USRE28424E - Elastombric articles free from reinforcing elements - Google Patents
Elastombric articles free from reinforcing elements Download PDFInfo
- Publication number
- USRE28424E USRE28424E US48930474A USRE28424E US RE28424 E USRE28424 E US RE28424E US 48930474 A US48930474 A US 48930474A US RE28424 E USRE28424 E US RE28424E
- Authority
- US
- United States
- Prior art keywords
- elongation
- links
- tire
- cross
- molecular weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000003014 reinforcing effect Effects 0.000 title claims abstract description 35
- 229920001971 elastomer Polymers 0.000 claims abstract description 39
- 239000000806 elastomer Substances 0.000 claims abstract description 30
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 27
- IBOFVQJTBBUKMU-UHFFFAOYSA-N 4,4'-methylene-bis-(2-chloroaniline) Chemical compound C1=C(Cl)C(N)=CC=C1CC1=CC=C(N)C(Cl)=C1 IBOFVQJTBBUKMU-UHFFFAOYSA-N 0.000 description 20
- 241001112258 Moca Species 0.000 description 20
- 239000000203 mixture Substances 0.000 description 19
- 238000012360 testing method Methods 0.000 description 19
- 238000000034 method Methods 0.000 description 17
- 239000008188 pellet Substances 0.000 description 16
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- -1 poly(ethylene glycol) Polymers 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 10
- 230000008961 swelling Effects 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 9
- 239000005060 rubber Substances 0.000 description 9
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 8
- 239000004744 fabric Substances 0.000 description 8
- 125000005442 diisocyanate group Chemical group 0.000 description 7
- 238000005266 casting Methods 0.000 description 6
- 230000009969 flowable effect Effects 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 230000000704 physical effect Effects 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 239000004753 textile Substances 0.000 description 6
- 239000011324 bead Substances 0.000 description 5
- 238000009750 centrifugal casting Methods 0.000 description 5
- 150000004985 diamines Chemical class 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229920002635 polyurethane Polymers 0.000 description 5
- 239000004814 polyurethane Substances 0.000 description 5
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000001721 transfer moulding Methods 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 150000002334 glycols Chemical class 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000012705 liquid precursor Substances 0.000 description 3
- 239000012454 non-polar solvent Substances 0.000 description 3
- 229920001515 polyalkylene glycol Polymers 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 229920001451 polypropylene glycol Polymers 0.000 description 3
- 229920002545 silicone oil Polymers 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 239000013536 elastomeric material Substances 0.000 description 2
- 125000001033 ether group Chemical group 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical group NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920000909 polytetrahydrofuran Polymers 0.000 description 2
- 229920003225 polyurethane elastomer Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical group NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- MTZUIIAIAKMWLI-UHFFFAOYSA-N 1,2-diisocyanatobenzene Chemical class O=C=NC1=CC=CC=C1N=C=O MTZUIIAIAKMWLI-UHFFFAOYSA-N 0.000 description 1
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical group NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical group CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 1
- AKCRQHGQIJBRMN-UHFFFAOYSA-N 2-chloroaniline Chemical compound NC1=CC=CC=C1Cl AKCRQHGQIJBRMN-UHFFFAOYSA-N 0.000 description 1
- HUWXDEQWWKGHRV-UHFFFAOYSA-N 3,3'-Dichlorobenzidine Chemical compound C1=C(Cl)C(N)=CC=C1C1=CC=C(N)C(Cl)=C1 HUWXDEQWWKGHRV-UHFFFAOYSA-N 0.000 description 1
- JRBJSXQPQWSCCF-UHFFFAOYSA-N 3,3'-Dimethoxybenzidine Chemical compound C1=C(N)C(OC)=CC(C=2C=C(OC)C(N)=CC=2)=C1 JRBJSXQPQWSCCF-UHFFFAOYSA-N 0.000 description 1
- NUIURNJTPRWVAP-UHFFFAOYSA-N 3,3'-Dimethylbenzidine Chemical compound C1=C(N)C(C)=CC(C=2C=C(C)C(N)=CC=2)=C1 NUIURNJTPRWVAP-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- 241000209761 Avena Species 0.000 description 1
- 235000007319 Avena orientalis Nutrition 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- WWEXBGFSEVKZNE-UHFFFAOYSA-N N=C=O.N=C=O.C1=CC=CC2=CC=CC=C21 Chemical class N=C=O.N=C=O.C1=CC=CC2=CC=CC=C21 WWEXBGFSEVKZNE-UHFFFAOYSA-N 0.000 description 1
- SPTUBPSDCZNVSI-UHFFFAOYSA-N N=C=O.N=C=O.COC1=CC=CC=C1C1=CC=CC=C1OC Chemical compound N=C=O.N=C=O.COC1=CC=CC=C1C1=CC=CC=C1OC SPTUBPSDCZNVSI-UHFFFAOYSA-N 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical compound C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000003916 ethylene diamine group Chemical group 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 125000005628 tolylene group Chemical group 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C5/00—Inflatable pneumatic tyres or inner tubes
- B60C5/007—Inflatable pneumatic tyres or inner tubes made from other material than rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D30/00—Producing pneumatic or solid tyres or parts thereof
- B29D30/06—Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C5/00—Inflatable pneumatic tyres or inner tubes
- B60C5/01—Inflatable pneumatic tyres or inner tubes without substantial cord reinforcement, e.g. cordless tyres, cast tyres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/0008—Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
- B60C2011/0016—Physical properties or dimensions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/0008—Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
- B60C2011/0016—Physical properties or dimensions
- B60C2011/0025—Modulus or tan delta
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2380/00—Tyres
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T152/00—Resilient tires and wheels
- Y10T152/10—Tires, resilient
- Y10T152/10495—Pneumatic tire or inner tube
- Y10T152/10765—Characterized by belt or breaker structure
Definitions
- This invention relates to pneumatic tires, air springs, power transmission belts, and other articles subjected to tensile stresses and dynamic flexure in service, at least portions of which articles are free from reinforcing fabrics.
- the invention relates to the production of such articles by molding from flowable materials, as by centrifugal casting, injection molding, transfer molding and like processes.
- the molecular weight of the chains between covalent cross-links is 5,100-40,000 and preferably 10,000- 20,000.
- Such cured elastomers have physical properties requisite for articles of the types referred to, or portions of such articles, without the necessity for including reinforcing textile elements therein, and specifically, have the following key physical properties:
- elastomers meeting the above requirements may be made, by techniques described below, from precursors which are readily flowable, so that tires and other articles according to this invention may be prepared by low-labor-cost centrifugal, injectionand transfer-molding processes.
- the articles of this invention may be constituted of elastomeric polyurethanes made from poly(alkylene glycols) end-capped with diisocyanates and cured with diamines and/or diols substantially in excess of the usual sub-stoichiometric quantities.
- FIG. 1 is a sectional view of a tire according to this invention, completely without any reinforcing elements;
- FIG. 2 is a sectional view of a tire according to this invention, wherein reinforcing cords are provided at the interface between the body of the tire and a tread portion in the area of the tread only, the side Walls being without any reinforcing elements, and
- FIG. 3 is a sectional view of a tire according to this invention, wherein reinforcing cords are provided at the interface between the body of the tire and a tread portion in the area of the tread, and also extend for a substantial distance down the sidewalls, the remainder of the sidewalls being without any reinforcing elements.
- Elastomers suitable for use in this invention include any generally linear high polymers, the chains of which are of elastomeric character, i.e., having second order transition temperatures below about -20 C., and which contain groupings along the chains capable of forming electrostatic space force cross-links and also groupings capable of forming true covalent cross-links, In many cases the same groupings are capable of est-.ibishing either one of these types of cross-links.
