USRE30504E - Photovoltaic cell - Google Patents

Photovoltaic cell Download PDF

Info

Publication number
USRE30504E
USRE30504E US06/068,927 US6892779A USRE30504E US RE30504 E USRE30504 E US RE30504E US 6892779 A US6892779 A US 6892779A US RE30504 E USRE30504 E US RE30504E
Authority
US
United States
Prior art keywords
layer
photovoltaic cell
cds
cell according
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/068,927
Inventor
John F. Jordan
Curtis M. Lampkin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOTAL ENERGIE DEVELOPPEMENT
Photon Power Inc
Original Assignee
Photon Power Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photon Power Inc filed Critical Photon Power Inc
Priority to US06/068,927 priority Critical patent/USRE30504E/en
Application granted granted Critical
Publication of USRE30504E publication Critical patent/USRE30504E/en
Assigned to TOTAL ENERGIE DEVELOPPEMENT reassignment TOTAL ENERGIE DEVELOPPEMENT ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: LOF REALTY, INC.
Assigned to TOTAL ENERGIE DEVELOPPMENT + MESSERSCHMITT-BOLKOW-BLOHM GMBH & CO. PHOTOTRONICS O.H.G. reassignment TOTAL ENERGIE DEVELOPPMENT + MESSERSCHMITT-BOLKOW-BLOHM GMBH & CO. PHOTOTRONICS O.H.G. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: TOTAL ENERGIE DEVELOPMENT
Assigned to TOTAL ENERGIE DEVELOPPEMENT reassignment TOTAL ENERGIE DEVELOPPEMENT ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: TOTAL ENERGIE DEVELOPMENT + MESSERSCHMITT-BOLKOW BLOHM GMBH & CO. PHOTOTRONICS O.H.G.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • H01L31/03365Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table comprising only Cu2X / CdX heterojunctions, X being an element of Group VI of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the Cu x S layer may be formed by spraying a Cu x S-forming solution on the CdS film while the substrate was hot, or the Cu x S may instead be formed by dipping or by electroplating, or by a combination of both, at or near room temperature.
  • Photovoltaic cells have heretofore utilized relatively thick films of CdS, or have resorted to other expedients to obviate the difficulty that CdS films generally permit permeation by Cu x S and Cu, when Cu x S is formed by dipping or electroplating, i.e., by ion exchange. This permeation provides short circuits between the Cu x S layer and the SnO x , the latter constituting the negative electrode of the cell, rendering the cell inoperative.
  • square miles of solar cells may be required. Since Cd is a rare and expensive metal, it becomes important to form photovoltaic cells with minimum quantities of CdS and hence with extremely thin CdS films. Moreover the cells must be reliably fabricated and have long life.
  • photovoltaic cells having layers of CdS and with a total thickness of about 2 to 6 microns thick, yet which show zero shorting permeation, at least one of the layers being highly resistant to permeation by Cu x S-or Cu-containing solution.
  • each spray comprises a solution containing a cadmium compound and a sulphur containing compound.
  • a metallic compound such as AlCl 3 .6H 2 O, in proportions such that the metal content is at least 10 molar percent of the total metal ion content of the solution.
  • a second layer of generally pure CdS is formed.
  • a single film may be formed by gradually decreasing the metallic compound content of the solution being sprayed in proceeding from the stratum of the film adjacent to the SnO x layer to the stratum of the film adjacent to the exposed surface of the CdS film.
  • the stratum of the CdS film adjacent to the SnO x layer contains significantly greater quantities of the metal in a second compound form than the stratum of the film adjacent to the exposed surface of the CdS film.
  • the portion of the CdS layer containing the second metallic compound is extremely hard and highly adherent to the SnO x layer, so that it can only with difficulty be removed by application of acid or by scraping and is highly resistant to permeation by chemicals involved in forming a Cu x S layer by ion exchange, or to Cu x S, and inhibits diffusion of Cu through a CdS layer.
  • the metallic compound in the CdS film is in the relatively large quantities resulting from use of solutions containing the selected metal in a quantity representing at least 10 molar percent of the total metal ion content of the solution and does not constitute a doping procedure, such as disclosed in Middleton, et al., U.S. Pat. No. 3,411,050. Rather it comprises a compound or material having properties quite distinct from those of CdS or CdS containing only small amounts of metallic materials. It has been found that even if the entire film of CdS includes these large quantities of metallic compounds the cell remains operative, but at reduced efficiency.
  • a photovoltaic cell is provided with a material layer which is highly resistant to permeation by copper containing compounds.
  • the permeation resistant layer precludes the formation of internal short circuit paths by copper and copper compounds and enables the production of large area photovoltaic panels for the production of useful quantities of electrical energy from incident solar radiation.
  • a preferred embodiment is the CdS/Cu x S photovoltaic cell.
  • the cell includes a transparent substrate having an electrically conductive and transparent coating, which may be SnO x ; one or more layers of CdS superposed over said conductive coating, at least one of the CdS layers including a metallic compound which produces an amorphous-like structure; a layer of Cu x S forming a photovoltaic heterojunction with the CdS; and electrodes for electrically interconnecting the cells.
