USRE32952E - Method of preparing N-acryloyl-α-amino acids - Google Patents
Method of preparing N-acryloyl-α-amino acids Download PDFInfo
- Publication number
- USRE32952E USRE32952E US07/139,788 US13978887A USRE32952E US RE32952 E USRE32952 E US RE32952E US 13978887 A US13978887 A US 13978887A US RE32952 E USRE32952 E US RE32952E
- Authority
- US
- United States
- Prior art keywords
- acryloyl
- acid
- process according
- amino acid
- aminonitrile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- 125000005219 aminonitrile group Chemical group 0.000 claims abstract description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 29
- 150000002576 ketones Chemical class 0.000 claims abstract description 23
- 239000011260 aqueous acid Substances 0.000 claims abstract description 12
- 230000003301 hydrolyzing effect Effects 0.000 claims abstract description 9
- 239000012736 aqueous medium Substances 0.000 claims abstract description 8
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000000908 ammonium hydroxide Substances 0.000 claims abstract description 7
- 150000003863 ammonium salts Chemical class 0.000 claims abstract description 7
- 239000006184 cosolvent Substances 0.000 claims abstract description 6
- 230000008569 process Effects 0.000 claims description 30
- 238000006243 chemical reaction Methods 0.000 claims description 27
- -1 alkali metal cyanide Chemical class 0.000 claims description 23
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 21
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 16
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical group CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 15
- 125000003118 aryl group Chemical group 0.000 claims description 13
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 12
- 125000000217 alkyl group Chemical group 0.000 claims description 12
- 125000005842 heteroatom Chemical group 0.000 claims description 12
- 239000011541 reaction mixture Substances 0.000 claims description 12
- 239000002253 acid Substances 0.000 claims description 11
- 238000001914 filtration Methods 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical group CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 9
- 239000003795 chemical substances by application Substances 0.000 claims description 9
- 125000004432 carbon atom Chemical group C* 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 7
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 7
- 125000006413 ring segment Chemical group 0.000 claims description 7
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 claims description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 238000002955 isolation Methods 0.000 claims description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- PBQCEXIWINOSHM-UHFFFAOYSA-N 1-(prop-2-enoylamino)cycloheptane-1-carboxylic acid Chemical compound C=CC(=O)NC1(C(=O)O)CCCCCC1 PBQCEXIWINOSHM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000003960 organic solvent Substances 0.000 claims description 4
- IIIPAFVRSYVXSW-YFKPBYRVSA-N (2s)-2-(2-oxobut-3-enylamino)propanoic acid Chemical compound OC(=O)[C@H](C)NCC(=O)C=C IIIPAFVRSYVXSW-YFKPBYRVSA-N 0.000 claims description 3
- FDKGYRHTXHYWLB-LURJTMIESA-N (2s)-2-(3-oxopent-4-enylamino)propanoic acid Chemical compound OC(=O)[C@H](C)NCCC(=O)C=C FDKGYRHTXHYWLB-LURJTMIESA-N 0.000 claims description 3
- WTEJTYMFYKHGPE-UHFFFAOYSA-N 1-(prop-2-enoylamino)cyclohexane-1-carboxylic acid Chemical compound C=CC(=O)NC1(C(=O)O)CCCCC1 WTEJTYMFYKHGPE-UHFFFAOYSA-N 0.000 claims description 3
- MAEZLHVBLMEDJB-UHFFFAOYSA-N 2-phenyl-2-(prop-2-enoylamino)propanoic acid Chemical compound C=CC(=O)NC(C)(C(O)=O)C1=CC=CC=C1 MAEZLHVBLMEDJB-UHFFFAOYSA-N 0.000 claims description 3
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical group [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims description 3
- 229910002651 NO3 Inorganic materials 0.000 claims description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical group [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical group [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 3
- 229910052783 alkali metal Inorganic materials 0.000 claims description 3
- 125000002837 carbocyclic group Chemical group 0.000 claims description 3
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 3
- 239000011734 sodium Substances 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- NIXDBOGBGTZYRZ-LURJTMIESA-N (2s)-2-[(3-methyl-2-oxobut-3-enyl)amino]propanoic acid Chemical compound OC(=O)[C@H](C)NCC(=O)C(C)=C NIXDBOGBGTZYRZ-LURJTMIESA-N 0.000 claims description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 claims description 2
- NUZAAZCHRZPUSI-UHFFFAOYSA-N 1-(prop-2-enoylamino)cyclopentane-1-carboxylic acid Chemical compound C=CC(=O)NC1(C(=O)O)CCCC1 NUZAAZCHRZPUSI-UHFFFAOYSA-N 0.000 claims description 2
- NAEQEWFCTSEGED-UHFFFAOYSA-N 2-ethyl-2-(prop-2-enoylamino)butanoic acid Chemical compound CCC(CC)(C(O)=O)NC(=O)C=C NAEQEWFCTSEGED-UHFFFAOYSA-N 0.000 claims description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical group [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical group [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 2
- 229910052744 lithium Chemical group 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 229910052700 potassium Inorganic materials 0.000 claims description 2
- 239000011591 potassium Chemical group 0.000 claims description 2
- 239000000376 reactant Substances 0.000 claims description 2
- 150000001805 chlorine compounds Chemical group 0.000 claims 5
- 229910052751 metal Inorganic materials 0.000 claims 3
- 239000002184 metal Substances 0.000 claims 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims 1
- 229910017604 nitric acid Inorganic materials 0.000 claims 1
- 238000002360 preparation method Methods 0.000 abstract description 14
- 150000002825 nitriles Chemical class 0.000 abstract description 5
- 238000005580 one pot reaction Methods 0.000 abstract description 3
- 239000000047 product Substances 0.000 description 20
- 238000007792 addition Methods 0.000 description 13
- 238000006460 hydrolysis reaction Methods 0.000 description 13
- 230000007062 hydrolysis Effects 0.000 description 12
- 239000000178 monomer Substances 0.000 description 12
- 239000007787 solid Substances 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- HFBMWMNUJJDEQZ-UHFFFAOYSA-N acryloyl chloride Chemical compound ClC(=O)C=C HFBMWMNUJJDEQZ-UHFFFAOYSA-N 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 239000000243 solution Substances 0.000 description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 8
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical group [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 8
- 238000003556 assay Methods 0.000 description 8
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 5
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 150000001413 amino acids Chemical class 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 235000019270 ammonium chloride Nutrition 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 229920002554 vinyl polymer Polymers 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- KXZJHVJKXJLBKO-UHFFFAOYSA-N chembl1408157 Chemical compound N=1C2=CC=CC=C2C(C(=O)O)=CC=1C1=CC=C(O)C=C1 KXZJHVJKXJLBKO-UHFFFAOYSA-N 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- VHRYZQNGTZXDNX-UHFFFAOYSA-N methacryloyl chloride Chemical compound CC(=C)C(Cl)=O VHRYZQNGTZXDNX-UHFFFAOYSA-N 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- VZFUCHSFHOYXIS-UHFFFAOYSA-N Cycloheptanecarboxylic acid Chemical compound OC(=O)C1CCCCCC1 VZFUCHSFHOYXIS-UHFFFAOYSA-N 0.000 description 2
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 239000003518 caustics Substances 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- YFKBXYGUSOXJGS-UHFFFAOYSA-N 1,3-Diphenyl-2-propanone Chemical compound C=1C=CC=CC=1CC(=O)CC1=CC=CC=C1 YFKBXYGUSOXJGS-UHFFFAOYSA-N 0.000 description 1
- KEQGZUUPPQEDPF-UHFFFAOYSA-N 1,3-dichloro-5,5-dimethylimidazolidine-2,4-dione Chemical compound CC1(C)N(Cl)C(=O)N(Cl)C1=O KEQGZUUPPQEDPF-UHFFFAOYSA-N 0.000 description 1
- UUWJBXKHMMQDED-UHFFFAOYSA-N 1-(3-chlorophenyl)ethanone Chemical compound CC(=O)C1=CC=CC(Cl)=C1 UUWJBXKHMMQDED-UHFFFAOYSA-N 0.000 description 1
- RCVQAYIJKZFXRV-UHFFFAOYSA-N 1-(3-chloropropanoylamino)cycloheptane-1-carboxylic acid Chemical compound ClCCC(=O)NC1(C(=O)O)CCCCCC1 RCVQAYIJKZFXRV-UHFFFAOYSA-N 0.000 description 1
- BOURDYMMTZXVRY-UHFFFAOYSA-N 2-(2-methylprop-2-enoylamino)acetic acid Chemical compound CC(=C)C(=O)NCC(O)=O BOURDYMMTZXVRY-UHFFFAOYSA-N 0.000 description 1
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 1
- QKPKBBFSFQAMIY-UHFFFAOYSA-N 2-ethenyl-4,4-dimethyl-1,3-oxazol-5-one Chemical compound CC1(C)N=C(C=C)OC1=O QKPKBBFSFQAMIY-UHFFFAOYSA-N 0.000 description 1
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 1
- LZCXCXDOGAEFQX-UHFFFAOYSA-N N-Acryloylglycine Chemical compound OC(=O)CNC(=O)C=C LZCXCXDOGAEFQX-UHFFFAOYSA-N 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical class C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- 101150108015 STR6 gene Proteins 0.000 description 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
