USRE28997E - Digital detector of an analog signal - Google Patents

Digital detector of an analog signal Download PDF

Info

Publication number
USRE28997E
USRE28997E US05/623,863 US62386375A USRE28997E US RE28997 E USRE28997 E US RE28997E US 62386375 A US62386375 A US 62386375A US RE28997 E USRE28997 E US RE28997E
Authority
US
United States
Prior art keywords
signal
pulses
generating
output
bandpass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/623,863
Inventor
Carlos D. Cardon
Lawrence P. Griffone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sperry Corp
Original Assignee
Sperry Rand Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US00393117A priority Critical patent/US3845399A/en
Application filed by Sperry Rand Corp filed Critical Sperry Rand Corp
Priority to US05/623,863 priority patent/USRE28997E/en
Application granted granted Critical
Publication of USRE28997E publication Critical patent/USRE28997E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D3/00Demodulation of angle-, frequency- or phase- modulated oscillations
    • H03D3/02Demodulation of angle-, frequency- or phase- modulated oscillations by detecting phase difference between two signals obtained from input signal
    • H03D3/04Demodulation of angle-, frequency- or phase- modulated oscillations by detecting phase difference between two signals obtained from input signal by counting or integrating cycles of oscillations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D3/00Demodulation of angle-, frequency- or phase- modulated oscillations
    • H03D3/02Demodulation of angle-, frequency- or phase- modulated oscillations by detecting phase difference between two signals obtained from input signal
    • H03D3/18Demodulation of angle-, frequency- or phase- modulated oscillations by detecting phase difference between two signals obtained from input signal by means of synchronous gating arrangements