  • the metallic compound includes aluminum (Al) or zirconium (Zn).
  • the CdS layer containing the metallic compound is formed from a solution containing a cadmium salt and a compound containing the selected metal, the selected metal forming at least 10 molar percent of the solution.
  • An advantage of the present invention is the formation of large area photovoltaic panels without internal short circuit paths.
  • Another advantage of the present invention is to permit forming a heterojunction by processes including spraying, dipping, or electroplating.
  • Yet another advantage of the present invention is the use of very thin films of CdS, conserving available cadmium resources.
  • glass is heated to maintain the exposed surface of the glass at a temperature in the range 230° C. to 600° C., and it is assumed for the purpose of the present invention that the glass has been coated with SnO x in a thin transparent layer, or by the methods taught in our parent application.
  • a layer of CdS or other suitable semiconductor material is formed which is polycrystalline in nature.
  • a layer of Cu x S is then formed over the CdS by spray depositing a solution which reacts chemically to form Cu x S or by an ion exchange process involving dipping the CdS layer in a solution of copper ions whereby Cu x S is formed by a Cd-Cu ion-exchange mechanism.
  • an electric field has been applied in an attempt to drive this process.
  • electrodes are applied to facilitate external interconnections.
  • the copper-containing compounds tend to permeate the CdS polycrystalline structure, particularly concentrating along crystallite grain boundaries. The permeation is most pronounced in an extended ion-exchange immersion and least pronounced in a chemical spray. If the permeation is completed, i.e. the copper-containing compounds extend through the polycrystalline structure to the SnO x , an internal low resistance path is created which short circuits the surrounding CdS and renders inactive at least a portion of the photovoltaic cell.
  • a layer is included within the layered photovoltaic cell structure which acts to inhibit or prevent permeation of the copper-containing compounds to the electrically conductive surface.
  • This permeation resistance is provided by an amorphous-like structure without discernible grain boundaries. It has been found desirable to form at least a portion of the amorphous-like layer from the same semiconductor material as the overlying polycrystalline layer.
  • the inclusion of other metal containing compounds provides enough disruption of the defined crystal lattice to result in a structure which appears amorphous even under a magnification of 100,000X by a scanning electron microscope.
  • x-ray diffraction techniques indicate the presence of some crystal structure.
  • alumina Al 2 O 3
  • Al 2 O 3 alumina
  • the exact structure of the layer containing the Cds and Al 2 O 3 is not known, but the layer is not completely dissolved by HCl, as is normal CdS, and the amorphous-like layer remains partially intact when subjected to HCl. This would suggest that the Al 2 O 3 is not segregated in any particular segment of the layer.
  • zirconium has also been used to form a permeation resistant layer and may be provided in the same molar formulation as the aluminum. It is believed that zirconium could be substituted for aluminum on a mole-for-mole basis in any of the examples hereinbelow set forth.
  • the permeation resistant layer is applicable to any photovoltaic cell having a polycrystalline semiconductor layer, particularly where Cu x S forms the heterojunction with the polycrystalline substance. Further, other materials which result in a suitable amorphous structure may become apparent to those skilled in the art and employed according to the present invention.
  • the first solution may be in the proportion:
  • thiourea While thiourea is specified as a component, its function is to produce sulphur. Other compounds which are soluble in water, and which give up sulphur, can be substituted. Specifically N,N-Dimethyl thiourea has been employed, but thiourea is the least expensive compound which has been found satisfactory.
  • the specific quantity of AlCl 3 .6H 2 O is usually greater than 10 molar percent and may be increased over a wide range. In some instances it has also been found that an excess of sulfur is desirable and the quantity of available sulfur may be increased as the aluminum content is increased.
  • the CdS film having an Al compound therein formed with a solution having an Al content of from 10 to 50 molar percent of the total metal ion content of the solution is found to have properties quite different from CdS films containing no aluminum or relatively small amounts of aluminum.
  • the layer is extremely hard, impervious to Cu x S or Cu, and is highly adherent to the SnO x .
  • the second solution forms a layer containing only CdS, generally in crystalline form as present in a conventional photovoltaic cell. It is possible to include small quantities of impurity metals, such as zinc, to dope the CdS and alter the semiconductor properties in ways well known in the art. Inclusion of HCl is optional, and for reasons unknown increases slightly the voltage output of the cell, but so far as is known does not otherwise affect the operation of the cell.
  • the first solution may be in the proportion:
  • the second solution may be in the proportion:
  • a solution of water, CdCl 2 , thiourea and AlCl 3 .6H 2 O is sprayed on glass coated with SnO x , but as the spray proceeds the proportion of AlCl 3 .6H 2 O to CdCl 2 is gradually decreased, for example, logarithmically.
