USRE33411E - Valve operating mechanism for internal combustion engine - Google Patents

Valve operating mechanism for internal combustion engine Download PDF

Info

Publication number
USRE33411E
USRE33411E US07/386,772 US38677289A USRE33411E US RE33411 E USRE33411 E US RE33411E US 38677289 A US38677289 A US 38677289A US RE33411 E USRE33411 E US RE33411E
Authority
US
United States
Prior art keywords
cam
valves
speed
raised portion
operating mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/386,772
Inventor
Kazuo Inoue
Kenichi Nagahiro
Yoshio Ajiki
Masaaki Katoh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP17909386A external-priority patent/JPS62121814A/en
Priority claimed from JP61179094A external-priority patent/JPS62121815A/en
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Application granted granted Critical
Publication of USRE33411E publication Critical patent/USRE33411E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/06Cutting-out cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/26Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of two or more valves operated simultaneously by same transmitting-gear; peculiar to machines or engines with more than two lift-valves per cylinder
    • F01L1/267Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of two or more valves operated simultaneously by same transmitting-gear; peculiar to machines or engines with more than two lift-valves per cylinder with means for varying the timing or the lift of the valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a valve operating mechanism for an internal combustion engine, including a camshaft rotatable in synchronism with the rotation of the internal combustion engine and having integral cams for operating a pair of intake or exhaust valves, and rocker arms or cam followers angularly movable supported on a rocker shaft for opening and closing the intake or exhaust valves in response to rotation of the cams.
  • Japanese Laid-Open Patent Publication No. 59(1984)-226216 discloses a valve operating mechanism for use in an internal combustion engine having a plurality of intake or exhaust valves per engine cylinder. Some of the intake or exhaust valves remain closed when the engine operates at a low speed. If the intake or exhaust valves of a particular engine cylinder of a multicylinder internal combustion engine could be kept inoperative in order to cut off the operation of the particular engine cylinder, fuel consumption would be reduced by stopping the operation of the intake or exhaust valves of the particular engine cylinder while the engine operates in a low-speed range. However, no satisfactory devices have been available in the part to achieve such a task.
  • a valve operating mechanism for operating a plurality of valves of a particular cylinder of an internal combustion engine, comprising a camshaft rotatable in synchronism with rotation of the internal combustion engine and having at least one cam, a plurality of cam followers at least one of which slidably engages the cam for selectively operating the valves according to a cam profile of the cam, and means for selectively interconnecting and disconnecting the cam followers to operate the valves in different speed ranges of the internal combustion engine, the speed ranges including a range in which all of the valves remain inoperative.
  • the camshaft has one or two annular raised portions in addition to the cam, and the cam followers include one or two cam followers which slidably engage the raised portion or portions.
  • the valves remain inoperative by the annular portion or portions and are operated in a high-speed range by the cam, or selectively in low- and high-speed ranges by low- and high-speed cams.
  • FIG. 1 is a vertical cross-sectional view of a valve operating mechanism according to an embodiment of the present invention, the view being taken along line I--I of FIG. 2;
  • FIG. 2 is a plan view of the valve operating mechanism shown in FIG. 1;
  • FIG. 3 is a cross-sectional view taken along line III--III of FIG. 1, showing first and second cam followers connected to each other;
  • FIG. 4 is a cross-sectional view similar to FIG. 3, showing the first and second cam followers disconnected from each other;
  • FIG. 5 is a vertical cross-sectional view of a valve operating mechanism according to another embodiment of the present invention, the view being taken along line V--V of FIG. 6;
  • FIG. 6 is a plan view of the valve operating mechanism shown in FIG. 5;
  • FIG. 7 is a cross-sectional view taken along line VII--VII of FIG. 6;
  • FIG. 8 is a cross-sectional view taken along line VIII--VIII of FIG. 5, showing first through third cam followers disconnected from each other;
  • FIG. 9 is a cross-sectional view similar to FIG. 8, showing the first through third cam followers interconnected
  • FIG. 10 is a plan view of a valve operating mechanism according to still another embodiment of the present invention.
  • FIG. 11 is a plan view of a valve operating mechanism according to a still further embodiment of the present invention.
  • FIG. 12 is a cross-sectional view taken along line XII--XII of FIG. 11;
  • FIG. 13 is a cross-sectional view taken along line XIII-XIII of FIG. 12, showing a mechanism for actuating the valve operating mechanism of FIG. 11;
  • FIG. 14 is a plan view of a valve operating mechanism according to a yet still further embodiment of the present invention.
  • FIG. 15 is a cross-sectional view similar to FIGS. 8, 9 and 13, showing a mechanism for actuating the valve operating mechanism of FIG. 14.
  • FIGS. 1 and 2 show a valve operating mechanism according to an embodiment of the present invention.
  • the valve operating mechanism is incorporated in an internal combustion engine for use with a particular engine cylinder having a pair of intake valves 1a, 1b for introducing an air-fuel mixture into a combustion chamber defined in an engine body.
  • the valve operating mechanism comprises a camshaft 2 rotatable in synchronism with rotation of the engine at a speed ratio of 1/2 with respect to the speed of rotation of the engine.
  • the camshaft 2 has an annular raised portion 3 and a cam 5 which are integrally disposed on the circumference of the camshaft 2.
  • the valve operating mechanism also has a rocker shaft 6 extending parallel to the camshaft 2, and first and second rocker arms or cam followers 7, 8 angularly movably supported on the rocker shaft 6 and held against the cam 5 and the raised portion 3, respectively, on the camshaft 2.
  • the intake valves 1a, 1b remain closed or inoperative by the raised portion 3 in a low-speed range of the engine.
  • the camshaft 2 is rotatably disposed above the engine body.
  • the raised portion 3 is disposed in a position corresponding to an intermediate position between the intake valves 1a, 1b, as viewed in FIG. 2.
  • the cam 5 is positioned substantially in line with the intake valve 1b.
  • the raised portion 3 has a circumferential profile in the shape of a circle corresponding to the base circle 5b of the cam 5.
  • the cam 5 has a cam lobe 5a projecting radially outwardly from the base circle 5b.
  • the rocker shaft 6 is fixed below the camshaft 2.
  • the first cam follower 7 pivotally supported on the rocker shaft 6 is aligned with the cam 5, and the second cam follower 8 pivotally supported on the rocker shaft 6 is aligned with the raised portion 3.
  • the cam followers 7, 8 have on their upper surfaces cam slippers 7a, 8a, respectively, held in sliding contact with the cam 5 and the raised portion 3, respectively.
  • the second cam follower 8 includes a pair of arms 8b, 8c having distal ends positioned above the intake valves 1a, 1b, respectively. Tappet screws 12, 13 are threaded through the distal ends of the arms 8b, 8c and have tips engageable respectively with the upper ends of the valve stems of the intake valves 1a, 1b.
  • Flanges 14, 15 are attached to the upper ends of the valve stems of the intake valves 1a, 1b.
  • the intake valves 1a, 1b are normally urged to close the intake ports by compression coil springs 16, 17 disposed under compression around the valve stems between the flanges 14, 15 and the engine body.
  • a bottomed cylindrical lifter 19 is disposed in abutment against a lower surface of the first cam follower 7.
  • the lifter 19 is normally urged upwardly by a compression spring 20 of relatively weak resiliency interposed between the lifter 19 and the engine body for resiliently biasing the cam slipper 7a of the first cam follower 7 slidably against the cam 5.
  • first and second cam followers 7, 8 have confronting side walls held in sliding contact with each other.
  • a selective coupling 21 is operatively disposed in and between the first and second cam followers 7, 8 for selectively disconnecting the cam followers 7, 8 from each other for relative displacement and also for interconnecting the cam followers 7, 8 for their movement in unison.
