USRE27825E - Bottom sealing machine - Google Patents

Bottom sealing machine Download PDF

Info

Publication number
USRE27825E
USRE27825E US27825DE USRE27825E US RE27825 E USRE27825 E US RE27825E US 27825D E US27825D E US 27825DE US RE27825 E USRE27825 E US RE27825E
Authority
US
United States
Prior art keywords
blank
container
panels
forming
machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Application granted granted Critical
Publication of USRE27825E publication Critical patent/USRE27825E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31BMAKING CONTAINERS OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31B50/00Making rigid or semi-rigid containers, e.g. boxes or cartons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31BMAKING CONTAINERS OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31B50/00Making rigid or semi-rigid containers, e.g. boxes or cartons
    • B31B50/02Feeding or positioning sheets, blanks or webs
    • B31B50/04Feeding sheets or blanks
    • B31B50/06Feeding sheets or blanks from stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31BMAKING CONTAINERS OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31B2105/00Rigid or semi-rigid containers made by assembling separate sheets, blanks or webs
    • B31B2105/002Making boxes characterised by the shape of the blanks from which they are formed
    • B31B2105/0027Making boxes from blanks consisting of side wall panels integral with a bottom panel and additional side wall panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31BMAKING CONTAINERS OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31B50/00Making rigid or semi-rigid containers, e.g. boxes or cartons
    • B31B50/26Folding sheets, blanks or webs
    • B31B50/44Folding sheets, blanks or webs by plungers moving through folding dies
    • B31B50/46Folding sheets, blanks or webs by plungers moving through folding dies and interconnecting side walls

Definitions

  • ABSTRACT OF THE DISCLOSURE A method of and a machine for forming a container from a pair of preformed end panels and a preformed blank having a central rectangular bottom wall forming panel, hinged side wall forming panels along opposite sides of the bottom wall forming panel, and projecting end panel joining flaps along the edges of the bottom and side wall forming panels, the method and machine operation involving adhesively coating one side of the blank along the flaps thereof, relatively moving the end panels and blank to positions wherein the end panels engage the bottom wall forming panel of the blank along and just inward of the hinge lines of its flaps, and then simultaneously folding the side wall forming panels of the blanks upwardly about the ends of the end panels and folding the flaps of the blank inwardly against the outer surfaces of the end panels to adhesively join the flaps to the end panels.
  • This invention relates generally to the art of fabricating cardboard shipping containers, particularly shipping containers of the kind disclosed in co-pending application Ser. No. 336,970, filed Jan. 10, 1964, now Patent No. 3,197,108 and entitled Container With Glued Cardboard Stacking Cleats.
  • the invention has more particular reference to a method of and means for mating the separate preformed end panels and blank which make up the shipping container of said co-pending application and erecting or folding the blank about and joining the blank to said panels in such manner as to form a container structure of the kind disclosed in said co-pending application.
  • each container in a vertical column of stacked containers must be sufficiently strong to support the vertical load imposed thereon by the upper containers and, in addition, must provide a stable supporting base for the adjacent upper container.
  • Some shipping containers are sufliciently strong and their top and bottom surfaces are sufficiently flat to permit the containers to be stacked with the bottom surface of one container resting directly on the top surface of the adjacent lower container.
  • the top and/or bottom surfaces of many shipping containers tend to bulge outwardly when the containers are filled.
  • each container can rock back and forth relative to its adjacent lower container, thereby resulting in an extremely unstable and unsafe container stack.
  • Other containers do not possess the required strength to enable them to be stacked one on top of the other.
  • the Bliss container in its simplest form, is fabricated from a single cardboard blank having side portions which are folded in such a way as to constitute side walls and side cover panels, and end portions which are folded in such a way as to constitute end walls and end cover panels. The blank is provided with additional tabs for securing the end and side walls together at the four corners of the container.
  • the Bliss container is initially formed, in a so-called bottom sealing operation, to a partially completed condition wherein the cover panels are left unfolded to permit the container to be filled. After filling, the container is completed in a so-called top sealing op eration during which the cover panels are folded and sealed to close the top of the container.
  • Numerous variations of the Bliss container have been known and used in the past several decades.
  • Bliss containers While the Bliss containers have been and are currently being successfully used for many purposes, they are deficient for the reason that they often cannot be stacked to the height required by many warehousing and shipping facilities. This is due to the fact that the containers do not possess the requisite structural strength and to the additional fact that the top and bottom surfaces of the containers, when filled, tend to bulge outwardly. As noted above, this bulging of each container prevents the latter from providing a stable support for a container resting thereon.
  • the Bliss containers are also deficient in that when exposed to conditions of high humidity, such as are encountered in commercial freezers and refrigerators, the cardboard material of the containers becomes weakened to the point that the containers collapse.
  • Containers of the kind under discussion are often used to ship produce.
  • the containers are provided with ventilation openings to permit the free circulation of air through the containers.
  • Many produce containers are not constructed to preserve such ventilation spaces between adjacent containers in a container stack.
  • stacking cleats comprise flat strips which are secured to the top and/or bottom of a container adjacent its ends to provide flat supporting surfaces for an adjacent upper container in a column of stacked containers.
  • stacking cleats space the confronting top and bottom surfaces of adjacent stacked containers to provide ventilation passages therebetween.
  • the separate lid with its wooden stacking cleats and the nails required to secure the lid to a container represent a substantial material cost
  • the labor involved in initially fabricating the lid and the cleats and subsequently nailing the lid to a container represent a substantial labor cost.
  • These material and labor costs are in addition to the cost of the container itself and, therefore, contribute appreciably to the overall container cost. While the additional costs involved in the use of such as separate lid with wooden cleats may be small for each container, the overall cost of equipping a large number of containers with such lids may be substantial.
  • the aforementioned co-pending application Serial No. 336,970 discloses a shipping container which successfully avoids the above discussed defects of the currently available shipping containers.
  • the container of said co-pending application is fabricated from a preformed cardboard blank and two separate preformed end wall forming panels, or end panels as they will be referred to herein.
