USRE35101E - Fuel injector method and apparatus - Google Patents
Fuel injector method and apparatus Download PDFInfo
- Publication number
- USRE35101E USRE35101E US08/011,407 US1140793A USRE35101E US RE35101 E USRE35101 E US RE35101E US 1140793 A US1140793 A US 1140793A US RE35101 E USRE35101 E US RE35101E
- Authority
- US
- United States
- Prior art keywords
- valve
- fuel
- needle valve
- metering
- ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/18—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M45/00—Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
- F02M45/02—Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
- F02M45/04—Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
- F02M45/08—Injectors peculiar thereto
- F02M45/083—Having two or more closing springs acting on injection-valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M45/00—Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
- F02M45/12—Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship providing a continuous cyclic delivery with variable pressure
Definitions
- the present invention relates generally to diesel engine fuel injection and relates more particularly to method and apparatus for shaping the rate of fuel injection
- a principal object or the present invention is to provide new and improved method and apparatus in a fuel injector for reducing or regulating the rate or fuel injection during an initial stage of injection.
- Another object of tile present invention is to provide new and improved method and apparatus in a fuel injector for injecting an initial reduced charge for pre-injection.
- a further object of the present invention is to provide new and improved method and apparatus in a fuel injection for metering fuel during an initial stage or injection.
- a further object of the present invention is to provide new and improved method and apparatus in a fuel injection for assisting in maintaining fuel pressure at the injection valve seat until valve closure to reduce or eliminate secondary fuel injection, end or injection fuel dribble and cavitation erosion at the valve seat and adjacent area.
- a further object of the present invention is to provide a new and improved two stage fuel injector having a regulated or reduced rate or fuel injection during a first stage of injection.
- the two stage fuel injector may employ one or two (or more) valve closure springs.
- only one spring is effective when the injector needle valve is closed and as the needle valve is opened to a predetermined intermediate position. Both springs are effective as the needle valve is opened from that intermediate position to its fully open position.
- a single spring is effective when the needle valve is closed and as the needle valve is opened to its fully open position.
- fuel rate shaping is provided in a manner which does not rely on fuel metering between the needle valve and its valve seat and which is substantially insensitive to slight variations in needle valve lift.
- a further object of the present invention is to provide a new and improved fuel injector which fulfills one or more or the foregoing objects of the present invention and which can be economically manufactured on a mass production basis.
- FIG. 1 is a longitudinal section view, partly broken away and partly in section, of a single spring fuel injector incorporating an embodiment of the present invention
- FIG. 2 is a longitudinal section view, partly broken away and partly in section, of a two spring fuel injector incorporating another embodiment of tile present invention
- FIG. 3 is an enlarged longitudinal section view, partly broken away and partly in section, of similar parts of the nozzle body and nozzle needle valve of the fuel injectors of FIG. 1 and FIG. 2;
- FIG. 4 is an enlarged longitudinal sectional view, partly broken away and partly in section, of the nozzle body and needle valve of FIG. 3, showing the relationship of inner and outer metering rings and metering edges of the nozzle body and needle valve when the needle valve is closed;
- FIG. 5 is a graph showing the relationship of needle valve lift and time during an exemplary fuel injection cycle of the fuel injector of FIG. 1.
- FIGS. 1 and 2 show two exemplary fuel injectors 10, 11 which incorporate embodiments of the present invention.
- Each injector 10, 11 comprises an elongated nozzle body 12 with an elongated valve bore 14 and an elongated nozzle needle valve 16 axially reciprocable within the valve bore 14.
- the nozzle body 12 is formed as one piece, whereas in injector 11, the nozzle body 12 comprises an upper, elongated body subassembly 84 and a lower elongated, body part 86 having an outer diameter substantially less than that of the upper body subassembly 84.
- the nozzle body 12 of each injector 10, 11 has a lower end tip 20 coaxial with and enclosing the lower end of the valve bore 14.
- the nozzle body 12 of each injector 10, 11 has an internal, upwardly facing, coaxial conical surface 18 providing an annular needle contact area or valve seat 19 immediately above the nozzle tip 20.
- the needle valve 16 has a lower conical end with approximately line contact with the conical surface 18 when the valve is closed.
- one or more small diameter spray holes 22 are provided below the valve seat 19 in the end tip 20.
- one or more spray holes 22 may be provided in the conical surface 18 below tile valve seat 19.
- the spray holes 22 provide for spraying small droplets of fuel for combustion. The number, diameter and exact location of the spray holes 22 are selected for each application.
- Injector 10 has a single valve closure spring 38 whereas injector 11 has two valve closure springs 80, 82.
- the single coil compression spring 38 is mounted above the needle valve 16 to constantly urge the needle valve 16 downwardly to its closed position.
- the first or upper coil compression spring 80 is mounted above the needle valve 16 to constantly urge the needle valve 16 downwardly to its closed position via a spring seat 87 and an intermediate pin 88.
- the second or lower coil compression spring 82 is effective, also via the intermediate pin 88, to urge the needle valve 16 downwardly as the needle valve 16 is lifted above a predetermined intermediate position.
- a shim 39 is employed to precisely set the preload of the valve spring 38 and thereby precisely establish the valve opening pressure (i.e., the pressure at which the needle valve 16 begins to lift off the valve seat 19).