- 241000270295 Serpentes Species 0.000 description 1
- 238000007059 Strecker synthesis reaction Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- HCUQZYPFHWGZFD-UHFFFAOYSA-N butan-2-one;pentan-3-one Chemical compound CCC(C)=O.CCC(=O)CC HCUQZYPFHWGZFD-UHFFFAOYSA-N 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 229940023913 cation exchange resins Drugs 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- XTHPWXDJESJLNJ-UHFFFAOYSA-N chlorosulfonic acid Substances OS(Cl)(=O)=O XTHPWXDJESJLNJ-UHFFFAOYSA-N 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 238000006210 cyclodehydration reaction Methods 0.000 description 1
- CGZZMOTZOONQIA-UHFFFAOYSA-N cycloheptanone Chemical compound O=C1CCCCCC1 CGZZMOTZOONQIA-UHFFFAOYSA-N 0.000 description 1
- 238000007033 dehydrochlorination reaction Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 230000000447 dimerizing effect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000001030 gas--liquid chromatography Methods 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 150000002390 heteroarenes Chemical class 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910001867 inorganic solvent Inorganic materials 0.000 description 1
- 239000003049 inorganic solvent Substances 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 239000012038 nucleophile Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- NNFCIKHAZHQZJG-UHFFFAOYSA-N potassium cyanide Chemical compound [K+].N#[C-] NNFCIKHAZHQZJG-UHFFFAOYSA-N 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- KRIOVPPHQSLHCZ-UHFFFAOYSA-N propiophenone Chemical compound CCC(=O)C1=CC=CC=C1 KRIOVPPHQSLHCZ-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007342 radical addition reaction Methods 0.000 description 1
- 229920013730 reactive polymer Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000012306 spectroscopic technique Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 101150035983 str1 gene Proteins 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C231/00—Preparation of carboxylic acid amides
- C07C231/14—Preparation of carboxylic acid amides by formation of carboxamide groups together with reactions not involving the carboxamide groups
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/40—Primers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/884—Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
- A61K6/887—Compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/01—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
- C07C233/45—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/10—Homopolymers or copolymers of methacrylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/06—Systems containing only non-condensed rings with a five-membered ring
- C07C2601/08—Systems containing only non-condensed rings with a five-membered ring the ring being saturated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/18—Systems containing only non-condensed rings with a ring being at least seven-membered
Definitions
- This invention relates to a novel process for the preparation of N-acryloyl- ⁇ -amino acids which are useful as monomers and synthetic intermediates.
- N-Acryloyl- ⁇ -amino acids are useful free radical addition monomers.
- U.S. Patent Nos. 4,157,418 and 4,172,934 disclose pressure-sensitive adhesives and tapes possessing substantially increased performance by inclusion of N-acryloyl- ⁇ -amino acid comonomers.
- Copolymers derived from N-acryloyl- ⁇ -amino acids are reknowned for their ability to undergo ion exchange reactions and for their chelating ability.
- D. V. Ioffe, et al., J. Gen. Chem. USSR, 29, 3766 (1959) disclose N-methacryloylglycine:ethylene dimethacrylate copolymers as cation exchange resins;
- U.S. Pat. No. 3,285,886 discloses N-acryloylglycine:acrylic acid copolymers as agents for control of boiler sludge, corrosion inhibition, industrial waste treatment, and for desalination; so-called "snake cage" polymers were prepared by B. U. Kaczmar, et al., Chem. Abstr., 85, 124738w (1976) which possess both anionic and cationic exchange ability.
- Polymers derived from N-acryloyl- ⁇ -amino acids are useful replacements for gelatin in photographic emulsions (see, for example, U.S. Pat. Nos. 3,396,030; 3,615,624; and 3,713,834); the monomers also find use as components in photopolymerizable photographic formulations (GB 1,425,423).
- the monomers have been utilized as priming systems on teeth (E. Masuhara, et al., Chem. Abstr., 68, 50454a (1968)) and as grafting monomers- to increase the hydrophilicity of natural rubber (Y. Kozai, et al., Chem. Abstr., 75, 50182e (1971)) and the soil release c.haracteristics of cotton (U. Einsele, et al., Chem. Abstr., 81, 79204y (1974)).
- N-acryloyl- ⁇ -amino acids have often been transformed into other useful monomers. Esterification with N-hydroxysuccinimide yields a monomer which contains a readily displaceable group; this principle was utilized by A. Winston, et al., J. Polymer Sci.: Polymer Chem. Ed., 13, 2019 (1975) in preparing an iron (III) complexing polymer.
- N-acryloyl- ⁇ -amino acid The essential ingredient in all of the above-mentioned technologies, either directly or indirectly, is the N-acryloyl- ⁇ -amino acid.
- N-Acryloyl- ⁇ -amino acids have traditionally and, prior to the instant invention, most expediently been prepared by acryloylation of an alkali metal salt of an amino acid in water using acryloyl chloride (see, for example, U.S. Pat. No. 4,157,418 for a detailed procedure).
- the present invention provides a novel process for preparing N-acryloyl- ⁇ -amino acids.
- the method involves transformation of a readily available ketone via a series of chemical reactions into the corresponding N-acryloyl- ⁇ -amino acid in one reaction vessel (one-pot procedure).
- the reaction proceeds without isolation of intermediates, in high yield, and in aqueous media, from which the product, in all but a few instances, crystallizes and can be isolated by filtration.
- alkyl means the monovalent residue remaining after removal of a hydrogen atom from a linear or branched chain hydrocarbon having 1 to 14 carbon atoms;
- aryl means the monovalent residue remaining after removal of one hydrogen atom from an aromatic or heteroaromatic compound which can consist of one ring or two fused or catenated rings having 5 to 12 ring atoms which can include up to 3 heteroatoms selected from S, N, and O.
- the carbon atoms can be substituted by up to three halogen atoms, C 1 -C 4 alkyl, C 1 -C 4 alkoxy, N,N-di(C 1 -C 4 alkyl)amino, nitro, cyano, C 1 -C 4 alkyl carboxylic ester, and sulfonyl groups;
- arenyl means the monovalent residue remaining after removal of a hydrogen atom from the alkyl portion of a hydrocarbon containing both alkyl and aryl groups having 6 to 26 carbon and heteroatoms (wherein the heteroatoms are up to 3 S, N, and O atoms);
- acryloyl means not only 1-oxo-2-propenyl but also 1-oxo-2-methyl-2-propenyl resulting from methacryloylation reactions.
- the present invention provides a process for preparing N-acryloyl- ⁇ -amino acids having the formula: ##STR2## wherein R 1 and R 2 independently can be an alkyl group having 1 to 14 carbon atoms, a cycloalkyl group having 3 to 14 carbon atoms, an aryl group having 5 to 12 ring atoms, an arenyl group having 6 to 26 carbon and heteroatoms, or R 1 and R 2 taken together with the carbon to which they are joined can form a carbocyclic ring containing 4 to 12 ring atoms, with the proviso that only one of R 1 and R 2 can be aryl, and R 3 can be hydrogen or methyl, the process comprising the steps which take place in a single vessel without isolation of the intermediate products as follows:
- the novel process for preparation of these N-acryloyl- ⁇ -amino acids uses a ketone as starting material and preferably takes place in aqueous media, in a stepwise manner using one reaction vessel, and in a fashion whereby the product can be isolated in high yield from the reaction mixture by filtration.
- the process is depicted in the flow chart below; ##STR3## wherein R 1 , R 2 , and R 3 are as defined above,
- X can be chloride, bromide, nitrate, or sulfate
- Y can be chloro or acryloyloxy.
- X can be chloride, bromide, nitrate, or sulfate
- M can be sodium, potassium, or lithium.
- the reaction can be conducted by adding a fairly concentrated aqueous solution, i.e., 5-15 M, of the cyanide reagent to a mixture of an aqueous solution, i.e., 1-10 M ammonium salt and preferably a modest stoichiometric excess, i.e., 1-50 mole percent, of the ketone (i.e., ketone to cyanide reagent preferably being 1:1 to 1.5:1).
- Relatively concentrated aqueous solutions can be employed in this early stage not only to increase the rate of the reaction in equation (1) but also to keep at a minimum the amount of water, from which the eventual, somewhat water-soluble N-acryloyl- ⁇ -amino acid desirably will crystallize.