  • the blank is scored and perforated to form a number of longitudinal and transverse hinge lines which define on the blank a central bottom wall forming panel, two side wall forming panels outboard the bottom wall forming panel, two cover forming panels outboard of the side wall forming panels, and end panel joining flaps along opposite side edges of the bottom wall forming panel and the two side wall forming panels.
  • the two separate end panels have a laminated construction including a wooden core and a cardboard panel bonded to the outer surface of the core in such manner that the upper edge portion of the cardboard panel projects a distance above the upper edge of the wooden core to define a hinged flap.
  • the end panels are mated with the blank for engaging the lower edges of the panels with the central bottom wall forming panel of the blank just inboard of the hinge lines of the flaps on the latter panel. Thereafter, the side wall forming panels of the blank are folded upwardly about opposite ends of the end panels, the flaps on the blank are folded inwardly against the outer surfaces of the end panels, the cover forming panels are folded inwardly across the top of the container, and, finally, the projecting flaps on the end wall forming panels are folded inwardly over the folded cover forming panels.
  • the several folded end panel joining flaps on the blank are adhesively bonded to the outer surfaces of the end panels, and the folded fiaps on the end panels are adhesively bonded to the folded cover forming panels, thereby to form a completed container.
  • the container is initially formed, in a bottom sealing operation, to a partially completed condition, wherein the cover forming panels and the flaps on the end panels are left unfolded to permit the container to be filled. Thereafter, the cover forming panels and end panel flaps are folded and sealed in a top sealing operation to complete the container.
  • the folded end panel flaps overlie the cover forming panels to define cardboard stacking cleats which are reinforced by the wooden cores of the end panels. It has been found that the improved shipping container of the co-pending application is uniquely capable of satisfying both the stacking and ventilation requirements referred to earlier.
  • a more specific object of the invention is to provide a container forming method and machine of the character described wherein a pair of end panels are mated with a preformed blank and thereafter the side wall forming panels of the blank are folded upwardly about opposite ends of the end panels and the end panel joining flaps on the blank are folded inwardly against and adhesively bonded to the outer surfaces of the end panels to form a partially completed container structure.
  • Another object of the invention is to provide a container forming machine of the character described which is fully automatic in operation.
  • a further object of the invention is to provide a container forming machine of the character described which may be adjusted to accommodate container blanks and end panels of different sizes.
  • Yet a further object of the invention is to provide a container forming machine of the character described which is relatively compact, reliable in operation, easy to use, capable of high speed operation, and is otherwise ideally suited to its intended purposes.
  • the invention consists in the construction, arrangement and combination of the various parts of the invention, and in the various combination of method steps involved in the invention, whereby the objects contemplated are attained, as hereinafter set forth, pointed out in the appended claims, and illustrated in the accompanying drawings, wherein:
  • FIGURE 1 is a perspective view of a bottom sealing, container forming machine according to the invention.
  • FIGURE 2a diagrammatically illustrates the successive container forming steps performed by the machine during its operation
  • FIGURE 2b is an enlargement of two end panel joining flaps on one of the blanks shown in FIGURE 2a and illustrating the manner in which these flaps are coated with glue;
  • FIGURE 2c diagrammatically illustrates the forming machine itself
  • FIGURE 3a is an enlarged plan view of the left-hand end of the forming machine as the latter is viewed in FIGURE 1;
  • FIGURE 3b is an enlarged plan view of the right-hand end of the machine
  • FIGURE 4 is an enlarged section taken on line 44 in FIGURE 3b and showing a number of preformed blanks in position on the machine;
  • FIGURE 5 is an enlarged view looking in the direction of the arrows on line 55 in FIGURE 4;
  • FIGURE 6a is a section taken on line 6a-6a in FIG- URE 3a;
  • FIGURE 6b is a section taken on line 6b6b in FIG- URE 3b;
  • FIGURE 7 is a section taken on line 7-7 in FIG- URE 6b;
  • FIGURE 8 is a section taken on line 88 in FIG- URE 6b:
  • FIGURE 8a is an enlargement of the area enclosed by the circular arrow 8a8a in FIGURE 8;
  • FIGURE 9 is an enlarged section taken on line 9-9 in FIGURE 6a;
  • FIGURE 10 is an enlarged section taken on line 10-10 in FIGURE 6a;
  • FIGURE 11 is an enlarged section taken on line 11-11 in FIGURE 6a;
  • FIGURE 12 is an enlarged section taken on line l2--12 in FIGURE 6a;
  • FIGURE 13 is an enlarged view, partially broken away, looking in the direction of the arrows on line 1313 in FIGURE 3a;
  • FIGURE 13a is a section taken on line 13a13a in FIGURE 13;
  • FIGURE 14 is an enlarged section taken on line 14-14 of FIGURE 12;
  • FIGURE 15 is a top plan view of the forming mandrel embodied in the forming machine
  • FIGURE 16 is a side elevation of the forming mandrel
  • FIGURE 17 is an enlarged section taken on line 1717 in FIGURE 16;
  • FIGURE 18 is an enlarged section taken on line 18-18 of FIGURE 16;
  • FIGURE 19 is an enlargement of the upper portion of FIGURE 12 with parts broken away, and illustrating the forming mandrel descending in its forming stroke to form a container;
  • FIGURE 20 is an enlarged section taken on line 20-20 in FIGURE 19;
  • FIGURE 21 is an enlarged section taken on line 2121 in FIGURE 19;
  • FIGURE 22 is an enlarged plan view of one of the end panel infeed mechanisms embodied in the forming machine
  • FIGURE 23 is a view looking in the direction of the arrows on line 2323 in FIGURE 22;
  • FIGURE 24 is a section taken on line 2424 in FIG- URE 23;
  • FIGURE 25 is an enlarged section taken on line 25-25 in FIGURE 23;
  • FIGURE 26 is an enlarged section taken on line 26-26 in FIGURE 22 and illustrating a number of preformed end panels placed in the end panel infeed mechanisms;
  • FIGURE 27 is an enlarged section taken on line 2727 in FIGURE 22;
  • FIGURE 28 is a perspective view of certain elements of the end panel infeed mechanism.
  • FIGURE 29 diagrammatically illustrates the electrical and pneumatic control system of the machine.
  • the container forming machine of the invention is designated in its entirety by the reference numeral 10 and the partially completed container which is formed by the machine is designated in its entirety by the reference character C.