- An adaptor plate 40 mounted on the nozzle body 12 serves as a stop engageable by an upper guide 30 of the needle valve 16 to limit valve lift.
- the upper spring seat 87 and the intermediate pin 88 are mounted between the needle valve 16 and an externally threaded, central stop 92.
- the stop 92 is adjustable to set the maximum valve lift.
- a first, externally threaded spring seat 90 is adjustable to precisely set the preload of the upper spring 80 and thereby precisely establish the valve opening pressure.
- a second, externally threaded spring seat 96 is adjustable to precisely set the preload of the lower spring 82. With the needle valve 16 closed, a lower spring seat 98 of the lower spring 82 rests on a separate annular washer or shim 100.
- the intermediate pin 88 engages tile lower spring seat 98 of the lower spring 82. That predetermined intermediate lift preferably is slightly less than one-half the maximum valve lift.
- Injectors 10, 11 are hole type injectors.
- the needle valve 16 has a predetermined maximum lift which is preferably within the usual range of maximum lift of 0.008 to 0.016 inch of such hole type injectors.
- both injectors 10, 11 provide the same general type of two stage valve operation hereinafter described. And tile following description concerning the two stage operation is equally applicable to both injectors 10, 11 except where otherwise indicated.
- the nozzle body 12 has upper and lower, coaxial valve guides or rings 26, 28 which cooperate with upper and lower, coaxial guides or rings 30, 32 of the needle valve 16 to guide the reciprocal movement of the needle valve 16.
- the upper valve guide 26 is located at the top of the nozzle body 12 and the lower valve guide 28 is spaced below the upper valve guide 26 and above the . valve seat 19.
- An upper annular fuel chamber 34 surrounding the needle valve 16 is provided between the upper and lower valve guides 26, 28.
- a lower annular fuel chamber 36 surrounding the needle valve 16 is provided between the lower valve guide 28 and valve: seat 19.
- the diameter of the upper guide 30 of the needle valve 16 is larger than the diameter of the annular valve seat 19 to provide a differential area for hydraulically lifting the needle valve 16 from the valve seat 19 for fuel injection.
- the needle valve 16 is periodically actuated by high pressure pulses of fuel supplied to the upper annular chamber 34 via a radial port 41 in the nozzle body 12 (FIG. 2) or one or more internal fuel passages 42 in the nozzle body 12 (FIG. 1). As hereinafter more fully described, each high pressure pulse acts on the differential area between the upper guide 30 and valve seat 19 to open the needle valve 16 and to supply fuel for fuel injection through the spray holes 22.
- the high pressure pulses typically have a maximum pressure within a range of 4,000 to 17,000 psi. That maximum pressure and the valve opening pressure are functions of the spring characteristics and preload setting of each valve, closure spring (i.e., spring 38 of injector 10 and springs 80, 82 of injector 11) and the shape of the high pressure pulse.
- closure spring i.e., spring 38 of injector 10 and springs 80, 82 of injector 11
- the valve opening pressure typically is within the range of 2,800 to 5,000 psi.
- the valve opening pressure typically is within the range of 2,500 to 3,000 psi.
- the pressure required to raise the needle valve from in predetermined intermediate position against the preload of the second spring 82 in addition to the bias of the first spring 80 typically is within the range of 3,400 to 5,800 psi.
- the lower guide 32 of the needle valve 16 cooperates with the lower fixed valve guide 28 to restrict or throttle fuel flow between the upper and lower fuel chambers 34, 36 during part of the reciproeable movement of the needle valve 16. Regulation is provided during an initial upward increment of travel and a corresponding last downward increment of travel of the needle valve 16. That increment is preferably within the range of approximately 0.004 to 0.008 inch or approximately one-half the maximum lift of the needle valve 16.
- the lower guide 32 of the needle valve 16 has upper and lower spaced sections 50, 52 with outer cylindrical surfaces.
- the lower section 52 has three equiangularly spaced, axially extending flats 54 providing axial passages for unrestricted fuel flow.
- a conical surface 56 in combination with the flats M, provides a peripheral annulus between the spaced sections 50, 52 for connecting the upper ends of the three axial passages.
- the lower part of the upper section 50 forms an inner metering ring 60 that is received within an outer metering ring 62 formed by the lower fixed guide 28 when the needle valve 16 is seated.
- the inner metering ring 60 is formed by an external cylindrical meteting surface having a lower circular meteting edge 64.
- the outer, fixed metering ring 62 is formed by an internal cylindrical metering surface having an upper circular metering edge 66.
- Each metering edge 64, 66 is a sharp edge formed in the shown embodiments by the respective cylindrical metering ring 60, 62 and adjacent perpendicular shoulder.
- a clearance passage 68 having a radial clearance b is provided between the two opposing cylindrical metering rings 60, 62.
- the diametrical clearance between the two metering rings 60, 62 in each of the shown embodiments is preferably within the range of 0.0003 to 0.0006 inch.
- the lower guide section 52 is provided to maintain the concentricity of the inner and outer metering rings 60, 62.
- the lower guide section 52 and intermediate conical surface 56 may be excluded and the axial length of the lower valve guide 28 may be reduced accordingly.