- reaction requires efficient agitation, especially with those ketones that are only sparingly soluble in water; temperatures from 10°-80° C., preferably 20°-30° C.; and reaction times of 1 to 24 hours, preferably 1 to 16 hours. Progress of the reaction can conveniently be monitored by gas liquid chromatography or various spectroscopic techniques such as NMR and IR.
- ketone when the ketone is essentially insoluble in water, non-reactive, water miscible, organic co-solvents such as ethanol, isopropanol, N,N-dimethylformamide, dioxane, and N,N-dimethylacetamide may be added in sufficient amount to create a medium for reaction to occur.
- organic co-solvents such as ethanol, isopropanol, N,N-dimethylformamide, dioxane, and N,N-dimethylacetamide may be added in sufficient amount to create a medium for reaction to occur.
- conjugated ketones such as aryl substituted ketones
- ammonia when the aminonitrile is difficult to form under the above reaction conditions, it may be necessary to add ammonia to the system, generally in the form of aqueous ammonium hydroxide.
- the excess ammonia apparently stabilizes the aminonitrile product from dimerizing as depicted in equation (2).
- dimerization reactions are disclosed in U.
- Preferred ketone starting materials include but are not limited to acetone, 2-butanone 3-pentanone, cyclopentanone, cyclohexanone, cycloheptanone, acetophenone, propiophenone, 4,40 -methoxyacetophenone, 3'-chloroacetophenone, and dibenzyl ketone.
- the preferred ammonium salt is ammonium chloride, and the preferred cyanide salts are either sodium or potassium cyanide
- Aminonitriles are well-known compounds, being prepared from the corresponding aldehyde or ketone by treatment with ammonium chloride and sodium cyanide in aqueous medium; this reaction is known as the Zelinsky-Stadnikoff modification of the Strecker Amino Acid Synthesis (cf. a review by D. T. Mowry, Chem. Rev., 42, 231-240 (1948)).
- a further modification of introducing ammonium hydroxide is sometimes employed to facilitate formation of the aminonitrile and to further stabilize it from dimer formation.
- the second step in the novel process involves acryloylation of the aminonitrile to form the corresponding acrylamidonitrile, depicted in equation (3).
- R 1 , R 2 , and R 3 are as defined above, and
- Y can be chloro or (meth)acryloyloxy.
- the preferred acryloylating agents are acryloyl and methacryloyl chloride. Both are liquids at room temperature, i.e., 22°-25° C., and can be conveniently added without solvent to the aqueous mixture containing the aminonitrile of STEP 1, with the proviso that when excess ammonia has been added in the special cases described in STEP 1 that the ammonia be removed at reduced pressure prior to the addition of the acryloylating agent. In most instances only the water solvent and efficient stirring are necessary even though the (meth)acryloyl chloride reagent is essentially insoluble in water.
- the temperature of the addition reaction is very important. If the temperature of the reaction mixture exceeds about 15° C., hydrolysis of the (meth)acryloyl chloride, i.e., reaction with water, rather than the desired acryloylation of the aminonitrile becomes significant.
- Useful reaction temperatures for STEP 2 are from 0°-15° C., preferably 5°-10° C.
- the reaction mixture is stirred for an additional 0.5 to 2 hours to ensure complete reaction of all the (meth)acryloyl chloride; again, progress of the reaction can be monitored by gas chromatography and/or spectral techniques.
- Aminonitriles have been N-acylated using acryloyl and methacryloyl chloride in U.S. Pat. No. 2,744,943, but only in a non-aqueous medium, i.e., using benzene, employing two equivalents of aminonitrile, the extra equivalent of aminonitrile being utilized to react with the hydrogen chloride generated in the acylation reaction. No yields were given, and the resulting (meth)acrylamidonitriles were not converted to N-acryloyl- ⁇ -amino acids by hydrolysis but were isolated by tedious extraction procedures and were further reacted with dicyandiamide to form (meth)acrylamidoacylguanamines.
- N-acyl- ⁇ -aminonitrile compounds have been prepared and hydrolyzed, but again only by the process of first isolating the aminonitrile and then acylating in an organic solvent.
- Roesler, et al. (Chem Abstr., 66, 115427z (1967)) reported that cyclic structures resulting from intramolecular attack on the nitrile function by the carbonyl group were formed when N-aryl-N-acyl substituted aminonitriles were treated with strong acids, e.g., hydrogen chloride, trifluoroacetic acid, or chlorosulfonic acid.
- This step in the novel process involves the selective hydrolysis of the acrylamidonitrile to the N-acryloyl- ⁇ -amino acids of the invention.
- This reaction is depicted in equation (4).
- R 1 ,R 2 , and R 3 are as defined above.
- the hydrolysis reaction depicted above can only be effected with aqueous acid.
- Useful aqueous acids include hydrochloric, sulfuric, phosphoric, and nitric acids, with sulfuric acid being preferred.
- Hydrochloric acid works well but its addition to the reaction mixture often causes co-precipitation of sodium chloride with the N-acryloyl- ⁇ -amino acid product because of the common ion effect. Removal of the sodium chloride is in many instances non-trivial because of the appreciable water solubility of some of the N-acryloyl- ⁇ -amino acids.
- Useful hydrolysis temperatures are 25°-90° C., preferably 25°-60° C., and useful times of 3-24 hours.
- the N-acryloyl- ⁇ -amino acids are colorless, crystalline solids having melting points that vary according to the ketones used in their preparation. Isolation of the N-acryloyl- ⁇ -amino acids occurs most frequently and desirably by simple filtration of the crystalline product. In instances when the product does not crystallize, it may be isolated by extracting into a substantially water-insoluble inorganic solvent such as ethyl acetate and purifying by conventional methods such as recrystallization or chromatography.
- a substantially water-insoluble inorganic solvent such as ethyl acetate
- the isolated N-acryloylamino acid product is contaminated with the ⁇ -chloropropionyl derivative, i.e., the HCl addition product.
- This can conveniently be dehydrochlorinated to the N-acryloylamino acid product by dissolution in dilute aqueous sodium hydroxide, followed by reacidification.
- N-Acryloyl- ⁇ -amino acids are useful as monomers and as synthetic intermediates. In particular, they are useful in providing 2-vinyl azlactones.
- the resulting vinyl azlactones are exceedingly interesting and useful compounds whose ultimate potential has not yet been fully realized. They have been utilized as reactive comonomers for purposes of covalently attaching various modifying groups to the side chains of polymers. This procedure has been utilized to prepare radiation-sensitive polymers (U.S. Pat. Nos. 4,304,705 and 4,378,411), hydrophilic/hydrophobic polymers (U.S. Pat. No. 4,451,619), and pressure sensitive adhesives (Eur. Pat. Appl.
- a one-liter Morton flask equipped with a mechanical stirrer, thermometer, and two addition funnels was charged with acetone (1.1 moles), ammonium chloride (53.5 grams; 1 mole), and deionized water (200 mL).
- acetone 1.1 moles
- ammonium chloride 53.5 grams; 1 mole
- deionized water 200 mL
- a freshly prepared solution of sodium cyanide 49 grams; 1 mole) in deionized water (100 mL) was added such that the reaction temperature does not exceed 10° C. The mixture was then allowed to warm to room temperature and was stirred briskly for one hour.
- acryloyl chloride (81.45 grams, 73 mL, 0.90 mole) and a caustic solution [36 grams (0.90 mole) of sodium hydroxide in 75 mL of water] were added dropwise from the addition funnels such that the temperature did not exceed 10° C. After the addition, the mixture was stirred without cooling for 30 minutes. Concentrated hydrochloric acid (250 mL; 3.02 moles) was added, and the resulting mixture warmed to 70° C. for 3 hours. After cooling to room temperature, the crystalline product was isolated by filtration and washed with 250 mL of cold water.
- sulfuric acid 12.1 N, 3.02 equivalents
- sulfuric acid 24 N, 3.02 equivalents
- Example 1 The procedure of Example 1 was utilized except that the reaction time for the initial aminonitrile-forming step was extended to 16 hours, and the hydrolysis condition was 60° C. for three hours.
- the chemical yield of N-acryloylethylalanine obtained was 73% by filtering the crystalline material obtained after the hydrolysis step.
- Example 3 Using the procedure of Example 3 the initially filtered crystalline product weighed 180 grams and possessed an equivalent weight of 265 (74% assay). When this impure product was washed with cold water (300 mL), a solid weighing 126.3 grams possessing the theoretical equivalent weight of 197 was obtained; this represents a chemical yield of 1-acrylamidocyclohexanecarboxylic acid of 71%.
- This Example teaches use of an organic solvent to extract the N-acryloylamino acid product from the reaction mixture.
- a three-liter Morton flask equipped with a mechanical stirrer, thermometer, and condenser was charged with acetophenone (1.05 moles), ammonium chloride (59 grams, 1.1 moles), sodium cyanide (49 grams, 1.0 mole), deionized water (240 mL), ammonium hydroxide solution (15.1M) (270 mL), and ethanol (400 mL).