  • AlCl 3 .6H 2 O may be present in the solution forming the lowermost part of the CdS film, and zero or substantially zero molar percent aluminum in the solution forming the upper surface of the film.
  • a first solution is prepared in the proportions:
  • a second solution may be prepared according to either Example I or II to form the layer of CdS.
  • a concentrated first solution is prepared in the proportions:
  • a concentrated second solution is prepared in the proportions:
  • the preferred end result is that directly in contact with the SnO x is a layer of CdS containing a metallic compound, which may be a compound of aluminum or zirconium and at the upper surface of the layer of CdS, which is to be converted to Cu x S to form a heterojunction, there is none, or very little, of the metallic compound.
  • a metallic compound which may be a compound of aluminum or zirconium and at the upper surface of the layer of CdS, which is to be converted to Cu x S to form a heterojunction, there is none, or very little, of the metallic compound.
  • Two distinct layers may be employed, or a single layer may be formed having a decreasing percentage of the metallic compound in proceeding from bottom to top of the layer.
  • the solutions in all examples are sprayed on the glass intermittently and slowly in successive passes over a considerable period of time, of the order of 100 minutes each for the first and second coatings from Examples I, II, or IV and in the order of 180 minutes in the case of the graduated layer of Example IV.
  • the concentrated solutions of Example V may be sprayed for only 30-40 minutes. In each case, the solution is sprayed intermittently and over only a small portion of the glass at any one instant so that the glass sheet remains at about the same average temperature during the spraying, despite the heat removed from the glass in the spraying process.
  • the total thickness of each layer formed in this way is between about 1 to 4 microns, or less, with a total thickness of about 2-6 microns.
  • the coated plate is, after spraying is completed, heated to a temperature of about 400° C. to 550° C. for 5-60 minutes to promote crystal growth.
  • the substrate is slowly cooled, and the coated product is ready for the Cu x S layer.
  • the exposed surface of the CdS layer is converted to Cu x S by dipping the previously cooled cell into an appropriate solution at room temperature, by electroplating, by a combination of dipping and electroplating, or by spraying thereon a suitable copper-containing solution.
  • the completed photovoltaic panel may be formed into a series interconnected array of photovoltaic cells according to our patent application Ser. No. 831,544 filed Sept. 8, 1977, which disclosure is incorporated by reference. Electrodes are attached in a preselected configuration and the photovoltaic panel is completed.
  • the present method can be employed with Nesa glass as the starting material, obviating the need for coating with SnO x , but Nesa glass has a sheet resistivity per square of about 50-75 ohms per square, whereas by our methods very low resistivity coatings may be produced, i.e., of the order of 1-20 ohms per square.
  • the use of low resistivity coatings of SnO x increases the efficiency of the cell by decreasing the amount of electrical energy which is lost in the SnO x .
  • the spraying occurs by depositing droplets which are as uniform as possible. If the spray consists of many small and many large droplets, the very small droplets are evaporated by the intense heat, approximate to the exposed surface of the substrate, and only the larger droplets reach the substrate. This causes some wastage of CdS and it implies that the rate at which the spray is applied should take into account the non-uniformity of the droplets.
  • the glass substrate will be moving longitudinally through a plurality of heated zones, and the spray will occur by transverse passes across the substrate as the glass moves, so that the total quantity of spray reaching any given small area of the substrate will be uniform.
  • the method allows for the fact that spray out of an air gun or out of an electrostatic spray gun does not have a uniform pattern.
  • the present cell is to be exposed to solar radiation via its glass substrate.
  • the presence of the metallic compound in the CdS does not materially affect transparency of the CdS-Al layer, so that the heterojunction may be exposed via the latter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A photovoltaic cell having an electrically conductive substrate, which may be glass having a film of conductive tin oxide; a first layer containing a suitable semiconductor, which layer has a first component film with an amorphous structure and a second component film with a polycrystalline structure; a second layer forming a heterojunction with the first layer; and suitable electrodes where the heterojunction is formed from a solution containing copper, the amorphous film component is superposed above an electrically conductive substrate to resist permeation of the copper-containing material to shorting electrical contact with the substrate. The penetration resistant amorphous layer permits a variety of processes to be used in forming the heterojunction with even very thin layers (1-6μ thick) of underlying polycrystalline semi-conductor materials. In some embodiments, the amorphous-like structure may be formed by the addition of aluminum or zirconium compounds to a solution of cadmium salts sprayed over a heated substrate.