Definitions

  • Prior art detectors of an analog signal of a selected frequency and amplitude have been designed using an analog filter that passes only an analog signal of the selected frequency and amplitude followed by a full-wave or half-wave rectifier and then a Schmitt trigger. Because of the availability of inexpensive and reliable digital circuits it is desirable that previous analog techniques be replaced by digital techniques as proposed by the present invention.
  • an analog input signal of a frequency F A is initially tested for minimum amplitude and then converted to a binary digital waveform which is edge detected to provide an output pulse for every cycle of the analog input signal.
  • the first output pulse sets a sample time generator and the pulses are counted over the sample time T S . If the pulse count is within the bandpass at any time during the sample time T S the counter and a binary decoder set a flip-flop to a True state. This flip-flop is sampled at the end of the sample time and the True output is transferred to a storage element which is switched to the True condition. The True condition of the storage element after a one pulse width delay time then resets the counter back to O.
  • a time generator synchronizer driven by the output of the edge detector is disabled if the condition of the storage element is True.
  • the proceedurre is repeated with the counter counting the number of pulses from the edge detector. If the number of pulses counted is within the bandpass the binary decoder continues coupling a True condition to the storage element with the counter reset as before and the time generator synchronizer being disabled. If during the next sample time T S the counter counts a number of pulses without the bandpass the binary decoder couples a False output signal indicating that the analog input signal is of a frequency outside the bandpass. This False condition signal is delayed one pulse width to activate the time generator synchronizer in preparation for the next incoming pulse from the edge detector which incoming pulse initiates the sample time generator after which the detector-comparing operation is repeated.
  • FIG. 1 is a block diagram of the special-purpose digital filter of the present invention.
  • FIG. 2 is a logic level drawing of the special-purpose digital filter of FIG. 1.
  • FIG. 3 is a timing diagram illustrating the operation of the special-purpose digital filter of FIG. 1.
  • the special-purpose digital filter of the present invention basically establishes a fixed sample time T S during which the actual number N A of cycles or pulses of a sampled signal are counted. The number N A is then compared to the minimum number N L and the maximum number N H of cycles or pulses that define the bandpass width of the filter. If within that range, i.e., .[.N L ⁇ N A ⁇ N H .]. .Iadd.N L ⁇ N A ⁇ N H .Iaddend.
  • a first True signal is generated and if without the range, i.e., .[.N L > N A > N H .]. .Iadd.N L > N A ⁇ N H , .Iaddend.a second False signal is generated.
  • the True and/or False signals are then set into a flip-flop and the flip-flop output is in turn clocked into the output storage element (flip-flop) at the end of the sample period.
  • the True condition of the output storage element indicates that a signal meeting the amplitude and frequency condition is present at the input to the circuit.
  • the False condition indicates that the signal does not meet these conditions.
  • the analog signal A of a frequency F A is coupled to comparator 10.
  • Signal A is initially coupled to amplifier 10-1 which is an isolation and threshold detector which compares signal A to a threshold level and if signal A is above the threshold level couples signal A to converter 10-2.
  • Converter 10-2 converts the analog signal A of a frequency F A to the digital signal B.
  • the digital signal B is then coupled to edge detector 20 which produces, as an output, signal C which consists of a single short duration output pulse for every complete input cycle of signal B.
  • Signal C is, in turn, coupled in parallel to counter 30 and sample time controller 40.
  • the first pulse of signal C triggers time generator synchronizer 40-1 coupling a single short duration pulse to synchronizer edge detector 40-2 that couples the signal D to the sample time generator 60.
  • Signal D triggers time base generator 60-1 to generate signal E which is, in turn, coupled to time base leading edge detector 60-2 which generates as an output therefrom signal F which is coupled to edge triggered bistable multivibrator or flip-flop 80-1 of memory element 80 by way of inverter 80-2 and to time base trailing edge detector 70-1 which generates an output signal G.
  • Edge triggered bistable multivibrator 80-1 of memory element 80 is coupling a relatively low level False state of output signal O to an output line 80-3 and as a first input to NAND gate 50-1 of synchronizer controller 50.
  • Counter 30 is set to a bandpass of a count of 6 - 20, .Iadd.i.e., 6 ⁇ N A ⁇ 20, .Iaddend.and, accordingly, at the count of 6 binary decoder 30-2 couples a True decode pulse to lower band edge detector 30-3 which, in turn couples decode True signal H to bistable multivibrator 70-2 causing it to change its state.
  • Binary counter 30-1 continues counting the subsequent pulses 7 - 19 of signal C causing lower band edge detector 30-2 to remain in its previously set True state.
  • time base generator 60-1 couples the second pulse of signal E to time base leading edge detector 60-2 which, in turn, couples the second pulse of signal F to edge triggered bistable multivibrator 80-1 by way of inverter 80-2 which gates the state of bistable multivibrator 80-2 therein causing memory element 80 to couple to its output line the relatively high level True state of output signal O and through NAND gate 70-3 and inverter 70-4 causes bistable multivibrator 70-2 to change to a False state.
  • the concurrent application of the signal G and signal O at NAND gate 50-1 disables the time generator synchronizer 40-1.
  • binary decoder 30-2 would not have coupled any True decode signal to lower band edge detector 30-3 whereby no high level pulse of signal H would have been coupled to bistable multivibrator 70-2 causing edge triggered bistable multivibrator 80-1 to continue coupling the relatively low level False state of output signal O to output line 80-3 of memory 80 when triggered by inverter 80-2.
  • the output signal A continuing to be of a frequency F A within the bandpass, memory element .[.A.].

Abstract

A circuit combination of integrated circuit (IC) digital devices for detecting an analog signal of a selected frequency and amplitude is disclosed. The circuit combination is a special-purpose digital filter of a predetermined bandwidth determined by the sample time TS duration and the low FL and high FH frequencies of the passable analog signal frequency having a carrier frequency FA. The analog signal is initially tested for minimal amplitude and converted to a digital signal by a conventional comparator circuit. The pulses of the digital signal are counted over the sample time TS and compared to the passable bandwidth: if the analog signal frequency FA .[. (FL ≦ FA ≦ FH).]. is within the bandpass, .Iadd.FL ≦ FA < FH, .Iaddend. i.e., passable, a first binary signal is produced; alternatively, if the analog signal frequency FA .[. (FL > FA ≧ FH).]. is without the bandpass, .Iadd.FL > FA ≧ FH, .Iaddend. i.e., not passable, a second binary signal is produced. Sample times continue throughout the detection-comparing operation to ensure a continuous filtering process.