- the inner and outer meteting rings 60, 62 cooperate to regulate flow between the upper and lower chambers 34, 36 during part of the upward and downward movement of the needle valve 16. How metering or throttling occurs during an initial increment of needle valve lift and a corresponding last increment of needle valve closure. For example, with the valve closed as shown in FIGS. 3 and 4, if the axial overlap a of the metering edges 64, 66 is 0.006 inch (i.e., metering tings 60, 62 have an axial width or overlap a of 0.006 inch), the annular metering rings 60, 62 cooperate to regulate flow during the initial upward and last downward increments of movement of the needle valve 16 of 0.006 inch.
- the meteting edges 64, 66 preferably are coaxial, circular edges and the metering rings 60, 62 are formed by cylindrical surfaces.
- one or both of the metering rings 60, 62 may have a different shape to provide a more gradual transition between regulated and non-regulated conditions as the needle valve 16 reciprocates.
- the pressure in the lower chamber 36 Prior to valve opening, the pressure in the lower chamber 36 is essentially the same as that in the upper chamber 34. That is so, even during a rapid increase in pressure at the beginning of a high pressure valve operating pulse, because, with the needle valve 16 closed, only extremely little flow through the clearance passage 68 is required to equalize the pressure between the upper and lower chambers 34, 36. However, as the needle valve 16 lifts off the valve seat 19 and fuel flows through the clearance passage 68 and spray holes 22, the lower chamber pressure will be less than the upper chamber pressure due to fuel throttling or metering provided by the clearance passage 68. Accordingly, at any specific upper chamber pressure, the net hydraulic opening bias on the needle valve 16 is less with the needle valve 16 open than closed mid less than it would be if there were no restriction.
- needle valve operation and fuel injection occur in two stages: a first stage of partial needle valve opening during which there is a regulated or reduced rate of fuel injection and a second stage of unthrottled fuel injection.
- the first stage may have two distinct phases.
- a first hfitial opening phase as the upper chamber pressure rises above the needle valve opening pressure, the needle valve may modulate or dither briefly between closed and partly open positions.
- Valve modulation continues during a succeeding second phase after the upper chamber pressure reaches a level sufficient to keep the needle valve 16 from closing.
- second phase needle valve modulation continues until the total needle valve opening force produced by the different fuel pressures in the upper and lower chambers 34, 36 is sufficient to propel the needle valve 16 upward to its fully open position.
- FIG. 5 A representative fuel injection cycle of the single spring injector 10 is illustrated in FIG. 5.
- second phase needle valve modulation continues until the total valve opening force is sufficient to lift the needle valve 16 to its predetermined intermediate position where the pin 88 engages the lower spring seat 98 of the second spring 82.
- the needle valve 16 is propelled to its fully open position.
- this short delay adds a third phase to the first stage of fuel injection.
- the diameter of the lower guide 32 is selected to provide the desired valve modulation. At one extreme, if the diameter of the lower guide 32 is less than or equal to the diameter of the valve seat 19, there will be no first stage valve modulation. Instead, in the single spring injector 10, the needle valve 16 will be propelled to its fully open position in a single step. In the two spring injector 11, the needle valve 16 will be propelled initially to its predetermined intermediate position where the second spring 82 becomes effective. After the short delay described above, the needle valve 16 will be propelled to its fully open position. At the other extreme, if the diameter of the lower guide 32 is equal to or greater than the diameter of the upper guide 30, in both injectors 10, 11, the needle valve 16 will dither or fluctuate between closed and partly open positions and never fully open. Although needle valve operation provided by one of those extreme conditions may be desirable in certain applications, in general the diameter of the lower guide 32 should lie in a central range between the diameter of the valve seat 19 and upper guide 30.
- the two stage valve operation is affected by the pressure/time curve or shape of the high pressure fuel pulse supplied to tile upper fuel chamber 34.
- the pulse sixape varies with engine speed. At higher engine speeds, the pressure of the supplied high pressure pulse increases more rapidly, thereby giving less time for effective first stage operation to occur.
- first stage valve operation typically is more pronounced at lower RPM.
- first stage operation can be achieved throughout the desired engine speed range by proper selection of the intermediate valve lift and by employing springs 80, 82 with an appropriate preload and spring rate.
- Certain nozzle dimensions or parameters are established for each application to provide the desired two stage and two phase operation.
- nozzle dimensions or parameters are established for each application to provide the desired two stage and two phase operation.
- a typical automotive diesel engine application e.g., a four cylinder, two liter, engine with injectors which directly inject a charge having a maximum volume of approximately 40 mm 3 and which are operated by high pressure pulses having a maximum pressure, which varies with engine speed, in the range from 5,000 to 14,000 psi
- the nozzle parameters and their preferred nominal dimensional ranges are as follows:
- the axial position of the metering rings 60, 62 relative to the valve seat 19 can affect the two stage operation. In general, it is believed that the meteting rings 60, 62 should be located closer to the valve seat 19 than to the upper guides 26, 30 to reduce the volume of the lower fuel chamber 36 and thereby increase the responsiveness of the needle valve 16 to the metered rate of flow through the clearance passage 68.
