USRE27909E - Fuel injection system for internal combustion engines - Google Patents

Fuel injection system for internal combustion engines Download PDF

Info

Publication number
USRE27909E
USRE27909E US27909DE USRE27909E US RE27909 E USRE27909 E US RE27909E US 27909D E US27909D E US 27909DE US RE27909 E USRE27909 E US RE27909E
Authority
US
United States
Prior art keywords
fuel
metering valve
outlet
fuel injection
injection nozzles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH537466A external-priority patent/CH434874A/en
Application filed filed Critical
Application granted granted Critical
Publication of USRE27909E publication Critical patent/USRE27909E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/02Fuel-injection apparatus characterised by being operated electrically specially for low-pressure fuel-injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/14Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel having cyclically-operated valves connecting injection nozzles to a source of fuel under pressure during the injection period
    • F02M69/145Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel having cyclically-operated valves connecting injection nozzles to a source of fuel under pressure during the injection period the valves being actuated electrically

Definitions

  • a single fuel metering valve is provided to control the injection of fuel into a plurality of cylinders in an internal-combustion engine.
  • a plurality of fuel injection nozzles are each coupled between the outlet of the fuel metering valve and the air intake conduit of a corresponding cylinder.
  • An electrical control circuit is coupled between the crankshaft of the motor and the fuel metering valve to control the timing and the quantity of fuel injected into the air intake conduits through the fuel injection nozzles.
  • the fuel injection nozzles can be electromagnetically actuated valves which are opened in sequence during the intake stroke of the corresponding cylinders.
  • a fuel distributor can also be connected between the fuel metering valve and the injection nozzles to couple the fuel injection nozzles to the outlet of the fuel metering valve in time sequence.
  • This invention relates to a fuel injection system for injecting fuel into the air intake conduits of an internalcombustion engine having a plurality of cylinders.
  • Fuel injection systems of this type are known which contain mechanically driven single or multipiston pumps for injecting a precisely measured quantity of fuel under pressure directly or via a distributor into the cylinders of an engine through injection nozzles mounted on the air intake conduits.
  • Such piston pumps must be manufactured with great precision and are therefore very expensive. They are furthermore not well suited for highspeed engines.
  • a fuel injection system is also known in which fuel is injected by means of a single injection nozzle into the intakemanifold of an internal-combustion engine. In this case, however, there is a continuous injection which is not controlled to coincide with the operating cycle of the engine.
  • the fuel injection system according to the present invention is characterized by a single fuel metering valve which controls the amount of fuel injected into all of the cylinders of an internal-combustion engine in synchronisrn with the operating cycle of the engine.
  • the fuel is brought to the fuel metering valve from a fuel pump, and the fuel metering valve is coupled via fuel lines to fuel injection nozzles communicating through the air intake conduits in front of the intake valves for the cylinders.
  • FIGURE 1 is a schematic representation of a first embodiment of a fuel injection system of this invention in which all of the fuel injection nozzles are simultaneously connected with the metering valve.
  • FIGURE 2 is a schematic representation of a modification of the embodiment of FIGURE 1 including a distributor driven by the engine.
  • FIGURE 3 is a schematic representation of an embodiment in which the injection of fuel into the individual air intake conduits is accomplished by clcctromagnetically operated valves.
  • a four-cylinder internal-combustion engine is represented schematically by an engine block B, four cylinders 1 formed in block B, and intake valve 2 for admitting an air-fuel mixture into each of the cylinders 1, an air intake conduit 3 communicating with the intake valve 2 of each cylinder 1, an intake manifold 5 connected to each of the air intake conduits 3, a piston P slidably mounted within each of the cylinders 1, and a crankshaft C connected to all of the pistons P to be driven thereby. Since the detailed structure and operation of internal-combustion engines are well known in the art, and since this invention relates to the fuel injection system for the above-noted engine rather than to the engine itself, no further description will be given for the engine per se.
  • fuel is pumped by a fuel pump 7 from a fuel container 6 to a pressure pump 8 and subsequently flows, under pressure, via a pressure regulating valve 9 to an electromagnetic fuel metering valve 10.
  • the fuel metering valve 10 contains an inlet I, and outlet 0, a control member K for controlling the flow of fuel from the outlet 0, and an electromagnet M for controlling the position of control member K.
  • the outlet 0 of valve 10 is opened at least once during each revolution of crankshaft C by means of a cam disc which is mechanically or magnetically coupled to a switch 11.
  • the closing of switch 11 applies a pulse to an electrical control circuit 12, which in turn applies a pulse to electromagnet M to lift control member K and open the outlet 0 of the fuel metering valve 10.
  • control circuit l2 varies the length of its output pulse in accordance with intake manifold pressure, and other factors such as air temperature and cooling water temperature to compensate for changes in these variables. Since the detailed circuit elements which form control circuit 12 are well known in the art, they are not disclosed indetail in the drawings.
  • the fuel which is metered out through outlet 0 of fuel metering valve 10 is transmitted via a fuel distributor 13 and fuel lines 13a to fuel injection nozzles 14, each of which communicates into a corresponding air intake conduit 3.
  • the fuel is injected simultaneously into all of the air intake conduits 3, and is drawn into the corresponding cylinder 1 when the intake valve 2 thereof is opened during the intake stroke thereof.
  • the injection does not occur simultaneously but rather in the sequence of ignition, namely during the intake stroke for each cylinder.
  • This is accomplished by a rotary member 15 within fuel distributor 13', the rotary member 15 having a passageway therethrough, as indicated by the dashed lines, for selectively coupling the outlet of valve to only one of the fuel lines at a time in sequence depending on its rotary position.
