USRE31286E - Production of electrolytic battery active manganese dioxide - Google Patents

Production of electrolytic battery active manganese dioxide Download PDF

Info

Publication number
USRE31286E
USRE31286E US06/152,505 US15250580A USRE31286E US RE31286 E USRE31286 E US RE31286E US 15250580 A US15250580 A US 15250580A US RE31286 E USRE31286 E US RE31286E
Authority
US
United States
Prior art keywords
ore
manganese dioxide
product
anodes
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/152,505
Inventor
Peter K. Everett
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Application granted granted Critical
Publication of USRE31286E publication Critical patent/USRE31286E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/21Manganese oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid

Definitions

  • the major application of the manganese dioxide product is in its use as the cathode depolariser in the conventional Leclanche dry cell battery.
  • This high grade ⁇ --MnO 2 is ideally suited for dry cell applications because of its high electrochemical activity.
  • Finely divided synthetic manganese dioxide is also used in ferrite manufacture and for pigments. Other applications are in ceramics, welding rods and the general chemical industry.
  • the conventional process for the production of ⁇ --MnO 2 from a manganese dioxide feed ore consists of the following steps:
  • This invention may be conducted in a cell containing three essential elements
  • a cathode compartment which contains a slurry of particulate MnO 2 , the Mn content of which is being selectively leached by a reducing environment attributable to the cathode;
  • an anode compartment comprising a manganese containing electrolyte (either the sulphate, chloride or nitrate) from which an MnO 2 product is being produced;
  • FIG. 1 A typical such cell is illustrated in FIG. 1, this figure being provided to facilitate understanding of the process and is not to be considered in any way limiting this invention.
  • the conditions in the anolyte compartment may be controlled to produce a variety of MnO 2 products. For example, at 90°-98° C., a dense anode deposit of ⁇ -MnO 2 may be deposited, whilst at 15°-25° C., a particulate product may be formed. Typical materials suitable for use at the anode include carbon, lead and titanium, all of which are currently used within the industry.
  • the temperature conditions in the catholyte are by necessity similar to those selected for the anodic product formation step. However, markedly different solution conditions may be attained by control of the diaphragm material and electrolysis conditions.
  • a solution manganese content of about 20 g/l Mn to about 200 g/l Mn, with a preferred value of 80 to 130 g/l, as this ensures a high deposit efficiency>95%; an operating solution acidity of up to about 5N, with a preferred acidity of about 2N; and an anode current density of about 30 to about 250 Amp/m 2 for an adherent high temperature deposit and of about 1000 to 4000 Amp/m 2 for a particulate deposit.
  • the preferred current density range is 30 to 120 A/m 2 for titanium anodes and 80 to 140 A/m 2 for carbon anodes to obtain a conventional adherent deposit.
  • the high preferred manganese concentrations facilitate operation at high current densities.
  • the cathode solution conditions are related to those in the anolyte by the relative rates of electrolytic generation or consumption and diffusion through the diaphragm.
  • the nominated solution temperatures are as given for the anode, namely 15° C. to the solution boiling point; nominated dissolved manganese contents are from 30 g/l to about 220 g/l Mn; nominated solution acidities are from about pH7 to pH0 with a value of about pH4 to pH0.5 preferred. In fact low catholyte acidities are particularly important in avoiding the dissolution of nonmanganese elements.
  • a solids loading of about 20 to 350 g/l may be used whilst the preferred range is about 50 to 200 g/l.
  • the ore feed should preferably be finely ground, say >95% less than 50 ⁇ m, to attain high dissolution efficiency, but the process is operable with larger particle sizes.
  • selection of the cathode material and current density are particularly important to control the selective leaching of MnO 2 and to prevent the dissolution of impurities.
  • Typical cathode current densities of 5 to 400 Amp/m 2 may be used with preferred current densities of 25 to 100 Amp/m 2 .
  • the adherent MnO 2 product was stripped from the titanium anodes and the catholyte slurry filtered to recover the residue.
  • the simplest process flow sheet (FIG. 2) is the addition of ground ore to an electrolytic cell containing a prepared electrolyte, and the batchwise or semi-batchwise dissolution of ore occurs.
  • the electrolysis is ceased because of ore depletion of sludge accumulation, the manganese deficient residue is separated from the solution and the solution is returned to the cell and the process repeated.
  • the anode may be removed periodically and the adherent deposit stripped at any time throughout the batch dissolution. Modifications of the above, including continuous ore addition to a non-flow cell or a continuous flow system via a multiple series of cells, are obvious to those skilled in the art.
  • a refinement of the above single cell is the continuous removal of a portion of the catholyte, and the return of the solution, after filtration, to the cell, for example to the anolyte (FIG. 3). If desired, some form of purification treatment, e.g. pH adjustment, may be carried out before returning the electrolyte to the cell.
  • some form of purification treatment e.g. pH adjustment, may be carried out before returning the electrolyte to the cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

