USRE30652E - Method for constructing a thermoelectric module and the module so obtained - Google Patents
Method for constructing a thermoelectric module and the module so obtained Download PDFInfo
- Publication number
- USRE30652E USRE30652E US05/968,920 US96892078A USRE30652E US RE30652 E USRE30652 E US RE30652E US 96892078 A US96892078 A US 96892078A US RE30652 E USRE30652 E US RE30652E
- Authority
- US
- United States
- Prior art keywords
- module
- constructing
- semiconductor
- nickel
- thermoelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000004065 semiconductor Substances 0.000 claims abstract description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052802 copper Inorganic materials 0.000 claims abstract description 15
- 239000010949 copper Substances 0.000 claims abstract description 15
- 239000010931 gold Substances 0.000 claims abstract description 12
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 12
- 229910052737 gold Inorganic materials 0.000 claims abstract description 11
- 238000007747 plating Methods 0.000 claims abstract description 11
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000004568 cement Substances 0.000 claims abstract description 6
- 238000004140 cleaning Methods 0.000 claims abstract description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 3
- 239000011651 chromium Substances 0.000 claims abstract description 3
- 238000003754 machining Methods 0.000 claims abstract description 3
- 239000000956 alloy Substances 0.000 claims description 8
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- 229910052733 gallium Inorganic materials 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 238000005488 sandblasting Methods 0.000 claims description 3
- 238000003466 welding Methods 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 abstract description 3
- 238000010276 construction Methods 0.000 abstract 1
- 238000000151 deposition Methods 0.000 description 7
- 230000008021 deposition Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910000497 Amalgam Inorganic materials 0.000 description 1
- 229910008310 Si—Ge Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000001665 trituration Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3013—Au as the principal constituent
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/81—Structural details of the junction
- H10N10/817—Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S257/00—Active solid-state devices, e.g. transistors, solid-state diodes
- Y10S257/93—Thermoelectric, e.g. peltier effect cooling
Definitions
- This invention relates to a method for constructing a thermoelectric module, and the module so obtained. More particularly, this invention relates to a method for making the electrical contacts and mechanical connections necessary for assembling the various semiconductor bars in constructing a module suitable for use in a generator or in a thermoelectric cooling device.
- each element undergoes maximum heat exchange with the hot or cold source, that the connections between the various bars are of negligible electrical resistance in comparison with the bars themselves, and in particular that the module is mechanically and chemically stable at its operating temperatures which, in the case of thermoelectric generators, vary from 300° to 800° C. according to the materials used.
- thermoelements Consequently serious difficulties are encountered in the compatibility of the materials in contact with the thermoelements.
- the methods used include the provision of pressure contacts, the electrodeposition of low resistance metals, sputtering or diffusion welding and other similar techniques.
- the basic stages are vacuum metalisation to provide a layer of gold on which a layer of nickel and then a layer of copper are deposited electrolytically.
- the purpose of the nickel plating is to prevent diffusion of the copper into the semiconductor, which would change its properties.
- the copper plating creates a layer of low electrical resistance.
- thermoelectric modules are constructed for example using bars having a typical size of 20 ⁇ 10 ⁇ 5 mm 3 , they have initial electrical contact resistances of the order of 0.3 m ⁇ per junction. This resistance value however is not reproducible for any contact in the same module or for different modules. Furthermore, in order to reduce the parasitic resistances of the jumpers to these values, electrolytic deposition times for the copper layer of the order of 7-8 hours are required, which correspond to thicknesses of about 0.3 mm after compacting by lapping.
- thermoelectric module completely impermeable.
- incorporation of the electrolytic bath may arise, with consequent inevitable degradation of the thermoelectric properties of the semiconductors within a short time.
- stresses are inevitably introduced in the first gold layer.
- a further consequence is that after the module has operated at high temperature for a certain period, the nickel becomes detached on the hot face.
- thermoelectric module consisting of a matrix of semiconductor elements with all the mechanical and electrical connections incorporated, including the input and output terminals, by which the aforesaid disadvantages are avoided.
- the bars are assembled using suitable high temperature resistant cements of thermal expansion coefficients compatible with those of the semiconductors.