  • the rotary member is rotated in synchronism with crankshaft C by a camshaft 18 which is coupled thereto via a gear train, which camshaft 18 also actuates a switch 16 to trigger control circuit 12 in synchronism with crankshaft C and rotary member 15.
  • the injection process is initiated four times during one revolution of the camshaft 18 by switch 16, whose opening and closing times are set to fall within the time period during which the rotary member 15 is aligned with one of the feed lines 13a, so that the injection action will not occur when the rotary member 15 is passing from one feed line 13a to the next.
  • the timing of switch 16 and rotary member 15 is preferably synchronized so that the injection period for each cylinder will occur during the intake stroke for that cylinder.
  • the injection nozzles consist of normally closed, magnetically operated valves 19 which are opened in sequence of ignition by means of electric pulses and are kept open until the injection action is completed.
  • the pulses are distributed to the individual valves 19 by an electrical distributor 17 which is driven by the camshaft C. Electrical distributor 17 also produces the triggering pulses for electrical control circuit 12.
  • FIGURES 2 and 3 require fast-acting metering valves because with a fast-running four-cylinder engine, which, e.g., reaches 6000 r.p.m., a maximum time of only 5X10 seconds is available for each injection period.
  • Two metering valves are required for a sixor eight-cylinder engine, each metering valve being associated with three or four cylinders.
  • the fuel injection system of this invention has the advantage that only one, or with more than four cylinders according to FIGURES 2 and 3, at most two metering valves are required.
  • the fuel injection system of this invention not only provides a more equal distribution of fuel to the individual cylinders, but also provides a substantial reduction in cost by substantially reducing the number of precision components required in the system.
  • a fuel injection system comprising, in combination:
  • a fuel metering valve having a fuel inlet, a fuel outlet, and a control member for controlling the flow of fuel from said fuel outlet, said control memher being operable to open and to close said fuel metering valve once for each intake stroke for each cylinder whereby the quantity of fuel injected is determined by the time period during which said fuel metering valve is opened by said [electrical] control member [means];
  • a fuel injection system as defined in claim 1 wherein said means for connecting each of said fuel injection nozzles to the outlet of said fuel metering valve includes a valve-type fuel distributor having an inlet connected [between] to the outlet of said fuel metering valve and separate outlets to each of said fuel injection nozzles.
  • a fuel injection system comprising, in combination:
  • a fuel metering valve having a fuel inlet, a fuel outlet, and a control member for controlling the flow of fuel from said fuel outlet by intermittently opening the metering valve for predetermined periods 0/ time;
  • means for successively connecting each of said fuel injection nozzles to the outlet of said fuel metering valve including a fuel distributor connected between the outlet of said fuel metering valve and said fuel injection nozzles, said fuel distributor including rotary means for connecting each of said injection nozzles to the outlet of said fuel metering valve in time sequence from a time no later than the start until a time no sooner than the end of a corresponding actuation period of the metering valve and means coupled between said crankshaft and said rotary means for driving said rotary means in synchronism with said crankshaft; and
  • a fuel injection system as defined in claim 4 wherein said rotary means connects the outlet of the fuel metering valve with the injection nozzle of each cylinder during its intake stroke, the injection action of each cylinder being initiated and terminated by said electrical control means within the time period of the intake stroke for the corresponding cylinder.
  • a fuel injection system comprising, in combination:
  • a fuel metering valve having a fuel inlet, a fuel outlet, and a control member for controlling the flow of fuel from said fuel outlet, said control member being operable to open and to close said fuel metering valve once for each intake stroke of each cylinder whereby the quantity of fuel injected is determined by the time period during which said fuel metering valve is opened by said control member;
  • a fuel injection system as defined in claim 6 wherein said means for connecting each of said fuel injection nozzles to the outlet of said fuel metering valve includes a valve type fuel distributor having an inlet connected to the outlet of said fuel metering valve and separate outlets connected to each of fuel injection nozzles.
  • said fuel infection nozzles each comprise a normally closed electromagnetically actuated valve
  • said means for connecting each of said fuel injection nozzles to the outlet of said fuel metering valve includes electrical control means coupled between said crankshaft and said electromagnetically actuated valves to open each of said electromagnetically valve in synchronization with the working cycles of the corresponding cylinder.
  • a fuel injection system comprising, in combination:
  • a fuel metering valve having a fuel inlet, a fuel outlet, and a control member for controlling the flow of fuel from said fuel outlet by intermittently opening the metering valve for predetermined periods of time;
  • means for connecting each of said fuel injection nozzles to the outlet of said fuel metering valve including a fuel distributor connected between the outlet of said fuel metering valve and said fuel injection nozzles, said fuel distributor including rotary means for connecting each of said infection nozzles to the outlet of said fuel metering valve in time sequence from a time no later than the start until a time no sooner than the end of a corresponding actuation period of the metering valve, and means coupled between said crankshaft and said rotary means for driving said rotary means in synchronism with said crankshaft; and
  • a fuel injection system as defined in claim 9 wherein said rotary means connects the outlet of the fuel metering valve with the infection nozzle of each cylinder during its intake stroke, the injection action for each cylinder being initiated and terminated by said electrical control means within the time period of the intake stroke for the corresponding cylinder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