  • this container forms the subject matter of co-pending application Serial No. 336,970. Accordingly, a detailed description of the container may be obtained from said co-pending application. In order to facilitate a full and complete understanding of the present invention, however, it is deemed advisable to briefly describe, at the outset, the container C and the manner in which the container is formed by the machine 10.
  • FIGURE 2a illustrates the several components of the container and diagrammatically illustrates the successive steps involved in the formation of the container by the machine.
  • the container is constructed of three basic components, to wit, a preformed cardboard blank B and two identical, preformed end panels P
  • the blank B has a number of transverse score lines L and L: which define on the blank a central, rectangular bottom wall forming panel P two side wall forming panels P outboard of the bottom wall forming panel, and two cover forming panels P outboard of the side wall forming panels.
  • the blank also has a series of longitudinal score lines L and L; which define end panel joining flaps F along opposite edges of the bottom wall forming panels P and additional end panel joining flaps F, along opposite edges of the side wall forming panels P
  • Each end panel P has a laminated construction and includes a central wooden plate or core W, an inner paper facing F adhesively bonded to the normally inner surface of the core, and an outer cardboard facing F adhesively bonded to the normally outer surface of the core.
  • the outer facing of each end panel extends a distance above the normally upper edge of its respective core and has a score line L parallel to and located a small distance above said edge. For reasons which will be explained later, this spacing is approximately equal to the thickness of the cardboard blank B.
  • each preformed blank B is fed endwise from the blank infeed station 5,, through the gluing station S to the forming station 8,.
  • stripes of cold glue G and hot glue 6, are applied to the end panel joining flaps P and F of the blank.
  • the blank Upon arrival of each glue-coated blank at the forming station S the blank receives a pair of end panels P from the end panel infeed stations 8,.
  • end panels are initially disposed in positions of mating relation to the blank, wherein the panels are located over the central, bottom wall forming panel P of the blank, just inboard of the score lines L along opposite edges of the latter panel. Thereafter, the blank and its mating end panels are forced downwardly into a forming cavity (not shown in FIGURE 2a) during which the side wall forming panels P of the blank are folded upwardly about opposite ends of the end panels P and the adhesively coated end panel joining flaps P and F, of the blank are folded inwardly against the outer surfaces of the end panels, thereby to adhesively secure the blank to the end panels.
  • the cover forming panels P on the blank and the flaps F,, on the end panels are not folded about their respective score lines L and L during this folding operation, whereby at the conclusion of the forming operation, the adhesively joined blank B and end panels P form a partially completed container structure of the kind designated by the reference character C.
  • This partially completed container structure remains in the forming cavity at the end of the forming operation, just referred to, and is ejected from the cavity to the outfeed station 5,, during the formation of the next container structure C.
  • each container structure C Upon entering the outfeed station, each container structure C is conveyed from the machine.
  • Blank infeed station 8 FIGURES l, 2, 3a, 3b, 4,
  • Gluing station 8 FIGURES 1, 2c, 3a, 6a, 9, 10, 11,
  • FIGURE 29 Electrical and pneumatic systems: FIGURE 29.
  • GENERAL MACHINE ORGANIZATION Considering the machine generally, the latter will be seen to comprise a main rectangular supporting frame 12 and a pair of cross frames 14 extending laterally out from opposite sides of the main frame, adjacent one end of the latter frame.
  • the blank infeed station S gluing station 5,, forming station S and the outfeed station S are located on the main frame 12, at positions spaced therealong.
  • the blank infeed stations 8, are located on the cross frames 14.
  • the infeed station 5 comprises a storage magazine 16 for containing a supply of the preformed cardboard blanks B and an infeed mechanism 18 for successively feeding the blanks from the magazine to the gluing station 8,.
  • a feed mechanism 20 which receives each blank emerging from the infeed station S and conveys the blank through the gluing station to the forming station S
  • the gluing station 8 also includes a glue applicator mechanism 24 including a pair of cold glue applicators 26 and a pair of hot glue applicators 28 for applying to each blank, as the latter travels through the gluing station, the stripes of cold and hot glue G and G respectively.
  • the forming station S includes a forming mechanism 30 including a forming die 32 having a vertical forming cavity opening through the top and bottom of the die, and a forming mandrel or ram 34 located above the forming die 32 and movable between a lower, extended position wherein the lower, leading end of the ram projects into the forming cavity in the forming die 32, and an upper retracted position, wherein the lower leading end of the ram is retracted out of the cavity.
  • Each end panel infeed station 8 includes an elongate storage magazine 36 for containing a supply of the preformed end panels P and an infeed mechanism 38 for successively feeding the end panels from the respective magazine into the forming station 8,; to a position of mating relation to a blank B at the forming station.
  • the outfeed station S comprises an outfeed conveyor 40 which receives each partially completed container structure C from the forming station 8; and conveys the container structure from the machine.
  • the infeed mechanism 18 at the blank infeed station S successively ejects the preformed cardboard blanks B from the blank storage magazine 16 to the gluing station 5,.
  • the feed mechanism at the gluing station conveys each blank through the gluing station to an initial position at the forming station 8;, wherein the blank extends across the open top of the forming cavity in the forming die 32, between the latter and the then retracted forming mandrel 34, and the bottom forming panel P of the blank overlies the cavity.
  • the blank is coated with the cold and hot glue G and G
  • a glue-coated blank B there is situated in the initial forming position at the forming station 8;, a glue-coated blank B.
  • the end panel infeed mechanisms 38 are effective to position a pair of end panels P in mating relation to this blank, wherein the end panels overlie the bottom wall forming P of the blank, just inboard of the score lines L along opposite edges of the bottom forming panel.
  • the forming mechanism 30 at the forming station S is now activated to drive the forming mandrel 34 downwardly to its extended position within the forming cavity in the forming die 32.
  • the latter drives the pair of end panels downwardly into initial mating engagement with the underlying blank and thereafter drives the mating blank and end panels into the forming cavity.
  • the side wall forming panels P, of the blank are folded upwardly about opposite ends of the end panels and the glue-coated flaps P and F on the blank are folded inwardly against the outer surfaces of the end panels, in the manner explained earlier, thereby to effect adhesive bonding of the flaps to the end panels and form a partially completed container structure C.