- the solution was stirred and heated at 60° C. for 5 hours, then left at room temperature overnight.
- the solution was then concentrated to a volume of 300-400 mL on a rotary evaporator.
- the reaction flask was then equipped with a mechanical stirrer, thermometer, and two addition funnels.
- This example teaches the dehydrochlorination of 1- ⁇ -chloropropionamido)cycloheptane carboxylic acid.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plastic & Reconstructive Surgery (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
A novel, one-pot procedure for the preparation of N-acryloyl-α-amino acids involves the steps of:
(i) reacting a ketone, an ammonium salt, and a cyanide salt in water, optionally in the presence of ammonium hydroxide and a co-solvent, to form an aminonitrile;
(ii) acryloylating the aminonitrile in aqueous media to afford an acrylamidonitrile; and
(iii) hydrolyzing with aqueous acid the acrylamidonitrile to provide the N-acryloyl-α-amino acid.
Description
This invention relates to a novel process for the preparation of N-acryloyl-α-amino acids which are useful as monomers and synthetic intermediates.
N-Acryloyl-α-amino acids are useful free radical addition monomers. U.S. Patent Nos. 4,157,418 and 4,172,934 disclose pressure-sensitive adhesives and tapes possessing substantially increased performance by inclusion of N-acryloyl-α-amino acid comonomers.
Copolymers derived from N-acryloyl-α-amino acids are reknowned for their ability to undergo ion exchange reactions and for their chelating ability. D. V. Ioffe, et al., J. Gen. Chem. USSR, 29, 3766 (1959) disclose N-methacryloylglycine:ethylene dimethacrylate copolymers as cation exchange resins; U.S. Pat. No. 3,285,886 discloses N-acryloylglycine:acrylic acid copolymers as agents for control of boiler sludge, corrosion inhibition, industrial waste treatment, and for desalination; so-called "snake cage" polymers were prepared by B. U. Kaczmar, et al., Chem. Abstr., 85, 124738w (1976) which possess both anionic and cationic exchange ability.
Column chromatography supports derived from these monomers are disclosed by T. Uemura, et al., Chem. Abstr., 69, 19709j (1968); by T. Yamashita, et al., Bull. Chem. Soc. (Japan), 43, 1809 (1970); by Y. Ihara, et al., J. Polymer Sci.:Polymer Chem. Ed., 10, 3569 (1972); and by G. B-laschke, et al., Chem. Abstr., 85, 78405k (1976).
Polymers derived from N-acryloyl-α-amino acids are useful replacements for gelatin in photographic emulsions (see, for example, U.S. Pat. Nos. 3,396,030; 3,615,624; and 3,713,834); the monomers also find use as components in photopolymerizable photographic formulations (GB 1,425,423).
The monomers have been utilized as priming systems on teeth (E. Masuhara, et al., Chem. Abstr., 68, 50454a (1968)) and as grafting monomers- to increase the hydrophilicity of natural rubber (Y. Kozai, et al., Chem. Abstr., 75, 50182e (1971)) and the soil release c.haracteristics of cotton (U. Einsele, et al., Chem. Abstr., 81, 79204y (1974)).
In addition to their implementation as free radical monomers, N-acryloyl-α-amino acids have often been transformed into other useful monomers. Esterification with N-hydroxysuccinimide yields a monomer which contains a readily displaceable group; this principle was utilized by A. Winston, et al., J. Polymer Sci.: Polymer Chem. Ed., 13, 2019 (1975) in preparing an iron (III) complexing polymer.
Perhaps the most common transformation of an N-acryloyl-α-amino acid, however, is into its corresponding 2-vinyl azlactone via a cyclodehydration reaction: ##STR1## Vinyl azlactones have been utilized as monomers for generating reactive polymers in, for example, U.S. Pat. Nos. 4,304,705, 4,378,411, and 4,451,619.
The essential ingredient in all of the above-mentioned technologies, either directly or indirectly, is the N-acryloyl-α-amino acid. N-Acryloyl-α-amino acids have traditionally and, prior to the instant invention, most expediently been prepared by acryloylation of an alkali metal salt of an amino acid in water using acryloyl chloride (see, for example, U.S. Pat. No. 4,157,418 for a detailed procedure). There are at least two disadvantages with this method of synthesis: (1) the method requires that the corresponding amino acid be available, which is not always the case, especially with α,α-disubstituted amino acids useful in vinyl azlactone syntheses and, in addition, conventional procedures for preparing common amino acids often give low yields and require tedious isolation procedures involving formation of toxic heavy metal or pyridinium salts in the work-up procedure; and (2) yields employing this procedure are often low and quite variable, e.g., 20-80% reported by K. Huebner, et al., Angew. Makromol. Chem., 11, 109 (1970).
Briefly, the present invention provides a novel process for preparing N-acryloyl-α-amino acids. The method involves transformation of a readily available ketone via a series of chemical reactions into the corresponding N-acryloyl-α-amino acid in one reaction vessel (one-pot procedure). The reaction proceeds without isolation of intermediates, in high yield, and in aqueous media, from which the product, in all but a few instances, crystallizes and can be isolated by filtration.
The novel, one-pot procedure for the preparation of N-acryloyl-α-amino acids involves the steps of:
(i) reacting a ketone having alkyl, aryl, or arenyl groups or a combination of these groups with an ammonimum salt and a cyanide salt, in water, optionally in the presence of ammonium hydroxide and a co-solvent, to form an aminonitrile;
(ii) acryloylating the resulting aminonitrile in aqueous media to afford an acrylamidonitrile; and
(iii) hydrolyzing with aqueous acid the resulting acrylamidonitrile to provide the N-acryloyl-α-amino acid.
In this application:
"alkyl" means the monovalent residue remaining after removal of a hydrogen atom from a linear or branched chain hydrocarbon having 1 to 14 carbon atoms;
"aryl" means the monovalent residue remaining after removal of one hydrogen atom from an aromatic or heteroaromatic compound which can consist of one ring or two fused or catenated rings having 5 to 12 ring atoms which can include up to 3 heteroatoms selected from S, N, and O. The carbon atoms can be substituted by up to three halogen atoms, C1 -C4 alkyl, C1 -C4 alkoxy, N,N-di(C1 -C4 alkyl)amino, nitro, cyano, C1 -C4 alkyl carboxylic ester, and sulfonyl groups;
"arenyl" means the monovalent residue remaining after removal of a hydrogen atom from the alkyl portion of a hydrocarbon containing both alkyl and aryl groups having 6 to 26 carbon and heteroatoms (wherein the heteroatoms are up to 3 S, N, and O atoms); and
"acryloyl" means not only 1-oxo-2-propenyl but also 1-oxo-2-methyl-2-propenyl resulting from methacryloylation reactions.
The present invention provides a process for preparing N-acryloyl-α-amino acids having the formula: ##STR2## wherein R1 and R2 independently can be an alkyl group having 1 to 14 carbon atoms, a cycloalkyl group having 3 to 14 carbon atoms, an aryl group having 5 to 12 ring atoms, an arenyl group having 6 to 26 carbon and heteroatoms, or R1 and R2 taken together with the carbon to which they are joined can form a carbocyclic ring containing 4 to 12 ring atoms, with the proviso that only one of R1 and R2 can be aryl, and R3 can be hydrogen or methyl, the process comprising the steps which take place in a single vessel without isolation of the intermediate products as follows:
(i) reacting an alkyl, aryl or arenyl (or combinations thereof) ketone having 3 to 53 carbon and heteroatoms (which can include up to 7 N, S, and O heteroatoms, e.g., in the case of a diarenyl ketone), an ammonium salt, and an alkali metal cyanide, in water, to provide an aminonitrile,
(ii) acryloylating the aminonitrile to provide an acrylamidonitrile, and
(iii) hydrolyzing the acrylamidonitrile in aqueous acid to provide the N-acryloyl-α-amino acid.
The novel process for preparation of these N-acryloyl-α-amino acids uses a ketone as starting material and preferably takes place in aqueous media, in a stepwise manner using one reaction vessel, and in a fashion whereby the product can be isolated in high yield from the reaction mixture by filtration. The process is depicted in the flow chart below; ##STR3## wherein R1, R2, and R3 are as defined above,
X can be chloride, bromide, nitrate, or sulfate, and
Y can be chloro or acryloyloxy.
The steps of the process are as follows:
This step involves transformation of a readily available ketone into the corresponding aminonitrile ##STR4## wherein: R1 and R2 can be as defined above,
X can be chloride, bromide, nitrate, or sulfate, and
M can be sodium, potassium, or lithium.