  • the selective coupling 21 comprises a piston 23 movable between a position in which it interconnects the first and second cam followers 7, 8 and a position in which it disconnects the first and second cam followers 7, 8 from each other, a circular stopper 24 for limiting the movement of the piston 23, and a coil spring 25 for urging the stopper 24 to move the piston 23 toward the position to disconnect the first and second cam followers 7, 8 from each other.
  • the second cam follower 8 has a first guide hole 26 opening toward the first cam follower 7 and extending parallel to the rocker shaft 6.
  • the second cam follower 8 also has a smaller-diameter hole 28 near the closed end of the first guide hole 26, with a step or shoulder 27 being defined between the smaller-diameter hole 28 and the first guide hole 26.
  • the piston 23 is slidably fitted in the first guide hole 26.
  • the piston 23 and the closed end of the smaller-diameter hole 28 define therebetween a hydraulic pressure chamber 29.
  • the second cam follower 8 has a hydraulic passage 30 defined therein in communication with the hydraulic pressure chamber 29.
  • the rocker shaft 6 has a hydraulic passage 31 defined axially therein and coupled to a source (not shown) of hydraulic pressure through a suitable hydraulic pressure control mechanism.
  • the hydraulic passages 30, 31 are held in communication with each other through a hole 32 defined in a side wall of the rocker shaft 6, irrespective of how the second cam follower 8 is angularly moved about the rocker shaft 6.
  • the first cam follower 7 has a second guide hole 35 opening toward the second cam follower 8 in registration with the first guide hole 26 in the second cam follower 8.
  • the circular stopper 24 is slidably fitted in the second guide hole 35.
  • the first cam follower 7 also has a smaller-diameter hole 37 near the closed end of the second guide hole 35, with a step or shoulder 36 defined between the second guide hole 35 and the smaller-diameter hole 37 for limiting movement of the circular stopper 24.
  • the first cam follower 7 also has a through hole 38 defined coaxially with the smaller-diameter hole 37.
  • a guide rod 39 joined integrally and coaxially to the circular stopper 24 extends through the hole 38.
  • the coil spring 25 is disposed around the guide rod 39 between the stopper 24 and the closed end of the smaller-diameter hole 37.
  • the piston 23 has an axial length selected such that when one end of the piston 23 abuts against the step 27, the other end thereof is positioned just between and hence lies flush with the sliding side walls of the first and second cam followers 7, 8, and when the piston 23 is moved into the second guide hole 35 until it displaces the stopper 24 into abutment against the step 36, said one end of the piston 23 remains in the first guide hole 26 and hence the piston 23 extends between the first and second cam followers 7, 8.
  • the piston 23 is normally urged toward the first cam follower 7 under the resiliency of a coil spring 33 disposed in the hydraulic pressure chamber 29 and acting between the piston 23 and the closed bottom of the smaller-diameter hole 28.
  • the resilient force of the spring 33 set under compression in the hydraulic pressure chamber 29 is selected to be smaller than that of the spring 25 set in place under compression.
  • the selective coupling 21 is actuated to disconnect the first and second cam followers 7, 8 from each other as illustrated in FIG. 4. More specifically, the hydraulic pressure is released by the hydraulic pressure control mechanism from the hydraulic pressure chamber 29, thus allowing the stopper 24 to move toward the second cam follower 8 under the resiliency of the spring 25 until the piston 23 abuts against the step 27.
  • the piston 23 engages the step 27 the mutually contacting ends of the piston 23 and the stopper 24 lie flush with the sliding side walls of the first and second cam followers 7, 8. Therefore, the first and second cam followers 7, 8 are held in mutually sliding contact for relative angular movement.
  • the intake valves 1a, 1b remain closed or inoperative for reducing fuel consumption.
  • the first and second cam followers 7, 8 are interconnected by the selective coupling 21, as shown in FIG. 3. More specifically, the hydraulic pressure chamber 29 of the selective coupling 21 is supplied with hydraulic pressure to cause the piston 23 to push the support 24 into the second guide holes 35 against the resiliency of the spring 25 until the stopper 24 engages the step 36.
  • the first and second cam followers 7, 8 are not connected to each other for angular movement in unison.
  • the second cam follower 8 is caused to swing the first cam follower 7. Therefore, the intake valves 1a, 1b alternately open and close the respective intake ports at the valve timing and valve lift according to the profile of the cam 5.
  • FIGS. 5 through 9 show a valve operating mechanism according to another embodiment of the present invention.
  • the valve operating mechanism comprises a camshaft 2 rotatable in synchronism with rotation of the engine at a speed ratio of 1/2 with respect to the speed of rotation of the engine.
  • the camshaft 2 has a pair of annular raised portions 3 and a cam 5 which are integrally disposed on the circumference of the camshaft 2, the cam 5 being disposed between the raised portions 3.
  • the valve operating mechanism also has a rocker shaft 6 extending parallel to the camshaft 2, and first through third cam followers 7, 8, 9 angularly movably supported on the rocker shaft 6 and held against the cam 5 and the raised portions 3, respectively, on the camshaft 2.
  • a pair of intake valves 1a, 1b remains inoperative by the raised portions 3 in a low-speed range of the engine.
  • the camshaft 2 is rotatably disposed above the engine body.
  • the cam 5 is disposed in a position corresponding to an intermediate position between the intake valves 1a, 1b, as viewed in FIG. 6.
  • the raised portions 3 are positioned substantially in line with the intake valves 1a, 1b, respectively.
  • the raised portions 3 have a circumferential profile in the shape of a circle corresponding to the base circle 5b of the cam 5.
  • the cam 5 has a cam lobe 5a projecting radially outwardly from the base circle 5b.
  • the rocker shaft 6 is fixed below the camshaft 2.
  • the first cam follower 7 pivotally supported on the rocker shaft 6 is aligned with the cam 5, on the second and third cam followers 8, 9 pivotally supported on the rocker shaft 6 are aligned respectively with the raised portions 3.
  • the cam followers 7, 8, 9 have on their upper surfaces cam slippers 7a, 8a, 9a, respectively, held in sliding contact with the cam 5 and the raised portions 3, respectively.
  • the second and third cam followers 8, 9 have distal ends positioned above the intake valves 1a, 1b, respectively.
  • Tappet screws 12, 13 are threaded through the distal ends of the cam followers 8, 9 and have tips engagable respectively with the upper ends of the valve steps of the intake valves 1a, 1b.
  • Flanges 14, 15 are attached to the upper ends of the valve stems of the intake valves 1a, 1b.
  • the intake valves 1a, 1b are normally urged to close the intake ports by compression coil springs 16, 17 disposed under compression around the valve stems between the flanges 14, 15 and the engine body.
  • a bottomed cylindrical lifter 19 is disposed in abutment against a lower surface of the first cam follower 7.
  • the lifter 19 is normally urged upwardly by a compression spring 20 of relatively weak resiliency interposed between the lifter 19 and the engine body for resiliently biasing the cam slipper 7a of the first cam follower 7 slidably against the cam 5.
  • first and second cam followers 7, 8 have confronting side walls held in sliding contact with each other.
  • a first selective coupling 21 is operatively disposed in and between the first and second cam followers 7, 8 for selectively disconnecting the cam followers 7, 8 from each other for relative displacement and also for interconnecting the cam followers 7, 8 for their movement in unison.
  • the first and third cam followers 7, 9 have confronting side walls held in sliding contact with each other.
  • a second selective coupling 22 is operatively disposed in and between the first and third cam followers 7, 9 for selectively disconnecting the cam followers 7, 9 from each other for relative displacement and also for interconnecting the cam followers 7, 9 for their movement in unison.
  • the first and second selective couplings 21, 22 are of an identical construction, and hence only the first selective coupling 21 will hereinafter be described in detail.
  • the first selective coupling 21 comprises a piston 23 movable between a position in which it interconnects the first and second cam followers 7, 8 and a position in which it disconnects the first and second cam followers 7, 8 from each other, a circular stopper 24 for limiting the movement of the piston 23, and a coil spring 25 for urging the stopper 24 to move the piston 23 toward the position to disconnect the first and second cam followers 7, 8 from each other.