  • This container structure remains within the forming die during the subsequent upward return of the forming mandrel 34 to its retracted position to await the next glue-coated blank from the gluing station S
  • the mandrel 34 again descends to force the latter blank and its mating end panels P into the forming cavity to form another container structure C.
  • this latter container structure is forced downwardly, through the forming die, it engages the upstanding cover forming panels P,, on the first container structure and thereby ejects the latter structure through the lower end of the die.
  • the first container structure then drops onto the outfeed conveyor 40 and is conveyed from the machine.
  • the container forming machine 10 is adapted to operate on preformed cardboard blanks B and end panels P of different sizes, to form container structures C of different capacities.
  • the machine is equipped with a changeover mechanism including mechanisms at the blank infeed station S the gluing station S the forming station 5;, and the end panel infeed stations 5.; which may be operated in unison to condition the machine to accept blanks and end panels of different sizes.
  • the container forming machine 10 will now be described in greater detail.
  • the blank storage magazine 16 at the blank infeed station comprises a pair of upstanding wall members 42 and 44 which are disposed in spaced parallel planes extending lengthwise of the machine frame 12.
  • the lower edge portions of these wall members are secured, as by welding, to the inner, confronting surfaces on the upstanding fianges 46 of a pair of angles 48 on the machine frame 12.
  • angles form main supporting members on the frame which extend from a cross member 12a on the infeed end of the frame to a cross member 12b 0n the frame, just beyond the forming station S
  • the ends of the angles 48 are fastened to the cross members 12a and 12b by bolts 50 which extend through slots in the cross members, as shown, whereby the spacing between the angles, and, thereby, also the spacing between the wall members 42 and 44 of the magazine 16, may be adjusted.
  • the upper end of the left-hand magazine wall members 42 in FIGURES 7 and 8 is turned outwardly to form a horizontal supporting shelf 42a.
  • the outer edge of this shelf is preferably supported on the frame 12 by braces 52 which are secured to the frame by bolt and slot connections 54, whereby the braces may be adjusted relative to the frame.
  • an outwardly directed, reinforcing flange 56 Along the forward edge of the wall member 42, that is, the edge of the wall member adjacent the gluing station S is an outwardly directed, reinforcing flange 56.
  • an inwardly directed locating flanges 58 for locating the blanks B in the magazine 16 in the endwise direction of the blanks, as will appear presently.
  • This inwardly directed flange has a wear strap 60 welded thereto.
  • a horizontal bridge 62 comprising an angle having a rear depending vertical flange 64 which seats against the forward surfaces of the reinforcing flange 56 and the locating flange 58 on the magazine wall members 42 and 44, respectively.
  • the ends of the bridge 62 are secured to the machine frame 12 by upstanding supports 66 which support the bridge in a horizontal position, a distance above the frame.
  • the magazine wall flanges 56 and 58 are secured to the bridge flange 64 by bolts 68 which extend through slots in the bridge flange to permit adjustment of the spacing between the wall members 42 and 44, in the manner explained above.
  • each supporting guide 70 comprises a base plate 72 which is welded to the undersurface of the

Landscapes

  • Making Paper Articles (AREA)

Abstract

A METHOD OF AND A MACHINE FOR FORMING A CONTAINER FROM A PAIR OF PERFORMED END PANELS AND A PREFORMED BLANK HAVING A CENTRAL RECTANGULAR BOTTOM WALL FORMING PANEL, HINGED SIDE WALL FORMING PANELS ALONG OPPOSITE SIDES OF THE BOTTOM WALL FORMING PANEL, AND PROJECTING END PANEL JOINING FLAPS ALONG THE EDGES OF THE BOTTOM AND SIDE WALL FORMING PANELS, THE METHOD AND MACHINE OPERATION INVOLVING ADHESIVELY COATING ONE SIDE OF THE BLANK ALONG THE FLAPS THEREOF, RELATIVELY MOVING THE END PANELS AND BLANK TO POSITIONS WHEREIN THE END PANELS ENGAGE THE BOTTOM WALL FORMING PANEL OF THE BLANK ALONG AND JUST INWARD OF THE HINGE LINES OF ITS FLAPS, AND THEN SIMULTANEOUSLY FOLDING THE SIDE WALL FORMING PANELS OF THE BLANKS UPWARDLY ABOUT THE ENDS OF THE END PANELS AND FOLDING THE FLAPS OF THE BLANK INWARDLY AGAINST THE OUTER SURFACES OF THE END PANELS TO ADHESIVELY JOIN THE FLAPS TO THE END PANELS.

Description

Dec. 4, 1973 c. ROESNER ET AL Re. 27,825
BOTTOM SEALING MACHINE Original Filed Jan. 27, 1965 15 Sheets-Sheet 1 Dec. 4, 1973 c, RQESNER ET AL Re. 27,825
BOTTOM SEALING MACHINE Original Filed Jan. 27. 1965 16 Sheets-Sheet 2 Dec. 4, 1973 c, o s R ET AL Re. 27,825
BOTTOM SEALING MACHINE Original Filed Jan. 27, 1965 l6 Sheets-Sheet 5 Dec. 4, 1973 c, ROESNER ET AL Re. 27,825
BOTTOM SEALING MACHINE Original Filed Jan. 27. 1965 1a Sheet-Sheet 4 4, 1973 c. ROESNER ET 27,825
BOTTOM SEALING MACHI NE 16 Sheets-Sheet Original Filed Jan. 27, 1965 Dec. 4, 1973 c, ROESNER ET AL Re. 27,825
BOTTOM SEALING MAUHINV l6 Sheets-Sheet 6 Original Filed Jan. 27, 1965 Dec. 4, 1973 c. ROESNER ET AL Re. 27,825
BOTTOM SEALING MACH TNE l6 Sheets-Sheet 7 Origmal Filed Jan. 2 1965 Dec. 4, 1973 L c. ROESNER ET AL Re. 27,825
BOTTOM SEALING MACHINE Original Filed Jan. 27, 1965 1.6 Sheets-Sheet 8 Dec. 4, 1973 L. c. ROESNER ET BOTTOM SEALING MACHINE l6 Sheets-Sheet 9 Original Filed Jan. 27. 1965 Dec. 4, 1973 L. c. ROESNER ET AL Re. 27,825
BOTTOM SEALING MACHINE Original Filed Jan. 27. 1965 16 Sheets-Sheet l0 Dec. 4, 1973 1 RQESNER ET AL Re. 27,825
BOTTOM SEALING MACHINE.