Description

BACKGROUND OF THE INVENTION
This application is a continuation-in-part of our prior application for U.S. patent, Ser. No. 631,815 filed Nov. 14, 1975 and issued Apr. 25, 1978 as U.S. Pat. No. 4,086,101, which in turn is a continuation-in-part of our prior application for U.S. patent, Ser. No. 508,570 filed Sept. 23, 1974, and now abandoned, which is a continuation-in-part of our prior application for U.S. patent, Ser. No. 431,705, filed Jan. 8, 1974, and issued Apr. 29, 1975 as U.S. Pat. No. 3,880,633, all of the above being assigned to a common assignee.
It is known to form photovoltaic cells by coating on a hot sheet of Nesa glass, or glass previously coated with SnOx, a thin film of CdS, by spraying a water solution of compounds which form a layer of CdS microcrystals on the SnOx, and providing a Cux S heterojunction as a layer on the CdS layer, and forming electrodes on the film of Cux S. In accordance with our prior applications, referred to hereinabove, the Cux S layer may be formed by spraying a Cux S-forming solution on the CdS film while the substrate was hot, or the Cux S may instead be formed by dipping or by electroplating, or by a combination of both, at or near room temperature.
Photovoltaic cells have heretofore utilized relatively thick films of CdS, or have resorted to other expedients to obviate the difficulty that CdS films generally permit permeation by Cux S and Cu, when Cux S is formed by dipping or electroplating, i.e., by ion exchange. This permeation provides short circuits between the Cux S layer and the SnOx, the latter constituting the negative electrode of the cell, rendering the cell inoperative. In order to convert solar energy to electrical energy on a large scale, square miles of solar cells may be required. Since Cd is a rare and expensive metal, it becomes important to form photovoltaic cells with minimum quantities of CdS and hence with extremely thin CdS films. Moreover the cells must be reliably fabricated and have long life.
We have produced photovoltaic cells having layers of CdS and with a total thickness of about 2 to 6 microns thick, yet which show zero shorting permeation, at least one of the layers being highly resistant to permeation by Cux S-or Cu-containing solution. We have heretofore used the method of spraying a solution which forms CdS on a glass coated with SnOx, the spray being intermittent and covering only a small portion of the glass at a given point in time, while the surface of the glass is maintained at a uniform and constant temperature in the range between 230° C. and 600° C.
According to the present invention, in one embodiment, multiple spray applications are required to form the CdS layer. Each spray comprises a solution containing a cadmium compound and a sulphur containing compound. However, to one spray is added a metallic compound, such as AlCl3.6H2 O, in proportions such that the metal content is at least 10 molar percent of the total metal ion content of the solution. In a superposed spray solution, a second layer of generally pure CdS is formed.
Instead of applying two discrete films, one formed from a spray containing a large quantity of metallic compound and the other containing little or none, a single film may be formed by gradually decreasing the metallic compound content of the solution being sprayed in proceeding from the stratum of the film adjacent to the SnOx layer to the stratum of the film adjacent to the exposed surface of the CdS film. In this manner the stratum of the CdS film adjacent to the SnOx layer contains significantly greater quantities of the metal in a second compound form than the stratum of the film adjacent to the exposed surface of the CdS film.
After heat treatment at a temperature in the range of 400° C. to 550° C., it is found that the portion of the CdS layer containing the second metallic compound is extremely hard and highly adherent to the SnOx layer, so that it can only with difficulty be removed by application of acid or by scraping and is highly resistant to permeation by chemicals involved in forming a Cux S layer by ion exchange, or to Cux S, and inhibits diffusion of Cu through a CdS layer. The metallic compound in the CdS film is in the relatively large quantities resulting from use of solutions containing the selected metal in a quantity representing at least 10 molar percent of the total metal ion content of the solution and does not constitute a doping procedure, such as disclosed in Middleton, et al., U.S. Pat. No. 3,411,050. Rather it comprises a compound or material having properties quite distinct from those of CdS or CdS containing only small amounts of metallic materials. It has been found that even if the entire film of CdS includes these large quantities of metallic compounds the cell remains operative, but at reduced efficiency.
SUMMARY OF THE INVENTION
A photovoltaic cell is provided with a material layer which is highly resistant to permeation by copper containing compounds. The permeation resistant layer precludes the formation of internal short circuit paths by copper and copper compounds and enables the production of large area photovoltaic panels for the production of useful quantities of electrical energy from incident solar radiation.
A preferred embodiment is the CdS/Cux S photovoltaic cell. The cell includes a transparent substrate having an electrically conductive and transparent coating, which may be SnOx ; one or more layers of CdS superposed over said conductive coating, at least one of the CdS layers including a metallic compound which produces an amorphous-like structure; a layer of Cux S forming a photovoltaic heterojunction with the CdS; and electrodes for electrically interconnecting the cells. In various embodiments the metallic compound includes aluminum (Al) or zirconium (Zn). The CdS layer containing the metallic compound is formed from a solution containing a cadmium salt and a compound containing the selected metal, the selected metal forming at least 10 molar percent of the solution.
An advantage of the present invention is the formation of large area photovoltaic panels without internal short circuit paths.