- the first stage then consists of assembling the bars to obtain a compact module and suitably applying the thickness of insulating cement.
- this same tool can be used to make the cuts in the regions between elements which have to remain isolated.
- a further advantage obtained by this means is that the aforementioned shoulders already form a conducting bridge for depositing the nickel, in the light of the precariousness and irregularity of the adhesion between gold and a possible conducting bridge in cement, as in known techniques.
- the electrical and mechanical contacts between the various bars are obtained by vacuum metalising a layer of gold having a thickness of the order of 1 ⁇ , and then electro-depositing nickel having a thickness of the order of 0.01-0.03 mm. Copper plates of suitable thickness are then welded onto this latter layer by vacuum brasing using a particular alloy as described hereinafter.
- the thermoelectric bars, including the input and output terminals, are in this manner connected on both faces of the matrix in a single operation, using suitable positioning templates.
- the brasing alloy is obtained by mixing Au, Ag and Ga in predetermined proportions. This alloy has a melting point of up to 600° C. according to the percentages of the components, and is therefore suitable for thermoelectric elements both of Bi-Te-Sb and Si-Ge type.
- This alloy has been prepared by the following method for Bi-Te-Sb and Bi-Te-Se thermoelements (operating temperature 300° C.), and has a melting point of 400° C.:
- the method heretofore described has the further advantage of preserving the parallelism of the module faces, so that the only subsequent operations on them are polishing and possible protection from oxidation.
- the contact resistances obtained in this manner for elements of size 20 ⁇ 10 ⁇ 5 mm 3 are of the order of 0.2-0.3 m ⁇ per junction, with a tensile strength of the order of approximately 30 kg/cm 2 .
- thermoelectric characteristics of the modules likewise do not vary appreciably, as can be seen from the graph shown in FIG. 3 in which the abscissa represents time in months and the ordinate represents certain thermoelectric quantities, namely the Seebeck coefficient .increment., the electrical conductivity and the thermal conductivity ⁇ .
- thermoelectric module is described hereinafter with reference to the accompanying figures, in which:
- FIG. 1 is a section through the connection of the semiconductor bars
- FIG. 2 is a perspective view of the thermoelectric module.
- FIG. 3 is a graph of the thermoelectric characteristics of the modules.
- the two P and N semiconductor bars are connected together by a layer of insulating cement 1 after machining with an ultrasonic perforator to construct a shoulder projection 6.
- a gold layer 2 of a thickness of about 1 ⁇ is deposited by metalisation.
- a second layer 3 of nickel of thickness 0.01-0.03 mm is deposited on the previous gold layer 2 by a Watts bath.
- ultrasonic perforator is used to machine the regions between elements which are to remain isolated.
- the copper electrodes are then protected by nickel or chromium plating.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Physical Vapour Deposition (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
This invention relates to a method for constructing a thermoelectric module, as well as to the module so obtained. The method according to the invention comprises the steps of construction a reference shoulder on the semiconductor bar, assembling the semiconductor bars in series by using an insulating cement, cleaning the surfaces, gold plating, nickel plating, brasing copper electrodes, machining the regions between the elements which have to remain insulated, protecting the copper electrodes by nickel or chromium plating. The thermoelectric module so obtained consists of a matrix of semiconductor elements with all the mechanical and electrical connections incorporated, including the input and output terminals.
Description
This invention relates to a method for constructing a thermoelectric module, and the module so obtained. More particularly, this invention relates to a method for making the electrical contacts and mechanical connections necessary for assembling the various semiconductor bars in constructing a module suitable for use in a generator or in a thermoelectric cooling device.
In constructing these modules, various bars of suitable N and P semiconductor materials are connected in series until the so-called module for thermoelectric energy conversion is obtained.
In these modules it is essential to take care that each element undergoes maximum heat exchange with the hot or cold source, that the connections between the various bars are of negligible electrical resistance in comparison with the bars themselves, and in particular that the module is mechanically and chemically stable at its operating temperatures which, in the case of thermoelectric generators, vary from 300° to 800° C. according to the materials used.
Consequently serious difficulties are encountered in the compatibility of the materials in contact with the thermoelements.