- Suitable clastomcrs include the (preferred) polyurethane rubbers, particularly those formed by capping the hydroxyls of polyalkylenc glycols of molecular weight in the range of SOS-2,500 with diisocyanates to form prepolyrners, and then chain-extending and curing the prepolyniers by means of diamines and/or diols.
- Suitable polyalkylcne glycols are exemplified in poly(alkylene glycols) having molecular weights in the range of SOD-2,500 based on alkylene groups of from two to carbon atoms such as poly(ethylene glycol), poly (propylene glycol), polyttriniethylene glycol), polyttctramethylene glycol, polythcxamcthylenc glycol). high molecular weight copolymers of these glycols, and mixtures of the various polytalkylene g ycols) individua ly fal ing within the above categories.
- Suitable diisocyanates are exemplified in compounds having two isocyanute groups linked to an organic residue of six to 16 carbon atoms such as hexamethylene diisocyanate, the various tolylene diisocyanates, the various naphthalene diisocyanates, 4.4- diphenylmethane diisocyanate.
- Suitable diamines are those containing an organic central radical of two to 20 carbon atoms linked to two amino groups such as ethylene diamine, tetramethylene diamine, hexamethylene diamine, p-phenylenediamine, methylene bis 2 chloroaniline (MOCA), 4,4'-diaminodiphenylmethane. 3,3-dichloro- 4.4-diaminodiphenylniethane. benzidine, 3,3'-dimethylbenzidine, 3,3'-dimethoxy benzidine, 3,3'-dichlorobenzidine, and the like.
- the chains of cured polymer contain the repeating linkage wherein P represents a high molecular polyialkylene ether) chain derived from a poly(alkylene glycol) such as specified above;
- R is the organic radical of a diisocyanate such as specified above and R is the organic central radical of a dianiine such as specified above.
- Electrostatic cross-links tend to form between the CO groups and ether groups and the hydrogen atoms on the nitrogen atoms on adjacent chains; and the isocyanate groups of the prepolymer react in a certain proportion with these hydrogen atoms to form covalent cross-links. It is the control of the magnitude and proportions of the respective amounts of these two types of cross-links that underlies the critical characteristics of the articles of this invention.
- a particular advantage of the preferred polyalkylene glycol/diisocyanate/diaminc-based elastomers is the fact that prior to final cross-linking. they are flowable for a suflicient period of time so that they may be formed by centrifugal, injection or transfer molding into the form of the desired article.
- polyester urethanes there may also be employed polyester urethanes, and also other elastorncrs capable of establishing both electrostatic and cova ent cross-links, such as copolymers of (A) butadiene, isoprene, acrylic esters or other monomers, polymeric chains from which are of essentially elastomeric character with (B) monomers containing salt-forming groups such as acrylic acid, methncryiic acid, inulcic acid, furnuric acid, itucouic acid and the like.
- elastorncrs capable of establishing both electrostatic and cova ent cross-links, such as copolymers of (A) butadiene, isoprene, acrylic esters or other monomers, polymeric chains from which are of essentially elastomeric character with (B) monomers containing salt-forming groups such as acrylic acid, methncryiic acid, inulcic acid, furnuric acid, itucouic acid and the like
- Electrostatic Cross-Links and the Covalent Cross-Links As noted hereinabove, the distribution of the crosslinks in the vulcanired clastoniers in the tires of this invention must be characterized by Molecular weight of polymer chains between electrostatic cross-1iuks equalling 800 to 5000 (preferably 1000 to 3000) and Molecular weight of polymer chains between covalent cross-links equalling 5100 to 40,000 (preferably 10,00U20,000)
- coniormity-or-not of a rubber to this invention is to be ascertained with respect to electrostatic cross-links by swelling measurements conducted in chloroform or some other non-polar solvent; and with respect to covalent cross-links, by swelling measurements conducted with tetrahydrofurane or some other polar solvent capable of dissociating electrostatic cross'linkages.
- the elastomcrs used in the tires of. this invention have the following critical properties.
- Tensile strength-'2800 p.s.i. Elongation400% Youngs flexural modulus-0f no more than about [10,000-]15,000 p.s.i.
- Pneumatic tires heretofore fabricated from polyurethane or other rubbers have invariably been subject to rapid deterioration in service due to dynamic flexural failure.
- FIG. 1 there is shown a cross section of a pneumatic tire indicated generally at 10, having a body comprised of sidewalls 12 and an under-tread portion 13, all made from the elastomer of the type specified hereinabove, and all devoid of any reinforcing cords.
- the bead portions 25 have bead wires 14 running therearound.
- a tread portion 16 is shown as a separate body of rubber adhered to the under-tread-portion 13 and also devoid of reinforcing cords; in many cases this will be the same identical composition as the body 12, 13, and in such cases it will be, of course, continuous with the body 12, 13.
- the tire may be readily formed, from liquid elastomer precursor compositions meeting the criteria of this invention, by centrifugal casting.
- the bead wires 14 may be supported in place by small blocks of precured elastomer, or by pins in the mold, during the casting operation.
- the portion 16 may be formed by either initially pouring a liquid elastomer precursor of the desired composition, or by laying in a solid band of the desired composition and configuration, and then pouring the precursor for the main body 12, 13.
- this shows a pneumatic tire having sidewalls 22, 22, bead wires 24, and under-tread portion 27 similar to the elements 12, 12, 14 and 13 respectively of the tire of FIG. 1.
- the tread portion 26 has reinforcing cords 28 imbedded therein at the interface between the tread portion 26 and the under-tread portion 27 to strengthen the tread portion and/or confine the squirming action of the tread.
- the tire of FIG. 2 may be manufactured by making the tread portion 26 as a solid preform with the cords 28 imbedded therein, inserting the same into a centrifugal mold, and then pouring the liquid elastomer precursor in accordance with this invention.
- FIG. 3 shows a pneumatic tire comprising sidewall portions 32, under-tread portion 37, bead wires 34 and tread portion 36 reinforced with cords 38, corresponding respectively with the elements 22, 27, 24, 26 and 28 of FIG. 2, except that in this case the cords 38, instead of being confined to the immediate tread portion as in the case of FIG. 2, extend for a substantial distanoe down the sidewalls to the points 40.
- This construction can be manufactured by the procedure of laying the cord-containing tread and partial sidewall portion 36 into the centrifugal mold as a solid preform, followed by centrifugal casting of the remainder of the tire as in the case of FIG. 2.
- the sidewalls 32, below the termination 40 of the reinforcing cords 38 must be made of an elastomer having the properties set forth hereinabove.
- Each of the resultant swollen test pellets was removed at the end of the 4 days storage and tested in a compression test apparatus having two parallel flat platens, arranged to be moved toward each other and to measure a. the extent of such movement in mils and b. the force in pounds opposing such movement.
- the pellet was placed in with one flat face down in a shallow pan which contained the same solvent as that with which the pellet was swollen, and the pan set upon the lower platen of the apparatus.
- the upper platen was then moved down into contact withthe upper flat face of the test pellet, which downward movement was then continued while simultaneously measuring the distance of the movement and the force resisting the movement of the movement and the force resisting the movement.
- These pairs of values for the pellet under test were then plotted on graph paper to yield a stress-strain curve pounds ordinate vs. mils abscissa) having a straight line portion, and the slope of this straight line portion was then measured and used in the calculations to follow.
- Vacuum was reapplied, the mixture stirred for 2 minutes, the vacuum released, and the mixture cast into molds patterned for various physical tests to be made thereon.
- the mixture was cured in the molds in an oven at 250 F. (121 C.) for 2 hours, and the cured specimens then cooled and subjected to physical tests as set forth herewith in Table I.