Description

BACKGROUND OF THE INVENTION
Prior art detectors of an analog signal of a selected frequency and amplitude have been designed using an analog filter that passes only an analog signal of the selected frequency and amplitude followed by a full-wave or half-wave rectifier and then a Schmitt trigger. Because of the availability of inexpensive and reliable digital circuits it is desirable that previous analog techniques be replaced by digital techniques as proposed by the present invention.
SUMMARY OF THE INVENTION
In the digital filter of the present invention.Iadd., .Iaddend.an analog input signal of a frequency FA is initially tested for minimum amplitude and then converted to a binary digital waveform which is edge detected to provide an output pulse for every cycle of the analog input signal. The first output pulse sets a sample time generator and the pulses are counted over the sample time TS. If the pulse count is within the bandpass at any time during the sample time TS the counter and a binary decoder set a flip-flop to a True state. This flip-flop is sampled at the end of the sample time and the True output is transferred to a storage element which is switched to the True condition. The True condition of the storage element after a one pulse width delay time then resets the counter back to O. A time generator synchronizer driven by the output of the edge detector is disabled if the condition of the storage element is True. During the next successive sample time TS the procedurre is repeated with the counter counting the number of pulses from the edge detector. If the number of pulses counted is within the bandpass the binary decoder continues coupling a True condition to the storage element with the counter reset as before and the time generator synchronizer being disabled. If during the next sample time TS the counter counts a number of pulses without the bandpass the binary decoder couples a False output signal indicating that the analog input signal is of a frequency outside the bandpass. This False condition signal is delayed one pulse width to activate the time generator synchronizer in preparation for the next incoming pulse from the edge detector which incoming pulse initiates the sample time generator after which the detector-comparing operation is repeated.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block diagram of the special-purpose digital filter of the present invention.
FIG. 2, consisting of FIGS. 2a, 2b, is a logic level drawing of the special-purpose digital filter of FIG. 1.
FIG. 3 is a timing diagram illustrating the operation of the special-purpose digital filter of FIG. 1.
DESCRIPTION OF THE PREFERRED EMBODIMENT
With particular reference to FIG. 1 there is presented a block diagram of the special-purpose digital filter of the present invention, the elements thereof being illustrated in detail at their logic level in FIGS. 2a and 2b. The special-purpose digital filter of the present invention basically establishes a fixed sample time TS during which the actual number NA of cycles or pulses of a sampled signal are counted. The number NA is then compared to the minimum number NL and the maximum number NH of cycles or pulses that define the bandpass width of the filter. If within that range, i.e., .[.NL ≦ NA ≦ NH .]. .Iadd.NL ≦ NA < NH .Iaddend. a first True signal is generated and if without the range, i.e., .[.NL > NA > NH .]. .Iadd.NL > NA ≧ NH, .Iaddend.a second False signal is generated. The True and/or False signals are then set into a flip-flop and the flip-flop output is in turn clocked into the output storage element (flip-flop) at the end of the sample period. Thus the True condition of the output storage element indicates that a signal meeting the amplitude and frequency condition is present at the input to the circuit. Conversely, the False condition indicates that the signal does not meet these conditions. Using the timing diagram of FIG. 3 to explain the operation of the present invention illustrated in FIGS. 1, 2a, 2b certain parameters shall be assumed by way of example to better illustrate the operation of the present invention in its preferred embodiments of FIGS. 2a, 2b:
F.sub.L = 900 Hz
F.sub.H = 3000 Hz
T.sub.S = 1/1.5 × .[.10.sup.-.sup.2 .]. .Iadd.10.sup.+.sup.2 .Iaddend. Hz = 6.67 × 10.sup.-.sup.3 sec.
Thus the sampled signal shall be sampled over a duration of 6.67 × 10- 3 sec. and if the sampled signal frequency FA is within the bandpass width, i.e., .[.NL ≦ NA ≦ NH .]. .Iadd.NL = NA < NH, .Iaddend.the filter shall .[.generated.]. .Iadd.generate .Iaddend.a True signal output and, alternatively, if the sample signal frequency is without the bandpass width the filter shall generate a False signal output.