In particular it must be assured that there is no diffusion, evaporation, oxidation etc. under high temperature operation over very long operating times, which could alter the doping and composition of the semiconductor.
Furthermore, thermal stresses must not compromise the semiconductor bar assembly.
The methods used include the provision of pressure contacts, the electrodeposition of low resistance metals, sputtering or diffusion welding and other similar techniques.
One of the methods used at present comprises a series of operations as given in the following list:
(1) Series assembly of P and N semiconductor bars using a resin of insulating properties.
(2) Cleaning the surfaces by sandblasting.
(3) Protecting the parts on which deposition is not to take place.
(4) Nickel plating using a Watts electrolytic bath.
(5) Copper plating using a copper sulphate bath.
(6) Lapping the copper surfaces obtained.
In another method, the basic stages are vacuum metalisation to provide a layer of gold on which a layer of nickel and then a layer of copper are deposited electrolytically.
In this series of operations, the purpose of the nickel plating is to prevent diffusion of the copper into the semiconductor, which would change its properties. The copper plating creates a layer of low electrical resistance.
If these thermoelectric modules are constructed for example using bars having a typical size of 20×10×5 mm3, they have initial electrical contact resistances of the order of 0.3 mΩ per junction. This resistance value however is not reproducible for any contact in the same module or for different modules. Furthermore, in order to reduce the parasitic resistances of the jumpers to these values, electrolytic deposition times for the copper layer of the order of 7-8 hours are required, which correspond to thicknesses of about 0.3 mm after compacting by lapping.
In the assembly operations, it is also necessary to make the module impermeable before electrolytic deposition, using materials compatible with the electrolytic bath.
However, the long copper deposition times lead to the impossibility in practice of making the thermoelectric module completely impermeable. In the majority of cases, incorporation of the electrolytic bath may arise, with consequent inevitable degradation of the thermoelectric properties of the semiconductors within a short time. Moreover, as a lapping operation is necessary after depositing the copper layer, stresses are inevitably introduced in the first gold layer.
A further consequence is that after the module has operated at high temperature for a certain period, the nickel becomes detached on the hot face.
A method has now been found for forming a thermoelectric module consisting of a matrix of semiconductor elements with all the mechanical and electrical connections incorporated, including the input and output terminals, by which the aforesaid disadvantages are avoided.
The bars are assembled using suitable high temperature resistant cements of thermal expansion coefficients compatible with those of the semiconductors.
The first stage then consists of assembling the bars to obtain a compact module and suitably applying the thickness of insulating cement.
It is important to reduce the quantity of insulant to a minimum to prevent longitudinal parastic thermal conductivity (thermal short circuits). To obtain accuracy and reproducibility in applying this thickness and consequent correct geometry (alignment of the elements and parallelism of the hot and cold surfaces) it is advantageous to provide a guide shoulder, constructed by a simple rapid operation using an ultrasonic perforator.
After assembling the module, this same tool can be used to make the cuts in the regions between elements which have to remain isolated.
A further advantage obtained by this means is that the aforementioned shoulders already form a conducting bridge for depositing the nickel, in the light of the precariousness and irregularity of the adhesion between gold and a possible conducting bridge in cement, as in known techniques.
The electrical and mechanical contacts between the various bars are obtained by vacuum metalising a layer of gold having a thickness of the order of 1μ, and then electro-depositing nickel having a thickness of the order of 0.01-0.03 mm. Copper plates of suitable thickness are then welded onto this latter layer by vacuum brasing using a particular alloy as described hereinafter. The thermoelectric bars, including the input and output terminals, are in this manner connected on both faces of the matrix in a single operation, using suitable positioning templates. The brasing alloy is obtained by mixing Au, Ag and Ga in predetermined proportions. This alloy has a melting point of up to 600° C. according to the percentages of the components, and is therefore suitable for thermoelectric elements both of Bi-Te-Sb and Si-Ge type.
This alloy has been prepared by the following method for Bi-Te-Sb and Bi-Te-Se thermoelements (operating temperature 300° C.), and has a melting point of 400° C.:
(a) composition by weight to give the following percentages: Au=50%, Ag=20%, Ga=30%.
