USRE29076E - Tablet formulation - Google Patents

Tablet formulation Download PDF

Info

Publication number
USRE29076E
USRE29076E US05/666,560 US66656076A USRE29076E US RE29076 E USRE29076 E US RE29076E US 66656076 A US66656076 A US 66656076A US RE29076 E USRE29076 E US RE29076E
Authority
US
United States
Prior art keywords
iadd
iaddend
weight
tablet
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/666,560
Inventor
Ehud Geller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ives Lab
Original Assignee
Ives Lab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US529423A external-priority patent/US3927194A/en
Application filed by Ives Lab filed Critical Ives Lab
Priority to US05/666,560 priority Critical patent/USRE29076E/en
Application granted granted Critical
Publication of USRE29076E publication Critical patent/USRE29076E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/10Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of compressed tablets

Definitions

  • This invention relates to novel formulations for tablets which are to be deeply grooved. Deeply grooved tablets are those in which the groove is 1/3 to 2/3 of the total tablet thickness. Such tablets are shown for instance in U.S. Pat. No. 224,591 and in copending application Ser. No. 388,142 filed Aug. 6, 1973.
  • the tablet design allows for easy, simple and accurate division of a pharmaceutical tablet.
  • a groove, or bisect, or score may be formed on one of the tablet faces.
  • the groove facilitates breaking of the tablet into two parts by applying pressure while the tablet is held between two fingers or in both hands.
  • dividing a tablet into two or more accurate predetermined parts permits the administration of two or more doses of the active ingredient, or drug, contained in the tablet.
  • Potent drugs are frequently incorporated in small amounts into a total tablet formulation, and the capability to divide the tablet accurately allows for a saving by not having to formulate, package and distribute different sized tablets for a portion of the dose and for the full dose.
  • the inclusion of one-half of that dose in a tablet of similar size decreases the relation of drug to excipients twofold, thus in many cases also increasing the possibility of drug degradation due to drug-excipient interaction.
  • FIG. 1 is an isometric view of a pharmaceutical tablet employing a deeply scored design:
  • FIG. 2 is a top plan view thereof:
  • FIG. 3 is a side elevational view thereof as seen at right angles to FIG. 2;
  • FIG. 4 is an end elevational view thereof as seen at right angles to FIG. 2;
  • FIG. 5 is an end elevational view of a pharmaceutical tablet embodying a modification to the form illustrated in FIG. 4;
  • FIG. 6 is a bottom view of the embodiments of FIGS. 1 and 5.
  • the deeply grooved tablet design presents tablet compression characteristics which are not typical of the manufacturing of conventional pharmaceutical tablets. While tablets are usually compacted between uniform surfaces, flat or concave, the deeply grooved tablet design presents a non-uniform compressing surface on one tablet face and a uniform face, spherical or flat, on the other.
  • Such a multiplanar surface presents a process of physical compaction which does not produce the results expected from a conventional compressed tablet. In the process of compaction, the multiplanar surface applies forces, the resultant of which is not vertical. This results in nonuniform stress distribution within the tablet as an independent unit which in turn causes tablet capping and the inadequate imprinting or embossing of indicia of any of its surfaces.
  • the uneven distribution of stresses results in varying levels of lubrication effectiveness of the tablet planes in contact with the press tooling which, in turn, causes "picking" of material off the tablet surface.
  • To overcome this phenomenon requires a highly cohesive mixture which is at the same time sufficiently lubricated to enable friction-free tooling to tablet contact on all tablet planes.
  • the tablet formulator has to balance the lubricant level against the binder level because the increase of the former will diminish the effect of the latter until the critical region of such action is surpassed.
  • “Picking” and “sticking” are words of art, meaning part of the tablet sticks to the tips of the upper or lower punch. "Capping” describes a condition in which the tablet laminates into one or more layers.