Another advantage of the present invention is to permit forming a heterojunction by processes including spraying, dipping, or electroplating.
Yet another advantage of the present invention is the use of very thin films of CdS, conserving available cadmium resources.
DETAILED DISCLOSURE
The disclosure of the co-pending parent applications are hereby imported by reference into this application, the process as there disclosed being applied to a glass substrate as the glass substrate travels through a plurality of heated zones which may be tanks containing a molten salt or a molten metal. Alternately, heat may be supplied by other convenient means, such as radiative heating. In the course of spraying the substrate with solution, the upper surface of the substrate is cooled by the spray. It is then desirable to conduct the spraying operation so that the substrate surface can acquire from the heated zone enough heat to recover the temperature of the exposed surface of the substrate between the sprays applied by any area. This process provides a uniform layer thickness, and also facilitates maintenance of constant temperature, or maintains the temperature more nearly constant than is otherwise feasible.
Subject to the considerations stated in the immediately preceding paragraph, glass is heated to maintain the exposed surface of the glass at a temperature in the range 230° C. to 600° C., and it is assumed for the purpose of the present invention that the glass has been coated with SnOx in a thin transparent layer, or by the methods taught in our parent application.
In a conventional photovoltaic cell, a layer of CdS or other suitable semiconductor material is formed which is polycrystalline in nature. A layer of Cux S is then formed over the CdS by spray depositing a solution which reacts chemically to form Cux S or by an ion exchange process involving dipping the CdS layer in a solution of copper ions whereby Cux S is formed by a Cd-Cu ion-exchange mechanism. In some cases, an electric field has been applied in an attempt to drive this process. Finally, electrodes are applied to facilitate external interconnections.
It has been found that the copper-containing compounds tend to permeate the CdS polycrystalline structure, particularly concentrating along crystallite grain boundaries. The permeation is most pronounced in an extended ion-exchange immersion and least pronounced in a chemical spray. If the permeation is completed, i.e. the copper-containing compounds extend through the polycrystalline structure to the SnOx, an internal low resistance path is created which short circuits the surrounding CdS and renders inactive at least a portion of the photovoltaic cell.
In accordance with the present invention, a layer is included within the layered photovoltaic cell structure which acts to inhibit or prevent permeation of the copper-containing compounds to the electrically conductive surface. This permeation resistance is provided by an amorphous-like structure without discernible grain boundaries. It has been found desirable to form at least a portion of the amorphous-like layer from the same semiconductor material as the overlying polycrystalline layer. The inclusion of other metal containing compounds provides enough disruption of the defined crystal lattice to result in a structure which appears amorphous even under a magnification of 100,000X by a scanning electron microscope. However, x-ray diffraction techniques indicate the presence of some crystal structure.
Where aluminum is used in the metal containing compound, it is believed that alumina (Al2 O3) is formed during the chemical reaction on the sprayed surface. The exact structure of the layer containing the Cds and Al2 O3 is not known, but the layer is not completely dissolved by HCl, as is normal CdS, and the amorphous-like layer remains partially intact when subjected to HCl. This would suggest that the Al2 O3 is not segregated in any particular segment of the layer.
While aluminum is the preferred metal because of cost and availability, zirconium has also been used to form a permeation resistant layer and may be provided in the same molar formulation as the aluminum. It is believed that zirconium could be substituted for aluminum on a mole-for-mole basis in any of the examples hereinbelow set forth.
It is believed that the permeation resistant layer is applicable to any photovoltaic cell having a polycrystalline semiconductor layer, particularly where Cux S forms the heterojunction with the polycrystalline substance. Further, other materials which result in a suitable amorphous structure may become apparent to those skilled in the art and employed according to the present invention.
Actual formulations which have produced permeation resistant layers according to our invention are hereinafter set forth:
EXAMPLE I
In a first example of the invention, two solutions are prepared. The first solution may be in the proportion:
2 liters--Water
60 cc--CdCl2 (1 Molar solution)
74 cc--Thiourea (1 Molar solution)
1.95 gm--AlCl3.6H2 O
The second solution employed is in the proportion:
5 liters--Water
150 cc--Thiourea (1 Molar solution)
150 cc--CdCl2 (1 Molar solution)
2.5 cc--HCl (CONC. 12N)
While thiourea is specified as a component, its function is to produce sulphur. Other compounds which are soluble in water, and which give up sulphur, can be substituted. Specifically N,N-Dimethyl thiourea has been employed, but thiourea is the least expensive compound which has been found satisfactory. The specific quantity of AlCl3.6H2 O is usually greater than 10 molar percent and may be increased over a wide range. In some instances it has also been found that an excess of sulfur is desirable and the quantity of available sulfur may be increased as the aluminum content is increased.
Molar percentages of aluminum even higher than 50 molar percent may be utilized but higher percentages have not been found to produce superior performance. The CdS film having an Al compound therein formed with a solution having an Al content of from 10 to 50 molar percent of the total metal ion content of the solution is found to have properties quite different from CdS films containing no aluminum or relatively small amounts of aluminum. The layer is extremely hard, impervious to Cux S or Cu, and is highly adherent to the SnOx.