Original Filed Jan. 27, 1965 lb Sheets-Sheet 11 Dec. 4, 1973 c, ROESNER ET AL Re. 27,825
BOTTOM SEALING MACHINE 1 l6 Sheets-Sheet 12 Original Filed' Jan. 27, 1965 Dec. 4, 1973 L, c, RQESNER ET AL Re. 27,825
BOTTOM SEALING MACHINE Original Filed Jan. 27, 1965 16 Sheets-Sheet 13 I I 4/6a Dec. 4, 1973 L c, ROESNER ET AL Re. 27,825
BOTTOM SEALING MACHINE l6 Sheets-Sheet 14 Original Filed Jan. 27, 1965 Dec. 4, 1973 C ROESNER ET AL Re. 27,825
BOTTOM SEALING MACHI NH Original Filed Jan. 2'7, 1965 16 Sheets-Sheet 1s L. c. ROESNER ET AL Re. 27,825
Dec. 4, 1973 BGTTOM SEALING MACHINE 18 Sheets-Sheet 16 Original Filed Jan. 27, 1965 27,825 BOTTOM SEALING MACHINE Lawrence C. Roesner, Anaheim, and Lenard E. Moen, Whittier, Calif., assignors to Precision Produce Specialties Inc., and Calavo Growers of Calif., fractional part interest to each Original No. 3,342,116, dated Sept. 19, 1967, Ser. No. 428,462, Jan. 27, 1965. Application for reissue Feb. 7, 1972, Ser. No. 224,351
Int. Cl. B31b 17/60 U.S. Cl. 9355 R 50 Claims Matter enclosed in heavy brackets appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
ABSTRACT OF THE DISCLOSURE A method of and a machine for forming a container from a pair of preformed end panels and a preformed blank having a central rectangular bottom wall forming panel, hinged side wall forming panels along opposite sides of the bottom wall forming panel, and projecting end panel joining flaps along the edges of the bottom and side wall forming panels, the method and machine operation involving adhesively coating one side of the blank along the flaps thereof, relatively moving the end panels and blank to positions wherein the end panels engage the bottom wall forming panel of the blank along and just inward of the hinge lines of its flaps, and then simultaneously folding the side wall forming panels of the blanks upwardly about the ends of the end panels and folding the flaps of the blank inwardly against the outer surfaces of the end panels to adhesively join the flaps to the end panels.
This invention relates generally to the art of fabricating cardboard shipping containers, particularly shipping containers of the kind disclosed in co-pending application Ser. No. 336,970, filed Jan. 10, 1964, now Patent No. 3,197,108 and entitled Container With Glued Cardboard Stacking Cleats. The invention has more particular reference to a method of and means for mating the separate preformed end panels and blank which make up the shipping container of said co-pending application and erecting or folding the blank about and joining the blank to said panels in such manner as to form a container structure of the kind disclosed in said co-pending application.
During both storage and shipment, it is common practice to stack shipping containers, one upon the other, in vertical columns which may be several feet in height. To enable shipping containers to be safely stacked in this way, each container in a vertical column of stacked containers must be sufficiently strong to support the vertical load imposed thereon by the upper containers and, in addition, must provide a stable supporting base for the adjacent upper container. Some shipping containers are sufliciently strong and their top and bottom surfaces are sufficiently flat to permit the containers to be stacked with the bottom surface of one container resting directly on the top surface of the adjacent lower container. On the other hand, the top and/or bottom surfaces of many shipping containers tend to bulge outwardly when the containers are filled. If these latter containers are stacked one on top of the other with the bottom surface of one container resting directly on the top surface of the adjacent lower container, each container can rock back and forth relative to its adjacent lower container, thereby resulting in an extremely unstable and unsafe container stack. Other containers do not possess the required strength to enable them to be stacked one on top of the other.
United States Patent at least to the height necessary for optimum utilization of a given storage space.
By way of example, one type of container which has been in wide-sprread use for many years is known in the trade as the Bliss container. The Bliss container, in its simplest form, is fabricated from a single cardboard blank having side portions which are folded in such a way as to constitute side walls and side cover panels, and end portions which are folded in such a way as to constitute end walls and end cover panels. The blank is provided with additional tabs for securing the end and side walls together at the four corners of the container. During its fabrication, the Bliss container is initially formed, in a so-called bottom sealing operation, to a partially completed condition wherein the cover panels are left unfolded to permit the container to be filled. After filling, the container is completed in a so-called top sealing op eration during which the cover panels are folded and sealed to close the top of the container. Numerous variations of the Bliss container have been known and used in the past several decades.
While the Bliss containers have been and are currently being successfully used for many purposes, they are deficient for the reason that they often cannot be stacked to the height required by many warehousing and shipping facilities. This is due to the fact that the containers do not possess the requisite structural strength and to the additional fact that the top and bottom surfaces of the containers, when filled, tend to bulge outwardly. As noted above, this bulging of each container prevents the latter from providing a stable support for a container resting thereon. The Bliss containers are also deficient in that when exposed to conditions of high humidity, such as are encountered in commercial freezers and refrigerators, the cardboard material of the containers becomes weakened to the point that the containers collapse.
Containers of the kind under discussion are often used to ship produce. In this case, the containers are provided with ventilation openings to permit the free circulation of air through the containers. When such produce containers are stacked, it is desirable to have ventilation spaces between the confronting top and bottom surfaces of adjacent containers to permit the free circulation of air between the containers and through the ventilation openings in the tops and bottoms of the containers. Many produce containers are not constructed to preserve such ventilation spaces between adjacent containers in a container stack.