  • This invention has been directed principally to the application of specific pharmaceutical formulations incorporating isosorbide dinitrate as the active ingredient, but is applicable to other deeply grooved tablets as well.
  • Isosorbide dinitrate is a potent coronary vasodilator.
  • compositions containing the active ingredient would tablet in an acceptable manner because acceptable tablets could be made at this composition using conventional tools.
  • a critical binder-lubricant relationship was needed to produce acceptable tablets with deep scoring tooling.
  • Formula a exhibits capping, high friability, in the ranges of 7-15 Strong Cobb units (s.c.u.) hardness; the friability was 2% - 5% by Roche friabilator.
  • Formula b repeated the behavior of Formula A on a somewhat reduced scale.
  • Formula c produced satisfactory tablet hardness of 8-14 s.c.u. and friability of 0.0% at that range.
  • the optimum weight is about 175 mg because at 150 mg there is a high probability of tooling contact which in turn may cause damage to the punch tips.
  • Example II Following the procedure of Example I a series of formulations were prepared and deeply scored tablets were made from them. The formulations are shown in Table I.
  • Table I Shown in Table I are drug amounts of 20 mg/tablet each. These correspond to a tablet containing 5 mg. of isosorbide dinitrate which is utilized in a 25 weight percent mixture with lactose being 75 weight percent. To prepare a 10 mg. isosorbide dinitrate tablet 40 mg. of drug-lactose mixture would be used (representing 10 mg. of isosorbide dinitrate). The change in dosage is balanced with the amount of lactose in the formulation while producing similar results.
  • Formula a exhibited severe picking on the upper face of the tablet.
  • Formula b contained the minimal level of anhydrous lactose to produce an adequate tablet. However, the tablet demonstrated poor disintegration.
  • Formula c produced soft tablets that capped while still picking.
  • Formula d exhibited insufficient hardness range and picking on both tablet faces.
  • Formula e showed insufficient binding resulting in very soft tablets having high friability.
  • Formula g showed adequate manufacturability as to hardness and friability.
  • the tablets were free of picking.
  • Formula i was a slugged formula which exhibited binding and picking on the tablet lower face.
  • Formula j was a slugged formula with a higher lubricant level which produced adequate lubrication but insufficient hardness.
  • the preferred weight for deeply grooved tablets is 150 to 175 mg.
  • the preferred ratio of lubricant to binder is obtained when the binder constitutes 45 to 99.7 w/o and the lubricant constitutes 0.3 to 0.4 w/o of tablet exclusive of the amount of the active ingredient, fillers, extenders, flavor and the like. That is, the weight percent of the binder and lubricant is based on the portion of the tablet composition usually referred to as "q.s.”.
  • a particularly advantageous formula weighs 175 mg. per tablet and contains 60 percent by weight microcrystalline cellulose with 0.35 percent by weight of magnesium stearate.
  • the Mannitol U.S.P. used in the examples is the conventional powdered form rather than the granular form.
  • Formula A exhibited very high friability, capping and a narrow hardness range.
  • Formula C was a wet granulated formula, and exhibited high friability, capping and inadequate chewability due to the wet binder.
  • Formula D shows adequate manufacturability and chewability.
  • Formula G was slugged and exhibited capping, narrow hardness range and slight picking.
  • the first formulation uses a directly compressed mannitol and a dextrose and corn syrup solids granulation in combination; 2.
  • the second formulation uses dextrose and corn syrup solids granulation without mannitol in direct compression.
  • the deeply scored design was also utilized in the manufacture of a chewable tablet form containing isosorbide dinitrate at a 10 mg. level.
  • Table II present the compositions pharmaceutical tablets manufactured by three basic methods: direct compression, dry granulation, and wet granulation. These examples are not to be construed as limiting the scope of this invention which may only be determined by reference to the appended claims.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Medicinal Preparation (AREA)