A SINGLE FUEL METERING VALVE IS PROVIDED TO CONTROL THE INJECTION OF FUEL INTO A PLURALITY OF CYLINDERS IN AN INTERNAL-COMBUSTION ENGINE. A PLURALITY OF FUEL INJECTION NOZZLES ARE EACH COUPLED BETWEEN THE OUTLET OF THE FUEL METERING VALVE AND THE AIR INTAKE CONDUIT OF A CORRESPONDING CYLINDER. AN ELECTRICAL CONTROL CIRCUIT IS COUPLED BETWEEN THE CRANKSHAFT OF THE MOTOR AND THE FUEL METERING VALVE TO CONTROL THE TIMING AND THE QUANTITY OF FUEL INJECTED INTO THE AIR INTAKE CONDUITS THROUGH THE FUEL INJECTION NOZZLES. THE FUEL INJECTION NOZZLES CAN BE ELECTROMAGNETICALLY ACTUATED VALVES WHICH ARE OPENED IN SEQUENCE DURING THE INTAKE STROKE OF THE CORREESPONDING CYLINDERS. A FUEL DISTRIBUTOR CAN ALSO BE CONNECTED BETWEEN THE FUEL METERING VALVE AND THE INJECTION NOZZLES TO COUPLE THE FUEL INJECTION NOZZLES TO THE OUTLET OF THE FUEL METERING VALVE IN TIME SEQUENCE.