- the cooperating inner and outer metering rings 60, 62 provide fuel throttling and therefore fuel rate shaping during the First stage of valve operation.
- First stage fuel regulation is provided in a manner which is substantially insensitive to valve lift since first stage fuel regulation does not rely on fuel metering between the needle valve 16 and valve seat 19. More effective and consistent rate shaping is thereby achieved.
- the second spring 82 is effective at an intermediate position having a predetermined intermediate valve lift of 0,004 inch (for use in combination with a metering ring width (edge overlap) a of 0.006 inch and a total valve lift of 0.012 inch).
- the needle valve 16 is temporarily held at that predetermined intermediate position by the preload of the second spring 82.
- the rate of fuel injection is not affected by the metering rings 60, 62. Also, the transition between the first and second stages, during wtdch the cooperating metering rings 60, 62 have varying transitional affect, is extremely quick.
- valve behavior and the rate of fuel injection are determined primarily by the rate of fuel flow between tile metering rings 60, 62.
- the needle valve 16 is quickly propelled to and then temporarily held at its fully open position. The width (edge overlap), diameter and configuration of tile metering rings 60, 62, the spring rate and preload of each valve spring and the intermediate valve position are predetermined for each nozzle application to sitape that two stage valve operation as desired.
- the metering rings 60, 62 also affect fuel flow during valve closure. During the last increment of valve closure, the two rings 60, 62 cooperate to restrict fuel flow between the upper and lower chambers 34, 36. Also, the lower guide 32 of the needle valve 16 serves as a pump to pressurize fuel in the lower chamber 36 if, as preferred, the inner metering ring 60 has a diameter larger than the valve seat 19. That pumping actlon is affected by the design parameters and other factors discussed above. By that pumping action, the fuel pressure at the spray hole(s) 22 and valve seat 19 is maintained at a higher pressure than otherwise until the needle valve 16 is completely closed.
- the higher pressure helps eliminate or reduce fuel dribble from the spray hole(s) 22 and helps eliminate or reduce cavitatlon within the lower fuel chamber 36 by helping both to collapse and to prevent vapor cavities which typically form at or near the valve seat 19 during valve closure. Cavitatlon erosion at or adjacent the valve seat 19 is thereby reduced or eliminated.
- tile clearance passage 68 dampens the transmission, from the upper chamber 34 to the lower chamber 36, of any secondary pressure waves caused by reflection of the injection pulse and following each injection event. Such dampening eliminates undesirable "secondary" fuel injection and further minimizes cavitation within the lower fuel chamber 36 and thus minimizes cavitation erosion at and near the valve seat 19.
- the disclosed exemplary fuel injectors 10, 11 are hole type fuel injectors and are designed to be employed in fuel systems in which a remote high pressure pump is utilized to supply high pressure fuel pulses to the fuel injectors 10, 11 via high pressure fuel lines.
- the present invention is also readily adaptable to other types of fuel injectors, for example unit injectors employing a high pressure pump as part of each injector assembly and pintle type fuel injectors.
- unit injectors employing a high pressure pump as part of each injector assembly and pintle type fuel injectors.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
Description
______________________________________ Nominal Dimemsional Parameter Range ______________________________________ Diameter ofupper valve guide 26 0.150 to 0.180 inch Diameter oflower valve guide 28 0.098 to 0.160inch Diametrical clearance 68 0.0003 to 0.0006 inch Diameter ofvalve seat 19 0.079 to 0.104 inch Metering ring width (edge overlap) a 0.004 to 0.006 inch Maximum valve lift 0.008 to 0.012 inch ______________________________________
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/011,407 USRE35101E (en) | 1990-03-28 | 1993-01-29 | Fuel injector method and apparatus |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/500,714 US5020500A (en) | 1990-03-28 | 1990-03-28 | Hole type fuel injector and injection method |
US07/562,617 US4987887A (en) | 1990-03-28 | 1990-08-03 | Fuel injector method and apparatus |