This process concerns the direct electroconversion of low grade manganese ores to high purity manganese dioxide product, which, among other applications, is ideally suited for use in dry cells. The process operating conditions are controlled such that impurities in the ore are substantially eliminated from the product. A decrease in impurity levels in excess of 100 fold can be achieved between the product and the ore feed.

Description

PRODUCT APPLICATIONS
The major application of the manganese dioxide product is in its use as the cathode depolariser in the conventional Leclanche dry cell battery. This high grade γ--MnO2 is ideally suited for dry cell applications because of its high electrochemical activity. Finely divided synthetic manganese dioxide is also used in ferrite manufacture and for pigments. Other applications are in ceramics, welding rods and the general chemical industry.
THE CONVENTIONAL PROCESS
The conventional process for the production of γ--MnO2 from a manganese dioxide feed ore consists of the following steps:
1. High temperature reduction roasting of the natural MnO2 to MnO.
2. Acid dissolution of this MnO in the spent electrolyte.
3. Purification of the pregnant leach liquors (a) with a base, to remove iron, and (b) with a sulphide, to remove heavy metal impurities.
4. Electrolysis of the filtered electrolyte to produce a high purity MnO2 product at the anode according to equation (2) and hydrogen at the cathode.
2H.sup.+ +2e.sup.- →H.sub.2
Notable disadvantages of the conventional process are: (a) the need for pretreatment (reduction roasting) of the feed ore which is an energy consuming step with polluting side effects; (b) the evolution of hydrogen from the hot (80°-100° C.) electrolytic cells causes appreciable heat losses due to the greatly increased evaporation of water and can also produce an acid mist which yields an unpleasant working environment and building corrosion; (c) depletion of the solution Mn2+ content.
THE NOVEL PROCESS
In essence, the process herein described concerns the electrorefining of manganese dioxide to produce a high grade synthetic product from natural ore. The principal equations describing the cathode and anode reactions are:
Cathode MnO.sub.2 +4H.sup.+ +2e.sup.- →Mn.sup.2+ +2H.sub.2 O (1)
Anode Mn.sup.2+ +2H.sub.2 O→MnO.sub.2 +4H.sup.+ +2e.sup.-( 2)
As these equations balance each other in consumption and formation of species, only make-up quantities of other materials are required. This novel process has simultaneously overcome all the disadvantages of the conventional process and has markedly reduced the extent of purification required due to the selectivity of the leach. A further advantage of this novel process is a reduction in the cell operating voltage through the high anolyte Mn2+ concentrations and the lower cathode potential of the dissolution reaction compared with that for H2 evolution, this giving a notable reduction in power consumption.
As this process is based upon two reversible equations, the nature of the anodic species is only significant to the extent at which alternate reactions may occur at the electrodes. Thus, it must be noted that while sulphate, chloride and nitrate solutions may be used, sulphate solutions are preferred at these present least operating difficulties.
This invention may be conducted in a cell containing three essential elements
1. a cathode compartment which contains a slurry of particulate MnO2, the Mn content of which is being selectively leached by a reducing environment attributable to the cathode;
2. an anode compartment comprising a manganese containing electrolyte (either the sulphate, chloride or nitrate) from which an MnO2 product is being produced;
3. an ion-permeable diaphragm, which is impermeable to the particulate MnO2 slurry, separating the anode and cathode regions.
A typical such cell is illustrated in FIG. 1, this figure being provided to facilitate understanding of the process and is not to be considered in any way limiting this invention.
The conditions in the anolyte compartment may be controlled to produce a variety of MnO2 products. For example, at 90°-98° C., a dense anode deposit of γ-MnO2 may be deposited, whilst at 15°-25° C., a particulate product may be formed. Typical materials suitable for use at the anode include carbon, lead and titanium, all of which are currently used within the industry. The temperature conditions in the catholyte are by necessity similar to those selected for the anodic product formation step. However, markedly different solution conditions may be attained by control of the diaphragm material and electrolysis conditions. Correct selection of the diaphragm material is essential for the control of anolyte/catholyte acidities as the anode reaction is acid producing and Mn2+ ion consuming, whilst the cathode reaction is acid consuming and Mn2+ ion producing.