The stacking and ventilation requirements discussed above resulted, many years ago, in the introduction of socalled stacking cleats. Such stacking cleats comprise flat strips which are secured to the top and/or bottom of a container adjacent its ends to provide flat supporting surfaces for an adjacent upper container in a column of stacked containers. In addition, these stacking cleats space the confronting top and bottom surfaces of adjacent stacked containers to provide ventilation passages therebetween.
Heretofore, the prevailing practice in regard to stacking cleats has been to cover containers, both of the wooden and cardboard varieties, with a separate lid having wooden stacking cleats secured thereto. After a container is filled, the lid is placed over the open top of the container and is secured in position by driving nails through the cleats and lid into the container. This existing practice is quite satisfactory from the standpoint of providing containers which may be stacked to the required height with ventilation spaces between adjacent containers. However, the use of separate lids and wooden stacking cleats is undesirable from the standpoint of economy. Thus, the separate lid with its wooden stacking cleats and the nails required to secure the lid to a container represent a substantial material cost, while the labor involved in initially fabricating the lid and the cleats and subsequently nailing the lid to a container represent a substantial labor cost. These material and labor costs, of course, are in addition to the cost of the container itself and, therefore, contribute appreciably to the overall container cost. While the additional costs involved in the use of such as separate lid with wooden cleats may be small for each container, the overall cost of equipping a large number of containers with such lids may be substantial.
The aforementioned co-pending application Serial No. 336,970 discloses a shipping container which successfully avoids the above discussed defects of the currently available shipping containers. The container of said co-pending application is fabricated from a preformed cardboard blank and two separate preformed end wall forming panels, or end panels as they will be referred to herein. The blank is scored and perforated to form a number of longitudinal and transverse hinge lines which define on the blank a central bottom wall forming panel, two side wall forming panels outboard the bottom wall forming panel, two cover forming panels outboard of the side wall forming panels, and end panel joining flaps along opposite side edges of the bottom wall forming panel and the two side wall forming panels. The two separate end panels have a laminated construction including a wooden core and a cardboard panel bonded to the outer surface of the core in such manner that the upper edge portion of the cardboard panel projects a distance above the upper edge of the wooden core to define a hinged flap.
When fabricating the container, the end panels are mated with the blank for engaging the lower edges of the panels with the central bottom wall forming panel of the blank just inboard of the hinge lines of the flaps on the latter panel. Thereafter, the side wall forming panels of the blank are folded upwardly about opposite ends of the end panels, the flaps on the blank are folded inwardly against the outer surfaces of the end panels, the cover forming panels are folded inwardly across the top of the container, and, finally, the projecting flaps on the end wall forming panels are folded inwardly over the folded cover forming panels. The several folded end panel joining flaps on the blank are adhesively bonded to the outer surfaces of the end panels, and the folded fiaps on the end panels are adhesively bonded to the folded cover forming panels, thereby to form a completed container. In actual practice, the container is initially formed, in a bottom sealing operation, to a partially completed condition, wherein the cover forming panels and the flaps on the end panels are left unfolded to permit the container to be filled. Thereafter, the cover forming panels and end panel flaps are folded and sealed in a top sealing operation to complete the container. In this completed container, the folded end panel flaps overlie the cover forming panels to define cardboard stacking cleats which are reinforced by the wooden cores of the end panels. It has been found that the improved shipping container of the co-pending application is uniquely capable of satisfying both the stacking and ventilation requirements referred to earlier.
It is a general object of this invention to provide a method of and a machine for performing the bottom sealing operation just referred to, thereby to partially form shipping containers of the kind disclosed in the aforesaid co-pending application Serial No. 336,970 as well as other similar containers.
A more specific object of the invention is to provide a container forming method and machine of the character described wherein a pair of end panels are mated with a preformed blank and thereafter the side wall forming panels of the blank are folded upwardly about opposite ends of the end panels and the end panel joining flaps on the blank are folded inwardly against and adhesively bonded to the outer surfaces of the end panels to form a partially completed container structure.
Another object of the invention is to provide a container forming machine of the character described which is fully automatic in operation.
A further object of the invention is to provide a container forming machine of the character described which may be adjusted to accommodate container blanks and end panels of different sizes.
Yet a further object of the invention is to provide a container forming machine of the character described which is relatively compact, reliable in operation, easy to use, capable of high speed operation, and is otherwise ideally suited to its intended purposes.
With these and other objects in view, the invention consists in the construction, arrangement and combination of the various parts of the invention, and in the various combination of method steps involved in the invention, whereby the objects contemplated are attained, as hereinafter set forth, pointed out in the appended claims, and illustrated in the accompanying drawings, wherein:
FIGURE 1 is a perspective view of a bottom sealing, container forming machine according to the invention;
FIGURE 2a diagrammatically illustrates the successive container forming steps performed by the machine during its operation;
FIGURE 2b is an enlargement of two end panel joining flaps on one of the blanks shown in FIGURE 2a and illustrating the manner in which these flaps are coated with glue;
FIGURE 2c diagrammatically illustrates the forming machine itself;
FIGURE 3a is an enlarged plan view of the left-hand end of the forming machine as the latter is viewed in FIGURE 1;
FIGURE 3b is an enlarged plan view of the right-hand end of the machine;
FIGURE 4 is an enlarged section taken on line 44 in FIGURE 3b and showing a number of preformed blanks in position on the machine;
FIGURE 5 is an enlarged view looking in the direction of the arrows on line 55 in FIGURE 4;
FIGURE 6a is a section taken on line 6a-6a in FIG- URE 3a;
FIGURE 6b is a section taken on line 6b6b in FIG- URE 3b;
FIGURE 7 is a section taken on line 7-7 in FIG- URE 6b;
FIGURE 8 is a section taken on line 88 in FIG- URE 6b:
FIGURE 8a is an enlargement of the area enclosed by the circular arrow 8a8a in FIGURE 8;
FIGURE 9 is an enlarged section taken on line 9-9 in FIGURE 6a;
FIGURE 10 is an enlarged section taken on line 10-10 in FIGURE 6a;
FIGURE 11 is an enlarged section taken on line 11-11 in FIGURE 6a;
FIGURE 12 is an enlarged section taken on line l2--12 in FIGURE 6a;
FIGURE 13 is an enlarged view, partially broken away, looking in the direction of the arrows on line 1313 in FIGURE 3a;
FIGURE 13a is a section taken on line 13a13a in FIGURE 13;
FIGURE 14 is an enlarged section taken on line 14-14 of FIGURE 12;
FIGURE 15 is a top plan view of the forming mandrel embodied in the forming machine;
FIGURE 16 is a side elevation of the forming mandrel;
FIGURE 17 is an enlarged section taken on line 1717 in FIGURE 16;
FIGURE 18 is an enlarged section taken on line 18-18 of FIGURE 16;
FIGURE 19 is an enlargement of the upper portion of FIGURE 12 with parts broken away, and illustrating the forming mandrel descending in its forming stroke to form a container;
FIGURE 20 is an enlarged section taken on line 20-20 in FIGURE 19;
FIGURE 21 is an enlarged section taken on line 2121 in FIGURE 19;
FIGURE 22 is an enlarged plan view of one of the end panel infeed mechanisms embodied in the forming machine;
FIGURE 23 is a view looking in the direction of the arrows on line 2323 in FIGURE 22;
FIGURE 24 is a section taken on line 2424 in FIG- URE 23;
FIGURE 25 is an enlarged section taken on line 25-25 in FIGURE 23;
FIGURE 26 is an enlarged section taken on line 26-26 in FIGURE 22 and illustrating a number of preformed end panels placed in the end panel infeed mechanisms;
FIGURE 27 is an enlarged section taken on line 2727 in FIGURE 22;
FIGURE 28 is a perspective view of certain elements of the end panel infeed mechanism; and
FIGURE 29 diagrammatically illustrates the electrical and pneumatic control system of the machine.