  • the first cam follower 7 has a first guide hole 26 opening toward the second cam follower 8 and extending parallel to the rocker shaft 6.
  • the first cam follower 7 also has a smaller-diameter hole 28 near the closed end of the first guide hole 26, with a step or shoulder 27 being defined between the smaller-diameter hole 28 and the first guide hole 26.
  • the piston 23 is slidably fitted in the first guide hole 26.
  • the piston 23 and the closed end of the smaller-diameter hole 28 define therebetween a hydraulic pressure chamber 29.
  • the first cam follower 7 has a hydraulic passage 30 defined therein in communication with the hydraulic pressure chamber 29.
  • the rocker shaft 6 has a hydraulic passage 31 defined axially therein and coupled to a soruce (not shown) of hydraulic pressure through a suitable hydraulic pressure control mechanism.
  • the hydraulic passages 30, 31 are held in communication with each other through a hole 32 defined in a side wall of the rocker shaft 6, irrespective of how the first cam follower 7 is angularly moved about the rocker shaft 6.
  • the second cam follower 8 has a second guide hole 35 opening toward the first cam follower 7 in registration with the first guide hole 26 in the first cam follower 7.
  • the circular stopper 24 is slidably fitted in the second guide hole 35.
  • the second cam follower 8 also has a smaller-diameter hole 37 near the closed end of the second guide hole 35, with a step or shoulder 36 defined between the second guide hole 35 and the smaller-diameter hole 37 for limiting movement of the circular stopper 24.
  • the second cam follower 8 also has a through hole 38 defined coaxially with the smaller-diameter hole 37.
  • a guide rod 39 joined integrally and coaxially to the circular stopper 24 extends through the hole 38.
  • the coil spring 25 is disposed around the guide rod 39 between the stopper 24 and the closed end of the smaller-diameter hole 37.
  • the piston 23 has an axial length selected such that when one end of the piston 23 abuts against the step 27, the other end thereof is positioned just between the hence lies flush with the sliding side walls of the first and second cam followers 7, 8, and when the piston 23 is moved into the second guide hole 35 until it displaces the stopper 24 into abutment against the step 36, said one end of the piston 23 remains in the first guide hole 26 and hence the piston 23 extends between the first and second cam followers 7, 8.
  • the hydraulic passage 31 is shared by the first and second selective couplings 21, 22, which are therefore actuated simultaneously under fluid pressure supplied via the hydraulic passage 31.
  • the first and second selective couplings 21, 22 are actuated to disconnect the first through third cam followers 7, 8, 9 from each other as illustrated in FIG. 8. More specifically, the hydraulic pressure is released by the hydraulic pressure control mechanism from the hydraulic pressure chamber 29, thus allowing the stopper 24 to move toward the first cam follower 7 under the resiliency of the spring 25 until the piston 23 abuts against the step 27.
  • the piston 23 engages the step 27 the mutually contacting ends of the piston 23 and the stopper 24 of the first selective coupling 21 lie flush with the sliding walls of the first and second cam followers 7, 9.
  • first, second, and third cam followers 7, 8, 9 are held in mutually sliding contact for relative angular movement.
  • the first through third cam followers 7, 8, 9 are interconnected by the first and second selective couplings 21, 22, as shown in FIG. 9, by supplying hydraulic pressure into the hydraulic-pressure chambers 29 of the first and second selective couplings 21, 22. More specifically, the pistons 23 are forced by the supplied hydraulic pressure into the second guide holes 35 while pressing the stoppers 24 against the resilient forces of the springs 25 until the stoppers 24 are pressed against the steps 36.
  • the first through third cam followers 7, 8, 9 are interconnected by the first and second selective couplings 21, 22 so that they are caused to swing in unison by the cam 5.
  • the intake valves 1a, 1b alternately open and close the respective intake ports at the valve timing and valve life according to the profile of the cam 5.
  • FIG. 10 shows a valve operating mechanism according to still another embodiment of the present invention.
  • the camshaft 2 has a cam 5 and a pair of adjacent annular raised portions 3 disposed on one side of the cam 5.
  • the first and third cam followers 7, 9 are held in sliding contact with the raised portions 3, respectively, and engage the intake valves 1a, 1b, respectively.
  • the second cam follower 8 is held in sliding contact with the cam 5.
  • the intake valves 1a, 1b are controlled in different speed ranges by the mechanism shown in FIGS. 8 and 9. In the low-speed range, the intake valves 1a, 1b remain closed or inoperative since the first and third cam followers 7, 9 are not angularly moved. In the high-speed range, the intake valves 1a, 1b are caused to alternately open and close their intake ports according to the cam profile of the cam 5.
  • the camshaft 2 has an annular raised portion 3, a low-speed cam 4, and a high-speed cam 5 which are integrally disposed on the camshaft 2, the annular raised portion 3 being positioned between the low- and high-speed cams 4, 5.
  • the raised portion 3 has a circumferential profile in the shape of a circle corresponding to the base circles 4b, 5b of the low- and high-speed cams 4, 5.
  • the low-speed cam 4 has a cam lobe 4a projecting radially outwardly from the base circle 4b
  • the high-speed cam 5 has a cam lobe 5a projecting radially outwardly from the base circle 5b to a greater extent than the cam lobe 4a, the cam lobe 5a also having a larger angular extent than the cam lobe 4a.
  • the first cam follower 7 is held in sliding contact with the raised portion 3, whereas the second and third cam followers 8, 9 are held in sliding contact with the low- and high-speed cams 4, 5, respectively.
  • the first cam follower 7 has a pair of arm ends engageable with the upper ends of the valve stems of a pair of intake valves 1a, 1b.
  • the first through third cam followers 7, 8, 9 shown in FIG. 11 are operated by a mechanism as shown in FIG. 13.
  • the structure of FIG. 13 is substantially similar to that of FIGS. 8 and 9, except that a steel ball 33 is forcibly fitted in the hydraulic passage 31 to divide it into two independent passages for separately operating the first and second selective couplings 21, 22.
  • the first through second cam followers 7, 8, 9 are disconnected from each other as shown in FIG. 8, and hence the intake valves 1a, 1b remain closed as the first cam follower 7 is not caused to swing.
  • the first and second cam followers 7, 8 are interconnected, while the first and third cam followers 7, 9 are disconnected from each other, as shown in FIG. 13.
  • the intake valves 1a, 1b are operated by the low-speed cam 4.
  • the first through third cam followers 7, 8, 9 are interconnected as shown in FIG. 9 to enable the intake valves 1a, 1b to be operated by the high-speed cam 5.
  • FIG. 14 shows a valve operating mechanism according to a yet still further embodiment of the present invention.
  • the low-speed cam 4 is positioned between the high-speed cam 5 and the annular raised portion 3.
  • the first and second cam followers 7, 8 are held in sliding contact with the low- and high-speed cams 4, 5, and the third cam follower 9 engaging the intake valves 1a, 1b is held in sliding contact with the raised portion 3.
  • the mechanism shown in FIG. 15, which is similar to FIGS. 8 and 9 and identical to that of FIG. 13, is employed to control the intake valves 1a, 1b.
  • the first through second cam followers 7, 8, 9 are disconnected from each other as shown in FIG. 8, and hence the intake valves 1a, 1b remain closed.
  • the first and third cam followers 7, 9 are interconnected, while the first and second cam followers 7, 8 are disconnected from each other, as shown in FIG. 15.
  • the intake valves 1a, 1b are operated by the low-speed cam 4.
  • the first through third cam followers 7, 8, 9 are interconnected as shown in FIG. 9 to operate the intake valves 1a, 1b according to the cam profile of the high-speed cam 5.
  • exhaust valves may also be operated by the valve operating mechanisms according to the present invention.
  • unburned components due to exhaust gas turbulence can be reduced in low-speed operation of the engine, whereas high engine output power and torque can be generated by reducing resistance to the flow of an exhaust gas from thee combustion chamber in high-speed operation of the engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