Abstract

The disclosure is directed to formulations for tablets which are to be deeply grooved to facilitate breaking into predetermined portions by the user. A critical tablet weight for deeply grooved tablets is disclosed.

Description

This application is a division of application Ser. No. 312,469 filed Dec. 6, 1972, now U.S. Pat. No. 3,883,647 dated May 13, 1975.
This invention relates to novel formulations for tablets which are to be deeply grooved. Deeply grooved tablets are those in which the groove is 1/3 to 2/3 of the total tablet thickness. Such tablets are shown for instance in U.S. Pat. No. 224,591 and in copending application Ser. No. 388,142 filed Aug. 6, 1973. The tablet design allows for easy, simple and accurate division of a pharmaceutical tablet.
In the manufacture of tablets a groove, or bisect, or score, may be formed on one of the tablet faces. The groove facilitates breaking of the tablet into two parts by applying pressure while the tablet is held between two fingers or in both hands.
In the pharmaceutical industry dividing a tablet into two or more accurate predetermined parts permits the administration of two or more doses of the active ingredient, or drug, contained in the tablet. Potent drugs are frequently incorporated in small amounts into a total tablet formulation, and the capability to divide the tablet accurately allows for a saving by not having to formulate, package and distribute different sized tablets for a portion of the dose and for the full dose. In addition, it is often beneficial to the chemical stability of the drug to incorporate the full dose in the smallest tablet size available. The inclusion of one-half of that dose in a tablet of similar size decreases the relation of drug to excipients twofold, thus in many cases also increasing the possibility of drug degradation due to drug-excipient interaction.
Some of the problems that arise in the production of regularly grooved tablets are:
1. Depending on its hardness, it is sometimes impossible to break the tablet although it is scored.
2. Scores do not always assure precise division of the tablet.
3. Pharmaceutical tablets of smaller sizes do not allow for ease of holding and breaking; in which case the patient very often resorts to using other means of dividing the tablet which results in losing parts of it or obtaining uneven parts or both.
Typical deeply scored tablets to which the present invention is applicable are shown in the drawings in which:
FIG. 1 is an isometric view of a pharmaceutical tablet employing a deeply scored design:
FIG. 2 is a top plan view thereof:
FIG. 3 is a side elevational view thereof as seen at right angles to FIG. 2;
FIG. 4 is an end elevational view thereof as seen at right angles to FIG. 2;
FIG. 5 is an end elevational view of a pharmaceutical tablet embodying a modification to the form illustrated in FIG. 4; and
FIG. 6 is a bottom view of the embodiments of FIGS. 1 and 5.
The deeply grooved tablet design presents tablet compression characteristics which are not typical of the manufacturing of conventional pharmaceutical tablets. While tablets are usually compacted between uniform surfaces, flat or concave, the deeply grooved tablet design presents a non-uniform compressing surface on one tablet face and a uniform face, spherical or flat, on the other. Such a multiplanar surface presents a process of physical compaction which does not produce the results expected from a conventional compressed tablet. In the process of compaction, the multiplanar surface applies forces, the resultant of which is not vertical. This results in nonuniform stress distribution within the tablet as an independent unit which in turn causes tablet capping and the inadequate imprinting or embossing of indicia of any of its surfaces. In addition, the uneven distribution of stresses results in varying levels of lubrication effectiveness of the tablet planes in contact with the press tooling which, in turn, causes "picking" of material off the tablet surface. To overcome this phenomenon requires a highly cohesive mixture which is at the same time sufficiently lubricated to enable friction-free tooling to tablet contact on all tablet planes. In practice the tablet formulator has to balance the lubricant level against the binder level because the increase of the former will diminish the effect of the latter until the critical region of such action is surpassed.
"Picking" and "sticking" are words of art, meaning part of the tablet sticks to the tips of the upper or lower punch. "Capping" describes a condition in which the tablet laminates into one or more layers.
This invention has been directed principally to the application of specific pharmaceutical formulations incorporating isosorbide dinitrate as the active ingredient, but is applicable to other deeply grooved tablets as well. Isosorbide dinitrate is a potent coronary vasodilator.
It was originally presumed that existing, acceptable, direct compression, tableting compositions could be adequately compressed with deep scoring tooling. Two such compositions were evaluated and surprisingly, it was found that acceptable tablets could not be made. Using a placebo composition (one without an active ingredient) similar to a presently used acceptable isosorbide dinitrate tablet composition, it was determined that, unexpectedly, a total tablet weight was critical to obtain acceptable tablets. To minimize the problems caused by stress non-uniformity, an optimal weight was found where after sufficient compression the distance between the apex of the convex side of the tablet and the bottom of the V-shaped opening on top will be minimal while still allowing for adequate manufacturability.