The reaction can be conducted by adding a fairly concentrated aqueous solution, i.e., 5-15 M, of the cyanide reagent to a mixture of an aqueous solution, i.e., 1-10 M ammonium salt and preferably a modest stoichiometric excess, i.e., 1-50 mole percent, of the ketone (i.e., ketone to cyanide reagent preferably being 1:1 to 1.5:1). Relatively concentrated aqueous solutions can be employed in this early stage not only to increase the rate of the reaction in equation (1) but also to keep at a minimum the amount of water, from which the eventual, somewhat water-soluble N-acryloyl-α-amino acid desirably will crystallize. Use of a slight stoichiometric excess of the ketone facilitates the rate of reaction of equation (1) without being deleterious to future steps in the novel process; this procedure also results in less residual toxic cyanide. The reaction requires efficient agitation, especially with those ketones that are only sparingly soluble in water; temperatures from 10°-80° C., preferably 20°-30° C.; and reaction times of 1 to 24 hours, preferably 1 to 16 hours. Progress of the reaction can conveniently be monitored by gas liquid chromatography or various spectroscopic techniques such as NMR and IR.
In certain instances when the ketone is essentially insoluble in water, non-reactive, water miscible, organic co-solvents such as ethanol, isopropanol, N,N-dimethylformamide, dioxane, and N,N-dimethylacetamide may be added in sufficient amount to create a medium for reaction to occur. Also, in other certain instances (e.g., with conjugated ketones such as aryl substituted ketones) when the aminonitrile is difficult to form under the above reaction conditions, it may be necessary to add ammonia to the system, generally in the form of aqueous ammonium hydroxide. Furthermore, the excess ammonia apparently stabilizes the aminonitrile product from dimerizing as depicted in equation (2). Such dimerization reactions are disclosed in U.S. Pat. No. 4,543,215. ##STR5##
Preferred ketone starting materials include but are not limited to acetone, 2-butanone 3-pentanone, cyclopentanone, cyclohexanone, cycloheptanone, acetophenone, propiophenone, 4,40 -methoxyacetophenone, 3'-chloroacetophenone, and dibenzyl ketone. The preferred ammonium salt is ammonium chloride, and the preferred cyanide salts are either sodium or potassium cyanide
Aminonitriles are well-known compounds, being prepared from the corresponding aldehyde or ketone by treatment with ammonium chloride and sodium cyanide in aqueous medium; this reaction is known as the Zelinsky-Stadnikoff modification of the Strecker Amino Acid Synthesis (cf. a review by D. T. Mowry, Chem. Rev., 42, 231-240 (1948)). A further modification of introducing ammonium hydroxide (exemplified in U.S. Pat. No. 3,803,208) is sometimes employed to facilitate formation of the aminonitrile and to further stabilize it from dimer formation.
The second step in the novel process involves acryloylation of the aminonitrile to form the corresponding acrylamidonitrile, depicted in equation (3). ##STR6## wherein R1, R2, and R3 are as defined above, and
Y can be chloro or (meth)acryloyloxy.
The preferred acryloylating agents are acryloyl and methacryloyl chloride. Both are liquids at room temperature, i.e., 22°-25° C., and can be conveniently added without solvent to the aqueous mixture containing the aminonitrile of STEP 1, with the proviso that when excess ammonia has been added in the special cases described in STEP 1 that the ammonia be removed at reduced pressure prior to the addition of the acryloylating agent. In most instances only the water solvent and efficient stirring are necessary even though the (meth)acryloyl chloride reagent is essentially insoluble in water. This is because the acryloylation reaction is believed to take place at the interface between the meth)acryloyl chloride and the aqueous solution of the aminonitrile, and the aminonitrile compounds are generally more water-soluble than their ketone precursors. However, in a few instances use of a co-solvent such as those described in STEP 1 is necessary to bring the aminonitrile into a reactive environment.
As is depicted in equation (3) above, acid in the form of HY is generated during the reaction which will react with and render unreactive the instantaneous excess of the aminonitrile. Although two equivalents of the aminonitrile can be utilized, this procedure is wasteful of the necessary aminonitrile reactant and is undesirable. We have found an attractive alternative is to add sodium or potassium hydroxide to the reaction mixture to react with the generated acid. Most conveniently, a stoichiometric equivalent of sodium or potassium hydroxide is dissolved in a volume of water equivalent to the volume of the (meth)acryloyl chloride. The aqueous base can then be added independently and concomitantly at the same rate as the (meth)acryloyl chloride reagent by simple visual inspection. Approximately equal addition rates of both reagents are desirable so that the pH of the reaction mixture does not vary substantially; when the pH is too low the reaction rate is depressed, and when too high the possibility of polymerization and other side reactions becomes more probable.
The temperature of the addition reaction is very important. If the temperature of the reaction mixture exceeds about 15° C., hydrolysis of the (meth)acryloyl chloride, i.e., reaction with water, rather than the desired acryloylation of the aminonitrile becomes significant. Useful reaction temperatures for STEP 2 are from 0°-15° C., preferably 5°-10° C. After the additions, the reaction mixture is stirred for an additional 0.5 to 2 hours to ensure complete reaction of all the (meth)acryloyl chloride; again, progress of the reaction can be monitored by gas chromatography and/or spectral techniques.
Aminonitriles have been N-acylated using acryloyl and methacryloyl chloride in U.S. Pat. No. 2,744,943, but only in a non-aqueous medium, i.e., using benzene, employing two equivalents of aminonitrile, the extra equivalent of aminonitrile being utilized to react with the hydrogen chloride generated in the acylation reaction. No yields were given, and the resulting (meth)acrylamidonitriles were not converted to N-acryloyl-α-amino acids by hydrolysis but were isolated by tedious extraction procedures and were further reacted with dicyandiamide to form (meth)acrylamidoacylguanamines. Other N-acyl-α-aminonitrile compounds have been prepared and hydrolyzed, but again only by the process of first isolating the aminonitrile and then acylating in an organic solvent. Roesler, et al., (Chem Abstr., 66, 115427z (1967)) reported that cyclic structures resulting from intramolecular attack on the nitrile function by the carbonyl group were formed when N-aryl-N-acyl substituted aminonitriles were treated with strong acids, e.g., hydrogen chloride, trifluoroacetic acid, or chlorosulfonic acid. That cyclic structures were formed in acid-catalyzed reactions of N-acyl-α-aminonitriles was also supported by a later report by Poupaert, et al., Synthesis, 622 (1972). Shirai, et al., Yuki Gosei Kagaku Kyoaki Shi, 30, 76 (1972) studied both the acid- and base-catalyzed hydrolyses of certain N-acyl-αaminonitriles and they observed competitive hydrolysis between the acyl and nitrile functions.
This step in the novel process involves the selective hydrolysis of the acrylamidonitrile to the N-acryloyl-α-amino acids of the invention. This reaction is depicted in equation (4). ##STR7## wherein: R1,R2, and R3 are as defined above. Surprisingly, the hydrolysis reaction depicted above can only be effected with aqueous acid. In contrast to the report by Shirai, et al., Yuki Gosei Kagaku Kyokai Shi, 30, 76 (1972) which indicated that either aqueous acid or base was effective in hydrolyzing n-alkanoylaminonitriles, we have unexpectedly discovered that aqueous base does not lead to the desired hydrolysis products with N-acryloyl-α-aminonitriles. In no instance was any N-acryloyl-α-amino acid product isolated when the selective hydrolysis was attempted using an aqueous hydroxide reagent such as sodium hydroxide. With aqueous acid, however, the desired N-acryloyl-α-amino acids are readily formed, generally crystallize in the reaction mixture, and can be isolated in essentially pure form in chemical yields of 50% or higher by simple filtration.
Useful aqueous acids include hydrochloric, sulfuric, phosphoric, and nitric acids, with sulfuric acid being preferred. (Hydrochloric acid works well but its addition to the reaction mixture often causes co-precipitation of sodium chloride with the N-acryloyl-α-amino acid product because of the common ion effect. Removal of the sodium chloride is in many instances non-trivial because of the appreciable water solubility of some of the N-acryloyl-α-amino acids.) Useful hydrolysis temperatures are 25°-90° C., preferably 25°-60° C., and useful times of 3-24 hours.
The N-acryloyl-α-amino acids are colorless, crystalline solids having melting points that vary according to the ketones used in their preparation. Isolation of the N-acryloyl-α-amino acids occurs most frequently and desirably by simple filtration of the crystalline product. In instances when the product does not crystallize, it may be isolated by extracting into a substantially water-insoluble inorganic solvent such as ethyl acetate and purifying by conventional methods such as recrystallization or chromatography.
In certain instances, it has been discovered that the isolated N-acryloylamino acid product is contaminated with the β-chloropropionyl derivative, i.e., the HCl addition product. This can conveniently be dehydrochlorinated to the N-acryloylamino acid product by dissolution in dilute aqueous sodium hydroxide, followed by reacidification.