A valve operating mechanism for operating a plurality of valves of a particular cylinder of an internal combustion engine includes a camshaft rotatable in synchronism with rotation of the internal combustion engine and having at least one cam. At least one of a plurality of cam followers slidably engages the cam for selectively operating the valves according to a cam profile of the cam. The cam followers are selectively interconnected and disconnected to operate the valves in different speed ranges of the internal combustion engine, the speed ranges including a range in which all of the valves remain inoperative. The camshaft has one or two annular raised portions in addition to the cam, and the cam followers include one or two cam followers which slidably engage the raised portion or portions. The valves remain inoperative by the annular portion or portions and are operated in a high-speed range by the cam, or selectively in low- and high-speed ranges by low- and high-speed ranges.

Description

BACKGROUND OF THE INVENTION
The present invention relates to a valve operating mechanism for an internal combustion engine, including a camshaft rotatable in synchronism with the rotation of the internal combustion engine and having integral cams for operating a pair of intake or exhaust valves, and rocker arms or cam followers angularly movable supported on a rocker shaft for opening and closing the intake or exhaust valves in response to rotation of the cams.
Japanese Laid-Open Patent Publication No. 59(1984)-226216, for example, discloses a valve operating mechanism for use in an internal combustion engine having a plurality of intake or exhaust valves per engine cylinder. Some of the intake or exhaust valves remain closed when the engine operates at a low speed. If the intake or exhaust valves of a particular engine cylinder of a multicylinder internal combustion engine could be kept inoperative in order to cut off the operation of the particular engine cylinder, fuel consumption would be reduced by stopping the operation of the intake or exhaust valves of the particular engine cylinder while the engine operates in a low-speed range. However, no satisfactory devices have been available in the part to achieve such a task.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a valve operating mechanism for an internal combustion engine, which is of a relatively simple structure, for making the intake or exhaust valves of a particular engine cylinder inoperative for better fuel economy.
According to the present invention, there is provided a valve operating mechanism for operating a plurality of valves of a particular cylinder of an internal combustion engine, comprising a camshaft rotatable in synchronism with rotation of the internal combustion engine and having at least one cam, a plurality of cam followers at least one of which slidably engages the cam for selectively operating the valves according to a cam profile of the cam, and means for selectively interconnecting and disconnecting the cam followers to operate the valves in different speed ranges of the internal combustion engine, the speed ranges including a range in which all of the valves remain inoperative.
The camshaft has one or two annular raised portions in addition to the cam, and the cam followers include one or two cam followers which slidably engage the raised portion or portions. The valves remain inoperative by the annular portion or portions and are operated in a high-speed range by the cam, or selectively in low- and high-speed ranges by low- and high-speed cams.
The above and other objects, features and advantages of the present invention will become more apparent from the following description when taken in conjunction with the accompanying drawings in which preferred embodiments of the present invention are shown by way of illustrative example.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a vertical cross-sectional view of a valve operating mechanism according to an embodiment of the present invention, the view being taken along line I--I of FIG. 2;
FIG. 2 is a plan view of the valve operating mechanism shown in FIG. 1;
FIG. 3 is a cross-sectional view taken along line III--III of FIG. 1, showing first and second cam followers connected to each other;
FIG. 4 is a cross-sectional view similar to FIG. 3, showing the first and second cam followers disconnected from each other;
FIG. 5 is a vertical cross-sectional view of a valve operating mechanism according to another embodiment of the present invention, the view being taken along line V--V of FIG. 6;
FIG. 6 is a plan view of the valve operating mechanism shown in FIG. 5;
FIG. 7 is a cross-sectional view taken along line VII--VII of FIG. 6;
FIG. 8 is a cross-sectional view taken along line VIII--VIII of FIG. 5, showing first through third cam followers disconnected from each other;
FIG. 9 is a cross-sectional view similar to FIG. 8, showing the first through third cam followers interconnected;
FIG. 10 is a plan view of a valve operating mechanism according to still another embodiment of the present invention; and
FIG. 11 is a plan view of a valve operating mechanism according to a still further embodiment of the present invention;
FIG. 12 is a cross-sectional view taken along line XII--XII of FIG. 11;
FIG. 13 is a cross-sectional view taken along line XIII-XIII of FIG. 12, showing a mechanism for actuating the valve operating mechanism of FIG. 11;
FIG. 14 is a plan view of a valve operating mechanism according to a yet still further embodiment of the present invention; and
FIG. 15 is a cross-sectional view similar to FIGS. 8, 9 and 13, showing a mechanism for actuating the valve operating mechanism of FIG. 14.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Like or corresponding parts are denoted by like or corresponding reference characters throughout several views.
FIGS. 1 and 2 show a valve operating mechanism according to an embodiment of the present invention. The valve operating mechanism is incorporated in an internal combustion engine for use with a particular engine cylinder having a pair of intake valves 1a, 1b for introducing an air-fuel mixture into a combustion chamber defined in an engine body.
The valve operating mechanism comprises a camshaft 2 rotatable in synchronism with rotation of the engine at a speed ratio of 1/2 with respect to the speed of rotation of the engine. The camshaft 2 has an annular raised portion 3 and a cam 5 which are integrally disposed on the circumference of the camshaft 2. The valve operating mechanism also has a rocker shaft 6 extending parallel to the camshaft 2, and first and second rocker arms or cam followers 7, 8 angularly movably supported on the rocker shaft 6 and held against the cam 5 and the raised portion 3, respectively, on the camshaft 2. The intake valves 1a, 1b remain closed or inoperative by the raised portion 3 in a low-speed range of the engine.
The camshaft 2 is rotatably disposed above the engine body. The raised portion 3 is disposed in a position corresponding to an intermediate position between the intake valves 1a, 1b, as viewed in FIG. 2. The cam 5 is positioned substantially in line with the intake valve 1b. The raised portion 3 has a circumferential profile in the shape of a circle corresponding to the base circle 5b of the cam 5. The cam 5 has a cam lobe 5a projecting radially outwardly from the base circle 5b.
The rocker shaft 6 is fixed below the camshaft 2. The first cam follower 7 pivotally supported on the rocker shaft 6 is aligned with the cam 5, and the second cam follower 8 pivotally supported on the rocker shaft 6 is aligned with the raised portion 3. The cam followers 7, 8 have on their upper surfaces cam slippers 7a, 8a, respectively, held in sliding contact with the cam 5 and the raised portion 3, respectively. The second cam follower 8 includes a pair of arms 8b, 8c having distal ends positioned above the intake valves 1a, 1b, respectively. Tappet screws 12, 13 are threaded through the distal ends of the arms 8b, 8c and have tips engageable respectively with the upper ends of the valve stems of the intake valves 1a, 1b.
Flanges 14, 15 are attached to the upper ends of the valve stems of the intake valves 1a, 1b. The intake valves 1a, 1b are normally urged to close the intake ports by compression coil springs 16, 17 disposed under compression around the valve stems between the flanges 14, 15 and the engine body.
A bottomed cylindrical lifter 19 is disposed in abutment against a lower surface of the first cam follower 7. The lifter 19 is normally urged upwardly by a compression spring 20 of relatively weak resiliency interposed between the lifter 19 and the engine body for resiliently biasing the cam slipper 7a of the first cam follower 7 slidably against the cam 5.
As illustrated in FIG. 3, the first and second cam followers 7, 8 have confronting side walls held in sliding contact with each other. A selective coupling 21 is operatively disposed in and between the first and second cam followers 7, 8 for selectively disconnecting the cam followers 7, 8 from each other for relative displacement and also for interconnecting the cam followers 7, 8 for their movement in unison.
The selective coupling 21 comprises a piston 23 movable between a position in which it interconnects the first and second cam followers 7, 8 and a position in which it disconnects the first and second cam followers 7, 8 from each other, a circular stopper 24 for limiting the movement of the piston 23, and a coil spring 25 for urging the stopper 24 to move the piston 23 toward the position to disconnect the first and second cam followers 7, 8 from each other.
