: CHANGE OF NAME;ASSIGNOR:U.S. FILTER DISTRIBUTION SYSTEMS, INC.;REEL/FRAME:014624/0657 Effective date: 19961031 Owner name: U.S. FILTER DISTRIBUTION SYSTEMS, INC., GEORGIA Free format text: CHANGE OF NAME;ASSIGNOR:U.S. FILTER DISTRIBUTION SYSTEMS, INC.;REEL/FRAME:014624/0657 Effective date: 19961031 Owner name: U.S. FILTER DISTRIBUTION SYSTEMS, INC., GEORGIA Free format text: CHANGE OF NAME;ASSIGNOR:U.S. FILTER/DAVIS, INC.;REEL/FRAME:014624/0628 Effective date: 19961025 Owner name: U.S. FILTER/DAVIS, INC., GEORGIA Free format text: CHANGE OF NAME;ASSIGNOR:DAVIS WATER & WASTE INDUSTRIES, INC.;REEL/FRAME:014624/0615 Effective date: 19960826 |
|
AS | Assignment |
Owner name: U.S. FILTER DISTRIBUTION GROUP, INC., TEXAS Free format text: CORRECTIV;ASSIGNOR:U.S. FILTER DISTRIBUTION SYSTEMS, INC.;REEL/FRAME:014653/0014 Effective date: 19961031 |
|
AS | Assignment |
Owner name: USFILTER CORPORATION, PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNITED STATES FILTER CORPORATION;REEL/FRAME:015093/0586 Effective date: 20040731 |
|
AS | Assignment |
Owner name: SIEMENS WATER TECHNOLOGIES HOLDING CORP., PENNSYLV Free format text: CHANGE OF NAME;ASSIGNOR:USFILTER CORPORATION;REEL/FRAME:026108/0010 Effective date: 20060901 |
|
AS | Assignment |
Owner name: SIEMENS INDUSTRY, INC., GEORGIA Free format text: MERGER;ASSIGNOR:SIEMENS WATER TECHNOLOGIES HOLDING CORP.;REEL/FRAME:026138/0593 Effective date: 20110401 |