Representative examples of N-acryloyl-α-amino acids which can be prepared by the process of the instant invention include compounds of the formula ##STR8## wherein R1, R2, and R3 can be as shown in Table I below:
TABLE I
______________________________________
R.sup.1 R.sup.2 R.sup.3
______________________________________
CH.sub.3 CH.sub.3 H
CH.sub.3 CH.sub.3 CH.sub.3
CH.sub.3 C.sub.2 H.sub.5
H
CH.sub.3 C.sub.6 H.sub.5
H
(CH.sub.2).sub.3 CH.sub.3
(CH.sub.2).sub.3 CH.sub.3
H
(CH.sub.2).sub.4 CH.sub.3
(CH.sub.2).sub.4 CH.sub.3
H
C.sub.2 H.sub.5 C.sub.2 H.sub.5
H
CH.sub.2 C.sub.6 H.sub.5
CH.sub.2 C.sub.6 H.sub.5
H
(CH.sub.2).sub.5 CH.sub.3
(CH.sub.2).sub.5 CH.sub.3
CH.sub.3
CH.sub.3 .sub.--m-C.sub.6 H.sub.4 Cl
H
C.sub.2 H.sub.5 C.sub.6 H.sub.5
CH.sub.3
CH.sub.3 -p-C.sub.6 H.sub.4 OCH.sub.3
H
C.sub.12 H.sub.25
CH.sub.3 H
CH.sub.3
##STR9## CH.sub.3
(CH.sub.2 ) .sub.3 H
(CH.sub.2 ) .sub.4 CH.sub.3
(CH.sub.2 ) .sub.5 H
(CH.sub.2 ) .sub.6 CH.sub.3
(CH.sub.2 ) .sub.11 H
______________________________________
N-Acryloyl-α-amino acids, as noted in the Background of the Invention above, are useful as monomers and as synthetic intermediates. In particular, they are useful in providing 2-vinyl azlactones. The resulting vinyl azlactones are exceedingly interesting and useful compounds whose ultimate potential has not yet been fully realized. They have been utilized as reactive comonomers for purposes of covalently attaching various modifying groups to the side chains of polymers. This procedure has been utilized to prepare radiation-sensitive polymers (U.S. Pat. Nos. 4,304,705 and 4,378,411), hydrophilic/hydrophobic polymers (U.S. Pat. No. 4,451,619), and pressure sensitive adhesives (Eur. Pat. Appl. Publications No. 0128731 (1984). By reaction with appropriate nucleophiles, the vinyl azlactones have themselves been transformed into other monomers useful in the photographic arts (U.S. Pat. No. 4,288,523); into azlactone-functional compounds useful as monomers, chain extending agents, and curing agents for step-growth polymers (U.S. Pat. No. 4,485,236); and into acrylamide-functional compounds useful in curable coatings, adhesives, and binders (Int. Publication No.: WO83/01617 (1983)).
Having described our invention in general terms, it is now further described by specific examples of preparations of various N-acryloyl-α-amino acids by utilization of our novel process. The particular materials and amounts recited in the examples, however, as well as other details and conditions, should not be construed to unduly limit the invention.
Preparation of N-Acryloylmethylalanine
A one-liter Morton flask equipped with a mechanical stirrer, thermometer, and two addition funnels was charged with acetone (1.1 moles), ammonium chloride (53.5 grams; 1 mole), and deionized water (200 mL). A freshly prepared solution of sodium cyanide (49 grams; 1 mole) in deionized water (100 mL) was added such that the reaction temperature does not exceed 10° C. The mixture was then allowed to warm to room temperature and was stirred briskly for one hour. With efficient cooling, i.e., dry ice/isopropanol bath, acryloyl chloride (81.45 grams, 73 mL, 0.90 mole) and a caustic solution [36 grams (0.90 mole) of sodium hydroxide in 75 mL of water] were added dropwise from the addition funnels such that the temperature did not exceed 10° C. After the addition, the mixture was stirred without cooling for 30 minutes. Concentrated hydrochloric acid (250 mL; 3.02 moles) was added, and the resulting mixture warmed to 70° C. for 3 hours. After cooling to room temperature, the crystalline product was isolated by filtration and washed with 250 mL of cold water. The N-acryloylmethylalanine product weighed 95.3 grams and exhibited an acid equivalent weight of 176 (assay=89%; chemical yield=60%); the solid may be further purified, if desired, by recrystallization from acetonitrile or ethyl acetate. The compound exhibited satisfactory spectral and elemental analyses.
This Example teaches that purer product can be obtained by use of sulfuric acid as hydrolyzing acid instead of hydrochloric acid. When the procedure of Example 1 was conducted using sulfuric acid (12.1 N, 3.02 equivalents), a crystalline solid was obtained possessing an acid equivalent weight of 161 (assay=97.5%; chemical yield=58%). Furthermore, when sulfuric acid (24 N, 3.02 equivalents) was utilized, a crystalline product was obtained with an equivalent weight of 165 (assay=95%; chemical yield=60%.
Preparation of N-Acryloylethylalanine
The procedure of Example 1 was utilized except that the reaction time for the initial aminonitrile-forming step was extended to 16 hours, and the hydrolysis condition was 60° C. for three hours. The chemical yield of N-acryloylethylalanine obtained was 73% by filtering the crystalline material obtained after the hydrolysis step.
Preparation of N-Methacryloylmethylalanine
Using the procedure of Example 1, methacryloyl chloride (94 g; 0.90 mole) was substituted for acryloyl chloride. After hydrolysis with 12.1N HCl, the filtered solid weighed 105 g and had an equivalent weight of 234 (73% assay; chemical yield=50%).
Preparation of 1-Acrylamidocyclohexanecarboxylic Acid
Using the procedure of Example 3 the initially filtered crystalline product weighed 180 grams and possessed an equivalent weight of 265 (74% assay). When this impure product was washed with cold water (300 mL), a solid weighing 126.3 grams possessing the theoretical equivalent weight of 197 was obtained; this represents a chemical yield of 1-acrylamidocyclohexanecarboxylic acid of 71%.
Preparation of 1-Acrylamidocyclopentanecarboxylic Acid
Using the procedure of Example 2, except that the aminonitrile-forming step was extended to 21 hours, hydrolysis with 12N sulfuric acid produced 81.7 g of a white solid possessing an equivalent weight of 182 (assay 91%; chemical yield=50%).
Preparation of 2-Acrylamido-2-ethylbutyric Acid
This Example teaches use of an organic solvent to extract the N-acryloylamino acid product from the reaction mixture. Using the procedure of Example 2 and a hydrolysis condition of sulfuric acid (24 N) for 16 hours at room temperature, no crystalline product was formed as had been observed in all other cases. The yellow aqueous reaction mixture was extracted with ethyl acetate (500 mL). After drying over anhydrous magnesium sulfate, removal of the ethyl acetate at reduced pressure left 84 grams of a light brown oil which solidified on standing. Filtration and recrystallization from acetonitrile produced 63.6 grams of a white crystalline solid melting at 141°-142° C.; chemical yield=38%.
Preparation of 2-Acrylamido-2-phenylpropanoic Acid
This Examples teaches the use of a cosolvent in Steps 1 and 2 and the use of ammonium hydroxide solution in Step 1.
A three-liter Morton flask equipped with a mechanical stirrer, thermometer, and condenser was charged with acetophenone (1.05 moles), ammonium chloride (59 grams, 1.1 moles), sodium cyanide (49 grams, 1.0 mole), deionized water (240 mL), ammonium hydroxide solution (15.1M) (270 mL), and ethanol (400 mL). The solution was stirred and heated at 60° C. for 5 hours, then left at room temperature overnight. The solution was then concentrated to a volume of 300-400 mL on a rotary evaporator. The reaction flask was then equipped with a mechanical stirrer, thermometer, and two addition funnels. After the addition of ethanol (250 mL), the flask was cooled in an ice bath and acryloyl chloride (81.5 grams, 73 mL, 0.90 mole) and a caustic solution [36 grams 0.90 mol) of sodium hydroxide in 40 mL of water] were added dropwise from the addition funnels at such a rate that the temperature of the vigorously stirred reaction mixture did not exceed 10° C. After the addition, the mixture was stirred without cooling for 2 hours, water (500 mL) was added, and the mixture was filtered. The solid from the filtration was suspended in a solution of sulfuric acid (18 M) (160 mL) in water (400 mL) and the mixture was warmed to 60° C. After 4 hours, the reaction mixture was cooled to room temperature and filtered. After washing with water (500 mL), the collected solid was slurried in 500 mL of a mixture of ether and hexane (40:60, volume:volume). Filtration afforded 71.1 grams of 2-acrylamido-2-phenylpropionic acid as a white solid possessing an acid equivalent weight of 229 (assay=96%; chemical yield=33%).
Preparation of 1-Acrylamidocycloheptanecarboxylic Acid.