The second cam follower 8 has a first guide hole 26 opening toward the first cam follower 7 and extending parallel to the rocker shaft 6. The second cam follower 8 also has a smaller-diameter hole 28 near the closed end of the first guide hole 26, with a step or shoulder 27 being defined between the smaller-diameter hole 28 and the first guide hole 26. The piston 23 is slidably fitted in the first guide hole 26. The piston 23 and the closed end of the smaller-diameter hole 28 define therebetween a hydraulic pressure chamber 29.
The second cam follower 8 has a hydraulic passage 30 defined therein in communication with the hydraulic pressure chamber 29. The rocker shaft 6 has a hydraulic passage 31 defined axially therein and coupled to a source (not shown) of hydraulic pressure through a suitable hydraulic pressure control mechanism. The hydraulic passages 30, 31 are held in communication with each other through a hole 32 defined in a side wall of the rocker shaft 6, irrespective of how the second cam follower 8 is angularly moved about the rocker shaft 6.
The first cam follower 7 has a second guide hole 35 opening toward the second cam follower 8 in registration with the first guide hole 26 in the second cam follower 8. The circular stopper 24 is slidably fitted in the second guide hole 35. The first cam follower 7 also has a smaller-diameter hole 37 near the closed end of the second guide hole 35, with a step or shoulder 36 defined between the second guide hole 35 and the smaller-diameter hole 37 for limiting movement of the circular stopper 24. The first cam follower 7 also has a through hole 38 defined coaxially with the smaller-diameter hole 37. A guide rod 39 joined integrally and coaxially to the circular stopper 24 extends through the hole 38. The coil spring 25 is disposed around the guide rod 39 between the stopper 24 and the closed end of the smaller-diameter hole 37.
The piston 23 has an axial length selected such that when one end of the piston 23 abuts against the step 27, the other end thereof is positioned just between and hence lies flush with the sliding side walls of the first and second cam followers 7, 8, and when the piston 23 is moved into the second guide hole 35 until it displaces the stopper 24 into abutment against the step 36, said one end of the piston 23 remains in the first guide hole 26 and hence the piston 23 extends between the first and second cam followers 7, 8. The piston 23 is normally urged toward the first cam follower 7 under the resiliency of a coil spring 33 disposed in the hydraulic pressure chamber 29 and acting between the piston 23 and the closed bottom of the smaller-diameter hole 28. The resilient force of the spring 33 set under compression in the hydraulic pressure chamber 29 is selected to be smaller than that of the spring 25 set in place under compression.
Operation of the valve operating mechanism will be described with reference to FIGS. 3 and 4. When the engine is to operate in a low-speed range, the selective coupling 21 is actuated to disconnect the first and second cam followers 7, 8 from each other as illustrated in FIG. 4. More specifically, the hydraulic pressure is released by the hydraulic pressure control mechanism from the hydraulic pressure chamber 29, thus allowing the stopper 24 to move toward the second cam follower 8 under the resiliency of the spring 25 until the piston 23 abuts against the step 27. When the piston 23 engages the step 27, the mutually contacting ends of the piston 23 and the stopper 24 lie flush with the sliding side walls of the first and second cam followers 7, 8. Therefore, the first and second cam followers 7, 8 are held in mutually sliding contact for relative angular movement.
With the first and second cam followers 7, 8 being thus disconnected, the first cam follower 7 is angularly moved in sliding contact with the cam 5, whereas the second cam follower 8 is held in sliding contact with the raised portion 3. Since the raised portion 3 does not impose any camming action on the second cam follower 8, the intake valves 1a, 1b remain closed. The swinging movement of the first cam follower 7 which is caused by the cam 5 does not affect the intake valves 1a, 1b as the first cam follower 7 is disconnected from the second cam follower 8 at this time. Any frictional loss of the valve operating mechanism is relatively low because the first cam follower 7 is held in sliding contact with the cam 5 under the relatively small resilient force of the spring 20.
During low-speed operation of the engine, therefore, the intake valves 1a, 1b remain closed or inoperative for reducing fuel consumption.
For high-speed operation of the engine, the first and second cam followers 7, 8 are interconnected by the selective coupling 21, as shown in FIG. 3. More specifically, the hydraulic pressure chamber 29 of the selective coupling 21 is supplied with hydraulic pressure to cause the piston 23 to push the support 24 into the second guide holes 35 against the resiliency of the spring 25 until the stopper 24 engages the step 36. The first and second cam followers 7, 8 are not connected to each other for angular movement in unison.
At this time, the second cam follower 8 is caused to swing the first cam follower 7. Therefore, the intake valves 1a, 1b alternately open and close the respective intake ports at the valve timing and valve lift according to the profile of the cam 5.
FIGS. 5 through 9 show a valve operating mechanism according to another embodiment of the present invention.
The valve operating mechanism comprises a camshaft 2 rotatable in synchronism with rotation of the engine at a speed ratio of 1/2 with respect to the speed of rotation of the engine. The camshaft 2 has a pair of annular raised portions 3 and a cam 5 which are integrally disposed on the circumference of the camshaft 2, the cam 5 being disposed between the raised portions 3. The valve operating mechanism also has a rocker shaft 6 extending parallel to the camshaft 2, and first through third cam followers 7, 8, 9 angularly movably supported on the rocker shaft 6 and held against the cam 5 and the raised portions 3, respectively, on the camshaft 2. A pair of intake valves 1a, 1b remains inoperative by the raised portions 3 in a low-speed range of the engine.
The camshaft 2 is rotatably disposed above the engine body. The cam 5 is disposed in a position corresponding to an intermediate position between the intake valves 1a, 1b, as viewed in FIG. 6. The raised portions 3 are positioned substantially in line with the intake valves 1a, 1b, respectively. The raised portions 3 have a circumferential profile in the shape of a circle corresponding to the base circle 5b of the cam 5. The cam 5 has a cam lobe 5a projecting radially outwardly from the base circle 5b.
The rocker shaft 6 is fixed below the camshaft 2. The first cam follower 7 pivotally supported on the rocker shaft 6 is aligned with the cam 5, on the second and third cam followers 8, 9 pivotally supported on the rocker shaft 6 are aligned respectively with the raised portions 3. The cam followers 7, 8, 9 have on their upper surfaces cam slippers 7a, 8a, 9a, respectively, held in sliding contact with the cam 5 and the raised portions 3, respectively. The second and third cam followers 8, 9 have distal ends positioned above the intake valves 1a, 1b, respectively. Tappet screws 12, 13 are threaded through the distal ends of the cam followers 8, 9 and have tips engagable respectively with the upper ends of the valve steps of the intake valves 1a, 1b.
Flanges 14, 15 are attached to the upper ends of the valve stems of the intake valves 1a, 1b. The intake valves 1a, 1b are normally urged to close the intake ports by compression coil springs 16, 17 disposed under compression around the valve stems between the flanges 14, 15 and the engine body.
A bottomed cylindrical lifter 19 is disposed in abutment against a lower surface of the first cam follower 7. The lifter 19 is normally urged upwardly by a compression spring 20 of relatively weak resiliency interposed between the lifter 19 and the engine body for resiliently biasing the cam slipper 7a of the first cam follower 7 slidably against the cam 5.
As illustrated in FIG. 8, the first and second cam followers 7, 8 have confronting side walls held in sliding contact with each other. A first selective coupling 21 is operatively disposed in and between the first and second cam followers 7, 8 for selectively disconnecting the cam followers 7, 8 from each other for relative displacement and also for interconnecting the cam followers 7, 8 for their movement in unison. Likewise, the first and third cam followers 7, 9 have confronting side walls held in sliding contact with each other. A second selective coupling 22 is operatively disposed in and between the first and third cam followers 7, 9 for selectively disconnecting the cam followers 7, 9 from each other for relative displacement and also for interconnecting the cam followers 7, 9 for their movement in unison.
The first and second selective couplings 21, 22 are of an identical construction, and hence only the first selective coupling 21 will hereinafter be described in detail.
The first selective coupling 21 comprises a piston 23 movable between a position in which it interconnects the first and second cam followers 7, 8 and a position in which it disconnects the first and second cam followers 7, 8 from each other, a circular stopper 24 for limiting the movement of the piston 23, and a coil spring 25 for urging the stopper 24 to move the piston 23 toward the position to disconnect the first and second cam followers 7, 8 from each other.
The first cam follower 7 has a first guide hole 26 opening toward the second cam follower 8 and extending parallel to the rocker shaft 6. The first cam follower 7 also has a smaller-diameter hole 28 near the closed end of the first guide hole 26, with a step or shoulder 27 being defined between the smaller-diameter hole 28 and the first guide hole 26. The piston 23 is slidably fitted in the first guide hole 26. The piston 23 and the closed end of the smaller-diameter hole 28 define therebetween a hydraulic pressure chamber 29.