The second solution forms a layer containing only CdS, generally in crystalline form as present in a conventional photovoltaic cell. It is possible to include small quantities of impurity metals, such as zinc, to dope the CdS and alter the semiconductor properties in ways well known in the art. Inclusion of HCl is optional, and for reasons unknown increases slightly the voltage output of the cell, but so far as is known does not otherwise affect the operation of the cell.
EXAMPLE II
Similar to EXAMPLE I, but with the solutions being differently comprised. The first solution may be in the proportion:
8 liters--Water
18.63 gm--CdCl2.21/2H2 O 8.77 gm--Thiourea
6.96 gm--AlCl3.6H2 O
2 cc--Hydrochloric acid
The second solution may be in the proportion:
4 liters--Water
24.70 gm--CdCl2.21/2H2 O
10.96 gm--Thiourea
EXAMPLE III
A solution of water, CdCl2, thiourea and AlCl3.6H2 O is sprayed on glass coated with SnOx, but as the spray proceeds the proportion of AlCl3.6H2 O to CdCl2 is gradually decreased, for example, logarithmically. For example, as much as 50 molar percent aluminum may be present in the solution forming the lowermost part of the CdS film, and zero or substantially zero molar percent aluminum in the solution forming the upper surface of the film.
EXAMPLE IV
A first solution is prepared in the proportions:
8 liters--Water
18.63 gm--CdCl2.21/2H2 O
6.718 gm--ZrCl4
8.77 gm--Thiourea
A second solution may be prepared according to either Example I or II to form the layer of CdS.
EXAMPLE V
A concentrated first solution is prepared in the proportions:
800 cc--Water
13.7 gm--CdCl2.21/2H2 O
4.83 gm--AlCl3.6H2 O
6.85 gm--Thiourea
A concentrated second solution is prepared in the proportions:
800 cc--Water
13.7 gm--CdCl2.21/2H2 O
9.13 gm--Thiourea
7.33 cc--HNO3 (3N solution)
In all cases, the preferred end result is that directly in contact with the SnOx is a layer of CdS containing a metallic compound, which may be a compound of aluminum or zirconium and at the upper surface of the layer of CdS, which is to be converted to Cux S to form a heterojunction, there is none, or very little, of the metallic compound. Two distinct layers may be employed, or a single layer may be formed having a decreasing percentage of the metallic compound in proceeding from bottom to top of the layer.
The solutions in all examples are sprayed on the glass intermittently and slowly in successive passes over a considerable period of time, of the order of 100 minutes each for the first and second coatings from Examples I, II, or IV and in the order of 180 minutes in the case of the graduated layer of Example IV. The concentrated solutions of Example V may be sprayed for only 30-40 minutes. In each case, the solution is sprayed intermittently and over only a small portion of the glass at any one instant so that the glass sheet remains at about the same average temperature during the spraying, despite the heat removed from the glass in the spraying process. The total thickness of each layer formed in this way is between about 1 to 4 microns, or less, with a total thickness of about 2-6 microns. The coated plate is, after spraying is completed, heated to a temperature of about 400° C. to 550° C. for 5-60 minutes to promote crystal growth.
After the CdS layer has been formed, the substrate is slowly cooled, and the coated product is ready for the Cux S layer. To complete a photovoltaic cell, the exposed surface of the CdS layer is converted to Cux S by dipping the previously cooled cell into an appropriate solution at room temperature, by electroplating, by a combination of dipping and electroplating, or by spraying thereon a suitable copper-containing solution.
After the Cux S layer has been formed, the completed photovoltaic panel may be formed into a series interconnected array of photovoltaic cells according to our patent application Ser. No. 831,544 filed Sept. 8, 1977, which disclosure is incorporated by reference. Electrodes are attached in a preselected configuration and the photovoltaic panel is completed.
The present method can be employed with Nesa glass as the starting material, obviating the need for coating with SnOx, but Nesa glass has a sheet resistivity per square of about 50-75 ohms per square, whereas by our methods very low resistivity coatings may be produced, i.e., of the order of 1-20 ohms per square. The use of low resistivity coatings of SnOx increases the efficiency of the cell by decreasing the amount of electrical energy which is lost in the SnOx.
It also appears to be advantageous if the spraying occurs by depositing droplets which are as uniform as possible. If the spray consists of many small and many large droplets, the very small droplets are evaporated by the intense heat, approximate to the exposed surface of the substrate, and only the larger droplets reach the substrate. This causes some wastage of CdS and it implies that the rate at which the spray is applied should take into account the non-uniformity of the droplets.
In accordance with the method of our parent applications, supra, the glass substrate will be moving longitudinally through a plurality of heated zones, and the spray will occur by transverse passes across the substrate as the glass moves, so that the total quantity of spray reaching any given small area of the substrate will be uniform. The method allows for the fact that spray out of an air gun or out of an electrostatic spray gun does not have a uniform pattern.
The present cell is to be exposed to solar radiation via its glass substrate. The presence of the metallic compound in the CdS does not materially affect transparency of the CdS-Al layer, so that the heterojunction may be exposed via the latter.
It should be understood that various changes, modifications, and variations in the structure and function of the present invention may be effected without departing from the spirit and scope of the present invention as defined in the appended claims.