- the molecular weight M between cross-links was taken [EXAMPLE II as the reciprocal of v /V, i.e., CAST TIRE 2 M A. Tread Compound bg-hug-LUOllJQ) H Accordingly as the determination was made with chlor0- Prepolyiner (prelpared reacting Polymeg 9 form or tetrahydrofurane as the swelling agent, the M ge gflp gy @118 d bl h 0f k ll ar ght was recorded respectively as being between electrostatic f??? E195 Y QP er Oats C p y cross-links or as being between covalent crosslinks.
- the vacuum was then reapplied, and the mixture stirred for 3 minutes.
- Nitrogen pressure was then introduced into the vessel, and the contents blown out through the discharge conduit into a mold having, together with a collapsible core therein, a configuration complementary to a Firestone De Luxe Champion 7.35: 14 tire, and rotating about its axis at 700 r.p.m. in a removable oven enclosure maintained at 2.50 F.
- the tread compound was blown in first and settled in the peripheral portions of the mold to form the tread portion as indicated at 16 in FIG. 1 of the drawing, and the body compound was blown in second to fill up the remainder of the free space in the mold to form the body portion 12, 13.
- Prepolymer (Adiprene L-lOO a [poly(propylene glycol)originally having a molecular weight of 1000,] polytetramethylene ether glycol, end-capped with tolylene dissocyanate. NCO content 4.1%; molecular weight, 2050.
- Product of E. I. du Pont de Nemours & Co. 100 Silicone Oil (DC-200 a product of Dow Corning Company) 0.1 Epoxy Resin/Carbon Black Blend (V-780, product of Ferro Corp.) 0.1 MOCA 12, 13 or 14 B.
- Body compounds Prepolymer (Adiprene 11-167 a [poly(propylene glycol) originally having a molecular weight ofl polytetramethylene ether glycol, end-capped with tolylene diisocyanate, NCO content 6.3%; molecular weight, 1330; product of E. I.
- Cut Growth Tires were prepared, using a body stock containing 21 parts of MOCA, and varying the MOCA in the tread stock as indicated in Table III.
- the tires were subjected to the V.E.S.C. out growth test, in which a total of 16 A] one-quarter inch starting cuts are made in the bottom of the tread grooves, the tire run on a test drum for a specified time, and the total increase in length of the cuts measured and taken as the crack growth. The greater the increase, the poorer the cut growth resistance of the stock is considered. Following are the results.
- Flex Data DeMattia flex specimens were prepared from the several stocks, and subjected to the DeMattia flex test at 176 C. Following are the results.
- Cuttability A series of body stocks were made in accordance with the body stock recipe and procedure, except that the ratio of equivalents of MOCA to equivalents of NCO in the prepolymer were varied as indicated in Table V. These stocks were subjected to a test in which a slab of the cured stock 5 x 1% x /4 inches is placed Ratio of equivalents of MOCA to equivalents of NO.)
- Tires in accordance with the invention are substantially free of time-dependent changes in configuration and properties, withstanding inflation at customary pressures without undue or uneven expansion, and without creep or deterioration of physical properties over a duration of time required of a tire in use.
- the tires are resistant to cuts, breaks and other road damage in service, and are highly resistant to cut growth, abrasive wear, and failure from fiexure.
- a tire [1.] a portion at least of the Walls of which [A] are without reinforcing fabric and [13.] are constituted of [1.] a vulcanized elastomer having [a.] (a) tensile strength at 212 F p.s.i 21800 [b.] (b) crescent tear strength at 212 F p.s.i [c.] (c) De Mattia Flex life at 176 F.
- the vulcanized elastomer more particularly having [11.] (ll) a molecular weight of 800-5000 between electrostatic cross-links and [L] (i) a molecular weight of 510040,000 between covalent crosslinks.
- a tire according to claim 2, wherein the elastomer is prepared from a prepolymer synthesized [from substantially equimoiecular proportions of] by reacting about 1 equivalent of a polyulkylene glycol [and] with about 2 equivalents of a diisocyanate, which prepolymer is thereafter reacted with 0.98-1.08 equivalents of diarnine per equivalent of unrcucterl isocyanate groups in the prepolymer.
- polyether chain P is the residue of poly(tetramethylene glycol).
- a tire according to claim 1 which is cast by centrifugal casting from a liquid precursor of the elastomer and which tire has no reinforcing fabric in any portion thereof.
- a tire according to claim 1 which is cast by centt'llugal casting from a liquid precursor of the elastomer and which tire has reinforcing fabric in the [read] tread area thereof and has no reinforcing fabric in any other portion thereof.
- Example II line 57 Epoxy Resin/Carbon Black Blend parts by weight is listed as 0.1 and should be corrected to list as 2.0 parts by weight.
- Column 10 Table III the .headingWIOCA in treat (parts)” should be MOCA in tread (parts) Signed and Sealed this eleventh Day of N0vember1975 [SEAL] Arrest.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Tires In General (AREA)
Abstract
1. A TIRE (1) A PORTION AT LEAST OF THE WALLS OF WHICH (A.) ARE WITHOUT REINFORCING FABRIC AND (B.) ARE CONSTITUTED OF (1.) A VULCANIZED ELASTOMER HAVING (A.) (A) TENSILE STRENGTH AT 212*F----P.S.I-- $1800 (B.) (B) CRESCENT TEAR STRENGTH AT 212*F --P.S.I-- $200 (C.) (C) DE MATTIA FLEX LIFE AT 176*F. CYCLES-- $(2X10**6) 2X10**5 AND AT AMBIENT TEMPERATURE (D.) (D) MODULUS OF ELONGATION OF AT LEAST ABOUT 250(-400) P.S.I. AT 5% ELONGATION (1100-1300 P.S.I. AT 100% ELONGATION 1400-1550 P.S.I. AT 200% ELONGATION 1600-1800 P.S.I. AT 300% ELONGATION 2000-2200 P.S.I. AT 400% ELONGATION 2800-3500 P.S.I. AT 500% ELONGATION) (E.) (E) TENSILE STRENGTH-$2800 P.S.I. (F.) (F) ELONGATION-$400 P.S.I. AND (G.) (G) YOUNG''S FLEXURAL MODULUS OF NO MORE THAN ABOUT (10,000-)15,000 P.S.I. THE VULCANIZED ELASTOMER MORE PARTICULARLY HAVING (H.) (H) A MOLECULAR WEIGHT OF 800-5000 BETWEEN ELECTROSTATIC CROSS-LINKS AND (I.) (I) A MOLECULAR WEIGHT OF 5100-40,000 BETWEEN COVALENT CROSS-LINKS.
Description
May 20, 1975 MOGILLVARY Re. 28,424
ELASTOMERIC ARTICLES FREE FROM REINFORCING ELEMENTS Original Filed July 6, 1970 United States Parent Re. 28,424 Re-issued May 20, 1975 28,424 ELASTOMERIC ARTICLES FREE FROM REINFORCING ELEMENTS Daniel R. McGillvary, Jackson Township, Ohio, assignor to The Firestone Tire 81 Rubber Company, Akron, Ohio Original No. 3,701,374, dated Oct. 31, 1972, Ser. No. 52,150, July 6, 1970. Application for reissue July 17, 1974, Ser. No. 489,304
Int. Cl. B60c 5/00; C08g 22/04 US. Cl. 152-330 R 11 Claims Matter enclosed in heavy brackets [II appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additiom made by reissue.
ABSTRACT OF THE DISCLOSURE This is an application for reissue of Pat. No. 3,701,374 issued Oct. 31, 1972, on application Ser. No. 52,150 filed July 6, 1970.
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to pneumatic tires, air springs, power transmission belts, and other articles subjected to tensile stresses and dynamic flexure in service, at least portions of which articles are free from reinforcing fabrics. In some of its more particular aspects, the invention relates to the production of such articles by molding from flowable materials, as by centrifugal casting, injection molding, transfer molding and like processes.