The first cam follower 7 has a hydraulic passage 30 defined therein in communication with the hydraulic pressure chamber 29. The rocker shaft 6 has a hydraulic passage 31 defined axially therein and coupled to a soruce (not shown) of hydraulic pressure through a suitable hydraulic pressure control mechanism. The hydraulic passages 30, 31 are held in communication with each other through a hole 32 defined in a side wall of the rocker shaft 6, irrespective of how the first cam follower 7 is angularly moved about the rocker shaft 6.
The second cam follower 8 has a second guide hole 35 opening toward the first cam follower 7 in registration with the first guide hole 26 in the first cam follower 7. The circular stopper 24 is slidably fitted in the second guide hole 35. The second cam follower 8 also has a smaller-diameter hole 37 near the closed end of the second guide hole 35, with a step or shoulder 36 defined between the second guide hole 35 and the smaller-diameter hole 37 for limiting movement of the circular stopper 24. The second cam follower 8 also has a through hole 38 defined coaxially with the smaller-diameter hole 37. A guide rod 39 joined integrally and coaxially to the circular stopper 24 extends through the hole 38. The coil spring 25 is disposed around the guide rod 39 between the stopper 24 and the closed end of the smaller-diameter hole 37.
The piston 23 has an axial length selected such that when one end of the piston 23 abuts against the step 27, the other end thereof is positioned just between the hence lies flush with the sliding side walls of the first and second cam followers 7, 8, and when the piston 23 is moved into the second guide hole 35 until it displaces the stopper 24 into abutment against the step 36, said one end of the piston 23 remains in the first guide hole 26 and hence the piston 23 extends between the first and second cam followers 7, 8. The hydraulic passage 31 is shared by the first and second selective couplings 21, 22, which are therefore actuated simultaneously under fluid pressure supplied via the hydraulic passage 31.
Operation of the valve operating mechanism will be described with reference to FIGS. 8 and 9. When the engine is to operate in a low-speed range, the first and second selective couplings 21, 22 are actuated to disconnect the first through third cam followers 7, 8, 9 from each other as illustrated in FIG. 8. More specifically, the hydraulic pressure is released by the hydraulic pressure control mechanism from the hydraulic pressure chamber 29, thus allowing the stopper 24 to move toward the first cam follower 7 under the resiliency of the spring 25 until the piston 23 abuts against the step 27. When the piston 23 engages the step 27, the mutually contacting ends of the piston 23 and the stopper 24 of the first selective coupling 21 lie flush with the sliding walls of the first and second cam followers 7, 9. Likewise, the mutually contacting ends of the piston 23 and the stopper 24 of the second selective coupling 22 lie flush with the sliding side walls of the first and third cam followers 7, 9. Thus, the first, second, and third cam followers 7, 8, 9 are held in mutually sliding contact for relative angular movement.
With the first through third cam followers 7, 8, 9 being thus disconnected, the second and third cam followers 8, 9, which slidingly contact the raised portions 3, are not angularly moved, keeping the intake valves 1a, 1b closed. The second and third cam followers 8, 9 are not affected by the angular movement of the first cam follower 7 in sliding contact with the cam 5. Any frictional loss of the valve operating mechanism is relatively low because the first cam follower 7 is held in sliding contact with the cam 5 under the relatively small resilient force of the spring 20.
During low-speed operation of the engine, therefore, fuel consumption is reduced inasmuch as the intake valves 1a, 1b remain closed or inoperative.
When the engine is to operate at a high speed, the first through third cam followers 7, 8, 9 are interconnected by the first and second selective couplings 21, 22, as shown in FIG. 9, by supplying hydraulic pressure into the hydraulic-pressure chambers 29 of the first and second selective couplings 21, 22. More specifically, the pistons 23 are forced by the supplied hydraulic pressure into the second guide holes 35 while pressing the stoppers 24 against the resilient forces of the springs 25 until the stoppers 24 are pressed against the steps 36. The first through third cam followers 7, 8, 9 are interconnected by the first and second selective couplings 21, 22 so that they are caused to swing in unison by the cam 5. As a consequence, the intake valves 1a, 1b alternately open and close the respective intake ports at the valve timing and valve life according to the profile of the cam 5.
FIG. 10 shows a valve operating mechanism according to still another embodiment of the present invention.
The camshaft 2 has a cam 5 and a pair of adjacent annular raised portions 3 disposed on one side of the cam 5. The first and third cam followers 7, 9 are held in sliding contact with the raised portions 3, respectively, and engage the intake valves 1a, 1b, respectively. The second cam follower 8 is held in sliding contact with the cam 5. The intake valves 1a, 1b are controlled in different speed ranges by the mechanism shown in FIGS. 8 and 9. In the low-speed range, the intake valves 1a, 1b remain closed or inoperative since the first and third cam followers 7, 9 are not angularly moved. In the high-speed range, the intake valves 1a, 1b are caused to alternately open and close their intake ports according to the cam profile of the cam 5.
According to a still further embodiment shown in FIGS. 11 and 12, the camshaft 2 has an annular raised portion 3, a low-speed cam 4, and a high-speed cam 5 which are integrally disposed on the camshaft 2, the annular raised portion 3 being positioned between the low- and high- speed cams 4, 5. The raised portion 3 has a circumferential profile in the shape of a circle corresponding to the base circles 4b, 5b of the low- and high- speed cams 4, 5. The low-speed cam 4 has a cam lobe 4a projecting radially outwardly from the base circle 4b, and the high-speed cam 5 has a cam lobe 5a projecting radially outwardly from the base circle 5b to a greater extent than the cam lobe 4a, the cam lobe 5a also having a larger angular extent than the cam lobe 4a.
The first cam follower 7 is held in sliding contact with the raised portion 3, whereas the second and third cam followers 8, 9 are held in sliding contact with the low- and high- speed cams 4, 5, respectively. The first cam follower 7 has a pair of arm ends engageable with the upper ends of the valve stems of a pair of intake valves 1a, 1b.
The first through third cam followers 7, 8, 9 shown in FIG. 11 are operated by a mechanism as shown in FIG. 13. The structure of FIG. 13 is substantially similar to that of FIGS. 8 and 9, except that a steel ball 33 is forcibly fitted in the hydraulic passage 31 to divide it into two independent passages for separately operating the first and second selective couplings 21, 22. In the low-speed range, the first through second cam followers 7, 8, 9 are disconnected from each other as shown in FIG. 8, and hence the intake valves 1a, 1b remain closed as the first cam follower 7 is not caused to swing. In the medium-speed range, the first and second cam followers 7, 8 are interconnected, while the first and third cam followers 7, 9 are disconnected from each other, as shown in FIG. 13. Thus, the intake valves 1a, 1b are operated by the low-speed cam 4. In the high-speed range, the first through third cam followers 7, 8, 9 are interconnected as shown in FIG. 9 to enable the intake valves 1a, 1b to be operated by the high-speed cam 5.
FIG. 14 shows a valve operating mechanism according to a yet still further embodiment of the present invention. In FIG. 14, the low-speed cam 4 is positioned between the high-speed cam 5 and the annular raised portion 3. The first and second cam followers 7, 8 are held in sliding contact with the low- and high- speed cams 4, 5, and the third cam follower 9 engaging the intake valves 1a, 1b is held in sliding contact with the raised portion 3. The mechanism shown in FIG. 15, which is similar to FIGS. 8 and 9 and identical to that of FIG. 13, is employed to control the intake valves 1a, 1b. In the low-speed range, the first through second cam followers 7, 8, 9 are disconnected from each other as shown in FIG. 8, and hence the intake valves 1a, 1b remain closed. In the medium-speed range, the first and third cam followers 7, 9 are interconnected, while the first and second cam followers 7, 8 are disconnected from each other, as shown in FIG. 15. Thus, the intake valves 1a, 1b are operated by the low-speed cam 4. In the high-speed range, the first through third cam followers 7, 8, 9 are interconnected as shown in FIG. 9 to operate the intake valves 1a, 1b according to the cam profile of the high-speed cam 5.
While the intake valves 1a, 1b are shown as being operated by each of the valve operating mechanisms, exhaust valves may also be operated by the valve operating mechanisms according to the present invention. In such a case, unburned components due to exhaust gas turbulence can be reduced in low-speed operation of the engine, whereas high engine output power and torque can be generated by reducing resistance to the flow of an exhaust gas from thee combustion chamber in high-speed operation of the engine.
Although certain preferred embodiments have been shown and described, it should be understood that many changes and modifications may be made therein without departing from the scope of the appended claims.