Having established the critical tablet weight, it was expected that compositions containing the active ingredient would tablet in an acceptable manner because acceptable tablets could be made at this composition using conventional tools. However, unexpectedly, it was found that a critical binder-lubricant relationship was needed to produce acceptable tablets with deep scoring tooling.
Four experiments were designed to select the most optimal tablet weight for the easy-break design. The data is shown in Example I.
EXAMPLE I TOTAL TABLET WEIGHT OPTIMIZATION
All experiments were run in duplicates from one stock powder mixture and directly compressed on a rotary tablet press. The material run was an optimal placebo mixture as described below:
__________________________________________________________________________
FORMULAE      A     B     C     D                                         
__________________________________________________________________________
Lactose hydrous U.S.P.                                                    
              qs    qs    qs    qs                                        
Microcrystalline Cellulose                                                
              25 w/o                                                      
                    25 w/o                                                
                          25 w/o                                          
                                25 w/o                                    
Magnesium Stearate U.S.P.                                                 
              0.25 w/o                                                    
                    0.25 w/o                                              
                          0.25 w/o                                        
                                0.25 w/o                                  
Total Tablet Weight                                                       
              230 mg                                                      
                    200 mg                                                
                          175 mg                                          
                                150 mg                                    
__________________________________________________________________________
The pharmaceutical term "qs" is an abbreviation of the Latin phrase "quantum sufficiat" which means as much as suffices. The abbreviation "w/o" means percent by weight.
The results were as follows:
Formula a: exhibits capping, high friability, in the ranges of 7-15 Strong Cobb units (s.c.u.) hardness; the friability was 2% - 5% by Roche friabilator.
Formula b: repeated the behavior of Formula A on a somewhat reduced scale.
Formula c: produced satisfactory tablet hardness of 8-14 s.c.u. and friability of 0.0% at that range.
Formula d: produced satisfactory tablets.
Initially it was tried to utilize a conventional isosorbide dinitrate formula and weight for the easy-break tableting tools. It was expected that the design would perform adequately at a total weight of 230 milligrams (mg). Surprisingly the tablets made at this weight were unsatisfactory, and evidenced capping, high friability in addition to insufficient tablet hardness. An attempt was made to solve the problem by selecting the most adequate tablet weight to achieve better manufacturability, but was unsuccessful.
The weight selection experiments indicated that in order to achieve adequate tableting parameters with deep scoring tooling the tablet weight will have to be under 200 mg. The optimum weight is about 175 mg because at 150 mg there is a high probability of tooling contact which in turn may cause damage to the punch tips.
Once the weight problem was solved, no further problems were anticipated. However, upon careful scrutiny of the tableting performance there was found an unexpected problem in the binder and lubricant relationship. "Picking" and "sticking" were found in some cases, and soft tablets with capping in others. In order to resolve the problem a set of experiments was designed to determine the critical nature of the binder and lubricant levels. The experiments are shown in Example II:
EXAMPLE II
Following the procedure of Example I a series of formulations were prepared and deeply scored tablets were made from them. The formulations are shown in Table I.
                                  TABLE I                                 
__________________________________________________________________________
                PERCENT OF TOTAL TABLET WEIGHT                            
FORMULAE        A      B   C   D   E   F   G   H   I   J   K              
__________________________________________________________________________
Microcrystalline Cellulose                                                
                25     25  25  25      45  45  25  25  25  60             
*Solka-floc                                    10                         
Lactose hydrous qs         qs  qs  qs  qs  qs  qs  qs  qs  qs             
Lactose anhydrous      63                                                 
Dicalcium Phosphate                                                       
**Sta-Rx 1500                      74                                     
Magnesium Stearate                                                        
                0.22   0.3 0.22                                           
                               0.22                                       
                                   0.3 0.22                               
                                           0.35                           
                                               0.3 0.3 0.4 0.35           
Stearic Acid                                                              
***Stero-Tex               0.50                                           
Talc                           2                                          
Isosorbide Dinitrate                                                      