Claims (17)

What is claimed is:
1. A photovoltaic cell, comprising
an electrically conductive substrate,
a first layer containing CdS,
a second layer of Cux S superposed on said first layer and forming a photovoltaic heterojunction therewith, and
an electrode contacting said second layer,
said first layer containing a compound of a selected metal in an amount effective to provide at least a portion of said CdS in said first layer with an amorphous structure resistant to permeation by said Cux S through said first layer to said electrically conductive substrate.
2. A photovoltaic cell according to claim 1, wherein said compound of said selected metal is formed from
a solution containing a cadmium compound and a salt of said selected metal, said selected metal being at least 10 molar percent of the total metal content of said solution.
3. A photovoltaic cell according to claim 1 or claim 2, wherein said compound of said selected metal is included in the greatest amount in said first layer adjacent said electrically conductive substrate and in the least amount in said first layer remote from said electrically conductive substrate.
4. A photovoltaic cell according to claim 1 or claim 2, wherein said first layer includes
a first film component containing CdS and said compound of said selected metal, and
a second film component containing, polycrystalline CdS.
5. A photovoltaic cell according to claim 4, wherein said first and second film components are each formed to a thickness of 1-4 microns.
6. A photovoltaic cell according to claim 5, wherein said selected metal is from the group consisting of aluminum and zirconium.
7. A photovoltaic cell, comprising
an electrically conductive substrate
a first layer containing CdS,
a second layer of Cux S superposed on said first layer and forming a photovoltaic heterojunction therewith, and
an electrode contacting said second layer,
said first layer containing a compound of aluminum or zirconium in an amount effective to provide at least a portion of said CdS in said first layer with an amorphous structure resistant to permeation by said Cux S through said first layer to said electrically conductive substrate.
8. A photovoltaic cell according to claim 7, wherein said compound of said aluminum or zirconium is formed from a solution containing a cadmium compound and a salt of said aluminum or zirconium, the aluminum or zirconium content being at least 10 molar percent of the total metal content of said solution.
9. A photovoltaic cell according to claim 7 or claim 8, wherein said compound of said selected metal is included in the greatest amount in said first layer adjacent said electrically conductive substrate and in the least amount in said first layer remote from said electrically conductive substrate.
10. A photovoltaic cell according to claim 7 or claim 8, wherein said first layer includes
a first film component containing CdS and said compound of said aluminum or zirconium, and
a second film component containing polycrystalline CdS.
11. A photovoltaic cell according to claim 10, wherein said first and second film components are each formed to a thickness of 1-4 microns.
12. In a photovoltaic cell having an electrically conductive substrate, a first layer containing CdS, a second layer of Cux S superposed on said first layer and forming a photovoltaic heterojunction therewith, and an electrode contacting said second layer, an improved first layer comprising
a compound of a selected metal in an amount effective to provide at least a portion of said CdS in said first layer with an amorphous structure resistant to permeation by said Cux S through said first layer to said electrically conductive substrate.
13. A photovoltaic cell according to claim 12, wherein
said compound of said selected metal is formed from a solution containing a cadmium compound and a salt of said selected metal, said selected metal being at least 10 molar percent of the total metal content of said solution.
14. A photovoltaic cell according to claim 12 or claim 13, wherein said compound of said selected metal is included in the greatest amount in said first layer adjacent said electrically conductive substrate and in the least amount in said first layer remote from said electrically conductive substrate.
15. A photovoltaic cell according to claim 12 or claim 13, wherein said first layer includes
a first film component containing CdS and said compound of said selected metal, and
a second film component containing polycrystalline CdS.
16. A photovoltaic cell according to claim 15, wherein said first and second film component layers are each formed to a thickness of 1-4 microns.
17. A photovoltaic cell according to claim 16, wherein said selected metal is from the group consisting of aluminum and zirconium. .Iadd. 18. An improved photovoltaic cell having an electrically conductive base, a first layer of polycrystalline semiconductor material, a second layer of material forming a heterojunction with said semiconductor material, and an electrode contacting said second layer, wherein the improvement comprises:
said first layer of semiconductor material having a portion which is resistant to permeation through said first layer to said base by materials forming said heterojunction. .Iaddend..Iadd. 19. An improved photovoltaic cell according to claim 18, wherein said first layer varies from a first material structure adjacent said base to a second material structure adjacent said heterojunction, said first structure being resistant to said permeation. .Iaddend..Iadd. 20. An improved photovoltaic cell according to claim 19, wherein said first and second material structures each form distinct first and second sublayers, respectively, of said first layer. .Iaddend..Iadd. 21. An improved photovoltaic cell according to claims 19 or 20, wherein said first material structure includes a first crystallite size and said second material structure includes a second crystallite size. .Iaddend.
US06/068,927 1979-08-23 1979-08-23 Photovoltaic cell Expired - Lifetime USRE30504E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US06/068,927 USRE30504E (en) 1979-08-23 1979-08-23 Photovoltaic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06/068,927 USRE30504E (en) 1979-08-23 1979-08-23 Photovoltaic cell