US08/011,407 USRE35101E (en) | 1990-03-28 | 1993-01-29 | Fuel injector method and apparatus |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/500,714 Continuation-In-Part US5020500A (en) | 1990-03-28 | 1990-03-28 | Hole type fuel injector and injection method |
US07/562,617 Reissue US4987887A (en) | 1990-03-28 | 1990-08-03 | Fuel injector method and apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE35101E true USRE35101E (en) | 1995-11-28 |
Family
ID=27053611
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/562,617 Ceased US4987887A (en) | 1990-03-28 | 1990-08-03 | Fuel injector method and apparatus |
US08/011,407 Expired - Lifetime USRE35101E (en) | 1990-03-28 | 1993-01-29 | Fuel injector method and apparatus |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/562,617 Ceased US4987887A (en) | 1990-03-28 | 1990-08-03 | Fuel injector method and apparatus |
Country Status (6)
Country | Link |
---|---|
US (2) | US4987887A (en) |
EP (1) | EP0449763B1 (en) |
JP (1) | JPH06307309A (en) |
AU (1) | AU7367391A (en) |
DE (1) | DE69104525T2 (en) |
ES (1) | ES2062734T3 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2816669A1 (en) * | 2000-11-10 | 2002-05-17 | Bosch Gmbh Robert | PRESSURE-CONTROLLED INJECTOR WITH A STROKE-BASED INJECTION CURVE |
US20040046062A1 (en) * | 2002-08-15 | 2004-03-11 | Visteon Global Technologies, Inc. | Needle alignment fuel injector |
US6963589B1 (en) * | 1997-07-03 | 2005-11-08 | Canon Kabushiki Kaisha | Information processing apparatus for and method of transmitting and/or receiving broadcast signal |
US20060157108A1 (en) * | 2005-01-18 | 2006-07-20 | Mills Douglas W | Control valve for nitrous oxide injection system |
US20060157106A1 (en) * | 2005-01-18 | 2006-07-20 | Mills Douglas W | Nitrous oxide and fuel control valve for nitrous oxide injection system |
US20090212243A1 (en) * | 2008-02-25 | 2009-08-27 | Mills Douglas W | Pneumatically-operated valve for nitrous oxide injection system |
US20120153053A1 (en) * | 2009-08-28 | 2012-06-21 | Robert Bosch Gmbh | Fuel injection valve |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69209405T2 (en) * | 1991-08-30 | 1996-09-05 | Nippon Denso Co | Fuel injection device for internal combustion engines |
US5355856A (en) * | 1992-07-23 | 1994-10-18 | Paul Marius A | High pressure differential fuel injector |
JPH07317632A (en) * | 1994-05-27 | 1995-12-05 | Mitsubishi Heavy Ind Ltd | Cylinder cover for diesel engine |
DE19936669A1 (en) * | 1999-08-04 | 2001-02-22 | Bosch Gmbh Robert | Common rail injector |
DE19857244A1 (en) * | 1998-12-11 | 2000-06-15 | Bosch Gmbh Robert | Fuel injection valve for internal combustion engines |
DE10005013A1 (en) * | 2000-02-04 | 2001-08-09 | Bosch Gmbh Robert | Fuel injector |
DE10062959A1 (en) * | 2000-12-16 | 2002-06-20 | Bosch Gmbh Robert | Fuel injection valve for internal combustion engines |
DE10117861A1 (en) * | 2001-04-10 | 2002-10-24 | Bosch Gmbh Robert | Fuel injector for injecting fuel into internal combustion engine combustion chambers has nozzle needle with at least one guide section and in form of choke point near nozzle seat |
DE10148874C2 (en) * | 2001-10-04 | 2003-12-24 | Siemens Ag | Nozzle device, in particular for fuel injection |
US6725838B2 (en) | 2001-10-09 | 2004-04-27 | Caterpillar Inc | Fuel injector having dual mode capabilities and engine using same |
DE10149961A1 (en) * | 2001-10-10 | 2003-04-30 | Bosch Gmbh Robert | Fuel injection device for internal combustion engine, especially common rail injector, has flow path control sections interacting to give defined flow characteristic against time |
DE102004060552A1 (en) | 2004-12-16 | 2006-06-22 | Robert Bosch Gmbh | Fuel injection valve for an internal combustion engine |
DE202006007883U1 (en) | 2006-05-17 | 2006-10-19 | Robert Bosch Gmbh | Fuel injector for internal combustion engine, has two guides arranged at two sides that are turned towards and away of injection opening, respectively, where ratio of length in relation to diameter of each guide lies in specific range |
EP2083165A1 (en) * | 2008-01-22 | 2009-07-29 | Delphi Technologies, Inc. | Injection nozzle |
DE102009054441A1 (en) * | 2009-11-25 | 2011-06-30 | L'Orange GmbH, 70435 | Fuel injection nozzle for internal combustion engines |
JP2012002137A (en) * | 2010-06-17 | 2012-01-05 | Bosch Corp | Fuel injection valve |
US9822748B2 (en) | 2014-05-31 | 2017-11-21 | Cummins Inc. | Restrictive flow passage in common rail injectors |
EP3153700A1 (en) * | 2015-10-08 | 2017-04-12 | Continental Automotive GmbH | Valve assembly for an injection valve, injection valve and method for assembling an injection valve |