Trituration     20.0   20.0                                               
                           20.0                                           
                               20.0                                       
                                   20.0                                   
                                       20.0                               
                                           20.0                           
                                               20.0                       
                                                   20.0                   
                                                       20.0               
                                                           20.0           
                mg     mg  mg  mg  mg  mg  mg  mg  mg  mg  mg             
Total Weight    175 mg 175 mg                                             
                           175 mg                                         
                               175 mg                                     
                                   175 mg                                 
                                       175 mg                             
                                           175 mg                         
                                               175 mg                     
                                                   175 mg                 
                                                       175                
                                                           175 mg         
__________________________________________________________________________
                                                           1              
 Formulas A through H with the exception of G did not exhibit adequate    
 manufacturability in a direct compression process.                       
 *Purified Cellulose, Brown Co.                                           
 **Directly compressible starch                                           
 ***Edible vegetable oil, powdered lubricant                              
Shown in Table I are drug amounts of 20 mg/tablet each. These correspond to a tablet containing 5 mg. of isosorbide dinitrate which is utilized in a 25 weight percent mixture with lactose being 75 weight percent. To prepare a 10 mg. isosorbide dinitrate tablet 40 mg. of drug-lactose mixture would be used (representing 10 mg. of isosorbide dinitrate). The change in dosage is balanced with the amount of lactose in the formulation while producing similar results.
The results were as follows:
Formula a exhibited severe picking on the upper face of the tablet.
Formula b contained the minimal level of anhydrous lactose to produce an adequate tablet. However, the tablet demonstrated poor disintegration.
Formula c produced soft tablets that capped while still picking.
Formula d exhibited insufficient hardness range and picking on both tablet faces.
Formula e showed insufficient binding resulting in very soft tablets having high friability.
Formula f showed inadequate performance because of slight pick.
Formula g showed adequate manufacturability as to hardness and friability. The tablets were free of picking.
Formula h showed insufficient hardness with picking on bottom face.
Formula i was a slugged formula which exhibited binding and picking on the tablet lower face.
Formula j was a slugged formula with a higher lubricant level which produced adequate lubrication but insufficient hardness.
Formula k showed excellent manufacturability for all parameters.
Based on the foregoing it was determined that tablets made of conventional pharamceutical ingredients would manufacture adequately at weights under 200 mg. utilizing a deeply scored design. In addition, a great amount of experimentation and design was spent on the tablet formulation to overcome the critical nature of its binder and lubricant dependence.
From the foregoing the preferred weight for deeply grooved tablets is 150 to 175 mg. The preferred ratio of lubricant to binder is obtained when the binder constitutes 45 to 99.7 w/o and the lubricant constitutes 0.3 to 0.4 w/o of tablet exclusive of the amount of the active ingredient, fillers, extenders, flavor and the like. That is, the weight percent of the binder and lubricant is based on the portion of the tablet composition usually referred to as "q.s.".
Only microcrystalline cellulose of the binders presently available on the market has been found to be useful in deep grooved tablet compositions. Only the stearates, including stearic acid, of the lubricants presently available on the market have been found to be useful in deep grooved tablet compositions.
A particularly advantageous formula weighs 175 mg. per tablet and contains 60 percent by weight microcrystalline cellulose with 0.35 percent by weight of magnesium stearate.
For assuring of distintegration and dissolution reproducibility the use of one (1) percent Amberlite is optional and has been tested to that effect.
The Mannitol U.S.P. used in the examples is the conventional powdered form rather than the granular form.
Formulae A, B, D, E and F are directly compressed.
Formula A exhibited very high friability, capping and a narrow hardness range.
In Formula B the weight has been reduced, but tablets still exhibit heavy capping and friability with very low hardness.
Formula C was a wet granulated formula, and exhibited high friability, capping and inadequate chewability due to the wet binder.
Formula D shows adequate manufacturability and chewability.
In Formula E reduced lubricant level results in heavy picking on both tablet faces.
In Formula F eliminating the sweetener from Formula D maintains adequate manufacturability with improved taste.
Formula G was slugged and exhibited capping, narrow hardness range and slight picking.
Formula H produced adequate tableting characteristics