2. Description of the Prior Art Pneumatic tires, air springs, hoses, transmission belts and other articles subject to tensile stresses and dynamic flexure in service are conventionally fabricated by laying up of plies of elastomeric materials containing textile reinforcing textile elements. It would be highly desirable to dispense with the reinforcing elements, as it would then be possible to mold the article directly from the elastomeric material, or a precursor thereof, in flowable form, rather than to go through the laborious lay-up procedures required to place the reinforcing textile elements in their required location in the articles. It has not heretofore been practical to dispense with the reinforcing elements, however, because the elastomer compositions available have not had the requisite high modulus, tensile strength, tear resistance and creep resistance in conjunction with flex resistance that would be required in such articles not containing textile reinforcing elements. It will be appreciated that the flex resistance on the one hand, and the modulus, tensile, tear and creep resistance on the other hand, are mutually antagonistic properties, and that it is difficult to secure satisfactory values of all of these properties simultaneously in a single stock.
Accordingly, it is an object of this invention to provide elastomeric stocks having the physical properties required in articles from which the reinforcing elements have been partially or entirely omitted. Another object is to provide such a stock which, prior to vulcanization, is readily flowable, so that articles may be formed therefrom by centrifugal casting, injection molding, transfer molding and the like.
SUMMARY The above and other objects are secured, in accordance with the invention, in pneumatic tires, air springs, hoses, power transmission belts and other articles subjected to tensile stresses and dynamic ilexure in service, said articles being partially or wholy without reinforcing textile elements. These articles are made from elastomeric stocks of the type having, in cured form, both covalent cross-links and also electrostatic cross-links, van der Waals forces or other intermolecular association cross-links, hereinafter referred to as electrostatic cross-links. The composition and curing conditions of the elastomeric material are so selected that A. the molecular weight of the polymeric chains between the electrostatic cross-links is 800-5,000, and preferably 1,0003,000, and
B. the molecular weight of the chains between covalent cross-links is 5,100-40,000 and preferably 10,000- 20,000.
Such cured elastomers have physical properties requisite for articles of the types referred to, or portions of such articles, without the necessity for including reinforcing textile elements therein, and specifically, have the following key physical properties:
Tensile strength at 212 F. (100 C.) p.s.i Z1800 Cresent tear strength at 212 F.
(100 C.) p.s.i Z200 DeMattia fiex life at 176 F.
( C.) cycles z[2 l0 2x10 1 Z" signifies "equal to or greater than."
Advantageously, elastomers meeting the above requirements may be made, by techniques described below, from precursors which are readily flowable, so that tires and other articles according to this invention may be prepared by low-labor-cost centrifugal, injectionand transfer-molding processes. Particularly, the articles of this invention may be constituted of elastomeric polyurethanes made from poly(alkylene glycols) end-capped with diisocyanates and cured with diamines and/or diols substantially in excess of the usual sub-stoichiometric quantities.
THE DRAWING In the drawing FIG. 1 is a sectional view of a tire according to this invention, completely without any reinforcing elements;
FIG. 2 is a sectional view of a tire according to this invention, wherein reinforcing cords are provided at the interface between the body of the tire and a tread portion in the area of the tread only, the side Walls being without any reinforcing elements, and
FIG. 3 is a sectional view of a tire according to this invention, wherein reinforcing cords are provided at the interface between the body of the tire and a tread portion in the area of the tread, and also extend for a substantial distance down the sidewalls, the remainder of the sidewalls being without any reinforcing elements.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The Elastomers Used in This Invention Elastomers suitable for use in this invention include any generally linear high polymers, the chains of which are of elastomeric character, i.e., having second order transition temperatures below about -20 C., and which contain groupings along the chains capable of forming electrostatic space force cross-links and also groupings capable of forming true covalent cross-links, In many cases the same groupings are capable of est-.ibishing either one of these types of cross-links. Suitable clastomcrs include the (preferred) polyurethane rubbers, particularly those formed by capping the hydroxyls of polyalkylenc glycols of molecular weight in the range of SOS-2,500 with diisocyanates to form prepolyrners, and then chain-extending and curing the prepolyniers by means of diamines and/or diols. Suitable polyalkylcne glycols are exemplified in poly(alkylene glycols) having molecular weights in the range of SOD-2,500 based on alkylene groups of from two to carbon atoms such as poly(ethylene glycol), poly (propylene glycol), polyttriniethylene glycol), polyttctramethylene glycol, polythcxamcthylenc glycol). high molecular weight copolymers of these glycols, and mixtures of the various polytalkylene g ycols) individua ly fal ing within the above categories. Suitable diisocyanates are exemplified in compounds having two isocyanute groups linked to an organic residue of six to 16 carbon atoms such as hexamethylene diisocyanate, the various tolylene diisocyanates, the various naphthalene diisocyanates, 4.4- diphenylmethane diisocyanate. 3.3'-dimethyl-4.4'-diphenylmethane diisocyanate, 4,4'-diphenyl-isopropylidene diisocyanate, 3,3'-dimethyl-4,4'-diphenyl diisocyanatc, the phenylene diisocyanates, 3,3'-dimethoxy-4,4'-biphenyl diisocyanate, and the like. Suitable diamines are those containing an organic central radical of two to 20 carbon atoms linked to two amino groups such as ethylene diamine, tetramethylene diamine, hexamethylene diamine, p-phenylenediamine, methylene bis 2 chloroaniline (MOCA), 4,4'-diaminodiphenylmethane. 3,3-dichloro- 4.4-diaminodiphenylniethane. benzidine, 3,3'-dimethylbenzidine, 3,3'-dimethoxy benzidine, 3,3'-dichlorobenzidine, and the like. In these rubbers the chains of cured polymer contain the repeating linkage wherein P represents a high molecular polyialkylene ether) chain derived from a poly(alkylene glycol) such as specified above;
R is the organic radical of a diisocyanate such as specified above and R is the organic central radical of a dianiine such as specified above.
Electrostatic cross-links tend to form between the CO groups and ether groups and the hydrogen atoms on the nitrogen atoms on adjacent chains; and the isocyanate groups of the prepolymer react in a certain proportion with these hydrogen atoms to form covalent cross-links. It is the control of the magnitude and proportions of the respective amounts of these two types of cross-links that underlies the critical characteristics of the articles of this invention. A particular advantage of the preferred polyalkylene glycol/diisocyanate/diaminc-based elastomers is the fact that prior to final cross-linking. they are flowable for a suflicient period of time so that they may be formed by centrifugal, injection or transfer molding into the form of the desired article. With flow-molding p ocesses of these types, it is extremely diflicult to include reinforcing cord, hence the rubbers of this invention are particularly advantageous in the cured state because they are able to function in an article subject to tensile and dynamic flexure stresses without the presence of reinforcing cords.
Besides the ether ureihanes, there may also be employed polyester urethanes, and also other elastorncrs capable of establishing both electrostatic and cova ent cross-links, such as copolymers of (A) butadiene, isoprene, acrylic esters or other monomers, polymeric chains from which are of essentially elastomeric character with (B) monomers containing salt-forming groups such as acrylic acid, methncryiic acid, inulcic acid, furnuric acid, itucouic acid and the like.
The Electrostatic Cross-Links and the Covalent Cross-Links As noted hereinabove, the distribution of the crosslinks in the vulcanired clastoniers in the tires of this invention must be characterized by Molecular weight of polymer chains between electrostatic cross-1iuks equalling 800 to 5000 (preferably 1000 to 3000) and Molecular weight of polymer chains between covalent cross-links equalling 5100 to 40,000 (preferably 10,00U20,000)
The methods of ascertaining these two characteristics involve known solvent swelling procedures described genorally in Clutl et al., J. Pol. Sci. 45, pp. 341-345 (1960). Swelling procedures involving non-polar solvents such as chlorolorm reflect the spacing of electrostatic crosslinks, since non-polar solvents do not disrupt such cross-links. Swelling procedures conducted in polar solvents, such as tetrahydroturane, on the other hand, reflect the spacing of the covalent cross-links, since the electrostatic cross-links are dissociated by such solvents. It will be understood, therefore. that the coniormity-or-not of a rubber to this invention is to be ascertained with respect to electrostatic cross-links by swelling measurements conducted in chloroform or some other non-polar solvent; and with respect to covalent cross-links, by swelling measurements conducted with tetrahydrofurane or some other polar solvent capable of dissociating electrostatic cross'linkages.