The conditions under which this invention operates are:
i. Anode Compartment A temperature from about 15° C. to the solution boiling point (about 120° C.), with a preferred temperature range of 80°-100° C. for the production of an adherent anode deposit of γ-MnO2, and of 15°-25° C. for a particulate product; a solution manganese content of about 20 g/l Mn to about 200 g/l Mn, with a preferred value of 80 to 130 g/l, as this ensures a high deposit efficiency>95%; an operating solution acidity of up to about 5N, with a preferred acidity of about 2N; and an anode current density of about 30 to about 250 Amp/m2 for an adherent high temperature deposit and of about 1000 to 4000 Amp/m2 for a particulate deposit. Whilst from a capital investment standpoint, high current densities are desirable, product properties, current efficiencies and cell operating conditions are superior at intermediate current densities, thus the preferred current density range is 30 to 120 A/m2 for titanium anodes and 80 to 140 A/m2 for carbon anodes to obtain a conventional adherent deposit. As those skilled in the art are well aware, the high preferred manganese concentrations facilitate operation at high current densities.
ii. Cathode Compartment The cathode solution conditions are related to those in the anolyte by the relative rates of electrolytic generation or consumption and diffusion through the diaphragm. The nominated solution temperatures are as given for the anode, namely 15° C. to the solution boiling point; nominated dissolved manganese contents are from 30 g/l to about 220 g/l Mn; nominated solution acidities are from about pH7 to pH0 with a value of about pH4 to pH0.5 preferred. In fact low catholyte acidities are particularly important in avoiding the dissolution of nonmanganese elements.
A solids loading of about 20 to 350 g/l may be used whilst the preferred range is about 50 to 200 g/l. The ore feed should preferably be finely ground, say >95% less than 50 μm, to attain high dissolution efficiency, but the process is operable with larger particle sizes. Together with catholyte acidity, selection of the cathode material and current density are particularly important to control the selective leaching of MnO2 and to prevent the dissolution of impurities. Typical cathode current densities of 5 to 400 Amp/m2 may be used with preferred current densities of 25 to 100 Amp/m2.
EXAMPLE
The following example is provided to illustrate this invention but should not be construed as limiting this invention in any way whatsoever.
1200 g of MnO2 ore was agitated in 81 of MnSO4 solution (105 g/l Mn2+ and 2.9 g/l H2 SO4) in a diaphragm cell containing three titanium anodes, each 12 cm×10 cm submerged area and enclosed in polypropylene cloth diaphragm bags, and four graphite cathodes, each 12 cm×10 cm submerged area, external to the diaphragm bags.
Current was passed at 60A /m2 of anode area for 96 hours at a temperature of 90° C. The average cell voltage was 2.1 Volt. The power consumption was 1.24 KWH/Kg.
The adherent MnO2 product was stripped from the titanium anodes and the catholyte slurry filtered to recover the residue.
In Table 1 below, it can be seen that product of high purity is formed and a large reduction in impurity level, one hundred fold in the case of Fe, can be obtained between feed ore and product.
              TABLE 1                                                     
______________________________________                                    
ANALYTICAL RESULTS                                                        
Com-       Pro-   Resi-   Electrolyte                                     
ponent Ore     duct   due   Start       Finish                            
______________________________________                                    
H.sub.2 SO.sub.4                                                          
       --      --     --    2.9 g/l                                       
                                   Ano-   Catho-                          
                                   lyte   lyte                            
                                   98.0 g/l                               
                                          9.8 g/l                         
Mn     45%     62%    20%   9.5%          9.3%                            
Fe     20,000  200    35,000                                              
                            190 mg/l      320 mg/l                        
       ppm     ppm    ppm                                                 
Cu     150     20     250   8             6                               