From the foregoing it was concluded that 10 mg. chewable tablets were successfully made in two formulations: 1. The first formulation uses a directly compressed mannitol and a dextrose and corn syrup solids granulation in combination; 2. The second formulation uses dextrose and corn syrup solids granulation without mannitol in direct compression.
The choice between these two categories depends strictly on personal taste preference. Both formulae will produce similarly adequate results.
EXAMPLE III Preparation of 10 Mg. Isosorbide Dinitrate Chewable Tablets
The deeply scored design was also utilized in the manufacture of a chewable tablet form containing isosorbide dinitrate at a 10 mg. level.
Again, in this formula is was found necessary to resort to a lower tablet weight of 175 mg. In addition because the design of a chewable tablet requires the incorporation of a chewable carrier, it was necessary to evaluate different chewable materials to obtain a sufficiently cohesive and well lubricated direct compression formula. The data obtained in those experiments is shown in Table II in which the tablets were prepared as described in Example I.
The preferred embodiment at which chewable deeply scored tablets can be made is for the first category with
                                  TABLE II                                
__________________________________________________________________________
              CHEWABLE TABLETS                                            
FORMULAE      A    B    C    D    E    F    G      H                      
__________________________________________________________________________
Isosorbide Dinitrate (25%)                                                
              40 mg                                                       
                   40 mg                                                  
                        40 mg                                             
                             40.0 mg                                      
                                  40 mg                                   
                                       40 mg                              
                                            40.0 mg                       
                                                   40.0 mg                
Lactose mixture                                                           
*Nutab        qs   qs                                                     
Mannitol U.S.P.         qs   20%  20%  20%  qs                            
**Cellutab, anhydrous        31.5%                                        
                                  31.5%                                   
                                       31.5%       qs                     
Microcrystalline Cellulose                                                
              25.0%                                                       
                   20%       25%  25%  25%  25%    20%                    
Solka floc         8.0%                                                   
Magnesium Stearate U.S.P.                                                 
              0.6% 0.7% 1.0% 1.0% 0.5% 0.9% 0.9%+0.9%                     
                                                   0.35%                  
FD&C Yellow No. 5 Lake                                                    
              0.1% 0.1% 0.4% 0.4% 0.4% 0.4% 0.4%   0.4%                   
Sodium Saccharine N.F.  0.08%                                             
                             0.08%                                        
                                  0.08%                                   
                                       --   0.08%  --                     
Methyl Cellulose 400 cps                                                  
                        0.7%                                              
Lemon Oil, spray dried  1.7% 1.7% 1.7% 1.7% 1.7%   1.7%                   
Total Tablet Weight                                                       
              222.5                                                       
                   196  190  175.0                                        
                                  175  175  175.0  175                    
              mg   mg   mg   mg   mg   mg   mg     mg                     
__________________________________________________________________________
 *Sucrose, invert sugar, starch, magnesium stearate direct compression    
 granulation.                                                             
 **Dextrose and corn syrup solids granulation.                            
at least 20 percent by weight of microcrystalline cellulose, 31.5 percent by weight of Cellutab anhydrous, 25 percent Mannitol and a range of 0.7-1.0 percent by weight of magnesium stearate or: at the second category with Cellutab anhydrous and a minimum of 0.35 percent by weight of magnesium stearate.
The incorporation of an ingredient which would serve as a chewable carrier, one which imparts a certain pallatable feeling, sweetness and desirable chewability, presents additional variables to the ones already described above. When processing and formulating for such purpose, it is necessary to consider the properties producing the resulting chewable quality of the tablet, that is hardness, taste and pallatability. The majority of chewable carriers, apart from the granulated natural sugars and their derivatives, do not lend themselves to direct compression and tend to lose some of their taste upon any granulation-method.
The examples illustrated in Table II present the compositions pharmaceutical tablets manufactured by three basic methods: direct compression, dry granulation, and wet granulation. These examples are not to be construed as limiting the scope of this invention which may only be determined by reference to the appended claims.