(b) amalgam with hardening in one hour;
(c) successive melting operations under vacuum to purify the alloy from unamalgamated slag;
(d) trituration of the ingot obtained;
(e) sintering of the powder to obtain laminations of suitable thickness (0.2 mm).
In comparison with the already stated methods, the method heretofore described has the further advantage of preserving the parallelism of the module faces, so that the only subsequent operations on them are polishing and possible protection from oxidation. The contact resistances obtained in this manner for elements of size 20×10×5 mm3 are of the order of 0.2-0.3 mΩ per junction, with a tensile strength of the order of approximately 30 kg/cm2.
These values are reproducible and remain unaltered after various months of testing at temperatures of approximately 300° C. The thermoelectric characteristics of the modules likewise do not vary appreciably, as can be seen from the graph shown in FIG. 3 in which the abscissa represents time in months and the ordinate represents certain thermoelectric quantities, namely the Seebeck coefficient .increment., the electrical conductivity and the thermal conductivity □.
For a better understanding of the present invention, the thermoelectric module is described hereinafter with reference to the accompanying figures, in which:
FIG. 1 is a section through the connection of the semiconductor bars;
FIG. 2 is a perspective view of the thermoelectric module.
FIG. 3 is a graph of the thermoelectric characteristics of the modules.
With reference to FIG. 1, the two P and N semiconductor bars are connected together by a layer of insulating cement 1 after machining with an ultrasonic perforator to construct a shoulder projection 6.
After cleaning the surfaces by sandblasting, a gold layer 2 of a thickness of about 1μ is deposited by metalisation.
A second layer 3 of nickel of thickness 0.01-0.03 mm is deposited on the previous gold layer 2 by a Watts bath.
The copper electrode 5, positioned by templates, is then welded using the brasing alloy 4.
Finally an ultrasonic perforator is used to machine the regions between elements which are to remain isolated.
The copper electrodes are then protected by nickel or chromium plating.
Claims (2)
1. A method for constructing a thermoelectric module, comprising the following operations:
(a) constructing a reference shoulder on the semiconductor bar by an ultrasonic perforator;
(b) assembling the semiconductor bars in series, using a cement of insulating properties;
(c) cleaning the surfaces by sandblasting;
(d) gold plating to a thickness of 1μ by metalisation;
(e) nickel plating to a thickness of 0.01-0.03 mm using a Watts bath;
(f) brasing copper electrodes under vacuum using a welding alloy consisting of Au, Ag, Ga;
(g) machining the regions between elements which have to remain isolated using an ultrasonic perforator;
(h) protecting the copper electrodes by nickel or chromium plating.
2. A module constructed in accordance with the method as claimed in the preceding claim. .Iadd. 3. The method in accordance with claim 1 wherein the welding alloy consists essentially of 50% Au, 20% Ag and 30% Ga. .Iaddend.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT27777/75A IT1042975B (en) | 1975-09-30 | 1975-09-30 | METHOD FOR THE CONSTRUCTION OF A THERMOELECTRIC MODULE AND MODULE SO OBTAINED |
IT27777A/75 | 1975-09-30 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/724,544 Reissue US4081895A (en) | 1975-09-30 | 1976-09-20 | Method for constructing a thermoelectric module and the module so obtained |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE30652E true USRE30652E (en) | 1981-06-16 |
Family
ID=11222306