In these drawings, the container forming machine of the invention is designated in its entirety by the reference numeral 10 and the partially completed container which is formed by the machine is designated in its entirety by the reference character C. As noted earlier, this container forms the subject matter of co-pending application Serial No. 336,970. Accordingly, a detailed description of the container may be obtained from said co-pending application. In order to facilitate a full and complete understanding of the present invention, however, it is deemed advisable to briefly describe, at the outset, the container C and the manner in which the container is formed by the machine 10.
To this end, reference is made first to FIGURE 2a which illustrates the several components of the container and diagrammatically illustrates the successive steps involved in the formation of the container by the machine. The container is constructed of three basic components, to wit, a preformed cardboard blank B and two identical, preformed end panels P The blank B has a number of transverse score lines L and L: which define on the blank a central, rectangular bottom wall forming panel P two side wall forming panels P outboard of the bottom wall forming panel, and two cover forming panels P outboard of the side wall forming panels. The blank also has a series of longitudinal score lines L and L; which define end panel joining flaps F along opposite edges of the bottom wall forming panels P and additional end panel joining flaps F, along opposite edges of the side wall forming panels P Each end panel P,, has a laminated construction and includes a central wooden plate or core W, an inner paper facing F adhesively bonded to the normally inner surface of the core, and an outer cardboard facing F adhesively bonded to the normally outer surface of the core. The outer facing of each end panel extends a distance above the normally upper edge of its respective core and has a score line L parallel to and located a small distance above said edge. For reasons which will be explained later, this spacing is approximately equal to the thickness of the cardboard blank B. The portion of the outer facing F of each end panel above its respective score line L defines an end panel flap F The successive steps involved in the operation of the machine to form a container C from these three basic container components will now be briefly described. As will appear from the later description of the machine, the latter has several stations, to wit, a blank infeed station at which is maintained a supply of the preformed cardboard blanks B and from which these blanks are successively fed to the machine, a gluing station which receives each blank from the infeed station and applies stripes of glue to certain parts of the blank, a forming station which receives each glue-coated blank from the gluing station, a pair of end panel infeed stations at which are maintained supplies of the end panels P and from which these end panels are successfully fed, in pairs, to the forming station for mating with a gluecoated blank at the forming station, and an outfeed station which receives each partially completed container C from the forming station and ejects the container from the machine. In FIGURE 2a, these several stations are represented by reference characters as follows: blank infeed station 8,, gluing station 5:, forming station S end panel infeed station 8,, and outfeed station S As shown in this latter figure, each preformed blank B is fed endwise from the blank infeed station 5,, through the gluing station S to the forming station 8,. As each blank travels through the gluing station, stripes of cold glue G and hot glue 6,, are applied to the end panel joining flaps P and F of the blank. Upon arrival of each glue-coated blank at the forming station S the blank receives a pair of end panels P from the end panel infeed stations 8,. These end panels are initially disposed in positions of mating relation to the blank, wherein the panels are located over the central, bottom wall forming panel P of the blank, just inboard of the score lines L along opposite edges of the latter panel. Thereafter, the blank and its mating end panels are forced downwardly into a forming cavity (not shown in FIGURE 2a) during which the side wall forming panels P of the blank are folded upwardly about opposite ends of the end panels P and the adhesively coated end panel joining flaps P and F, of the blank are folded inwardly against the outer surfaces of the end panels, thereby to adhesively secure the blank to the end panels. The cover forming panels P on the blank and the flaps F,, on the end panels are not folded about their respective score lines L and L during this folding operation, whereby at the conclusion of the forming operation, the adhesively joined blank B and end panels P form a partially completed container structure of the kind designated by the reference character C. This partially completed container structure remains in the forming cavity at the end of the forming operation, just referred to, and is ejected from the cavity to the outfeed station 5,, during the formation of the next container structure C. Upon entering the outfeed station, each container structure C is conveyed from the machine.
We proceed now with a description of the container forming machine 10. To aid the reader in following the ensuing description of the machine, there is set forth below a table wherein the several figures of the drawings are grouped according to the parts of the machine illustrated thereby.
1. General organization of machine: FIGURES 1, 2, 3a,
and 3b.
2. Blank infeed station 8;: FIGURES l, 2, 3a, 3b, 4,
5, 6b, 7, and 8.
. Gluing station 8,: FIGURES 1, 2c, 3a, 6a, 9, 10, 11,
13, and 13a.
. Forming station S FIGURES 1, 2c, 3a, 6a, 11, 12,
13,I4,15,16,17,18,19, 20, and 21.
. End panel infeed stations S FIGURES 1, 2c, 3a, 11,
19, 22, 23, 24, 25, 26, 27, and 28.