Claims (9)

What is claimed is:
1. A chewable pharmaceutical tablet which is adequately imprinted with indicia or embossing and scored to form a groove which is 1/3 to 2/3 the depth of the total tablet thickness to facilitate separation into subdivisions containing substantially equal amounts of pharmaceutically active ingredient comprising a directly compressed formulation of:
______________________________________                                    
A.    Active ingredient  5 to 10 milligrams                               
B.    Microcrystalline Cellulose                                          
                         20 to 25 percent                                 
                         by weight                                        
C.    Dextrose and corn syrup                                             
                         30 to 55 percent                                 
      solids granulation by weight                                        
D.    Mannitol           20 to 30 percent                                 
                         by weight                                        
E.    Magnesium stearate 0.9 to 1.0 percent -  by weight -F. The          
                         remainder being                                  
      pharmaceutically acceptable                                         
      fillers, extenders, flavoring                                       
      and the like.                                                       
______________________________________                                    
2. A tablet as defined in claim 1 in which the ingredients are present in the following amounts:
______________________________________                                    
A.    Microcrystalline cellulose                                          
                         20 percent by                                    
                         weight                                           
B.    Dextrose and corn syrup                                             
                         31.5 percent by                                  
      solids granulation weight                                           
C.    Mannitol           25 percent by                                    
                         weight                                           
D.    Magnesium stearate 1 percent by weight                              
______________________________________                                    
3. A tablet as defined in claim 1 in which the total tablet weight is 150 to 175 milligrams.
4. A tablet as defined in claim 1 in which the total tablet weight is about 175 milligrams.
5. A tablet as defined in claim 1 in which the active ingredient is 10 milligrams of isosorbide dinitrate.
6. A chewable pharmaceutical tablet which is deeply adequately imprinted with indicia or embossing and scored to form a groove which is 1/3 to 2/3 the depth of the total tablet thickness to facilitate separation into subdivisions containing substantially equal amount of a pharmaceutically active ingredient comprising a directly compressed formulation of:
______________________________________                                    
A.   Active ingredient   5 to 10 milligrams                               
B.   Microcrystalline Cellulose                                           
                         20 to 25 percent                                 
                         by weight                                        
C.   Dextrose and corn syrup solids                                       
                         50 to 55 percent                                 
     granulation         by weight                                        
D.   Magnesium stearate  0.35 to 0.4 per-                                 
                         cent by weight                                   
E.   Pharmaceutically acceptable                                          
                         remainder                                        
     fillers, extenders, flavoring                                        
     and the like.                                                        
______________________________________                                    
7. A tablet as defined in claim 6 in which the total tablet weight is 150 to 175 milligrams.
8. A tablet as defined in claim 6 in which the total tablet weight is 175 milligrams.
9. A tablet as defined in claim 6 in which the active ingredient is 10 milligrams of isosorbide dinitrate. .Iadd. 10. A chewable pharmaceutical tablet which is adequately imprinted with indicia or embossing and scored to form a groove which is 1/3 to 2/3 the depth of the total tablet thickness to facilitate separation into subdivisions containing substantially equal amounts of pharmaceutically active ingredient comprising a directly compressed formulation of an effective amount of an active ingredient and:
______________________________________                                    
.Iadd.A..Iaddend.                                                         
    .Iadd.Microcrystalline Cellulose.Iaddend.                             
                       .Iadd.20 to 25 percent by weight.Iaddend.          
.Iadd.B..Iaddend.                                                         
    .Iadd.Dextrose and corn syrup.Iaddend.                                
                       .Iadd.30 to 55 percent by weight.Iaddend.          
    .Iadd.solids granulation.Iaddend.                                     
.Iadd.C..Iaddend.                                                         
    .Iadd.Mannitol.Iaddend.                                               
                       .Iadd.20 to 30 percent by weight.Iaddend.          
.Iadd.D..Iaddend.                                                         
    .Iadd.Magnesium stearate.Iaddend.                                     
                       .Iadd.0.9 to 1.0 percent by.Iaddend.               
                       .Iadd.weight.Iaddend.                              
.Iadd.E..Iaddend.                                                         
    .Iadd.The remainder being.Iaddend.                                    
    .Iadd.pharmaceutically acceptable.Iaddend.                            
    .Iadd.fillers, extenders, flavoring.Iaddend.                          
    .Iadd.and the like..Iaddend.                                          
______________________________________                                    
 .Iadd. 11. A chewable pharmaceutical tablet which is deeply adequately
 imprinted with indicia or embossing and scored to form a groove which is
 1/3 to 2/3 the depth of the total tablet thickness to facilitate
 separation into subdivisions containing substantially equal amounts of a
 pharmaceutically active ingredient comprising a directly compressed
 formulation of an effective amount of an active ingredient and:
______________________________________                                    
.Iadd.A..Iaddend.                                                         
    .Iadd.Microcrystalline Cellulose.Iaddend.                             
                      .Iadd.20 to 25 percent by weight.Iaddend.           
.Iadd.B..Iaddend.                                                         
    .Iadd.Dextrose and corn syrup.Iaddend.                                
                      .Iadd.50 to 55 percent by weight.Iaddend.           
    .Iadd.solids granulation.Iaddend.                                     
.Iadd.C..Iaddend.                                                         
    .Iadd.Magnesium stearate.Iaddend.                                     
                      .Iadd.0.35 to 0.4 percent by weight.Iaddend.        
.Iadd.D..Iaddend.                                                         
    .Iadd.Pharmaceutically.Iaddend.                                       
                      .Iadd.remainder.Iaddend.                            
    .Iadd.acceptable fillers,.Iaddend.                                    
    .Iadd.extenders, flavoring.Iaddend.                                   
    .Iadd.and the like..Iaddend.                                          
______________________________________                                    
US05/666,560 1974-12-04 1976-03-15 Tablet formulation Expired - Lifetime USRE29076E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/666,560 USRE29076E (en) 1974-12-04 1976-03-15 Tablet formulation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US529423A US3927194A (en) 1972-12-06 1974-12-04 Tablet formulation
US05/666,560 USRE29076E (en) 1974-12-04 1976-03-15 Tablet formulation