Pb     100     50     200   14            14                              
Zn     70      20     100   78            70                              
Ni     100     20     200   130           110                             
Co     70      30     100   114           100                             
Cr     60      10     100   2             4                               
Mo     440     --     1,000 --            --                              
Ca     16,000  200    30,000                                              
                            100           400                             
Mg     10,000  --     25,000                                              
                            240           600                             
K      5,500   200    12,000                                              
                            40            120                             
Na     1,040   20     2,300 40            200                             
Number                                                                    
of grams                                                                  
       1,200   675    560   --            --                              
______________________________________                                    
In Table 2, it can be seen that product of high electrochemical activity can be prepared. The product prepared has been compared with a standard electrolytic manganese dioxide from Japan. The method used to determine the electrochemical activity was by the Kornfeil test. Manganese dioxide sample (0.50 g) and acetylene black (0.20 g) are mixed as a slurry with electrolyte solution (Kornfeil 2 solution) to a standard moisture level. This mix is then added into the Kornfeil cell and the wet black mix compressed with the carbon cathode rod by loading with a 2 kg weight. The resulting Kornfeil pellet was maintained under this load and discharged between the carbon and zinc electrodes at constant current drains. The residual cell voltage was determined as a function of time by a pulseinterrupt technique, to a final voltage of 1.00 volts. The time of discharge is taken as a measure of the electrochemical activity of the manganese dioxide.
              TABLE 2                                                     
______________________________________                                    
ELECTROCHEMICAL ACTIVITY OF PRODUCT-continued                             
              Time to 1.0V at high                                        
                             Time to 1.0V at                              
              current drain of                                            
                             low current                                  
Product       60mA           drain of 12mA                                
______________________________________                                    
Standard Electrolytic                                                     
              4,000 sec.     25,200 sec.                                  
MnO.sub.2 (Japan)                                                         
Example product                                                           
              4,300          27,000                                       
______________________________________                                    
Whilst this invention concerns a process for the electrorefining of MnO2, it must be noted that a variety of process flow sheets are possible, the following illustrations of which are provided but in no way should be considered limiting.
The following discussion has been limited to the formation of a high temperature (80°-100° C.) adherent γ-MnO2 product for illustrative purposes only.
The simplest process flow sheet (FIG. 2) is the addition of ground ore to an electrolytic cell containing a prepared electrolyte, and the batchwise or semi-batchwise dissolution of ore occurs. When the electrolysis is ceased because of ore depletion of sludge accumulation, the manganese deficient residue is separated from the solution and the solution is returned to the cell and the process repeated. The anode may be removed periodically and the adherent deposit stripped at any time throughout the batch dissolution. Modifications of the above, including continuous ore addition to a non-flow cell or a continuous flow system via a multiple series of cells, are obvious to those skilled in the art.
A refinement of the above single cell is the continuous removal of a portion of the catholyte, and the return of the solution, after filtration, to the cell, for example to the anolyte (FIG. 3). If desired, some form of purification treatment, e.g. pH adjustment, may be carried out before returning the electrolyte to the cell.