Description

Feb. 5, R. HUBER Re.
FUEL INJECTION SYSTEM FOR INTERNAL COMBUSTION ENGINES Original Filed April 7, 1967 2 Sheets-Sheet 1 lNPUT VARIABLES (AIR TEMPERATURE,
WATER ELECTRICAL TEM PE RATUREJTC) CONTROL CIRC UIT MANIFOLD PRESSURE TRANSDUCER INVENTOR Robert Huber ATTORNEYS Feb. 5, 1974 R. HUBER Re. 27,909
FUEL LNJECTION SYSTEM FOR INTERNAL COMBUSTION ENGINES Original Filed April '7, 1967 2 Sheets-Sheet 2 INPUT VARIABLES ELECTRICAL CONTROL CIRCUIT l2 INPUT VAR'ABLES ELECTRICAL CONTROL CIRCUIT a2 ELECTRICAL DISTRIBUTOR INVENTOR FIG 3. Robert Huber ATTORNEYS United States Patent Ofice Re. 27,909 Reissued Feb. 5, 1974 Int. Cl. F02m 51/00 US. Cl. 123-32 EA Claims Matter enclosed in heavy brackets II] appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
ABSTRACT OF THE DISCLOSURE A single fuel metering valve is provided to control the injection of fuel into a plurality of cylinders in an internal-combustion engine. A plurality of fuel injection nozzles are each coupled between the outlet of the fuel metering valve and the air intake conduit of a corresponding cylinder. An electrical control circuit is coupled between the crankshaft of the motor and the fuel metering valve to control the timing and the quantity of fuel injected into the air intake conduits through the fuel injection nozzles. The fuel injection nozzles can be electromagnetically actuated valves which are opened in sequence during the intake stroke of the corresponding cylinders. A fuel distributor can also be connected between the fuel metering valve and the injection nozzles to couple the fuel injection nozzles to the outlet of the fuel metering valve in time sequence.
BACKGROUND OF THE INVENTION This invention relates to a fuel injection system for injecting fuel into the air intake conduits of an internalcombustion engine having a plurality of cylinders. Fuel injection systems of this type are known which contain mechanically driven single or multipiston pumps for injecting a precisely measured quantity of fuel under pressure directly or via a distributor into the cylinders of an engine through injection nozzles mounted on the air intake conduits. Such piston pumps, however, must be manufactured with great precision and are therefore very expensive. They are furthermore not well suited for highspeed engines.
A fuel injection system is also known in which fuel is injected by means of a single injection nozzle into the intakemanifold of an internal-combustion engine. In this case, however, there is a continuous injection which is not controlled to coincide with the operating cycle of the engine.
It is also known to dispose an electrically operated fuel injection nozzle on the air intake conduit of each cylinder, which nozzle injects fuel applied thereto under pressure from a pump in precisely measured quantities into the air intake conduit. In this system, however, the number of electrical fuel injection nozzles has to be equal to the number of cylinders in the engine, which also becomes very costly. It is further difiicult with these individual fuel injection nozzles to produce exactly the same amount of injected fuel for all of the cylinders.
SUMMARY OF THE INVENTION It is the object of the present invention to provide a fuel injection system for internal-combustion engines which is significantly cheaper to produce than the abovenoted prior art systems and which provides a more equal distribution of the fuel injected into the individual cylinders.
The fuel injection system according to the present invention is characterized by a single fuel metering valve which controls the amount of fuel injected into all of the cylinders of an internal-combustion engine in synchronisrn with the operating cycle of the engine. The fuel is brought to the fuel metering valve from a fuel pump, and the fuel metering valve is coupled via fuel lines to fuel injection nozzles communicating through the air intake conduits in front of the intake valves for the cylinders.
BRIEF DESCRIPTION OF THE DRAWINGS FIGURE 1 is a schematic representation of a first embodiment of a fuel injection system of this invention in which all of the fuel injection nozzles are simultaneously connected with the metering valve.
FIGURE 2 is a schematic representation of a modification of the embodiment of FIGURE 1 including a distributor driven by the engine.
FIGURE 3 is a schematic representation of an embodiment in which the injection of fuel into the individual air intake conduits is accomplished by clcctromagnetically operated valves.
DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIGURE 1, a four-cylinder internal-combustion engine is represented schematically by an engine block B, four cylinders 1 formed in block B, and intake valve 2 for admitting an air-fuel mixture into each of the cylinders 1, an air intake conduit 3 communicating with the intake valve 2 of each cylinder 1, an intake manifold 5 connected to each of the air intake conduits 3, a piston P slidably mounted within each of the cylinders 1, and a crankshaft C connected to all of the pistons P to be driven thereby. Since the detailed structure and operation of internal-combustion engines are well known in the art, and since this invention relates to the fuel injection system for the above-noted engine rather than to the engine itself, no further description will be given for the engine per se.