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/724,544 Expired - Lifetime US4081895A (en) | 1975-09-30 | 1976-09-20 | Method for constructing a thermoelectric module and the module so obtained |
US05/968,920 Expired - Lifetime USRE30652E (en) | 1975-09-30 | 1978-12-13 | Method for constructing a thermoelectric module and the module so obtained |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/724,544 Expired - Lifetime US4081895A (en) | 1975-09-30 | 1976-09-20 | Method for constructing a thermoelectric module and the module so obtained |
Country Status (11)
Country | Link |
---|---|
US (2) | US4081895A (en) |
JP (1) | JPS5263084A (en) |
BE (1) | BE846800A (en) |
CA (2) | CA1081369A (en) |
DE (1) | DE2644283C3 (en) |
DK (1) | DK151425C (en) |
FR (2) | FR2335057A1 (en) |
GB (2) | GB1550690A (en) |
IT (1) | IT1042975B (en) |
LU (1) | LU75897A1 (en) |
NL (1) | NL176416C (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5434744A (en) * | 1993-10-22 | 1995-07-18 | Fritz; Robert E. | Thermoelectric module having reduced spacing between semiconductor elements |
US5722158A (en) * | 1993-10-22 | 1998-03-03 | Fritz; Robert E. | Method of manufacture and resulting thermoelectric module |
US20030042497A1 (en) * | 2000-05-02 | 2003-03-06 | Gerhard Span | Thermoelectric element |
US20070101750A1 (en) * | 2005-11-09 | 2007-05-10 | Pham Hung M | Refrigeration system including thermoelectric module |
US20100095685A1 (en) * | 2008-10-16 | 2010-04-22 | Emcore Corporation | Thermoelectric Cooler with Multiple Temperature Zones |
US7752852B2 (en) | 2005-11-09 | 2010-07-13 | Emerson Climate Technologies, Inc. | Vapor compression circuit and method including a thermoelectric device |
USRE41801E1 (en) | 1997-03-31 | 2010-10-05 | Nextreme Thermal Solutions, Inc. | Thin-film thermoelectric device and fabrication method of same |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4654224A (en) * | 1985-02-19 | 1987-03-31 | Energy Conversion Devices, Inc. | Method of manufacturing a thermoelectric element |
EP0288022B1 (en) * | 1987-04-22 | 1995-11-15 | Sharp Kabushiki Kaisha | Superconductive apparatus |
US4855810A (en) * | 1987-06-02 | 1989-08-08 | Gelb Allan S | Thermoelectric heat pump |
US4902648A (en) * | 1988-01-05 | 1990-02-20 | Agency Of Industrial Science And Technology | Process for producing a thermoelectric module |
EP0843366B1 (en) * | 1996-05-28 | 2006-03-29 | Matsushita Electric Works, Ltd. | Method for manufacturing thermoelectric module |
RU2151451C1 (en) * | 1996-11-15 | 2000-06-20 | Ситизен Вотч Ко., Лтд. | Thermoelectric device manufacturing process |
KR100297290B1 (en) * | 1998-04-22 | 2001-10-25 | 우대실 | Thermoelectric semiconductor module and method for fabricating the same |
US20040251539A1 (en) * | 2001-09-12 | 2004-12-16 | Faris Sadeg M. | Thermoelectric cooler array |
DE102006017547B4 (en) * | 2006-04-13 | 2012-10-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Thermoelectric component and manufacturing method thereof |
JP2010251485A (en) * | 2009-04-15 | 2010-11-04 | Sony Corp | Thermoelectric device, method for manufacturing the thermoelectric device, control system of the thermoelectric device, and electronic apparatus |
DE102009032906A1 (en) * | 2009-07-10 | 2011-01-20 | O-Flexx Technologies Gmbh | Module with several thermoelectric elements |
DE102009048985A1 (en) * | 2009-10-09 | 2011-04-21 | O-Flexx Technologies Gmbh | Module with several thermoelectric elements |
DE102011001653A1 (en) * | 2011-03-30 | 2012-10-04 | O-Flexx Technologies Gmbh | Thermoelectric arrangement |
US20140048111A1 (en) * | 2012-08-17 | 2014-02-20 | Thomas G. Hinsperger | Method and system for producing an electric current from a temperature differential |