Regarding the formulation and curing of elastomers so as to develop the types of cross-links [desires] desired, the factors influencing these parameters are well understood by those in the art. With particular reference to the preferred polyurethanes discussed above, it is necessary to use unconventionally high ratios of curing amine to [free] unreactcd isocyanate in the prepolymer, say about 0.98- 1.08 equivalents of diamine 1 equivalent of isocyanate in the prepolymer. Within this range the molecular weight between covalent cross-links will increase to a maximum, and adjustments can be made up and down as may appear desirable. The molecular weight between electrostatic cross-links is in general. an increasing function of the molecular weight of the poly(alkylene glycol) employed, and this factor can be increased and decreased by selection of higher or lower molecular weight poly(alkylene glycol) starting materials. Likewise lower curing temperatures tend to increase the molecular weight between covalent cross-linkages. Generally temperatures in the range 325 F. (SF-163 C.) will be employed, and adjustment of the molecular Weight between cross-links can be further adjusted by varying the curing temperature within this range.
Physical Properties of the Elastomers The elastomcrs used in the tires of. this invention have the following critical properties.
Tensile strength (at 212 F.) p.s.i 21800 pounds/irch" 2200 DeMattia flex life (at 176 F.) "cycles" ;;2 [l0 ]l0 Youngs flexural modulus*0f no more than about [10,000]l5,000 psi.
These properties are extremely important in themselves for a rubber in a tire or other article subjected to tensile stress and dynamic fiexure in service unsupported by reinlhn equivalent Weight of a dialninris uric-c3111 at its molecular weight.
forcing cord, and they moreover, in the experience with the instant invention, have been found to entrain the following properties at ambient temperatures (ca. 25 C.) which are also of great importance in this context: Modulus of elongation of [z] at least about 250[-400] p.s.i. at 5% elongation [1100-1300 psi. at 100% elongation 1400-1550 p.s.i. at 200% elongation 1600-1800 p.s.i. at 300% elongation 2000-2200 psi. at 400% elongation 2800-3500 p.s.i. at 500% elongation] Tensile strength-'2800 p.s.i. Elongation400% Youngs flexural modulus-0f no more than about [10,000-]15,000 p.s.i.
Pneumatic tires cast or otherwise formed, wholly or partially without reinforcing cords, from elastomers of the above characteristics, withstand inflation at customary pressures without undue or uneven expansion, and without creep over a. duration of time; are resistant to cuts, breaks and other road damage in service; and are highly resistant to abrasive wear and to failure from fiexure. Pneumatic tires heretofore fabricated from polyurethane or other rubbers have invariably been subject to rapid deterioration in service due to dynamic flexural failure.
DETAILED DESCRIPTION OF THE DRAWINGS Referring now more particularly to FIG. 1, there is shown a cross section of a pneumatic tire indicated generally at 10, having a body comprised of sidewalls 12 and an under-tread portion 13, all made from the elastomer of the type specified hereinabove, and all devoid of any reinforcing cords. The bead portions 25 have bead wires 14 running therearound. A tread portion 16 is shown as a separate body of rubber adhered to the under-tread-portion 13 and also devoid of reinforcing cords; in many cases this will be the same identical composition as the body 12, 13, and in such cases it will be, of course, continuous with the body 12, 13. In other cases, it may be desired to apply a separate tread portion of a composition more particularly designed for that service, with emphasis on abrasion resistance, road traction, noise abatement, etc. Since there are no reinforcing cords to complicate operations, the tire may be readily formed, from liquid elastomer precursor compositions meeting the criteria of this invention, by centrifugal casting. The bead wires 14 may be supported in place by small blocks of precured elastomer, or by pins in the mold, during the casting operation. In those cases where the tread portion 16 is of a composition different from the main body 12, 13 of the tire, the portion 16 may be formed by either initially pouring a liquid elastomer precursor of the desired composition, or by laying in a solid band of the desired composition and configuration, and then pouring the precursor for the main body 12, 13.
Referring to FIG. 2, this shows a pneumatic tire having sidewalls 22, 22, bead wires 24, and under-tread portion 27 similar to the elements 12, 12, 14 and 13 respectively of the tire of FIG. 1. However, in this embodiment the tread portion 26 has reinforcing cords 28 imbedded therein at the interface between the tread portion 26 and the under-tread portion 27 to strengthen the tread portion and/or confine the squirming action of the tread. The tire of FIG. 2 may be manufactured by making the tread portion 26 as a solid preform with the cords 28 imbedded therein, inserting the same into a centrifugal mold, and then pouring the liquid elastomer precursor in accordance with this invention. It will be appreciated that this is still a relatively simple operation compared to the customary drum-building operation, as the fabrication of the shallow band 26 is readily automated. It will be understood that the sidewall portions 22 do not contain reinforcing cords, and that the elastomer in these portions must have the properties set forth hereinabove.
Referring now to FIG. 3, this shows a pneumatic tire comprising sidewall portions 32, under-tread portion 37, bead wires 34 and tread portion 36 reinforced with cords 38, corresponding respectively with the elements 22, 27, 24, 26 and 28 of FIG. 2, except that in this case the cords 38, instead of being confined to the immediate tread portion as in the case of FIG. 2, extend for a substantial distanoe down the sidewalls to the points 40. This construction can be manufactured by the procedure of laying the cord-containing tread and partial sidewall portion 36 into the centrifugal mold as a solid preform, followed by centrifugal casting of the remainder of the tire as in the case of FIG. 2. Again it will be appreciated that the sidewalls 32, below the termination 40 of the reinforcing cords 38, must be made of an elastomer having the properties set forth hereinabove.
With the foregoing general discussion in mind, there are given herewith detailed examples of the practice of this invention.
Swelling Determination of Molecular Weight Between Cross-Links The swelling test used in determining the molecular weight between cross-links in the examples hereinbelow was an adaptation of the procedure of Cluff et al., J. Polymer Sci. 45, pp. 341-45 (1960). Specimens were prepared by casting the finally compounded rubbers of Example I hereinbelow, while still flowable, into 1 inch test tubes, which were then heated in an oven at 121 C. for 2 hours to cure the polymer. The tubes were then cooled to 25 C., and broken to remove the specimens, which were then trimmed to form test pellets in the form of right cylinders approximately 0.70 inches in diameter x 0.85 inches in height, the exact dimensions being measured and recorded. One pellet of each elastomer was submitted to the following procedure, using chloroform as the swelling agent, and another pellet of the same elastomer was submitted to the same procedure, using tetrahydrofurane as the swelling agent. Each pellet was placed in a covered beaker containing a sufficient quantity of solvent (chloroform or tetrahydrofurane as the case might be) to immerse the pellet, and the covered beaker stored for 4 days at a temperature of 25 C. Those of the pellets which were immersed in chloroform were manually turned over each day to insure even exposure, as they tended to float in this solvent. It was made certain before proceeding further with the determination that the pellet contained imbibed therein at least 75 percent by volume of solvent.
Each of the resultant swollen test pellets was removed at the end of the 4 days storage and tested in a compression test apparatus having two parallel flat platens, arranged to be moved toward each other and to measure a. the extent of such movement in mils and b. the force in pounds opposing such movement.