In the fuel injection system shown in FIGURE 1, fuel is pumped by a fuel pump 7 from a fuel container 6 to a pressure pump 8 and subsequently flows, under pressure, via a pressure regulating valve 9 to an electromagnetic fuel metering valve 10. The fuel metering valve 10 contains an inlet I, and outlet 0, a control member K for controlling the flow of fuel from the outlet 0, and an electromagnet M for controlling the position of control member K. The outlet 0 of valve 10 is opened at least once during each revolution of crankshaft C by means of a cam disc which is mechanically or magnetically coupled to a switch 11. The closing of switch 11 applies a pulse to an electrical control circuit 12, which in turn applies a pulse to electromagnet M to lift control member K and open the outlet 0 of the fuel metering valve 10. The amount of fuel injected by the opening of outlet 0 is determined by the length of time that it is opened, which time length is variable by means of the duration of the output pulse from control circuit 12. Control circuit l2 varies the length of its output pulse in accordance with intake manifold pressure, and other factors such as air temperature and cooling water temperature to compensate for changes in these variables. Since the detailed circuit elements which form control circuit 12 are well known in the art, they are not disclosed indetail in the drawings.
The fuel which is metered out through outlet 0 of fuel metering valve 10 is transmitted via a fuel distributor 13 and fuel lines 13a to fuel injection nozzles 14, each of which communicates into a corresponding air intake conduit 3. In this embodiment, the fuel is injected simultaneously into all of the air intake conduits 3, and is drawn into the corresponding cylinder 1 when the intake valve 2 thereof is opened during the intake stroke thereof.
In the modification shown in FIGURE 2, however, the injection does not occur simultaneously but rather in the sequence of ignition, namely during the intake stroke for each cylinder. This is accomplished by a rotary member 15 within fuel distributor 13', the rotary member 15 having a passageway therethrough, as indicated by the dashed lines, for selectively coupling the outlet of valve to only one of the fuel lines at a time in sequence depending on its rotary position. The rotary member is rotated in synchronism with crankshaft C by a camshaft 18 which is coupled thereto via a gear train, which camshaft 18 also actuates a switch 16 to trigger control circuit 12 in synchronism with crankshaft C and rotary member 15.
The injection process is initiated four times during one revolution of the camshaft 18 by switch 16, whose opening and closing times are set to fall within the time period during which the rotary member 15 is aligned with one of the feed lines 13a, so that the injection action will not occur when the rotary member 15 is passing from one feed line 13a to the next. In this embodiment, the timing of switch 16 and rotary member 15 is preferably synchronized so that the injection period for each cylinder will occur during the intake stroke for that cylinder.
In the embodiment shown in FIGURE 3, the injection nozzles consist of normally closed, magnetically operated valves 19 which are opened in sequence of ignition by means of electric pulses and are kept open until the injection action is completed. The pulses are distributed to the individual valves 19 by an electrical distributor 17 which is driven by the camshaft C. Electrical distributor 17 also produces the triggering pulses for electrical control circuit 12.
The embodiments shown in FIGURES 2 and 3 require fast-acting metering valves because with a fast-running four-cylinder engine, which, e.g., reaches 6000 r.p.m., a maximum time of only 5X10 seconds is available for each injection period. Two metering valves are required for a sixor eight-cylinder engine, each metering valve being associated with three or four cylinders.
In comparison with the known fuel injection systems in which the metering of the fuel quantity for each cylinder occurs separately by individually magnetically controlled injection valves, which individual valves must all possess exactly the same characteristics, the fuel injection system of this invention has the advantage that only one, or with more than four cylinders according to FIGURES 2 and 3, at most two metering valves are required. Thus, the fuel injection system of this invention not only provides a more equal distribution of fuel to the individual cylinders, but also provides a substantial reduction in cost by substantially reducing the number of precision components required in the system.
I claim:
1. In an internal-combustion engine including a plurality of cylinders each having an intake valve for admitting an air-fuel mixture thereinto, a plurality of air intake conduits each communicating with the intake valve of a corresponding cylinder, a plurality of pistons each slidably mounted in a corresponding one of said cylinders, and a common crackshaft coupled to all of said pistons to be driven thereby, a fuel injection system comprising, in combination:
(a) a fuel pump having a fuel outlet for delivering fuel to the outlet at a predetermined pressure;