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US05/631,815 Continuation-In-Part US4086101A (en) 1974-09-23 1975-11-14 Photovoltaic cells
US05/892,375 Reissue US4159914A (en) 1975-11-14 1978-03-31 Photovoltaic cell

Publications (1)

Publication Number Publication Date
USRE30504E true USRE30504E (en) 1981-02-03

Family

ID=22085597

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/068,927 Expired - Lifetime USRE30504E (en) 1979-08-23 1979-08-23 Photovoltaic cell

Country Status (1)

Country Link
US (1) USRE30504E (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4360542A (en) 1981-03-31 1982-11-23 Argus Chemical Corporation Process for the preparation of thin films of cadmium sulfide and precursor solutions of cadmium ammonia thiocyanate complex useful therein

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2912370A (en) * 1957-10-07 1959-11-10 Allied Res Products Inc Addition agent for cadmium plating solution
US3975211A (en) * 1975-03-28 1976-08-17 Westinghouse Electric Corporation Solar cells and method for making same
US4086101A (en) * 1974-09-23 1978-04-25 Photon Power, Inc. Photovoltaic cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2912370A (en) * 1957-10-07 1959-11-10 Allied Res Products Inc Addition agent for cadmium plating solution
US4086101A (en) * 1974-09-23 1978-04-25 Photon Power, Inc. Photovoltaic cells
US3975211A (en) * 1975-03-28 1976-08-17 Westinghouse Electric Corporation Solar cells and method for making same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4360542A (en) 1981-03-31 1982-11-23 Argus Chemical Corporation Process for the preparation of thin films of cadmium sulfide and precursor solutions of cadmium ammonia thiocyanate complex useful therein

Similar Documents

Publication Publication Date Title
US4159914A (en) Photovoltaic cell
US4086101A (en) Photovoltaic cells
EP0715358B1 (en) Process for fabricating a solar cell with a chalcopyrite absorbing layer and solar cell so produced
US6537845B1 (en) Chemical surface deposition of ultra-thin semiconductors
US4320154A (en) Method of forming solar cells by grid contact isolation
CA1249361A (en) Electrodeposition of photovoltaic layer utilizing cadmium rich hg1-xcdxte
USRE29812E (en) Photovoltaic cell
DE10113782A1 (en) Solar cell comprises a first insulating layer formed on the main plane of a conducting base, a second insulating layer formed a second main plane of the base, and a light absorption layer arranged on the first insulating layer
EP0045195A2 (en) Semiconductor device, a method of making a low-resistance contact between a metal and a layer of polycrystalline P-type CdTe in said semiconductor device and a cadmium-selective etchant which is useful for said method
DE3113130A1 (en) Cadmium sulphide photocell and method of producing it
US4362896A (en) Polycrystalline photovoltaic cell
USRE30504E (en) Photovoltaic cell
KR102451616B1 (en) Photo-cathode manufacturing method, photo-cathode and photoelectrochemical water decomposition method using the same
US4304607A (en) Photovoltaic cell
US4412091A (en) Polycrystalline photovoltaic cell
US4104420A (en) Photovoltaic cell
US20170309477A1 (en) A method for forming a gradient thin film by spray pyrolysis
US4403398A (en) Method of manufacturing a cadmium sulphide photo-voltaic device
CA1292547C (en) Electrodeposited doped ii-vi semiconductor films and devices incorporating such films
US4360542A (en) Process for the preparation of thin films of cadmium sulfide and precursor solutions of cadmium ammonia thiocyanate complex useful therein
US4404734A (en) Method of making a CdS/Cux S photovoltaic cell
Williams et al. The electrophoresis of thin Film CdS/Cu2S solar cells
CA1060281A (en) Photovoltaic cell containing cds layer impregnated with aluminum
US4234353A (en) Process for preparing photovoltaic cells having increased adhesion of the semi-conducting layer and produced thereby to the conducting layer
Muftah et al. Electrodeposited CdTe Thin Film Solar Cells: Chloride Treatment and Improved Efficiency

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOTAL ENERGIE DEVELOPPEMENT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:LOF REALTY, INC.;REEL/FRAME:004324/0501

Effective date: 19840410

AS Assignment

Owner name: TOTAL ENERGIE DEVELOPPMENT + MESSERSCHMITT-BOLKOW-

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:TOTAL ENERGIE DEVELOPMENT;REEL/FRAME:005503/0019

Effective date: 19901002

AS Assignment

Owner name: TOTAL ENERGIE DEVELOPPEMENT, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:TOTAL ENERGIE DEVELOPMENT + MESSERSCHMITT-BOLKOW BLOHMGMBH & CO. PHOTOTRONICS O.H.G.;REEL/FRAME:006483/0409

Effective date: 19930331