Referring to the signal waveforms of FIG. 3, the analog signal A of a frequency FA is coupled to comparator 10. Signal A is initially coupled to amplifier 10-1 which is an isolation and threshold detector which compares signal A to a threshold level and if signal A is above the threshold level couples signal A to converter 10-2. Converter 10-2 converts the analog signal A of a frequency FA to the digital signal B. The digital signal B is then coupled to edge detector 20 which produces, as an output, signal C which consists of a single short duration output pulse for every complete input cycle of signal B. Signal C is, in turn, coupled in parallel to counter 30 and sample time controller 40. At binary counter 30-1 the pulses of signal C, beginning at time t0, are counted with the running total count being decoded by binary decoder 30-2 which, in turn couples a decoder True signal to lower band edge detector 30-3 .[.if.]. .Iadd.when .Iaddend.the decoded binary count is equal to the lower bandpass.Iadd., i.e., when NA = NL, .Iaddend.and a decoder False signal to upper band edge detector 30-4 .[.if.]. .Iadd.when .Iaddend.the decoded binary count is .[.above.]. .Iadd.equal to .Iaddend.the upper bandpass.Iadd., i.e., when NA = NH. .Iaddend.At sample time controller 40 the first pulse of signal C triggers time generator synchronizer 40-1 coupling a single short duration pulse to synchronizer edge detector 40-2 that couples the signal D to the sample time generator 60. Signal D triggers time base generator 60-1 to generate signal E which is, in turn, coupled to time base leading edge detector 60-2 which generates as an output therefrom signal F which is coupled to edge triggered bistable multivibrator or flip-flop 80-1 of memory element 80 by way of inverter 80-2 and to time base trailing edge detector 70-1 which generates an output signal G. Signal G resets the binary counter 30-1 to O and through NAND gate 70-3 and inverter 70-4 sets bistable multivibrator or flip-flop 70-2. At this time, edge triggered bistable multivibrator 80-1 of memory element 80 is coupling a relatively low level False state of output signal O to an output line 80-3 and as a first input to NAND gate 50-1 of synchronizer controller 50.
Counter 30 is set to a bandpass of a count of 6 - 20, .Iadd.i.e., 6 ≦NA < 20, .Iaddend.and, accordingly, at the count of 6 binary decoder 30-2 couples a True decode pulse to lower band edge detector 30-3 which, in turn couples decode True signal H to bistable multivibrator 70-2 causing it to change its state. Binary counter 30-1 continues counting the subsequent pulses 7 - 19 of signal C causing lower band edge detector 30-2 to remain in its previously set True state.
At the end of the sample time TS time base generator 60-1 couples the second pulse of signal E to time base leading edge detector 60-2 which, in turn, couples the second pulse of signal F to edge triggered bistable multivibrator 80-1 by way of inverter 80-2 which gates the state of bistable multivibrator 80-2 therein causing memory element 80 to couple to its output line the relatively high level True state of output signal O and through NAND gate 70-3 and inverter 70-4 causes bistable multivibrator 70-2 to change to a False state. The concurrent application of the signal G and signal O at NAND gate 50-1 disables the time generator synchronizer 40-1.
Under the above described conditions the input signal A has been assumed to be within the bandpass of a pulse count of 6 - 20, .Iadd.i.e., 6 ≦ NA < 20, .Iaddend.e.g., FL = 900 Hz, FH = 3000 Hz at a sample time TS of 6.67 × 10- 3 sec. If the count had been .Iadd.equal to or .Iaddend.greater than 20.Iadd., i.e., NA ≧ 20, .Iaddend.at time t1, e.g., after sample time TS binary decoder 30-2 would have coupled the appropriate signal to upper band edge detector 30-4 which, in turn, would have coupled a decode False pulse to NAND gate 70-3 and inverter 70-4 which, in turn, would have changed the state of bistable multivibrator 70-2 which False state of bistable multivibrator 70-2 would have caused edge triggered bistable multivibrator 80-1 to couple the low level False state of output signal O to output line 80-3 when gated by inverter 80-2. Alternatively, if the count had been less than 6.Iadd., i.e., 6 > NA, .Iaddend.at time t1, e.g., after sample time TS, binary decoder 30-2 would not have coupled any True decode signal to lower band edge detector 30-3 whereby no high level pulse of signal H would have been coupled to bistable multivibrator 70-2 causing edge triggered bistable multivibrator 80-1 to continue coupling the relatively low level False state of output signal O to output line 80-3 of memory 80 when triggered by inverter 80-2. With the output signal A continuing to be of a frequency FA within the bandpass, memory element .[.A.]. .Iadd.80 .Iaddend.continues coupling its relatively high level True state of output signal O to its output line 80-3. However, as at the end of the sample time TS at time t1 the second pulse of signal F from time base trailing edge detector 70-1 has reset binary counter 30-1 to O the above described sequence repeats itself testing the incoming signal A for its frequency FA to determine, if at any time, it is within or without the bandpass and to provide a corresponding high level True state or low level False state of output signal O on its output line 80-3.