Claims (12)

We claim:
1. A valve operating mechanism for operating a plurality of valves of a particular cylinder of an internal combustion engine, comprising:
a camshaft rotatable in synchronism with rotation of the internal combustion engine and having at least one cam;
a plurality of cam followers, one of which slidably engages with said cam for selectively operating the valves according to a cam profile of said cam; and
means for selectively interconnecting and disconnecting said cam followers to operate the valves differently in different speed ranges of the internal combustion engine, said speed ranges including a range in which all of the valves remain inoperative.
2. A valve operating mechanism according to claim 1, wherein said camshaft has two annular raised portions with one positioned on each said of said cam, said cam followers including cam followers which slidably engage said raised portions, respectively, for controlling said valves, said means including means for selectively keeping said valves inoperative in said range with said raised portions and operating said valves in a high-speed range with said cam.
3. A valve operating mechanism according to claim 1, wherein said camshaft has an annular raised portion positioned adjacent to said cam, said cam followers including a cam follower which slidably engages said raised portion for controlling said valves, said means including means for selectively keeping said valves inoperative in said range with said raised portion and operating said valves in a high-speed range with said cam.
4. A valve operating mechanism according to claim 1, wherein said camshaft has two adjacent annular raised portions positioned on one side of said cam, said cam followers including cam followers which slidably engage said raised portions, respectively, for controlling said valves, said means including means for selectively keeping said valves inoperative in said range with said raised portions and operating said valves in a high-speed range with said cam.
5. A valve operating mechanism according to claim 1, wherein said camshaft has an annular raised portion, a low-speed cam, and a high-speed cam, said raised portion being positioned between said low- and high-speed cams, said cam followers including cam followers which slidably engage said low- and high-speed cams, respectively, and a cam follower which slidably engages said raised portion for controlling said valves, said means including means for selectively keeping said valve inoperative in said range with said raised portion and operating said valves in a low-speed range with said low-speed cam and in a high-speed range with said high speed cam.
6. A valve operating mechanism according to claim 1, wherein said camshaft has an annular raised portion, a low-speed cam, and a high-speed cam, said low-speed cam being positioned between said raised portion and said high-speed cams, said cam followers including cam followers which slidably engage said low- and high-speed cams, respectively, and a cam follower which slidably engages said raised portion for controlling said valves, said means including means for selectively keeping said valves inoperative in said range with said raised portion and operating said valves in a low-speed range with said low-speed cam and in a high-speed range with said cam.
7. A valve operating mechanism for operating a plurality of valves of a particular cylinder of an internal combustion engine, comprising:
a camshaft carrying an annular raised portion for maintaining said valves in a closed condition and cam means having a cam profile for sequentially opening and closing said valves,
first cam follower means slidably engaging said raised portion and operatively connecting said valves thereto,
second cam follower means slidably engaging said cam means, and
means for selectively interconnecting and disconnecting said first and second cam followers at a predetermined condition of engine operation whereby said raised portion is effective to operate said valves during one range of engine operation and said cam means is effective to operate said valves during another range of engine operation.
8. A valve operating mechanism as recited in claim 7 in which said cam means includes a cam profile comprising a base circle and a cam lobe extending radially therefrom and said annular raised portion has a diameter corresponding substantially to that of said base circle.
9. A valve operating mechanism as recited in claim 8 in which said first cam follower means is a bifurcate member effective to operatively connect said valves to said raised portion.
10. A valve operating mechanism as recited in claim 9 in which said cam means includes a low-speed and a high-speed cam and said interconnecting and disconnecting means including means for connecting and disconnecting said second cam follower means to said first cam followers means for operation of said first cam follower means in response to either said raised portion, said low-speed cam or said high-speed cam.
11. A valve operating mechanism as recited in claim 10 in which said interconnecting and disconnecting means are effective to selectively connect said first cam follower means with the adjacent second cam follower means.
12. A valve operating mechanism as recited in claim 11 in which said first cam follower means is positioned intermediate the respective of said second cam follower means and said interconnecting and disconnecting means are effective to selectively connect said first cam follower means with either or both of said respective second cam follower means.
US07/386,772 1986-07-30 1989-07-31 Valve operating mechanism for internal combustion engine Expired - Lifetime USRE33411E (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP61-179093 1986-07-30
JP61-179094 1986-07-30
JP17909386A JPS62121814A (en) 1985-07-31 1986-07-30 Tappet valve device for multicylinder interanal combustion engine
JP61179094A JPS62121815A (en) 1985-07-31 1986-07-30 Tappet valve device for multicylinder internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US07/008,741 Reissue US4790274A (en) 1986-07-30 1987-01-30 Valve operating mechanism for internal combustion engine

Publications (1)

Publication Number Publication Date
USRE33411E true USRE33411E (en) 1990-10-30

Family

ID=26499055

Family Applications (3)

Application Number Title Priority Date Filing Date
US07/008,741 Ceased US4790274A (en) 1986-07-30 1987-01-30 Valve operating mechanism for internal combustion engine
US07/281,223 Expired - Lifetime US4869214A (en) 1986-07-30 1988-12-08 Valve operating mechanism for internal combustion engine
US07/386,772 Expired - Lifetime USRE33411E (en) 1986-07-30 1989-07-31 Valve operating mechanism for internal combustion engine

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US07/008,741 Ceased US4790274A (en) 1986-07-30 1987-01-30 Valve operating mechanism for internal combustion engine
US07/281,223 Expired - Lifetime US4869214A (en) 1986-07-30 1988-12-08 Valve operating mechanism for internal combustion engine

Country Status (2)

Country Link
US (3) US4790274A (en)
EP (1) EP0276533B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5386806A (en) * 1990-02-16 1995-02-07 Group Lotus Limited Cam mechanisms
US5544626A (en) * 1995-03-09 1996-08-13 Ford Motor Company Finger follower rocker arm with engine valve deactivator
US6343581B2 (en) * 2000-07-05 2002-02-05 Yamaha Hatsudoki Kabushiki Kaisha Variable valve timing and lift structure for four cycle engine
US20120048219A1 (en) * 2010-09-01 2012-03-01 Hyundai Motor Company Variable valve lift apparatus
US20130192550A1 (en) * 2010-10-21 2013-08-01 Borgwarner Inc Additional spring and follower mechanism built into valve cover or bearing bridge
US20130263804A1 (en) * 2012-04-10 2013-10-10 Otics Corporation Variable valve mechanism
US11578647B2 (en) 2020-03-11 2023-02-14 Arctic Cat Inc. Engine

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081125B2 (en) * 1986-10-16 1996-01-10 マツダ株式会社 Engine valve drive
JPS63285207A (en) * 1987-05-15 1988-11-22 Honda Motor Co Ltd Valve system of internal combustion engine
JPS643208A (en) * 1987-06-23 1989-01-09 Honda Motor Co Ltd Tappet valve system for internal combustion engine
JPS643216A (en) * 1987-06-25 1989-01-09 Honda Motor Co Ltd Valve system controller for internal combustion engine
JPS6419131A (en) * 1987-07-13 1989-01-23 Honda Motor Co Ltd Moving valve control device for internal combustion engine
JPS6480711A (en) * 1987-09-22 1989-03-27 Honda Motor Co Ltd Valve system controller for internal combustion engine
JP2577252B2 (en) * 1988-10-11 1997-01-29 本田技研工業株式会社 Valve train for internal combustion engine
JP2814613B2 (en) * 1989-10-12 1998-10-27 日産自動車株式会社 Engine Valve Actuator
US5253621A (en) * 1992-08-14 1993-10-19 Group Lotus Plc Valve control means
WO1991012413A1 (en) * 1990-02-16 1991-08-22 Group Lotus Plc Valve control means
JP2701595B2 (en) * 1991-07-01 1998-01-21 日産自動車株式会社 Variable valve train for internal combustion engine
EP0583583B1 (en) * 1992-07-16 1996-09-04 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Internal combustion engine for vehicle
DE69301140T2 (en) * 1992-09-16 1996-05-15 Honda Motor Co Ltd Valve train arrangement for an internal combustion engine
US5233948A (en) * 1992-12-10 1993-08-10 Ford Motor Company Variable cycle engine
JPH06235309A (en) * 1992-12-16 1994-08-23 Mitsubishi Motors Corp Valve system for internal combustion engine
DE4334995C2 (en) * 1993-10-14 1996-01-11 Audi Ag Valve train for a multi-cylinder internal combustion engine
DE9406190U1 (en) * 1994-04-14 1994-06-09 INA Wälzlager Schaeffler KG, 91074 Herzogenaurach Device for the simultaneous actuation of at least two gas exchange valves
JP3358887B2 (en) * 1994-09-20 2002-12-24 本田技研工業株式会社 Cylinder number control internal combustion engine
US5613469A (en) * 1995-12-26 1997-03-25 Chrysler Corporation Controls apparatus for engine variable valve system
US5590627A (en) * 1996-01-02 1997-01-07 Chrysler Corporation Fluid inletting and support structure for a variable valve assembly
US5957097A (en) * 1997-08-13 1999-09-28 Harley-Davidson Motor Company Internal combustion engine with automatic compression release
US7263956B2 (en) * 1999-07-01 2007-09-04 Delphi Technologies, Inc. Valve lifter assembly for selectively deactivating a cylinder
DE10146129A1 (en) 2001-09-19 2003-04-03 Ina Schaeffler Kg Switching element for a valve train of an internal combustion engine
EP1472438B1 (en) 2002-02-06 2005-07-27 INA-Schaeffler KG Switch element for valve actuation in an internal combustion engine
US7107953B2 (en) * 2003-09-18 2006-09-19 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Valve gear of an internal combustion engine
US7007646B2 (en) * 2003-09-18 2006-03-07 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Valve gear with cylinder suspending mechanism of an internal combustion engine
DE102008057830A1 (en) 2007-11-21 2009-05-28 Schaeffler Kg Switchable plunger
US8196556B2 (en) * 2009-09-17 2012-06-12 Delphi Technologies, Inc. Apparatus and method for setting mechanical lash in a valve-deactivating hydraulic lash adjuster
US8286599B2 (en) * 2010-03-22 2012-10-16 GM Global Technology Operations LLC Engine having variable lift valvetrain
US8286600B2 (en) * 2010-03-22 2012-10-16 GM Global Technology Operations LLC Engine having variable lift valvetrain