The pellet was placed in with one flat face down in a shallow pan which contained the same solvent as that with which the pellet was swollen, and the pan set upon the lower platen of the apparatus. The upper platen was then moved down into contact withthe upper flat face of the test pellet, which downward movement was then continued while simultaneously measuring the distance of the movement and the force resisting the movement of the movement and the force resisting the movement. These pairs of values for the pellet under test were then plotted on graph paper to yield a stress-strain curve pounds ordinate vs. mils abscissa) having a straight line portion, and the slope of this straight line portion was then measured and used in the calculations to follow.
Clulf et al., loc. cit., gives the following approximate formula for the cross-linking density as determined in their apparatus.
where:
v .i"V:cross-link density h :height of unswollen pellet in centimeters Szslope of straight line portion of the stress-strain curve in [cmfi r] gnu/cm.
A :cross-sectional area of unswollen pellet in cm.
R:gas constant in gnL-cmJdcgree Kelvin T::ternperature, degrees Kelvin since the present work was all done at 25 C., the dimensions of the p21 it taken in inches, and the stress-strain curve measured in pounds vs. mils (i mil:0.001 inch), formula (2) can be rewritten with conversion factors where:
S :the stress-strain slope in British units of pounds per mil h =the unswollen height of the test pellet in British units of inches D zthe unswoilen diameter of the test pellet in 50 British units of inches.
13. Final Compounding and Curing Prepolymer (prepared as above described)200 g. MEL 1 (methylene lilEiChlOl'0lIllllltC).8U'l.10 equivalents per equivalent of NCO (per Table I) Each of the prepolynicrs prepared as above described was then compounded and cured into test specimens in tpcordance with the foregoing recipe. Based on the NCO analysis for the particular prcpolymer, the amount of MOCA sulhcient to provide the ratio of equivalents of lviOCA/equivalent of NCO selected for that prepolymer was weighed out, melted, and rapidly introduced into the prepolymer in the original equipment. Vacuum was reapplied, the mixture stirred for 2 minutes, the vacuum released, and the mixture cast into molds patterned for various physical tests to be made thereon. The mixture was cured in the molds in an oven at 250 F. (121 C.) for 2 hours, and the cured specimens then cooled and subjected to physical tests as set forth herewith in Table I.
TABLE I Molecular weight Yulciuilzutu properties MOCA used between Physical properties at 212 F.
Equiv- Eluctlo- Crr snnt alents static Tensile tear Elonga- 300% modulus Run per mol cross Covalent Strength strength Lion modulus at C. No. [Grains] NCO links crosslinks (psi) (Hr/tn.) (percent) (p.s.i.) (p.s.i.)
1 s3. 1 0. s5 1, 230 2, 500 1, 430 an 170 39s 2 72. 2 0. n0 1, 186 3, 150 1, 695 2117 270 420 3 76. 1 0. 95 1, 300 5, 05:) 2, i130 zsz 350 1, r10 425 4 .s so. 2 1. 00 1, use 5, 100 2, 5.50 205 400 1, saw 430 r) s4. 2 1. 05 1, 050 24, 000 2, 990 343 595 1, 520 464 (i as. 9 1. 10 Soluble 1, 685 309 600 110 440 It This polymer was soluble in the tetrah ydrot'nrann, and hence the determination could not; be run.
The molecular weight M between cross-links was taken [EXAMPLE II as the reciprocal of v /V, i.e., CAST TIRE 2 M A. Tread Compound bg-hug-LUOllJQ) H Accordingly as the determination was made with chlor0- Prepolyiner (prelpared reacting Polymeg 9 form or tetrahydrofurane as the swelling agent, the M ge gflp gy @118 d bl h 0f k ll ar ght was recorded respectively as being between electrostatic f??? E195 Y QP er Oats C p y cross-links or as being between covalent crosslinks. h em Folylene dnsocydnate a who of 2 mols dusocyanate/mol poly(pr0pylene EXAMPLE I glycol) lbs 1 5.5 A Preparation f Prepolymar Silicone oil (DC 00j a product of Dow-Corning Grams Company) grams 2 [Poly(tetrarnethylene glycol)] Poly tetramethylvne P Y fefilfl/CflfbOH black blend (V-780 a product ther glycol Polymeg 1000, a product of Quaker of Ffirro 50 Oats Company having a weight of 1000) 3 9 MOCA 380 2 4-Tolylene diisocyanate ([mixed isomers;] Hy- B B t od Com ound lene T, manufactured by E. I. du Pont de y P Nemours and Company) 104-2 Prepol mer (as at A above) lbs 2 16 4v y b 91 A series of prepolymers was prepared in accordance sfllcom i 5 at above) 7 with the foregoing recipe, as set forth in Table I heretf resin Carbonb blend (as at A d 182 inafter. In each preparation there was employed a 2-lit r 3 i? -"ggound bottom flask provided with a rotary stirrer opcrat- 8 "2' yl my p t a g ing through a vacuum seal, and with a connection for Q 1 the introduction of nitrogen and pulling of vacuum. in 51mins] I-i gl'ttlllfi.
each run, the glycol was charged into the flask, a vacuum of tolylene diisocyanate, 2 mols per mol of. the glycol, was the contents heated at 8t C. for 4 hours to dehydrate the material, alter which the mass was cooled. The flask was flooded with nitrogen and the calculated amount Tire Casting Procedure Each of the [above] compounds set forth in Exampie Il lrcrclnbelow was prepared separately and injected into a centrifugal tire mold, the tread compound being injected first to form the tread, and the body compound being injected second to form the body of the tire.
[The above recipe corresponds to Run No. in Table I above] For each compound, there was provided a gallon stainless steel pressure vessel provided with a power stirrer, a heating and cooling jacket, connections for supplying nitrogen and for pulling a vacuum in the free space of the vessel, and a valved discharge conduit at the bottom of the vessel. The prepolymer and all ingredients except the MOCA were charged together into the vessel under a blanket of nitrogen, and the vessel closed. A vacuum of 3-5 mm. absolute Was then pulled on the vessel, and the contents agitated and heated at 162 F. (72 C.) for 2 hours, after which the vessel was opened and the free space in the vessel flooded with nitrogen. The MOCA was melted, supercooled to 99 C. and added to the vessel with stirring. The vacuum was then reapplied, and the mixture stirred for 3 minutes. Nitrogen pressure was then introduced into the vessel, and the contents blown out through the discharge conduit into a mold having, together with a collapsible core therein, a configuration complementary to a Firestone De Luxe Champion 7.35: 14 tire, and rotating about its axis at 700 r.p.m. in a removable oven enclosure maintained at 2.50 F. The tread compound was blown in first and settled in the peripheral portions of the mold to form the tread portion as indicated at 16 in FIG. 1 of the drawing, and the body compound was blown in second to fill up the remainder of the free space in the mold to form the body portion 12, 13. The rotation and oven temperature were maintained for 2 hours, after which the oven enclosure was removed and the rotation continued in open air to cool the mold. At the end of this time, the rotation was stopped, and the tire stripped from the mold. Tires made as described above were subjected to the Department of Transportation Tests in accordance with the Motor Vehicle Safety Standards No. 109. [The tire subjected to the endurance portion of the test, went 1,365 miles. The tire subjected to the high speed test, in which the speed is progressively increased over time, went to 125 miles per hour over a period of 0.8 hours] EXAMPLE [III] II Cast Tires-Range of Amine A. Tread compounds Parts by weight Prepolymer (Adiprene L-lOO a [poly(propylene glycol)originally having a molecular weight of 1000,] polytetramethylene ether glycol, end-capped with tolylene dissocyanate. NCO content 4.1%; molecular weight, 2050. Product of E. I. du Pont de Nemours & Co.) 100 Silicone Oil (DC-200 a product of Dow Corning Company) 0.1 Epoxy Resin/Carbon Black Blend (V-780, product of Ferro Corp.) 0.1 MOCA 12, 13 or 14 B. Body compounds Prepolymer (Adiprene 11-167 a [poly(propylene glycol) originally having a molecular weight ofl polytetramethylene ether glycol, end-capped with tolylene diisocyanate, NCO content 6.3%; molecular weight, 1330; product of E. I. du Pont de Nemours & Co.) 100 [Silicon] Silicone Oil (DC-200) 0.1 Epoxy Resin/Carbon Black Blend (V-J80) 2.5 Di(2-ethyl-hexyl)phthalate 20 MOCA 19, 20 or 21 A series of tires was cast from compositions in accordance with the foregoing recipe, using the procedure [of Example II] set forth hereinabove under "Tire Casting Procedure and varying the proportion of MOCA as indicated in connection with the various tires as listed hereinafter. Also specimens for various laboratory tests were also cast from the various compositions. The tread composition containing 14 parts of MOCA, and the body stocks containing 21 parts of MOCA, provide a ratio of equivalents of MOCA/equivalents of NCO of approximately 1.06.