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US312469A Division US3883647A (en) 1972-12-06 1972-12-06 Tablet formulation
US529423A Reissue US3927194A (en) 1972-12-06 1974-12-04 Tablet formulation

Publications (1)

Publication Number Publication Date
USRE29076E true USRE29076E (en) 1976-12-14

Family

ID=27063011

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/666,560 Expired - Lifetime USRE29076E (en) 1974-12-04 1976-03-15 Tablet formulation

Country Status (1)

Country Link
US (1) USRE29076E (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1836604A (en) * 1929-06-01 1931-12-15 Simon M Meyer Sugar unit
USD91644S (en) 1933-12-22 1934-03-06 Alex Blackstone Design for a proprietary medicine bar
US3146168A (en) * 1962-04-10 1964-08-25 Fmc Corp Manufacture of pharmaceutical preparations containing cellulose crystallite aggregates
USD201497S (en) 1964-09-28 1965-06-29 Warner Lambert Co Tablet
USD202467S (en) 1963-10-07 1965-10-05 Jacques Guilmot Pharmaceutical tablets
NL6614611A (en) 1965-10-23 1967-04-24
US3336200A (en) * 1963-05-28 1967-08-15 Warner Lambert Pharmaceutical Tablet structure
US3723614A (en) * 1971-01-06 1973-03-27 Ciba Geigy Ag Maltese-cross scored tablet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1836604A (en) * 1929-06-01 1931-12-15 Simon M Meyer Sugar unit
USD91644S (en) 1933-12-22 1934-03-06 Alex Blackstone Design for a proprietary medicine bar
US3146168A (en) * 1962-04-10 1964-08-25 Fmc Corp Manufacture of pharmaceutical preparations containing cellulose crystallite aggregates
US3336200A (en) * 1963-05-28 1967-08-15 Warner Lambert Pharmaceutical Tablet structure
USD202467S (en) 1963-10-07 1965-10-05 Jacques Guilmot Pharmaceutical tablets
USD201497S (en) 1964-09-28 1965-06-29 Warner Lambert Co Tablet
NL6614611A (en) 1965-10-23 1967-04-24
US3723614A (en) * 1971-01-06 1973-03-27 Ciba Geigy Ag Maltese-cross scored tablet

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Atlas, Chem. Ind. Inc., 1969, 16 pp. "Atlas Mannitol N.F. A Definitive Guide to its Properties and Use as a Tablet Excipient." *
Atlas, Chem. Ind. Inc., 1973, 16 pp. "Atlas Mannitol USP Tablet Excipient." *
Battista et al., Ind. Eng. Chem. 54(9): 20-29 (1962), "Microcrystalline Cellulose." *
Fox et al., Cosmetic Ind. 92: 161-164, 258-261 (1963), "Microcrystalline Cellulose in Tabletting." *
Reier Dissertation Abstr. 25(5) 2933 (1964), "Microcrystalline Cellulose in Tabletting." *
Reier et al., J. Pharm. Sci. 55(5): 510-514 (1966) "Microcrystalline Cellulose in Tabletting." *
Woods, Am. Perfumer Cosmet. 80(4): 51-53, 55-60 (1965), "Microcrystalline Cellulose, A New Ingredient for Pharmaceuticals and Cosmetics." *

Similar Documents

Publication Publication Date Title
US3883647A (en) Tablet formulation
US3927194A (en) Tablet formulation
US3336200A (en) Tablet structure
EP0914818B1 (en) Intraorally rapidly disintegrable tablet
US8945618B2 (en) Intrabuccally rapidly disintegrating tablet and a production method of the tablets
EP0997143B1 (en) Soft chewable tablets
CA2360102C (en) Tablets disintegrating rapidly in the oral cavity
US6277409B1 (en) Protective coating for tablet
US20020071864A1 (en) Rapidly disintegrable tablet for oral administration
US20030068373A1 (en) Immediate release tablet
JP2010526811A (en) Robust fast disintegrating tablet formulation
EP0454396A1 (en) Tablet composition and method for problem pharmaceutical materials
USRE29077E (en) Tablet formulation
CA2344372A1 (en) Multiple unit controlled food effect-independent release pharmaceutical preparations and method for preparing the same
WO1981002521A1 (en) Pharmaceutical vehicle composition and process of producing same
USRE29076E (en) Tablet formulation
CA2341005C (en) Exactly divisible tablet
US20030026835A1 (en) Tablets disintegrating rapidly in the oral cavity
US3395211A (en) Tableting process
NO128051B (en)
US20050271718A1 (en) Sustained release propafenone hydrochloride capsules
US20210059948A1 (en) Cyclic orally disintegrating tablet
JP7098008B2 (en) Laminated tablets and their manufacturing methods
JP6833895B2 (en) Laminated tablets and their manufacturing methods
JPS5344617A (en) Drug composition