CN110594061B (en) * | 2019-09-26 | 2021-02-26 | 重庆红江机械有限责任公司 | Electric control common rail type heavy oil injector |
Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE136453C1 (en) * | ||||
US1944371A (en) * | 1930-06-25 | 1934-01-23 | Ritz Frederick | Injector |
US2588485A (en) * | 1949-03-07 | 1952-03-11 | Lucas Ltd Joseph | Liquid fuel burner nozzle |
US2627254A (en) * | 1947-06-12 | 1953-02-03 | Texas Co | Fuel injection nozzle |
US3032279A (en) * | 1960-11-21 | 1962-05-01 | Eddington Metal Specialty Comp | Nozzle construction |
US3368761A (en) * | 1965-10-15 | 1968-02-13 | Mack Trucks | Variable flow rate fuel injection nozzle |
US3838821A (en) * | 1972-07-20 | 1974-10-01 | Cav Ltd | Fuel injection nozzle units |
US4036192A (en) * | 1974-02-08 | 1977-07-19 | Diesel Kiki Co. | Engine fuel injection system |
US4284049A (en) * | 1978-03-22 | 1981-08-18 | Maschinenfabrik Augsburg-Nurnberg Aktiengesellschaft | Fuel injector valve needle lift control arrangement |
DE3113755A1 (en) * | 1981-04-04 | 1982-12-16 | Daimler-Benz Ag, 7000 Stuttgart | Fuel injection nozzle for internal combustion engine |
US4394972A (en) * | 1981-04-14 | 1983-07-26 | Lucas Industries Plc | Fuel injection nozzles |
US4436247A (en) * | 1981-10-29 | 1984-03-13 | Kabushiki Kaisha Komatsu Seisakusho | Fuel injection nozzle and holder assembly for internal combustion engines |
JPS5993959A (en) * | 1982-11-19 | 1984-05-30 | Nippon Kokan Kk <Nkk> | Fuel injection valve nozzle |
US4470548A (en) * | 1981-11-09 | 1984-09-11 | Nissan Motor Company, Limited | Fuel injection nozzle for an internal combustion engine |
US4506833A (en) * | 1981-11-09 | 1985-03-26 | Nissan Motor Company, Limited | Fuel injection nozzle for an internal combustion engine |
US4524914A (en) * | 1983-01-27 | 1985-06-25 | Diesel Kiki Co., Ltd. | Throttling pintle-type fuel injection nozzle having an improved initial injection characteristic |
US4540126A (en) * | 1982-04-08 | 1985-09-10 | Nissan Motor Co., Ltd. | Fuel injection nozzle |
US4627571A (en) * | 1984-03-15 | 1986-12-09 | Nippondenso Co., Ltd. | Fuel injection nozzle |
US4629127A (en) * | 1983-09-05 | 1986-12-16 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Intermittent swirl type injection valve |
US4684067A (en) * | 1986-03-21 | 1987-08-04 | General Motors Corporation | Two-stage, hydraulic-assisted fuel injection nozzle |
US4693420A (en) * | 1986-08-25 | 1987-09-15 | General Motors Corporation | Air-assist fuel injection nozzle |
US4715541A (en) * | 1985-02-26 | 1987-12-29 | Steyr-Daimler-Puch Ag | Fuel injection nozzle for combustion engines |
US4811715A (en) * | 1987-11-02 | 1989-03-14 | Stanadyne, Inc. | Electronic unit injector |
US4957085A (en) * | 1989-02-16 | 1990-09-18 | Anatoly Sverdlin | Fuel injection system for internal combustion engines |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8711188D0 (en) * | 1987-05-12 | 1987-06-17 | Lucas Ind Plc | Fuel injection nozzles |
-
1990
- 1990-08-03 US US07/562,617 patent/US4987887A/en not_active Ceased
-
1991
- 1991-03-07 DE DE69104525T patent/DE69104525T2/en not_active Expired - Fee Related
- 1991-03-07 ES ES91630015T patent/ES2062734T3/en not_active Expired - Lifetime
- 1991-03-07 EP EP91630015A patent/EP0449763B1/en not_active Expired - Lifetime
- 1991-03-22 AU AU73673/91A patent/AU7367391A/en not_active Abandoned
- 1991-03-28 JP JP3089860A patent/JPH06307309A/en active Pending
-
1993
- 1993-01-29 US US08/011,407 patent/USRE35101E/en not_active Expired - Lifetime
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE136453C1 (en) * | ||||
US1944371A (en) * | 1930-06-25 | 1934-01-23 | Ritz Frederick | Injector |
US2627254A (en) * | 1947-06-12 | 1953-02-03 | Texas Co | Fuel injection nozzle |
US2588485A (en) * | 1949-03-07 | 1952-03-11 | Lucas Ltd Joseph | Liquid fuel burner nozzle |
US3032279A (en) * | 1960-11-21 | 1962-05-01 | Eddington Metal Specialty Comp | Nozzle construction |
US3368761A (en) * | 1965-10-15 | 1968-02-13 | Mack Trucks | Variable flow rate fuel injection nozzle |
US3838821A (en) * | 1972-07-20 | 1974-10-01 | Cav Ltd | Fuel injection nozzle units |
US4036192A (en) * | 1974-02-08 | 1977-07-19 | Diesel Kiki Co. | Engine fuel injection system |
US4284049A (en) * | 1978-03-22 | 1981-08-18 | Maschinenfabrik Augsburg-Nurnberg Aktiengesellschaft | Fuel injector valve needle lift control arrangement |
DE3113755A1 (en) * | 1981-04-04 | 1982-12-16 | Daimler-Benz Ag, 7000 Stuttgart | Fuel injection nozzle for internal combustion engine |