(b) a fuel metering valve having a fuel inlet, a fuel outlet, and a control member for controlling the flow of fuel from said fuel outlet, said control memher being operable to open and to close said fuel metering valve once for each intake stroke for each cylinder whereby the quantity of fuel injected is determined by the time period during which said fuel metering valve is opened by said [electrical] control member [means];
(0) means for connecting the outlet of said fuel pump to the inlet of said fuel metering valve;
(d) a plurality of fuel injection nozzles each communicating into a corresponding one of said air intake conduits for injecting fuel thereinto;
(e) means for successively opening and closing communication between the outlet of said fuel metering valve and the [outlets] outlet of each of said fuel injection nozzles in synchronization corresponding [time sequence] with the intake [stroke] strokes of the corresponding [cylinder] cylinders [and], the communication with each nozzle outlet being opened and closed, [and] the How of fuel from the outlet of said fuel metering valve [such] so that relative to the actuation [the] a quantity of fuel determined only by the pressure of the system and the time period of the metering valve flows out of the outlet of [one] each nozzle in turn While no fuel flows out of the other nozzle outlets; and
(f) electrical control means coupled between said crankshaft and the control member of said metering valve for controlling the timing and the amount of fuel injected into said air intake conduits through said fuel injection nozzles,
2. A fuel injection system as defined in claim 1 wherein said means for connecting each of said fuel injection nozzles to the outlet of said fuel metering valve includes a valve-type fuel distributor having an inlet connected [between] to the outlet of said fuel metering valve and separate outlets to each of said fuel injection nozzles.
3. A fuel injection system as defined in claim 1 wherein said fuel injection nozzles each comprise a normally closed electromagnetically actuated valve, and said means for connecting each of said fuel injection nozzles to the outlet of said fuel metering valve includes electrical control means coupled between said crackshaft and said electromagnetically actuated valve to open each of said electromagnetically actuated valves in synchronism with [time sequence during] the intake stroke of the corresponding cylinder.
4. In an internal-combustion engine including a plurality of cylinders each having an intake valve for admitting an air-fuel mixture thereinto, a plurality of air intake conduits each communicating with the intake valve of a corresponding cylinder, a plurality of pistons each slidably mounted in a corresponding one of said cylinders, and a common crakshaft coupled to all of said pistons to be driven thereby, a fuel injection system comprising, in combination:
(a) a fuel pump having a fuel outlet;
(b) a fuel metering valve having a fuel inlet, a fuel outlet, and a control member for controlling the flow of fuel from said fuel outlet by intermittently opening the metering valve for predetermined periods 0/ time;
(c) means for connecting the outlet of said fuel pump to the inlet of said fuel metering valve;
(d) a plurality of fuel injection nozzles each communicating into a corresponding one of said air intake conduits for injecting fuel thereinto;
(e) means for successively connecting each of said fuel injection nozzles to the outlet of said fuel metering valve including a fuel distributor connected between the outlet of said fuel metering valve and said fuel injection nozzles, said fuel distributor including rotary means for connecting each of said injection nozzles to the outlet of said fuel metering valve in time sequence from a time no later than the start until a time no sooner than the end of a corresponding actuation period of the metering valve and means coupled between said crankshaft and said rotary means for driving said rotary means in synchronism with said crankshaft; and
(f) electrical control means coupled between said crankshaft and the control member of said metering valve for controlling the timing and the duration of said intermittent opening periods and thereby the amount of fuel injected into said air intake conduits through said fuel injection nozzles.
5. A fuel injection system as defined in claim 4 wherein said rotary means connects the outlet of the fuel metering valve with the injection nozzle of each cylinder during its intake stroke, the injection action of each cylinder being initiated and terminated by said electrical control means within the time period of the intake stroke for the corresponding cylinder.
6. In an internal combustion engine including a plurality of cylinders, a plurality of pistons each slidably mounted in a corresponding one of said cylinders, and a common crankshaft coupled to all of said pistons to be driven thereby, a fuel injection system comprising, in combination:
(a) a fuel pump having a fuel outlet for delivering fuel to the outlet at a predetermined pressure;
(b) a fuel metering valve having a fuel inlet, a fuel outlet, and a control member for controlling the flow of fuel from said fuel outlet, said control member being operable to open and to close said fuel metering valve once for each intake stroke of each cylinder whereby the quantity of fuel injected is determined by the time period during which said fuel metering valve is opened by said control member;