This example teaches the dehydrochlorination of 1-β-chloropropionamido)cycloheptane carboxylic acid.
Using the procedure of Example 6, 113.1 g of a white solid was obtained. Analysis by nuclear magnetic reasonance spectroscopy determined the material to consist mainly of 1-acrylamidocycloheptanecarboxylic acid, together with about 10% of the HCl addition product, 1-(β--chloropropionamido)cycloheptane carboxylic acid. The mixture was dissolved in a sodium hydroxide solution (40 g in 400 mL of water), stirred at room temperature for 3 hours, then concentrated sulfuric acid (60 mL) was added. The white solid was collected by filtration, washed with water (500 mL), and dried to afford 101.5 g of 1-acrylamidocycloheptane-carboxylic acid (assay=98%; chemical yield=48%).
Various modifications and alterations of this invention will become apparent to those skilled in the art without departing from the scope and spirit of this invention, and it should be understood that this invention is not to be unduly limited to the illustrative embodiments set forth herein.
Claims (16)
1. A process for providing an N-acryloyl-α-amino acid comprising the steps:
(i) reacting a ketone having alkyl, aryl, or arenyl groups, or combinations of these groups, said ketone having 3 to 53 carbon and heteroatoms which can include up to 7 N, S,and O heteroatoms, an ammonium salt, and an alkali metal cyanide, in water, to provide an aminonitrile,
(ii) acryloylating the resulting aminonitrile with an acryloylating agent having the formula, ##STR10## wherein R3 is hydrogen or methyl and Y is chloride, methacryloyloxy, or acryloyloxy, in aqueous media to provide an .[.acrylaminodonitrile.]. .Iadd.acrylamidonitrile.Iaddend., and
(iii) hydrolyzing the resulting acrylamidonitrile in aqueous acid to provide said N-acryloyl-α-amino acid.
2. A process for providing an N-acryloyl-α-amino acid having the formula ##STR11## wherein: R1 and R2 are independently an alkyl group of 1 to 14 carbon atoms, a cycloalkyl group of 3 to 14 carbon atoms, an aryl group of 5 to 12 ring atoms, an arenyl group of 6 to 26 carbon and heteroatoms, or R1 and R2 taken together with the carbon to which they are joined form a carbocyclic ring containing 4 to 12 ring atoms, with the proviso that only one of R1 and R2 can be aryl, and
R3 is hydrogen or methyl, said process comprising the steps:
(i) reacting a ketone of the formula ##STR12## with .Iadd.an .Iaddend.ammonium salt, NH4 X, and a metal cyanide, MCN, in water, to provide an aminonitrile, wherein R1 and R2 are as previously defined, X is chloride, bromide, nitrate, or sulfate, and M is sodium, potassium, or lithium,
acryloylating the resulting aminonitrile with an acryloylating agent having the formula, ##STR13## wherein R3 is as previously defined and Y is chloride, methacryloyloxy, or acryloyloxy, to provide an acrylamidonitrile, and
(iii) hydrolyzing the resulting acrylamidonitrile in aqueous acid to provide said N-acryloyl-α-amino acid.
3. The process according to claim 2 wherein the step of reacting said ketone, an ammonium salt, and metal cyanide further comprises as reactants ammonium hydroxide and a non-reactive, water miscible, organic co-solvent.
4. The process according to step 3 wherein said co-solvent is ethanol, isopropanol, N,N-dimethylformamide, dioxane, or N,N-dimethylacetamide.
5. The process according to claim 2 wherein said reaction takes place in one vessel without isolation of intermediate compounds.
6. The process according to claim 2 wherein said ratio of ketone to metal cyanide is in the range of 1:1 to 1.5:1.
7. The process according to claim 2 wherein step (i) takes place at a temperature in the range of 10° to 80° C.
8. The process according to claim 2 wherein the acryloylation reaction of step (ii) takes place in the presence of sodium or potassium hydroxide.
9. The process according to claim 2 wherein step (ii) takes place at a temperature in the range of 0° to 15° C.
10. The process according to claim 2 wherein the aqueous acid of step (iii) is hydrochloric, sulfuric, phosphoric, or nitric acid.
11. The process according to claim 2 wherein said .[.N-aryloyl-α-amino.]. .Iadd.N-acryloyl-α-amino .Iaddend.acid is formed in a yield of 50 percent or higher.
12. The process according to claim 2 wherein said N-acryloyl-α-amino acid is
N-acryloylmethylalanine,
N-acryloylethylalanine,
N-methacryloylmethylalanine,
1-acrylamidocyclopentanecarboxylic acid,
1-acrylamidocyclohexanecarboxylic acid,
1-acrylamidocycloheptanecarboxylic acid,
2-acrylamido-2-ethylbutyric acid, and
2-acrylamido-2-phenylpropanoic acid.
13. The process according to claim 2 wherein said N-acryloyl-α-amino acid is isolated from the reaction mixture with a substantially water-insoluble organic solvent.
14. The process according to claim 13 wherein said organic solvent is ethyl acetate.
15. The process according to claim 2 wherein said N-acryloyl-α-amino acid is isolated by filtration. .Iadd.16. A process for providing an N-acryloyl-α-amino acid comprising the steps:
(a) acryloylating an aminonitrile having alkyl, aryl, or arenyl groups, or combinations of these groups, said aminonitrile having 4 to 54 carbon and heteroatoms which can include up to 9 N and up to 7 S and O heteroatoms with an acryloylating agent having the formula, ##STR14## wherein R3 is hydrogen or methyl and Y is chloride, methacryloyloxy, or acryloyloxy, in aqueous media to provide an acrylamidonitrile, and
(b) hydrolyzing the resulting acrylamidonitrile in aqueous acid to provide
said N-acryloyl-α-amino acid. .Iaddend. .Iadd.17. A process for providing an N-acryloyl-α-amino acid having the formula ##STR15## wherein: R1 and R2 are independently an alkyl group of 1 to 14 carbon atoms, a cycloalkyl group of 3 to 14 carbon atoms, an aryl group of 5 to 12 ring atoms, an arenyl group of 6 to 26 carbon and heteroatoms, or R1 and R2 taken together with the carbon to which they are joined form a carbocyclic ring containing 4 to 12 ring atoms, with the proviso that only one of R1 and R2 can be aryl, and
R3 is hydrogen or methyl, said process comprising the steps:
(a) acryloylating an aminonitrile having the formula ##STR16## wherein R1 and R2 are as previously defined with an acryloylating agent having the formula, ##STR17## wherein R3 is as previously defined and Y is chloride, methacryloyloxy, or acryloyloxy, to provide an acrylamidonitrile, and
(b) hydrolyzing the resulting acrylamidonitrile in aqueous acid to provide said N-acryloyl-α-amino acid. .Iaddend.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US07/139,788 USRE32952E (en) | 1986-05-19 | 1987-12-30 | Method of preparing N-acryloyl-α-amino acids |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US06/865,190 US4694103A (en) | 1986-05-19 | 1986-05-19 | Method of preparing N-acryloyl-α-amino acids |
| US07/139,788 USRE32952E (en) | 1986-05-19 | 1987-12-30 | Method of preparing N-acryloyl-α-amino acids |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US06/865,190 Reissue US4694103A (en) | 1986-05-19 | 1986-05-19 | Method of preparing N-acryloyl-α-amino acids |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| USRE32952E true USRE32952E (en) | 1989-06-13 |
Family
ID=26837538
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US07/139,788 Expired - Lifetime USRE32952E (en) | 1986-05-19 | 1987-12-30 | Method of preparing N-acryloyl-α-amino acids |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | USRE32952E (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5332826A (en) * | 1993-10-13 | 1994-07-26 | Eastman Kodak Company | Process for preparing aminoacetonitriles in one vessel |
Citations (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2587043A (en) * | 1949-01-06 | 1952-02-26 | Bell Telephone Labor Inc | Preparation of 1,2 di-primary amines |
| US2675383A (en) * | 1954-04-13 | New bis | ||
| US3275677A (en) * | 1963-08-20 | 1966-09-27 | American Cyanamid Co | Alpha-cyanomethylaminonitrile and alpha-carboxamidomethylaminonitrile compounds |