Claims (3)

What is claimed is:
1. A digital detector of an analog signal, comprising:
means receiving an input analog signal of a frequency FA for generating a digital signal of a frequency FA therefrom;
counting means coupled to said digital signal for counting the number of pulses NA thereof during a preset sample time TS and generating a decode True signal if the counted number of pulses is equal to or greater than a preset low NL number of pulses and generating a decode False signal if the counted number of pulses is .Iadd.equal to or .Iaddend.greater than a preset high NH number of pulses for defining a preset bandwidth .[.NL ≦ NA ≦ NH .]. .Iadd.NL ≦ NA < NH .Iaddend.;
an output flip-flop for generating as the alternative output signals an output True signal or an output False signal indicating that said counting means has counted a number of pulses NA of said digital signal that is within or without, respectively, said preset bandwidth;
a decoder flip-flop responsively coupled to said decode True signal and said decode False signal for storing a decoder True signal or a decoder False signal;
means gating the decoder True signal or the decoder False signal from said decoder flip-flop into said output flip-flop for storing and generating an output False signal or an output True signal, respectively, on a detector output line therefrom.
2. A digital detector of an analog signal, comprising:
means receiving an input analog signal of a frequency FA for generating a digital signal comprising a series of short duration pulses of a frequency FA, one pulse for every cycle of said input analog signal;
sample time base generator means coupled to said digital signal for generating, when effected by a first pulse of said digital signal, a sample time signal comprising a first sample time pulse and after the sample time TS a second sample time pulse;
counting means coupled to said digital signal for counting the number of pulses NA thereof during said sample time TS and generating a decode True signal if the counted number of pulses is equal to .Iadd.or greater than .Iaddend.a preset low NL count and generating a decode False signal if the counted number of pulses is .Iadd.equal to or .Iaddend.greater than a preset high NH count for defining a preset bandwidth .[.NL ≦ NA ≦ NH .]. .Iadd.NL ≦ NA < NH.Iaddend. ;
means coupling said sample time signal to said counting means for resetting said counting means to a zero count upon receipt of said first sample time pulse;
output memory means for generating as the alternative output signals an output True signal or an output False signal indicating that said counting means has counted a number of pulses of said digital signal that is within or without, respectively, said preset bandwidth;
decoder memory means coupled to said decode True signal and said decode False signal for coupling a decoder True signal or a decoder False signal to said output memory means;
means coupling said second sample time pulse to said output memory means for gating the decoder True signal or the decoder False signal from said decoder memory means into said output memory means and coupling an output True signal or an output False signal, respectively, therefrom on a detector output line.
3. The digital detector of claim 2 further including:
gating means coupled to said detector output line and said sample time base generator means for generating a new sample time signal when affected by an output False signal. .Iadd. 4. A bandpass digital filter, comprising:
means for receiving an input signal of a frequency FA ;
means responsively coupled to said receiving means for counting the number of pulses NA of said input signal during a sample time TS ;
means responsively coupled to said counting means for generating a first signal if the counted number of pulses NA is equal to or greater than a low NL number of pulses and for generating a second signal if the counted number of pulses NA is equal to or greater than a high NH number of pulses for defining a bandpass NL ≦ NA < NH ;
means responsively coupled to said bandpass defining means for generating a within bandpass output signal only when said first signal but not said second signal was coupled thereto. .Iaddend..Iadd. 5. A bandpass digital filter, comprising:
means for generating a sample time signal of a duration TS ;
means for receiving an input signal of a frequency FA ;