(c) means for connecting the outlet of said fuel pump to the inlet of said fuel metering valve;
(d) a plurality of fuel injection nozzles for providing fuel to said cylinders;
(e) means for successively opening and closing communication between the outlet of said fuel metering valve and the outlet of each of said fuel injection nozzles in synchronization with the working cycle of the corresponding cylinder, the communication with each nozzle outlet being opened and closed relative to the actuation of said fuel metering valve such that a quantity of fuel determined only by the pressure of the system and the time period of the metering valve flows out of the outlet of each nozzle in turn while no fuel flows out of the other nozzle outlets; and
(f) electrical control means coupled between said crankshaft and the control member of said metering valve for controlling the timing and the amount of fuel injected through said fuel injection nozzles.
7. A fuel injection system as defined in claim 6 wherein said means for connecting each of said fuel injection nozzles to the outlet of said fuel metering valve includes a valve type fuel distributor having an inlet connected to the outlet of said fuel metering valve and separate outlets connected to each of fuel injection nozzles.
8. A fuel injection system as defined in claim 6 wherein said fuel infection nozzles each comprise a normally closed electromagnetically actuated valve, and said means for connecting each of said fuel injection nozzles to the outlet of said fuel metering valve includes electrical control means coupled between said crankshaft and said electromagnetically actuated valves to open each of said electromagnetically valve in synchronization with the working cycles of the corresponding cylinder.
9. In an internal combustion engine including a plurality of cylinders, a plurality of pistons each slidably mounted in a corresponding one of said cylinders, and a common crankshaft coupled to all of said pistons to be driven thereby, a fuel injection system comprising, in combination:
(a) a fuel pump having a fuel outlet;
(b) a fuel metering valve having a fuel inlet, a fuel outlet, and a control member for controlling the flow of fuel from said fuel outlet by intermittently opening the metering valve for predetermined periods of time;
(c) means for connecting the outlet of said fuel pump to the inlet of said fuel metering valve;
(d) a plurality of fuel injection nozzles for providing fuel to said cylinders;
(e) means for connecting each of said fuel injection nozzles to the outlet of said fuel metering valve including a fuel distributor connected between the outlet of said fuel metering valve and said fuel injection nozzles, said fuel distributor including rotary means for connecting each of said infection nozzles to the outlet of said fuel metering valve in time sequence from a time no later than the start until a time no sooner than the end of a corresponding actuation period of the metering valve, and means coupled between said crankshaft and said rotary means for driving said rotary means in synchronism with said crankshaft; and
(f) electrical control means coupled between said crankshaft and the control member of said metering valve for controlling the timing and the duration of said intermittent opening periods and thereby the amount of fuel injected through said fuel injection nozzles.
10. A fuel injection system as defined in claim 9 wherein said rotary means connects the outlet of the fuel metering valve with the infection nozzle of each cylinder during its intake stroke, the injection action for each cylinder being initiated and terminated by said electrical control means within the time period of the intake stroke for the corresponding cylinder.
References Cited The following references, cited by the Examiner, are of record in the patented file of this patent or the original patent.
UNITED STATES PATENTS 2,918,911 12/1959 Quiot 12332 EA 3,044,401 7/ 1962 Sawyer 123139 AL 3,187,734 6/1965 Yingst et al 123-139 AL 3,051,152 8/ 1962 Paule et a1 1231 19 R 3,319,613 5/1967 Begley et al 1231l9 R. 2,941,524 6/1960 Aldinger et al. 2,943,614 7/1960 Bosch et a1. 2,982,276 5/ 1961 Zechnall et a1. 1231 19 2,992,640 7/ 1961 Knapp 123-119 LAURENCE M. GOODRIDGE, Primary Examiner US. Cl. X.R. 123-119 R UNI'IED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. Reissue No. 27909 Dated February 5, 197A Inventor(s) Robert Huber It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 2, line 53, after cam disc" and before which is", insert i--.
Column 2, line 57, after "of" and before "fuel",
delete the--.
Column 3, line K3 in claim 1, after "operable" and before "to open" insert -intermittently-.
Signed and sealed this 6th day of August 197 (SEAL) Attest:
MCCOY M. GIBSON, JR. C. MARSHALL DANN Attesting Officer Commissioner of Patents
US27909D 1966-04-14 1971-07-06 Fuel injection system for internal combustion engines Expired USRE27909E (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH537466A CH434874A (en) 1966-04-14 1966-04-14 Injection device for injecting fuel into the intake manifold of spark-ignition internal combustion engines
US15997071A 1971-07-06 1971-07-06