Claims (10)

What I claim is:
1. A process for the production of high grade γMnO2 from manganese dioxide ore in an electrochemical cell having one or more inert anodes, immersed in an aqueous anolyte having a solution manganese content of 20 g/l Mn to 200 g/l Mn and an acidity of up to 5N, and one or more inert cathodes, immersed in a slurry consisting of particulate manganese dioxide ore and an aqueous catholyte having a solution manganese content of 30 g/l Mn to 220 g/l Mn and a pH below 7, the anodes and cathodes disposed on opposite sides of one or more porous diaphragms, the process consisting of applying a direct current potential between the anodes and cathodes to reduce the manganese dioxide slurry to ionic manganese which diffuses through the diaphragms and is oxidised at the anodes where γMnO2 is formed, the anode current density being 20 to 250 Amp/m2 at a cell temperature of from .[.15 to 25° C..]. .Iadd.80° to 100° C. .Iaddend.or 1,000 to 4,000 Amp/m2 at a cell temperature of .Badd..[.80° to 100° C..]..Baddend. .Iadd.15° to 25° C. .Iaddend.and the cathode current density being 5 to 400 Amps/m2.
2. A process as in claim 1 in which the electrolyte comprises the anion group, sulphate.
3. A process as claimed in claim 1 in which the electrolyte comprises the anion group, chloride.
4. A process as claimed in claim 1 in which the electrolyte comprises the anion group, nitrate.
5. A process as claimed in claim 1 in which the current density is from about 30 to 140 Amp/m2.
6. A process as claimed in claim 1 in which the anolyte contains about 80 to 130 g/l Mn and about 2N acid.
7. A process as claimed in claim 1 in which the cathode current density is 25 to 100 Amp/m2.
8. A process as claimed in claim 1 in which the ore content of the catholyte is about 20 to 350 g/l.
9. A process as claimed in claim 1 in which the ore content of the catholyte is about 50 to 200 g/l.
10. A process as claimed in claim 1, in which the acid content is such that the pH is in the range of about pH4 to pH0.5.
US06/152,505 1973-12-20 1980-05-22 Production of electrolytic battery active manganese dioxide Expired - Lifetime USRE31286E (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU607173 1973-12-20
AU6071/73 1973-12-20

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US05/531,800 Reissue US3951765A (en) 1973-12-20 1974-12-11 Production of electrolytic battery active manganese dioxide

Publications (1)

Publication Number Publication Date
USRE31286E true USRE31286E (en) 1983-06-21

Family

ID=3696572

Family Applications (2)

Application Number Title Priority Date Filing Date
US05/531,800 Expired - Lifetime US3951765A (en) 1973-12-20 1974-12-11 Production of electrolytic battery active manganese dioxide
US06/152,505 Expired - Lifetime USRE31286E (en) 1973-12-20 1980-05-22 Production of electrolytic battery active manganese dioxide

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US05/531,800 Expired - Lifetime US3951765A (en) 1973-12-20 1974-12-11 Production of electrolytic battery active manganese dioxide

Country Status (3)

Country Link
US (2) US3951765A (en)
JP (1) JPS50113498A (en)
GB (1) GB1487418A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4997531A (en) * 1988-12-26 1991-03-05 Japan Metals & Chemical Co. Inc. Process for manufacturing electrolytic manganese oxide
US6168888B1 (en) * 1997-06-19 2001-01-02 Tosoh Corporation Spinel-type lithium-manganese oxide containing heteroelements, preparation process and use thereof

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4083757A (en) * 1977-07-26 1978-04-11 Levan Nikolaevich Dzhaparidze Electrochemical process for producing manganese dioxide
US4183792A (en) * 1979-02-16 1980-01-15 Amax Inc. Method and cell for electrolytic oxidation of Ni(OH)2 with stationary bed electrode
US4405419A (en) * 1979-12-13 1983-09-20 Japan Metal And Chemical Co., Ltd. Method for producing electrolytic manganese dioxide
EP0037863A1 (en) * 1980-04-01 1981-10-21 Union Carbide India Limited Process for making manganous sulphate solution
US4597957A (en) * 1984-03-06 1986-07-01 Japan Metals And Chemicals Co., Ltd. Process for electrolytically producing metallic oxide for ferrite
ES2119000T3 (en) * 1993-09-30 1998-10-01 Mitsui Mining & Smelting Co COMPOSITION OF CATHODIC ACTIVE MATERIAL FOR DRY BATTERIES, METHOD FOR PREPARATION AND ALKALINE ACCUMULATORS.
US6214198B1 (en) * 1998-12-21 2001-04-10 Kerr-Mcgee Chemical Llc Method of producing high discharge capacity electrolytic manganese dioxide
US6610263B2 (en) * 2000-08-01 2003-08-26 Enviroscrub Technologies Corporation System and process for removal of pollutants from a gas stream
JP4940503B2 (en) * 2001-03-23 2012-05-30 東ソー株式会社 Electrolytic manganese dioxide powder and method for producing the same
US7232782B2 (en) * 2002-03-06 2007-06-19 Enviroscrub Technologies Corp. Regeneration, pretreatment and precipitation of oxides of manganese
US20030059460A1 (en) * 2001-09-27 2003-03-27 Yasuhiko Tabata Hybrid material for regeneration of living body tissue
CN1620334A (en) * 2001-12-21 2005-05-25 环境清洁技术公司 Pretreatment and regeneration of oxides of manganese
US20040101457A1 (en) * 2002-06-11 2004-05-27 Pahlman John E. Disassociation processing of metal oxides
CN1761520A (en) * 2003-01-28 2006-04-19 环境清洁技术公司 Oxides of manganese processed in continuous flow reactors
US7488464B2 (en) * 2003-07-31 2009-02-10 Enviroscrub Technologies Corporation Metal oxide processing methods and systems
US20220333253A1 (en) * 2021-04-08 2022-10-20 Francois Cardarelli Electrochemical preparation of vanadium electrolytes and sulfates of multivalent transition metals
CN114457355B (en) * 2021-12-30 2023-10-27 广西汇元锰业有限责任公司 Electrolytic method of electrolytic manganese dioxide and electrolytic manganese dioxide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US272391A (en) * 1883-02-13 Antonin thiolliee