means responsively coupled to said sample time signal generating means and said input signal receiving means for counting the number of pulses NA of said input signal during said sample time TS ;
means responsively coupled to said counting means for generating a first signal when the counted number of pulses NA is equal to a low NL number of pulses and a second signal when the counted number of pulses NA is equal to a high NH number of pulses for defining a bandpass NL ≦ NA < NH ;
means responsively coupled to said bandpass defining means for generating a within bandpass output signal only if said first signal but not said second signal was coupled thereto. .Iaddend..Iadd. 6. A bandpass digital filter, comprising:
sample timing means for generating successive sample timing pulses, successive ones of which define successive sample times of a fixed duration TS ;
input means for receiving an input signal of a frequency FA ;
counting means responsively coupled to said sample timing means and said input means for counting the number of pulses NA of an input signal during each of the successive ones of said sample times TS ;
detector means responsively coupled to said counting means for generating a lower band edge detector signal when the counted number of pulses NA is equal to a preset low NL number of pulses and an upper band edge detector signal when the counted number of pulses NA is equal to a preset high NH number of pulses for defining a preset bandpass NL ≦ NA < NH ;
output signal means responsively coupled to said detector means for generating a within bandpass signal only when said lower band edge detector signal but not said upper band edge detector signal is coupled thereto during any one of said successive sample times TS. .Iaddend..Iadd. 7. The bandpass filter of claim 6 wherein said output signal means includes a memory means;
means coupling said sample timing means to said memory means for setting said memory means into an initial False state at the beginning of each one of said successive sample times TS. .Iaddend..Iadd. 8. The bandpass filter of claim 7 wherein said output signal means includes means for coupling said lower band edge detector signal to said memory means for setting said memory means into a True state from said initial False state. .Iaddend..Iadd. 9. The bandpass filter of claim 8 wherein said output signal means includes means coupling said upper band edge detector signal to said memory means for setting said memory means back into said initial False state from said True state. .Iaddend..Iadd. 10. A bandpass digital filter, comprising:
means for generating successive sample time signals that define successive sample times that are each of a fixed duration TS ;
means for receiving an input signal of a frequency FA ;
means responsively coupled to said successive sample time signal generating means and said input signal receiving means for counting the number of pulses NA of said input signal during each one of said successive sample times;
means responsively coupled to said counting means for generating a first signal when during a first one of said successive sample times the counted number of pulses NA is equal to a low NL number of pulses, i.e., NL = NA, and for generating a second signal when during said first one of said successive sample times the counted number of pulses NA is equal to a high NH number of pulses, i.e., NA = NH, said first and second signals defining a bandpass width NL ≦ NA < NH ;
means responsively coupled to said bandpass width defining means for generating a within bandpass output signal during a second one of said successive sample times next following said first one of said successive sample times only when said first signal but not said second signal was coupled thereto during said first one of said successive sample times. .Iaddend.
US05/623,863 1973-08-30 1975-10-20 Digital detector of an analog signal Expired - Lifetime USRE28997E (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US00393117A US3845399A (en) 1973-08-30 1973-08-30 Digital detector of an analog signal
US05/623,863 USRE28997E (en) 1973-08-30 1975-10-20 Digital detector of an analog signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US00393117A US3845399A (en) 1973-08-30 1973-08-30 Digital detector of an analog signal
US05/623,863 USRE28997E (en) 1973-08-30 1975-10-20 Digital detector of an analog signal