DE102012102090A1 (en) * | 2012-01-31 | 2013-08-01 | Curamik Electronics Gmbh | Thermoelectric generator module, metal-ceramic substrate and method for producing a metal-ceramic substrate |
ES2397775B1 (en) * | 2012-11-16 | 2013-09-27 | La Farga Lacambra, S.A. | Procedure for obtaining Zn-Sb alloys with thermoelectric properties |
US9218979B2 (en) | 2014-01-16 | 2015-12-22 | Phononic Devices, Inc. | Low resistivity ohmic contact |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3958324A (en) * | 1974-02-15 | 1976-05-25 | Compagnie Industrielle Des Telecommunications Cit-Alcatel | Method for the manufacturing of thermoelectric modules |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3208835A (en) * | 1961-04-27 | 1965-09-28 | Westinghouse Electric Corp | Thermoelectric members |
DE1243743B (en) * | 1961-09-19 | 1967-07-06 | Siemens Ag | Thermoelectric arrangement |
FR1380170A (en) * | 1963-01-21 | 1964-11-27 | Rue Frigistor S A De | Thermoelectric unit and method for its manufacture |
GB1118183A (en) * | 1964-05-01 | 1968-06-26 | Plessey Uk Ltd | Improvements in or relating to thermoelectric devices |
GB1198988A (en) * | 1966-08-31 | 1970-07-15 | G V Planer Ltd | Improvements in or relating to Thermoelectric Devices |
GB1202199A (en) * | 1966-11-22 | 1970-08-12 | G V Planer Ltd | Improvements in or relating to thermoelectric devices |
GB1469856A (en) * | 1974-05-28 | 1977-04-06 | Johnson Matthey Co Ltd | Solder alloy |
-
1975
- 1975-09-30 IT IT27777/75A patent/IT1042975B/en active
-
1976
- 1976-09-06 DK DK401176A patent/DK151425C/en not_active IP Right Cessation
- 1976-09-16 GB GB41282/77A patent/GB1550690A/en not_active Expired
- 1976-09-16 GB GB38494/76A patent/GB1550689A/en not_active Expired
- 1976-09-17 CA CA261,484A patent/CA1081369A/en not_active Expired
- 1976-09-20 US US05/724,544 patent/US4081895A/en not_active Expired - Lifetime
- 1976-09-27 NL NLAANVRAGE7610703,A patent/NL176416C/en not_active IP Right Cessation
- 1976-09-28 LU LU75897A patent/LU75897A1/xx unknown
- 1976-09-28 FR FR7629134A patent/FR2335057A1/en active Granted
- 1976-09-30 DE DE2644283A patent/DE2644283C3/en not_active Expired
- 1976-09-30 BE BE171121A patent/BE846800A/en not_active IP Right Cessation
- 1976-09-30 JP JP51116660A patent/JPS5263084A/en active Granted
-
1977
- 1977-03-18 FR FR7708280A patent/FR2334758A1/en active Granted
-
1978
- 1978-12-13 US US05/968,920 patent/USRE30652E/en not_active Expired - Lifetime
-
1979
- 1979-12-04 CA CA341,158A patent/CA1092862A/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3958324A (en) * | 1974-02-15 | 1976-05-25 | Compagnie Industrielle Des Telecommunications Cit-Alcatel | Method for the manufacturing of thermoelectric modules |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5434744A (en) * | 1993-10-22 | 1995-07-18 | Fritz; Robert E. | Thermoelectric module having reduced spacing between semiconductor elements |
US5515238A (en) * | 1993-10-22 | 1996-05-07 | Fritz; Robert E. | Thermoelectric module having reduced spacing between semiconductor elements |
US5722158A (en) * | 1993-10-22 | 1998-03-03 | Fritz; Robert E. | Method of manufacture and resulting thermoelectric module |
USRE41801E1 (en) | 1997-03-31 | 2010-10-05 | Nextreme Thermal Solutions, Inc. | Thin-film thermoelectric device and fabrication method of same |
US20030042497A1 (en) * | 2000-05-02 | 2003-03-06 | Gerhard Span | Thermoelectric element |
US6762484B2 (en) * | 2000-05-02 | 2004-07-13 | Gerhard Span | Thermoelectric element |
US7278269B2 (en) | 2005-11-09 | 2007-10-09 | Emerson Climate Technologies, Inc. | Refrigeration system including thermoelectric module |
US7284379B2 (en) | 2005-11-09 | 2007-10-23 | Emerson Climate Technologies, Inc. | Refrigeration system including thermoelectric module |