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4499870A (en) * 1983-04-26 1985-02-19 Nissan Motor Company, Limited Multi-cylinder internal combustion engine
US4523550A (en) * 1983-09-22 1985-06-18 Honda Giken Kogyo Kabushiki Kaisha Valve disabling device for internal combustion engines
US4534323A (en) * 1982-12-23 1985-08-13 Nissan Motor Co., Ltd. Valve operation changing system of internal combustion engine
US4537165A (en) * 1983-06-06 1985-08-27 Honda Giken Kogyo Kabushiki Kaisha Valve actuating mechanism having stopping function for internal combustion engines
US4545342A (en) * 1983-06-29 1985-10-08 Honda Giken Kogyo Kabushiki Kaisha Method and apparatus for the control of valve operations in internal combustion engine
US4576128A (en) * 1983-12-17 1986-03-18 Honda Giken Kogyo Kabushiki Kaisha Valve operation stopping means for multi-cylinder engine
US4584974A (en) * 1982-07-27 1986-04-29 Nissan Motor Co., Ltd. Valve operation changing system of internal combustion engine
US4589387A (en) * 1984-07-02 1986-05-20 Honda Giken Kogyo Kabushiki Kaisha Valve operating device with stopping function for internal combustion engine
EP0186341A1 (en) * 1984-12-24 1986-07-02 General Motors Corporation Engine valve train system
US4612884A (en) * 1984-07-24 1986-09-23 Honda Giken Kogyo Kabushiki Kaisha Valve operating and interrupting mechanism for internal combustion engine
DE3613945A1 (en) * 1985-04-26 1986-10-30 Mazda Motor Corp., Hiroshima VARIABLE VALVE MECHANISM FOR COMBUSTION ENGINES
EP0213758A1 (en) * 1985-07-31 1987-03-11 Honda Giken Kogyo Kabushiki Kaisha Valve operating mechanism
US4656977A (en) * 1984-07-24 1987-04-14 Honda Giken Kogyo Kabushiki Kaisha Operating mechanism for dual valves in an internal combustion engine
US4690110A (en) * 1985-04-26 1987-09-01 Mazda Motor Corporation Variable valve mechanism for internal combustion engines

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121811A (en) * 1985-07-31 1987-06-03 Honda Motor Co Ltd Tappet valve device for interanl combustion engine
US4887563A (en) * 1986-10-16 1989-12-19 Honda Giken Kogyo Kabushiki Kaisha Valve operating apparatus for an internal combustion engine
US4788946A (en) * 1987-01-30 1988-12-06 Honda Giken Kogyo Kabushiki Kaisha Valve operating mechanism for internal combustion engine
US4788296A (en) * 1987-05-29 1988-11-29 Amoco Corporation Process for the production and recovery of trimellitic anhydride

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584974A (en) * 1982-07-27 1986-04-29 Nissan Motor Co., Ltd. Valve operation changing system of internal combustion engine
US4534323A (en) * 1982-12-23 1985-08-13 Nissan Motor Co., Ltd. Valve operation changing system of internal combustion engine
US4499870A (en) * 1983-04-26 1985-02-19 Nissan Motor Company, Limited Multi-cylinder internal combustion engine
US4537165A (en) * 1983-06-06 1985-08-27 Honda Giken Kogyo Kabushiki Kaisha Valve actuating mechanism having stopping function for internal combustion engines
US4545342A (en) * 1983-06-29 1985-10-08 Honda Giken Kogyo Kabushiki Kaisha Method and apparatus for the control of valve operations in internal combustion engine
US4523550A (en) * 1983-09-22 1985-06-18 Honda Giken Kogyo Kabushiki Kaisha Valve disabling device for internal combustion engines
US4576128A (en) * 1983-12-17 1986-03-18 Honda Giken Kogyo Kabushiki Kaisha Valve operation stopping means for multi-cylinder engine
US4589387A (en) * 1984-07-02 1986-05-20 Honda Giken Kogyo Kabushiki Kaisha Valve operating device with stopping function for internal combustion engine
US4612884A (en) * 1984-07-24 1986-09-23 Honda Giken Kogyo Kabushiki Kaisha Valve operating and interrupting mechanism for internal combustion engine
US4656977A (en) * 1984-07-24 1987-04-14 Honda Giken Kogyo Kabushiki Kaisha Operating mechanism for dual valves in an internal combustion engine
EP0186341A1 (en) * 1984-12-24 1986-07-02 General Motors Corporation Engine valve train system
DE3613945A1 (en) * 1985-04-26 1986-10-30 Mazda Motor Corp., Hiroshima VARIABLE VALVE MECHANISM FOR COMBUSTION ENGINES
US4690110A (en) * 1985-04-26 1987-09-01 Mazda Motor Corporation Variable valve mechanism for internal combustion engines
EP0213758A1 (en) * 1985-07-31 1987-03-11 Honda Giken Kogyo Kabushiki Kaisha Valve operating mechanism

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5386806A (en) * 1990-02-16 1995-02-07 Group Lotus Limited Cam mechanisms
US5419290A (en) * 1990-02-16 1995-05-30 Group Lotus Limited Cam mechanisms
US5544626A (en) * 1995-03-09 1996-08-13 Ford Motor Company Finger follower rocker arm with engine valve deactivator
US6343581B2 (en) * 2000-07-05 2002-02-05 Yamaha Hatsudoki Kabushiki Kaisha Variable valve timing and lift structure for four cycle engine
US20120048219A1 (en) * 2010-09-01 2012-03-01 Hyundai Motor Company Variable valve lift apparatus
US8726861B2 (en) * 2010-09-01 2014-05-20 Hyundai Motor Company Variable valve lift apparatus
US20130192550A1 (en) * 2010-10-21 2013-08-01 Borgwarner Inc Additional spring and follower mechanism built into valve cover or bearing bridge
US9145799B2 (en) * 2010-10-21 2015-09-29 Borgwarner Inc. Additional spring and follower mechanism built into valve cover or bearing bridge
US20130263804A1 (en) * 2012-04-10 2013-10-10 Otics Corporation Variable valve mechanism
US8944019B2 (en) * 2012-04-10 2015-02-03 Otics Corporation Variable valve mechanism
US11578647B2 (en) 2020-03-11 2023-02-14 Arctic Cat Inc. Engine

Also Published As

Publication number Publication date
US4869214A (en) 1989-09-26
EP0276533A1 (en) 1988-08-03
US4790274A (en) 1988-12-13
EP0276533B1 (en) 1993-09-22

Similar Documents

Publication Publication Date Title
USRE33411E (en) Valve operating mechanism for internal combustion engine
US4727831A (en) Valve operating mechanism for internal combustion engine
US4727830A (en) Valve operating mechanism for internal combustion engine
US4788946A (en) Valve operating mechanism for internal combustion engine
CA2151440C (en) Valve operating system for multi-cylinder internal combustion engine
US4887563A (en) Valve operating apparatus for an internal combustion engine
CA1308977C (en) Valve operating device for internal combustion engine
US5515820A (en) Valve operating device for an internal combustion engine
US5537963A (en) Valve operating system for multi-cylinder internal combustion engine
US4741297A (en) Valve operating mechanism for internal combustion engine
US4807574A (en) Valve operating device for internal combustion engine
US4787346A (en) Valve operating apparatus for an internal combustion engine
US4793296A (en) Valve operating mechanism for internal combustion engine
JPS6119911A (en) Valve operation suspending device for internal-combustion engine
EP0291357B1 (en) Valve operating device of internal combustion engine
EP0519494B1 (en) Valve operating mechanism for internal combustion engine
US5515819A (en) Biasing assembly for a variable valve timing mechanism
CA1289828C (en) Valve operating mechanism for internal combustion engine
CA1316419C (en) Valve operating mechanism for internal combustion engine
JPH0612055B2 (en) Valve drive for internal combustion engine
JPS62243904A (en) Valve system for internal combustion engine
JPH0278720A (en) Valve gear of internal combustion engine
JPH0278721A (en) Valve gear of internal combustion engine

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12