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US00393117A Reissue US3845399A (en) 1973-08-30 1973-08-30 Digital detector of an analog signal

Publications (1)

Publication Number Publication Date
USRE28997E true USRE28997E (en) 1976-10-05

Family

ID=27014168

Family Applications (2)

Application Number Title Priority Date Filing Date
US00393117A Expired - Lifetime US3845399A (en) 1973-08-30 1973-08-30 Digital detector of an analog signal
US05/623,863 Expired - Lifetime USRE28997E (en) 1973-08-30 1975-10-20 Digital detector of an analog signal

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US00393117A Expired - Lifetime US3845399A (en) 1973-08-30 1973-08-30 Digital detector of an analog signal

Country Status (1)

Country Link
US (2) US3845399A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0008160A1 (en) * 1978-08-10 1980-02-20 Motorola, Inc. Programmable digital tone detector
WO1982000226A1 (en) * 1980-07-02 1982-01-21 Inc Motorola Transform modulation system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958183A (en) * 1975-02-13 1976-05-18 Rockwell International Corporation Frequency selective signal presence detector
US4004236A (en) * 1975-07-29 1977-01-18 Sperry Rand Corporation Programmable bandpass digital filter of analog signal
US4002988A (en) * 1975-07-29 1977-01-11 Sperry Rand Corporation Programmable high pass digital filter of analog signal
US4002989A (en) * 1975-07-29 1977-01-11 Sperry Rand Corporation Programmable low pass digital filter of analog signal
JPS56160157A (en) * 1980-04-22 1981-12-09 Sony Corp Bit clock reproducing circuit
USRE36803E (en) * 1980-04-22 2000-08-01 Sony Corporation Bit clock reproducing circuit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3537001A (en) * 1968-12-05 1970-10-27 Bell Telephone Labor Inc Multifrequency tone detector
US3543172A (en) * 1968-09-19 1970-11-24 Anderson Jacobson Inc Digital frequency discriminator
US3619651A (en) * 1969-11-07 1971-11-09 Anderson Jacobson Inc Digital frequency discriminator
US3757233A (en) * 1972-02-04 1973-09-04 Sperry Rand Corp Digital filter
US3761809A (en) * 1970-04-27 1973-09-25 Us Navy Noise modulated analogue signal presence detector
US3769596A (en) * 1972-03-02 1973-10-30 Bendix Corp Oscillation detection circuit
US3769583A (en) * 1971-03-15 1973-10-30 Sperry Rand Corp Digital indicator with means for suppressing least significant digit dither

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3543172A (en) * 1968-09-19 1970-11-24 Anderson Jacobson Inc Digital frequency discriminator
US3537001A (en) * 1968-12-05 1970-10-27 Bell Telephone Labor Inc Multifrequency tone detector
US3619651A (en) * 1969-11-07 1971-11-09 Anderson Jacobson Inc Digital frequency discriminator
US3761809A (en) * 1970-04-27 1973-09-25 Us Navy Noise modulated analogue signal presence detector
US3769583A (en) * 1971-03-15 1973-10-30 Sperry Rand Corp Digital indicator with means for suppressing least significant digit dither
US3757233A (en) * 1972-02-04 1973-09-04 Sperry Rand Corp Digital filter
US3769596A (en) * 1972-03-02 1973-10-30 Bendix Corp Oscillation detection circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0008160A1 (en) * 1978-08-10 1980-02-20 Motorola, Inc. Programmable digital tone detector
WO1982000226A1 (en) * 1980-07-02 1982-01-21 Inc Motorola Transform modulation system
EP0153986A1 (en) * 1980-07-02 1985-09-11 Motorola, Inc. A signum signal generator

Also Published As

Publication number Publication date
US3845399A (en) 1974-10-29

Similar Documents

Publication Publication Date Title
CA1065417A (en) Sampled signal detector
USRE28997E (en) Digital detector of an analog signal
GB1161549A (en) Analog to Digital Converter
GB1379623A (en) Receiver apparatus
US3757233A (en) Digital filter
US4004236A (en) Programmable bandpass digital filter of analog signal
US3903470A (en) System for sorting electric signals in the form of trains of oscillating as a function of their amplitude and time distribution
JPS5830772B2 (en) Storage device
JPS5698650A (en) Ultrasonic-signal processing device
US3825842A (en) Pulse rate discriminator generating output only at predetermined input frequency
US4070631A (en) Digital noise blanking circuit
US3999136A (en) Pulse repetition frequency detector
GB1147553A (en) Measuring system
US4002989A (en) Programmable low pass digital filter of analog signal
US4002988A (en) Programmable high pass digital filter of analog signal
GB1262671A (en) Sweep oscillator
SU417736A1 (en)
US3577983A (en) Method and apparatus for automatically screening variably recurrent waveforms such as an electrocaroiac signal
SU1631750A1 (en) Device for spot center coordinates measurement
SU1469447A1 (en) Device for determining moment of maximum signals of acoustic emission
SU1492461A1 (en) Converter of pulse train to rectangular pulse
US4018991A (en) Multifrequency signal parity detector
SU487407A2 (en) Device for measuring revolutions
SU1319258A1 (en) Pulse shaper
SU1596301A1 (en) Apparatus for determining time position of pulse signals

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)