Publications (1)

Publication Number Publication Date
USRE27909E true USRE27909E (en) 1974-02-05

Family

ID=25697573

Family Applications (1)

Application Number Title Priority Date Filing Date
US27909D Expired USRE27909E (en) 1966-04-14 1971-07-06 Fuel injection system for internal combustion engines

Country Status (1)

Country Link
US (1) USRE27909E (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4967712A (en) * 1987-11-12 1990-11-06 Injection Research Specialists, Inc. Two-cycle engine with electronic fuel injection
WO1991009359A1 (en) * 1987-11-12 1991-06-27 Injection Research Specialists, Inc. Two-cycle engine with electronic fuel injection
US5101800A (en) * 1990-12-07 1992-04-07 General Motors Corporation Fuel injection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4967712A (en) * 1987-11-12 1990-11-06 Injection Research Specialists, Inc. Two-cycle engine with electronic fuel injection
WO1991009359A1 (en) * 1987-11-12 1991-06-27 Injection Research Specialists, Inc. Two-cycle engine with electronic fuel injection
US5101800A (en) * 1990-12-07 1992-04-07 General Motors Corporation Fuel injection

Similar Documents

Publication Publication Date Title
US3460520A (en) Fuel injection system for internalcombustion engines
US4545345A (en) Air/fuel induction system for a multi-cylinder internal combustion engine
US3851635A (en) Electronically controlled fuel-supply system for compression-ignition engine
US3742918A (en) Electronically controlled fuel-supply system for compression-ignition engine
US3596640A (en) Fuel injection systems for internal combustion engines
GB1293155A (en) An improved fuel injection device
GB1277948A (en) Improvements in or relating to fuel injection systems for internal combustion engines
US3724436A (en) Fuel feed control device for internal combustion engines
GB858961A (en) Fuel injection system for internal combustion engines
US3762379A (en) System for injecting metered quantity of fuel into engine
GB1344523A (en) Internal combustion engines
GB1261246A (en) Improvements in or relating to a fuel injection device for a compression-ignited internal combustion engine
SE7901319L (en) DISTRIBUTION TYPE FUEL INJECTION PUMP FOR A MULTI-CYLINDER DIESEL ENGINE
US2863437A (en) Fuel injection devices for multicylinder engines
USRE27909E (en) Fuel injection system for internal combustion engines
GB2110756A (en) A fuel injection system for internal combustion engines
US4440133A (en) Device for premetered pressure-time injection
US3662721A (en) Fuel injection device for internal combustion engines
US3705572A (en) Fuel injection systems for internal combustion engines
US4489684A (en) Fuel injection pump assembly
US3777726A (en) Fuel injection apparatus
US2933073A (en) Direct gasoline injection system
JPS56106060A (en) Fuel injector for internal combustion engine
GB1191107A (en) Improvements in Fuel Injection Systems for Internal Combustion Engines
US3035562A (en) Fuel injection devices