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US272391A (en) * 1883-02-13 Antonin thiolliee

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4997531A (en) * 1988-12-26 1991-03-05 Japan Metals & Chemical Co. Inc. Process for manufacturing electrolytic manganese oxide
US6168888B1 (en) * 1997-06-19 2001-01-02 Tosoh Corporation Spinel-type lithium-manganese oxide containing heteroelements, preparation process and use thereof
US6670076B1 (en) * 1997-06-19 2003-12-30 Tosoh Corporation Spinel-type lithium-manganese oxide containing heteroelements preparation process and use thereof

Also Published As

Publication number Publication date
JPS50113498A (en) 1975-09-05
US3951765A (en) 1976-04-20
GB1487418A (en) 1977-09-28

Similar Documents

Publication Publication Date Title
USRE31286E (en) Production of electrolytic battery active manganese dioxide
US4204922A (en) Simultaneous electrodissolution and electrowinning of metals from simple sulphides
EP1310008A1 (en) Vanadium electrolyte preparation using asymmetric vanadium reduction cells and use of an asymmetric vanadium reduction cell for rebalancing the state of charge of the electrolytes of an operating vanadium redox battery
US3065155A (en) Electrolytic manganese dioxide process
US6210558B1 (en) Steel pickling process in which the oxidation of the ferrous ion formed is carried out electrolytically
US4627899A (en) Electrolytic cell and methods combining electrowinning and electrochemical reactions employing a membrane or diaphragm
EP0184319B1 (en) Suspension bath and process for production of electrolytic manganese dioxide
US5181994A (en) Process for the preparation of chromic acid
US4632738A (en) Hydrometallurgical copper process
CA1049952A (en) Production of electrolytic battery active manganese dioxide
US4451340A (en) Method for the electrolytic production of lead
de Araujo et al. Reuse of furnace fines of ferro alloy in the electrolytic manganese production
US4339312A (en) Continuous process for the direct conversion of potassium chloride to potassium chlorate by electrolysis
US2417259A (en) Electrolytic process for preparing manganese and manganese dioxide simultaneously
Maja et al. Dissolution of pastes in lead-acid battery recycling plants
EP0268319B1 (en) Method for extracting mn metal and manganese dioxide from divalent mn salt solutions
US4115222A (en) Method for electrolytic winning of lead
CS268673B2 (en) Method of zinc production from ores and concentrates
US4124460A (en) Electrowinning of copper in presence of high concentration of iron
Fink et al. Anodes for the Electrowinning of Manganese
CN1188548C (en) Process for directly producing metal zinc by suspension electrolysing high-iron sphalerite
US4626327A (en) Electrolytic process for manufacturing potassium peroxydiphosphate
Jacobs et al. Electrowinning of manganese from chloride electrolytes
DE1567586A1 (en) Process for the production of alkali metal chlorates by electrolytic means and equipment for carrying out the process
Ettel Electrochemical aspects of hydro-electrometallurgy