US4394972A (en) * | 1981-04-14 | 1983-07-26 | Lucas Industries Plc | Fuel injection nozzles |
US4436247A (en) * | 1981-10-29 | 1984-03-13 | Kabushiki Kaisha Komatsu Seisakusho | Fuel injection nozzle and holder assembly for internal combustion engines |
US4470548A (en) * | 1981-11-09 | 1984-09-11 | Nissan Motor Company, Limited | Fuel injection nozzle for an internal combustion engine |
US4506833A (en) * | 1981-11-09 | 1985-03-26 | Nissan Motor Company, Limited | Fuel injection nozzle for an internal combustion engine |
US4540126A (en) * | 1982-04-08 | 1985-09-10 | Nissan Motor Co., Ltd. | Fuel injection nozzle |
JPS5993959A (en) * | 1982-11-19 | 1984-05-30 | Nippon Kokan Kk <Nkk> | Fuel injection valve nozzle |
US4524914A (en) * | 1983-01-27 | 1985-06-25 | Diesel Kiki Co., Ltd. | Throttling pintle-type fuel injection nozzle having an improved initial injection characteristic |
US4629127A (en) * | 1983-09-05 | 1986-12-16 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Intermittent swirl type injection valve |
US4627571A (en) * | 1984-03-15 | 1986-12-09 | Nippondenso Co., Ltd. | Fuel injection nozzle |
US4715541A (en) * | 1985-02-26 | 1987-12-29 | Steyr-Daimler-Puch Ag | Fuel injection nozzle for combustion engines |
US4715541B1 (en) * | 1985-02-26 | 1991-08-13 | Steyr Daimler Puch Ag | |
US4684067A (en) * | 1986-03-21 | 1987-08-04 | General Motors Corporation | Two-stage, hydraulic-assisted fuel injection nozzle |
US4693420A (en) * | 1986-08-25 | 1987-09-15 | General Motors Corporation | Air-assist fuel injection nozzle |
US4811715A (en) * | 1987-11-02 | 1989-03-14 | Stanadyne, Inc. | Electronic unit injector |
US4957085A (en) * | 1989-02-16 | 1990-09-18 | Anatoly Sverdlin | Fuel injection system for internal combustion engines |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6963589B1 (en) * | 1997-07-03 | 2005-11-08 | Canon Kabushiki Kaisha | Information processing apparatus for and method of transmitting and/or receiving broadcast signal |
FR2816669A1 (en) * | 2000-11-10 | 2002-05-17 | Bosch Gmbh Robert | PRESSURE-CONTROLLED INJECTOR WITH A STROKE-BASED INJECTION CURVE |
US20040046062A1 (en) * | 2002-08-15 | 2004-03-11 | Visteon Global Technologies, Inc. | Needle alignment fuel injector |
US6938839B2 (en) | 2002-08-15 | 2005-09-06 | Visteon Global Technologies, Inc. | Needle alignment fuel injector |
US20060157108A1 (en) * | 2005-01-18 | 2006-07-20 | Mills Douglas W | Control valve for nitrous oxide injection system |
US20060157106A1 (en) * | 2005-01-18 | 2006-07-20 | Mills Douglas W | Nitrous oxide and fuel control valve for nitrous oxide injection system |
US7150443B2 (en) | 2005-01-18 | 2006-12-19 | Mills Douglas W | Control valve for nitrous oxide injection system |
US7228872B2 (en) | 2005-01-18 | 2007-06-12 | Mills Douglas W | Nitrous oxide and fuel control valve for nitrous oxide injection system |
US20090212243A1 (en) * | 2008-02-25 | 2009-08-27 | Mills Douglas W | Pneumatically-operated valve for nitrous oxide injection system |
US20120153053A1 (en) * | 2009-08-28 | 2012-06-21 | Robert Bosch Gmbh | Fuel injection valve |
US9441590B2 (en) * | 2009-08-28 | 2016-09-13 | Robert Bosch Gmbh | Fuel injection valve |
Also Published As
Publication number | Publication date |
---|---|
DE69104525T2 (en) | 1995-03-02 |
DE69104525D1 (en) | 1994-11-17 |
EP0449763A1 (en) | 1991-10-02 |
AU7367391A (en) | 1991-10-03 |
US4987887A (en) | 1991-01-29 |
JPH06307309A (en) | 1994-11-01 |
ES2062734T3 (en) | 1994-12-16 |
EP0449763B1 (en) | 1994-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE35101E (en) | Fuel injector method and apparatus | |
US5020500A (en) | Hole type fuel injector and injection method | |
US4758169A (en) | Injection valve for reciprocating internal combustion engine | |
EP0393590B1 (en) | Fuel injection device for diesel engines | |
US4382554A (en) | Fuel injection nozzle construction | |
US6499467B1 (en) | Closed nozzle fuel injector with improved controllabilty | |
EP2753819B1 (en) | Injection nozzle | |
EP0890736B1 (en) | Injector | |
US4635854A (en) | Fuel injection valve for internal combustion engines | |
US5209403A (en) | High pressure unit fuel injector with timing chamber pressure control | |
US6896208B2 (en) | Fuel injection system for an internal combustion engine | |
EP0844383B1 (en) | Injector | |
US6213093B1 (en) | Hydraulically actuated electronic fuel injection system | |
US6889658B2 (en) | Fuel injection device for an internal combustion engine | |
US6029902A (en) | Fuel injector with isolated spring chamber | |
US7249722B2 (en) | Fuel injector with hydraulic flow control | |