Tire Durability Four tires were cast in which the MOCA was varied in the stocks as indicated in Table II. These tires were run to failure on the RMA endurance test, with results as follows.
TABLE II Equivalent ratios, MOCA used (parts) MOCA:NCO Endurance Tire In tread In body In tread In body (miles) N 0.
The superiority of the tires having [a] an equivalent ratio for MOCAzNCO of 1.0 is quite striking.
Cut Growth Tires were prepared, using a body stock containing 21 parts of MOCA, and varying the MOCA in the tread stock as indicated in Table III. The tires were subjected to the V.E.S.C. out growth test, in which a total of 16 A] one-quarter inch starting cuts are made in the bottom of the tread grooves, the tire run on a test drum for a specified time, and the total increase in length of the cuts measured and taken as the crack growth. The greater the increase, the poorer the cut growth resistance of the stock is considered. Following are the results.
TABLE III Equivalent Crack rat 0, rowth 'Iir MO CA in treat (parts) M0 CA: NCO (inches) N0 Againthe superiority of the tires according to the present invention is unequivocal.
Flex Data DeMattia flex specimens were prepared from the several stocks, and subjected to the DeMattia flex test at 176 C. Following are the results.
glerictltg this example, except that the di(2-ethylhexyl) phthnlate was These body stocks were made in full accordance with the recipe for body stocks at the head of this example.
Cuttability A series of body stocks were made in accordance with the body stock recipe and procedure, except that the ratio of equivalents of MOCA to equivalents of NCO in the prepolymer were varied as indicated in Table V. These stocks were subjected to a test in which a slab of the cured stock 5 x 1% x /4 inches is placed Ratio of equivalents of MOCA to equivalents of NO.)
C uttnbilit y rutii lg St ock No.
From the foregoing description and detailed specific physical examples, it will be evident that this invention provides novel pneumatic tires, air springs, hoses,
power transmission belts and other articles which are subject to tensile stresses and dynamic ilexure in service, which service the articles withstand wholly or largely without the complication of cord reinforcements. The articles can be made by labor-sparing and rapidthroughput processes, from and inexpensive starting materials. Tires in accordance with the invention are substantially free of time-dependent changes in configuration and properties, withstanding inflation at customary pressures without undue or uneven expansion, and without creep or deterioration of physical properties over a duration of time required of a tire in use. The tires are resistant to cuts, breaks and other road damage in service, and are highly resistant to cut growth, abrasive wear, and failure from fiexure.
What is claimed is:
1. A tire [1.] a portion at least of the Walls of which [A] are without reinforcing fabric and [13.] are constituted of [1.] a vulcanized elastomer having [a.] (a) tensile strength at 212 F p.s.i 21800 [b.] (b) crescent tear strength at 212 F p.s.i [c.] (c) De Mattia Flex life at 176 F.
and at ambient temperature [d.] (d) Modulus of elongation of at least about 250[400] p.s.i. at 5% elongation [1100-1300 p.s.i. at 100% elongation 1400-1550 psi. at 200% elongation 16001800 p.s.i. at 300% elongation 20004200 psi. at 400% elongation 28003 500 p.s.i. at 500% elongation] [e.] (e) Tensile strength22800 p.s.i.
[f.] (f) Elongation3400 psi.
and
[g] (g) Youngs ficxural modulus of no more than about [l0,000]15,000 p.s.i.
the vulcanized elastomer more particularly having [11.] (ll) a molecular weight of 800-5000 between electrostatic cross-links and [L] (i) a molecular weight of 510040,000 between covalent crosslinks.
2. A tire according to claim 1, wherein said elastomer is a polyurethane elastomer.
3. A tire according to claim 2, wherein the elastomer is prepared from a prepolymer synthesized [from substantially equimoiecular proportions of] by reacting about 1 equivalent of a polyulkylene glycol [and] with about 2 equivalents of a diisocyanate, which prepolymer is thereafter reacted with 0.98-1.08 equivalents of diarnine per equivalent of unrcucterl isocyanate groups in the prepolymer.
conveniently obtainable 4. A tire according to claim 2, wherein the elastomer is constituted of polyether chains connected to each other according to the repeating scheme wherein P represents a poly(alkylene ether) chain R, is the organic central group of a diisocyanate and R is the organic central group of a diamine.
5. A tire according to claim 4, wherein the polyether chain P is the residue of poly(tetramethylene glycol).
a. A tire according to claim 1, which is cast by centrifugal casting from a liquid precursor of the elastomer and which tire has no reinforcing fabric in any portion thereof.
7. A tire according to claim 1, which is cast by centt'llugal casting from a liquid precursor of the elastomer and which tire has reinforcing fabric in the [read] tread area thereof and has no reinforcing fabric in any other portion thereof.
8. A tire according to claim 7, which is cast by centrilugal casting from a liquid precursor of the elastomer and which tire has reinforcing fabric in the tread area and a portion only of the sidewall area, said portion being a portion contiguous to the tread area and has no reinforcing fabric in any other portion thereof.
9. A tire, u portion at least of the walls of which are without reinforcing fabric and are constituted of a vulcnnizctl polyurethane elnstomer having.
(a) a tensile strength n1 2l2 F p..r.i 21800 ll) a crescent tear strength at 212 F p.s.i 2200 (c) u Dc Mutliu ficx life at 176 F cyclesd 22 l0 (d) a modulus of elongation of at least about 250 p.s.i.
at 5% elongation (e) a tensile strength of 22800 p.s.i.
(1'') an elongation of 340092:
and
(g) a Young's flexural modulus of no more than about 15,000 p.s.i.
References Cited The following references, cited by the Examiner, are of record in the patented file of this patent or the original patent.
UNITED STATES PATENTS 9/1965 Knipp et a1 152 327 OTHER REFERENCES Athey, Rubber Age, 85, No. 1, 1959, pp. 77-81. Buist et al., Advances in Polyurethane Technology, Maclaren & Sons, Ltd, 1968, London, pp. 42-53.
M. J. WELSH, Primary Examiner U.S. Cl. X.R.
'74231 P; 9234; 138-177; 260-77.5 AM, 821; 152- 357 2225;? UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. Re 28,42 e Dated I481 20, 1975 Inventor(s) It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
In Column 5, lines 12 and 15,"28CO psi and 3 400%" should be correctly written as" 5 psi and #00 In Column 6, line is a repeat of line 64 and should be omitted.
In Column 6, line 68, "pounds" should have a parentheses in front of it as (pounds In Column 7, Table I, The Column Heading Grams and everything which appears underneath should be omitted, and not just the heading Grams.
- Column 7, line 60, ""Polymeg 1000," should be written as follows ("Polymeg 1000," the parentheses was omitted Column 7, lines 70, '71, '72 8e 1'75 "In each run, the glycol was charged into the flask, a vacuum of tolylene diisocyanate.