US7310953B2 (en) | 2005-11-09 | 2007-12-25 | Emerson Climate Technologies, Inc. | Refrigeration system including thermoelectric module |
US7752852B2 (en) | 2005-11-09 | 2010-07-13 | Emerson Climate Technologies, Inc. | Vapor compression circuit and method including a thermoelectric device |
US20070101750A1 (en) * | 2005-11-09 | 2007-05-10 | Pham Hung M | Refrigeration system including thermoelectric module |
US20110120145A1 (en) * | 2005-11-09 | 2011-05-26 | Masao Akei | Vapor Compression Circuit and Method Including A Thermoelectric Device |
US8307663B2 (en) | 2005-11-09 | 2012-11-13 | Emerson Climate Technologies, Inc. | Vapor compression circuit and method including a thermoelectric device |
US20100095685A1 (en) * | 2008-10-16 | 2010-04-22 | Emcore Corporation | Thermoelectric Cooler with Multiple Temperature Zones |
US7937952B2 (en) | 2008-10-16 | 2011-05-10 | Emcore Corporation | Thermoelectric cooler with multiple temperature zones |
Also Published As
Publication number | Publication date |
---|---|
FR2335057A1 (en) | 1977-07-08 |
CA1092862A (en) | 1981-01-06 |
CA1081369A (en) | 1980-07-08 |
IT1042975B (en) | 1980-01-30 |
DK401176A (en) | 1977-03-31 |
FR2334758A1 (en) | 1977-07-08 |
DK151425B (en) | 1987-11-30 |
BE846800A (en) | 1977-03-30 |
JPS5263084A (en) | 1977-05-25 |
FR2335057B1 (en) | 1983-01-21 |
JPS6112397B2 (en) | 1986-04-08 |
NL176416B (en) | 1984-11-01 |
LU75897A1 (en) | 1977-05-11 |
NL7610703A (en) | 1977-04-01 |
DK151425C (en) | 1988-05-16 |
NL176416C (en) | 1985-04-01 |
US4081895A (en) | 1978-04-04 |
DE2644283C3 (en) | 1980-05-29 |
GB1550690A (en) | 1979-08-15 |
DE2644283A1 (en) | 1977-03-31 |
DE2644283B2 (en) | 1979-09-13 |
FR2334758B1 (en) | 1980-04-18 |
GB1550689A (en) | 1979-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE30652E (en) | Method for constructing a thermoelectric module and the module so obtained | |
US6207887B1 (en) | Miniature milliwatt electric power generator | |
US5429680A (en) | Thermoelectric heat pump | |
US4005454A (en) | Semiconductor device having a solderable contacting coating on its opposite surfaces | |
US3128419A (en) | Semiconductor device with a thermal stress equalizing plate | |
US2694168A (en) | Glass-sealed semiconductor crystal device | |
JP2011003559A (en) | Thermoelectric conversion module | |
JP2007109942A (en) | Thermoelectric module and manufacturing method thereof | |
US3304362A (en) | Glass-to-metal seals in electronic devices | |
US20100301481A1 (en) | Joint structure and electronic component | |
US3528893A (en) | Vacuum depositing and electrodepositing method of forming a thermoelectric module | |
JP2001267642A (en) | Method of manufacturing thermoelectric conversion module | |
JPH0555640A (en) | Manufacture of thermoelectric converter and thermoelectric converter manufactured by the same | |
US3392061A (en) | Thermoelectric mosaic interconnected by semiconductor leg protrusions and metal coating | |
US3279955A (en) | Method of forming electroplated thermoelectric junction and resultant article | |
US3560172A (en) | Iron-silicon magnetostrictive laminated material and elements | |
JPH0818109A (en) | Thermoionic element and manufacture thereof | |
JP2003338641A (en) | Thermoelectric element | |
JP3443793B2 (en) | Manufacturing method of thermoelectric device | |
JPH11261118A (en) | Thermoelectric conversion module, semiconductor unit, and manufacture of them | |
JP2012028388A (en) | Method for manufacturing thermoelectric conversion module | |
US10236430B2 (en) | Thermoelectric module | |
JPH10313134A (en) | Manufacture of thermoelectric module | |
Green | A fatigue-free silicon device structure | |
JP4177790B2 (en) | Thermoelectric conversion element and manufacturing method thereof |