| US3285886A (en) * | 1961-07-17 | 1966-11-15 | Grace W R & Co | Threshold treatment of water with water dispersible complexing polymers |
| US3396030A (en) * | 1964-07-24 | 1968-08-06 | Polaroid Corp | Photographic silver halide emulsions |
| US3615624A (en) * | 1968-01-29 | 1971-10-26 | Eastman Kodak Co | Peptizers for silver halide emulsions useful in photography |
| US3713834A (en) * | 1971-07-06 | 1973-01-30 | Polaroid Corp | Polymeric binders for photographic emulsions |
| US3932168A (en) * | 1971-11-17 | 1976-01-13 | Abbott Laboratories | Substituted aryloxyacetamido nitrile derivatives as carbohydrate deposition agents |
| GB1425423A (en) * | 1972-04-26 | 1976-02-18 | Eastman Kodak Co | Photopolymerisable compositions |
| US3966789A (en) * | 1973-09-05 | 1976-06-29 | Sumitomo Chemical Company, Limited | N-substituted aminonitrile derivatives |
| US4157418A (en) * | 1978-02-08 | 1979-06-05 | Minnesota Mining And Manufacturing Company | Acrylic functional aminocarboxylic acids and derivatives as components of pressure sensitive adhesives |
| US4164511A (en) * | 1976-05-14 | 1979-08-14 | Basf Aktiengesellschaft | Manufacture of N-arylglycinonitriles |
| US4172934A (en) * | 1978-02-08 | 1979-10-30 | Minnesota Mining And Manufacturing Company | Acrylic functional aminocarboxylic acids and derivatives as components of pressure sensitive adhesives |
| US4304705A (en) * | 1980-01-02 | 1981-12-08 | Minnesota Mining And Manufacturing Company | Radiation-curable polymers containing pendant unsaturated peptide groups derived from azlactone polymers |
| US4335256A (en) * | 1977-11-30 | 1982-06-15 | Sigma-Tau Industrie Farmaceutiche Riunite S.P.A. | Process for manufacturing d,l-β-benzoylamino-isobutyric acid |
| US4378411A (en) * | 1980-01-02 | 1983-03-29 | Minnesota Mining And Manufacturing Company | Radiation-curable polymers |
| US4451619A (en) * | 1982-09-30 | 1984-05-29 | Minnesota Mining And Manufacturing Company | Method of hydrophilizing or hydrophobizing polymers |
-
1987
- 1987-12-30 US US07/139,788 patent/USRE32952E/en not_active Expired - Lifetime
Patent Citations (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2675383A (en) * | 1954-04-13 | New bis | ||
| US2587043A (en) * | 1949-01-06 | 1952-02-26 | Bell Telephone Labor Inc | Preparation of 1,2 di-primary amines |
| US3285886A (en) * | 1961-07-17 | 1966-11-15 | Grace W R & Co | Threshold treatment of water with water dispersible complexing polymers |
| US3275677A (en) * | 1963-08-20 | 1966-09-27 | American Cyanamid Co | Alpha-cyanomethylaminonitrile and alpha-carboxamidomethylaminonitrile compounds |
| US3396030A (en) * | 1964-07-24 | 1968-08-06 | Polaroid Corp | Photographic silver halide emulsions |
| US3615624A (en) * | 1968-01-29 | 1971-10-26 | Eastman Kodak Co | Peptizers for silver halide emulsions useful in photography |
| US3713834A (en) * | 1971-07-06 | 1973-01-30 | Polaroid Corp | Polymeric binders for photographic emulsions |
| US3932168A (en) * | 1971-11-17 | 1976-01-13 | Abbott Laboratories | Substituted aryloxyacetamido nitrile derivatives as carbohydrate deposition agents |
| GB1425423A (en) * | 1972-04-26 | 1976-02-18 | Eastman Kodak Co | Photopolymerisable compositions |
| US3966789A (en) * | 1973-09-05 | 1976-06-29 | Sumitomo Chemical Company, Limited | N-substituted aminonitrile derivatives |
| US4164511A (en) * | 1976-05-14 | 1979-08-14 | Basf Aktiengesellschaft | Manufacture of N-arylglycinonitriles |
| US4335256A (en) * | 1977-11-30 | 1982-06-15 | Sigma-Tau Industrie Farmaceutiche Riunite S.P.A. | Process for manufacturing d,l-β-benzoylamino-isobutyric acid |
| US4157418A (en) * | 1978-02-08 | 1979-06-05 | Minnesota Mining And Manufacturing Company | Acrylic functional aminocarboxylic acids and derivatives as components of pressure sensitive adhesives |
| US4172934A (en) * | 1978-02-08 | 1979-10-30 | Minnesota Mining And Manufacturing Company | Acrylic functional aminocarboxylic acids and derivatives as components of pressure sensitive adhesives |
| US4304705A (en) * | 1980-01-02 | 1981-12-08 | Minnesota Mining And Manufacturing Company | Radiation-curable polymers containing pendant unsaturated peptide groups derived from azlactone polymers |
| US4378411A (en) * | 1980-01-02 | 1983-03-29 | Minnesota Mining And Manufacturing Company | Radiation-curable polymers |
| US4451619A (en) * | 1982-09-30 | 1984-05-29 | Minnesota Mining And Manufacturing Company | Method of hydrophilizing or hydrophobizing polymers |
Non-Patent Citations (13)
| Title |
|---|
| A. Winston et al., J. Polymer Sci., Polymer Chem. Ed. 13, 2019 (1975). * |
| B. U. Kaczmar, et al., Chem. Abstr. 85, 124738w (1976) * |
| D. V. Ioffe et al., J. Gen. Chem., USSR, 29, 3766 (1959). * |
| E. Masuhara et al., Chem. Abstr. 68, 50454a (1968). * |
| G. Blaschke, et al., Chem. Abstr. 85, 78409k (1976). * |
| K. Huebner, et al., Angew. Makromol. Chem. 11, 109 (1970). * |
| Morrison, et al., Organic Chemistry, Allyn and Bacon, Inc. pp. 588 589 (1966). * |
| Morrison, et al., Organic Chemistry, Allyn and Bacon, Inc. pp. 588-589 (1966). |
| T. Uemura et al., Chem. Abstr. 69, 19709j (1968). * |
| T. Yamashita et al., Bull. Chem. Soc., Japan, 43, 1809 (1970). * |
| U. Einsele, et al., Chem. Abstr. 81, 79204y (1974). * |
| Y. Ihara et al., J. Polymer Sci. Polymer Chem. Ed., 10, 3569 (1972). * |
| Y. Kozai et al., Chem. Abstr. 75, 50182e (1971). * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5332826A (en) * | 1993-10-13 | 1994-07-26 | Eastman Kodak Company | Process for preparing aminoacetonitriles in one vessel |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Venkataraman et al. | Cyanuric chloride: a useful reagent for converting carboxylic acids into chlorides, esters, amides and peptides | |
| US4694103A (en) | Method of preparing N-acryloyl-α-amino acids | |
| USRE32952E (en) | Method of preparing N-acryloyl-α-amino acids | |
| CA1038879A (en) | PROCESS FOR MAKING A C1-C7 ALIPHATIC HYDROCARBYL ESTER OF AN N-(2,6-DI(C1-C7ALKYL)PHENYL.alpha.-AMINOCARBOXYLIC ACID | |
| US5162584A (en) | Fluorobenzene derivatives | |
| US3352885A (en) | Process for the production of 7-amino-3-phenyl-coumarine compounds | |
| Ihara | Krepski et al,[45] Date of Patent: Sep. 15, 1987 | |
| CA2380853C (en) | Process for the preparation of acylated 1,3-dicarbonyl compounds | |
| RU2571417C2 (en) | Method of producing n-substituted 2-amino-4-(hydroxymethylphosphenyl)-2-butenoic acid | |
| US2479662A (en) | Synthesis of amino acids | |
| CA2297189C (en) | Process for the preparation of 1,3-diaza-spiro (4.4) non-1-en-4-one derivatives and 1-cyano-1-acylaminocyclopentane intermediates | |
| US4780542A (en) | Process for the synthesis of esters and amides of carboxylic acids | |
| CA1316179C (en) | Process for producing -(benzylidene)acetonylphosphonates | |
| JPH05508633A (en) | Intermediates used in the preparation of deferoxamine | |
| JP3171483B2 (en) | Fluorinated aminobenzoic acid derivatives | |
| GB2316403A (en) | Mono- and di- amino or nitro benzamides from the reaction of an aqueous solution of an amine with the corresponding benzoyl chloride in an organic solvent | |
| US4297503A (en) | Novel benzamide derivative and method of preparing metoclopramide using same | |
| JP3569428B2 (en) | Method for producing homoallylamines | |
| GB1579771A (en) | 1-thiazolyl imidazolidin-ones their preparation and use | |
| GB2126214A (en) | Amine or polyamine salts of p- nitroso-phenols | |
| KR970001536B1 (en) | Process for the preparation of triiodide benzene derivatives | |
| JPS58152855A (en) | Preparation of lower alkoxybenzonitrile | |
| JPS62167754A (en) | Production of cyanomethylthioacetic acids | |
| JPH02138148A (en) | Method for producing optically active 2-phenoxybutanoic acid | |
| JPS5989653A (en) | Preparation of 4-hydroxyphenylacetonitrile |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| CC | Certificate of correction | ||
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| REMI | Maintenance fee reminder mailed | ||
| FPAY | Fee payment |
Year of fee payment: 12 |