' 2 mols per mol of the glycol, was the contents heated at C. for 4 hours to dehydrate the material, after which the mass was cooled." This sentence has been garbled and should read as follows:
In each run, the glycol was charged into the flask, a vacuum of 3-5 mm absolute applied, stirring commenced and the contents heated at 70 -80 C. for {L hours to dehydrate the material, after which the mass was cooled.
Column 9, Example II, line 57 Epoxy Resin/Carbon Black Blend parts by weight is listed as 0.1 and should be corrected to list as 2.0 parts by weight. Column 10," Table III the .headingWIOCA in treat (parts)" should be MOCA in tread (parts) Signed and Sealed this eleventh Day of N0vember1975 [SEAL] Arrest.
RUTH-C. MASON elm'sring- Officer C. MNRSHALL DANN ('mnmissimwr uj'Parenrs and Trudcmarl
Claims (1)
1. A TIRE (1) A PORTION AT LEAST OF THE WALLS OF WHICH (A.) ARE WITHOUT REINFORCING FABRIC AND (B.) ARE CONSTITUTED OF (1.) A VULCANIZED ELASTOMER HAVING (A.) (A) TENSILE STRENGTH AT 212*F----P.S.I-- $1800 (B.) (B) CRESCENT TEAR STRENGTH AT 212*F --P.S.I-- $200 (C.) (C) DE MATTIA FLEX LIFE AT 176*F. CYCLES-- $(2X10**6) 2X10**5 AND AT AMBIENT TEMPERATURE (D.) (D) MODULUS OF ELONGATION OF AT LEAST ABOUT 250(-400) P.S.I. AT 5% ELONGATION (1100-1300 P.S.I. AT 100% ELONGATION 1400-1550 P.S.I. AT 200% ELONGATION 1600-1800 P.S.I. AT 300% ELONGATION 2000-2200 P.S.I. AT 400% ELONGATION 2800-3500 P.S.I. AT 500% ELONGATION) (E.) (E) TENSILE STRENGTH-$2800 P.S.I. (F.) (F) ELONGATION-$400 P.S.I. AND (G.) (G) YOUNG''S FLEXURAL MODULUS OF NO MORE THAN ABOUT (10,000-)15,000 P.S.I. THE VULCANIZED ELASTOMER MORE PARTICULARLY HAVING (H.) (H) A MOLECULAR WEIGHT OF 800-5000 BETWEEN ELECTROSTATIC CROSS-LINKS AND (I.) (I) A MOLECULAR WEIGHT OF 5100-40,000 BETWEEN COVALENT CROSS-LINKS.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US48930474 USRE28424E (en) | 1970-07-06 | 1974-07-17 | Elastombric articles free from reinforcing elements |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US5215070A | 1970-07-06 | 1970-07-06 | |
US48930474 USRE28424E (en) | 1970-07-06 | 1974-07-17 | Elastombric articles free from reinforcing elements |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE28424E true USRE28424E (en) | 1975-05-20 |
Family
ID=26730246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US48930474 Expired USRE28424E (en) | 1970-07-06 | 1974-07-17 | Elastombric articles free from reinforcing elements |
Country Status (1)
Country | Link |
---|---|
US (1) | USRE28424E (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4071492A (en) | 1976-04-07 | 1978-01-31 | The Firestone Tire & Rubber Company | Polyurethane-urea elastomers based on propylene oxide-tetrahydrofuran copolymers |
US4095637A (en) | 1975-06-09 | 1978-06-20 | The Goodyear Tire & Rubber Company | Solid polyurethane tire/wheel assembly |
US4131149A (en) | 1975-06-19 | 1978-12-26 | The Firestone Tire & Rubber Company | Polyurethane tire sidewalls |
US20110000594A1 (en) * | 2009-07-03 | 2011-01-06 | Toyo Tire & Rubber Co., Ltd. | Pneumatic Tire |
US20110297289A1 (en) * | 2009-02-17 | 2011-12-08 | Bridgestone Corporation | Tire and tire manufacturing method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3208500A (en) * | 1961-06-23 | 1965-09-28 | Bayer Ag | Vehicle tire |
-
1974
- 1974-07-17 US US48930474 patent/USRE28424E/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3208500A (en) * | 1961-06-23 | 1965-09-28 | Bayer Ag | Vehicle tire |
Non-Patent Citations (2)
Title |
---|
Athey, Rubber Age, 85, No. 1, 1959, pp. 77-81. * |
Buist et al., Advances in Polurethane Technology, Maclaren & Sons, Ltd., 1968, London, pp. 42-53. * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4095637A (en) | 1975-06-09 | 1978-06-20 | The Goodyear Tire & Rubber Company | Solid polyurethane tire/wheel assembly |
US4131149A (en) | 1975-06-19 | 1978-12-26 | The Firestone Tire & Rubber Company | Polyurethane tire sidewalls |
US4071492A (en) | 1976-04-07 | 1978-01-31 | The Firestone Tire & Rubber Company | Polyurethane-urea elastomers based on propylene oxide-tetrahydrofuran copolymers |
US20110297289A1 (en) * | 2009-02-17 | 2011-12-08 | Bridgestone Corporation | Tire and tire manufacturing method |
US9440407B2 (en) * | 2009-02-17 | 2016-09-13 | Bridgestone Corporation | Tire and tire manufacturing method |
US20110000594A1 (en) * | 2009-07-03 | 2011-01-06 | Toyo Tire & Rubber Co., Ltd. | Pneumatic Tire |
US8245745B2 (en) * | 2009-07-03 | 2012-08-21 | Toyo Tire & Rubber Co., Ltd. | Pneumatic tire having land portion with buried reinforcing member |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3701374A (en) | Elastomeric articles free from reinforcing elements | |
US3980606A (en) | Polyurethane elastomers having prolonged flex life and tires made therefrom | |
US4786703A (en) | Process for the preparation of polyisocyanate prepolymers and polyurethanes having high temperature performance and low hysteresis | |
CA1039893A (en) | Flat free pneumatic tire and void free filling therefor | |
KR900002855B1 (en) | Two-step process for preparing polyurethane elastomers using mixture of chain extenders | |
JPS5861117A (en) | Improved manufacture of polyurea-polyurethane | |
JPS6251967B2 (en) | ||
US3905944A (en) | Polyurethane prepared with 4,4{40 -diamino diphenyl disulfide | |
US3021307A (en) | Polyurethane elastomers cured with paraformaldehyde | |
US3855177A (en) | Pneumatic tire treads and their production | |
US6548616B1 (en) | Lightweight tire support and composition and method for making a tire support | |
US4722989A (en) | Process for producing polyurethane/urea elastomers | |
USRE28424E (en) | Elastombric articles free from reinforcing elements | |
US3980595A (en) | Polyurethane elastomers modified with hydrocarbon rubber | |
US5010133A (en) | Polyurethane molding composition, method and article | |
US4519432A (en) | Reinforced polyurethane tires | |
US3897386A (en) | Tire treads | |
US4017464A (en) | Polytetramethylene ether urethane cured with 2,2'-diaminodiphenyl disulphide | |
KR870001962B1 (en) | Process for preparation of polymer containing polyamide-polyurea | |
Hill et al. | Urethane Rubber from a Polyether Glycol Properties of Raw Polymer and Vulcanizates-Properties of Raw Polymer and Vulcanizates | |
US3115481A (en) | Polyurethane collapsed foam elastomer | |
USRE29890E (en) | Flat free pneumatic tire and void free filling therefor | |
KR920002678B1 (en) | Polyurethanes composition and making thereof | |
US3296156A (en) | 2-amino-2-methyl-propanol crosslinking agent for polyurethane process and product | |
US2904535A (en) | Curing polyalkyleneether polyurethanes with aromatic dhsocyanates |