US7150410B1 (en) | Method for providing a controlled injection rate and injection pressure in a fuel injector assembly | |
GB2322411A (en) | I.c. engine fuel-injection valve with additional supply line eg for water | |
JPS5948302B2 (en) | fuel injection valve | |
EP0965750B1 (en) | Fuel injector | |
US20060219802A1 (en) | Fuel injection system for an internal combustion engine | |
US6752334B2 (en) | Fuel injector and method for controlling fuel flow | |
US20120043393A1 (en) | Fuel Injector with Damper Volume and Method for Controlling Pressure Overshoot | |
EP0448376B1 (en) | A fuel injector for a diesel engine | |
US20030164404A1 (en) | Fuel-injection valve for internal combustion engines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: FIRST NATIONAL BANK OF CHICAGO, THE, NEW YORK Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:STANADYNE AUTOMOTIVE CORP.;REEL/FRAME:008907/0273 Effective date: 19971211 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: STANDAYNE CORPORATION, CONNECTICUT Free format text: CHANGE OF NAME;ASSIGNOR:STANADYNE AUTOMOTIVE CORP.;REEL/FRAME:012391/0570 Effective date: 20010711 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: GMAC COMMERCIAL FINANCE LLC, AS AGENT 461 FIFTH AV Free format text: SECURITY AGREEMENT;ASSIGNOR:STANADYNE CORPORATION;REEL/FRAME:014615/0859 Effective date: 20031024 |
|
AS | Assignment |
Owner name: STANADYNE CORPORATION, CONNECTICUT Free format text: RELEASE;ASSIGNOR:BANK ONE, NA;REEL/FRAME:014699/0174 Effective date: 20031105 |
|
AS | Assignment |
Owner name: GOLDMAN SACHS CREDIT PARTNERS, L.P., AS TERM COLLA Free format text: SECURITY INTEREST;ASSIGNOR:STANADYNE CORPORATION (F/K/A STANADYNE AUTOMOTIVE CORPORATION);REEL/FRAME:015687/0568 Effective date: 20040806 |
|
AS | Assignment |
Owner name: CIT GROUP/BUSINESS CREDIT, INC., THE, AS REVOLVING Free format text: SECURITY INTEREST;ASSIGNOR:STANADYNE CORPORATION (FKA STANADYNE AUTOMOTIVE CORPORATION);REEL/FRAME:015703/0538 Effective date: 20040806 |
|
AS | Assignment |
Owner name: STANADYNE CORPORATION, CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KELLY, WILLIAM W.;REEL/FRAME:015139/0640 Effective date: 19830804 |
|
AS | Assignment |
Owner name: PRECISION ENGINE PRODUCTS CORP., CONNECTICUT Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE CIT GROUP/BUSINESS CREDIT, INC.;REEL/FRAME:023065/0466 Effective date: 20090806 Owner name: STANADYNE AUTOMOTIVE HOLDING CORP., CONNECTICUT Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE CIT GROUP/BUSINESS CREDIT, INC.;REEL/FRAME:023065/0466 Effective date: 20090806 Owner name: STANADYNE CORPORATION, CONNECTICUT Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE CIT GROUP/BUSINESS CREDIT, INC.;REEL/FRAME:023065/0466 Effective date: 20090806 |
|
AS | Assignment |
Owner name: PRECISION ENGINE PRODUCTS CORP., CONNECTICUT Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GOLDMAN SACHS CREDIT PARTNERS L.P.;REEL/FRAME:023107/0018 Effective date: 20090813 Owner name: STANADYNE AUTOMOTIVE HOLDING CORP., CONNECTICUT Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GOLDMAN SACHS CREDIT PARTNERS L.P.;REEL/FRAME:023107/0018 Effective date: 20090813 Owner name: STANADYNE CORPORATION, CONNECTICUT Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GOLDMAN SACHS CREDIT PARTNERS L.P.;REEL/FRAME:023107/0018 Effective date: 20090813 |
|
AS | Assignment |
Owner name: WELLS FARGO FOOTHILL, LLC, AS AGENT,GEORGIA Free format text: SECURITY AGREEMENT;ASSIGNOR:STANADYNE CORPORATION;REEL/FRAME:023129/0296 Effective date: 20090813 Owner name: WELLS FARGO FOOTHILL, LLC, AS AGENT, GEORGIA Free format text: SECURITY AGREEMENT;ASSIGNOR:STANADYNE CORPORATION;REEL/FRAME:023129/0296 Effective date: 20090813 |
|
AS | Assignment |
Owner name: STANADYNE LLC, CONNECTICUT Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WELLS FARGO CAPITAL FINANCE, LLC (FORMERLY KNOWN AS WELLS FARGO FOOTHILL, LLC);REEL/FRAME:042388/0697 Effective date: 20170502 |
|
AS | Assignment |
Owner name: CERBERUS BUSINESS FINANCE, LLC, AS COLLATERAL AGEN Free format text: ASSIGNMENT FOR SECURITY -- PATENTS;ASSIGNOR:STANADYNE LLC;REEL/FRAME:042405/0890 Effective date: 20170502 |
|
AS | Assignment |
Owner name: PURE POWER TECHNOLOGIES, INC., NORTH CAROLINA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CERBERUS BUSINESS FINANCE, LLC;REEL/FRAME:064474/0910 Effective date: 20230731 Owner name: STANADYNE LLC, NORTH CAROLINA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CERBERUS BUSINESS FINANCE, LLC;REEL/FRAME:064474/0910 Effective date: 20230731 |