. Outfeed station S FIGURES 1, 6a, 11, and 12.
. Electrical and pneumatic systems: FIGURE 29.
GENERAL MACHINE ORGANIZATION Considering the machine generally, the latter will be seen to comprise a main rectangular supporting frame 12 and a pair of cross frames 14 extending laterally out from opposite sides of the main frame, adjacent one end of the latter frame. The blank infeed station S gluing station 5,, forming station S and the outfeed station S are located on the main frame 12, at positions spaced therealong. The blank infeed stations 8, are located on the cross frames 14. The infeed station 5, comprises a storage magazine 16 for containing a supply of the preformed cardboard blanks B and an infeed mechanism 18 for successively feeding the blanks from the magazine to the gluing station 8,. At the gluing station is a feed mechanism 20 which receives each blank emerging from the infeed station S and conveys the blank through the gluing station to the forming station S The gluing station 8, also includes a glue applicator mechanism 24 including a pair of cold glue applicators 26 and a pair of hot glue applicators 28 for applying to each blank, as the latter travels through the gluing station, the stripes of cold and hot glue G and G respectively. The forming station S includes a forming mechanism 30 including a forming die 32 having a vertical forming cavity opening through the top and bottom of the die, and a forming mandrel or ram 34 located above the forming die 32 and movable between a lower, extended position wherein the lower, leading end of the ram projects into the forming cavity in the forming die 32, and an upper retracted position, wherein the lower leading end of the ram is retracted out of the cavity. Each end panel infeed station 8; includes an elongate storage magazine 36 for containing a supply of the preformed end panels P and an infeed mechanism 38 for successively feeding the end panels from the respective magazine into the forming station 8,; to a position of mating relation to a blank B at the forming station. The outfeed station S comprises an outfeed conveyor 40 which receives each partially completed container structure C from the forming station 8; and conveys the container structure from the machine.
Briefly, during operation of the container forming machine 10, the infeed mechanism 18 at the blank infeed station S successively ejects the preformed cardboard blanks B from the blank storage magazine 16 to the gluing station 5,. The feed mechanism at the gluing station conveys each blank through the gluing station to an initial position at the forming station 8;, wherein the blank extends across the open top of the forming cavity in the forming die 32, between the latter and the then retracted forming mandrel 34, and the bottom forming panel P of the blank overlies the cavity. During its passage through the gluing station S just prior to its entrance into the forming station S the blank is coated with the cold and hot glue G and G At this stage in the operation of the machine, therefore, there is situated in the initial forming position at the forming station 8;, a glue-coated blank B. The end panel infeed mechanisms 38 are effective to position a pair of end panels P in mating relation to this blank, wherein the end panels overlie the bottom wall forming P of the blank, just inboard of the score lines L along opposite edges of the bottom forming panel. The forming mechanism 30 at the forming station S is now activated to drive the forming mandrel 34 downwardly to its extended position within the forming cavity in the forming die 32. During this extension of the mandrel, the latter drives the pair of end panels downwardly into initial mating engagement with the underlying blank and thereafter drives the mating blank and end panels into the forming cavity. During this movement of the blank and end panels into the forming cavity, the side wall forming panels P, of the blank are folded upwardly about opposite ends of the end panels and the glue-coated flaps P and F on the blank are folded inwardly against the outer surfaces of the end panels, in the manner explained earlier, thereby to effect adhesive bonding of the flaps to the end panels and form a partially completed container structure C. This container structure remains within the forming die during the subsequent upward return of the forming mandrel 34 to its retracted position to await the next glue-coated blank from the gluing station S When this next blank arrives at its initial forming position at the forming station 5;, the mandrel 34 again descends to force the latter blank and its mating end panels P into the forming cavity to form another container structure C. As this latter container structure is forced downwardly, through the forming die, it engages the upstanding cover forming panels P,, on the first container structure and thereby ejects the latter structure through the lower end of the die. The first container structure then drops onto the outfeed conveyor 40 and is conveyed from the machine.
As noted earlier, the container forming machine 10 is adapted to operate on preformed cardboard blanks B and end panels P of different sizes, to form container structures C of different capacities. To this end, the machine is equipped with a changeover mechanism including mechanisms at the blank infeed station S the gluing station S the forming station 5;, and the end panel infeed stations 5.; which may be operated in unison to condition the machine to accept blanks and end panels of different sizes. The container forming machine 10 will now be described in greater detail.
BLANK INFEED STATION S The blank storage magazine 16 at the blank infeed station comprises a pair of upstanding wall members 42 and 44 which are disposed in spaced parallel planes extending lengthwise of the machine frame 12. The lower edge portions of these wall members are secured, as by welding, to the inner, confronting surfaces on the upstanding fianges 46 of a pair of angles 48 on the machine frame 12. These angles form main supporting members on the frame which extend from a cross member 12a on the infeed end of the frame to a cross member 12b 0n the frame, just beyond the forming station S The ends of the angles 48 are fastened to the cross members 12a and 12b by bolts 50 which extend through slots in the cross members, as shown, whereby the spacing between the angles, and, thereby, also the spacing between the wall members 42 and 44 of the magazine 16, may be adjusted. The upper end of the left-hand magazine wall members 42 in FIGURES 7 and 8 is turned outwardly to form a horizontal supporting shelf 42a. The outer edge of this shelf is preferably supported on the frame 12 by braces 52 which are secured to the frame by bolt and slot connections 54, whereby the braces may be adjusted relative to the frame. Along the forward edge of the wall member 42, that is, the edge of the wall member adjacent the gluing station S is an outwardly directed, reinforcing flange 56. Along the forward edge of the opposite wall member 44 is an inwardly directed locating flanges 58 for locating the blanks B in the magazine 16 in the endwise direction of the blanks, as will appear presently. This inwardly directed flange has a wear strap 60 welded thereto.
Extending crosswise of the machine frame 12, between the infeed station S and the gluing station 8;, is a horizontal bridge 62 comprising an angle having a rear depending vertical flange 64 which seats against the forward surfaces of the reinforcing flange 56 and the locating flange 58 on the magazine wall members 42 and 44, respectively. The ends of the bridge 62 are secured to the machine frame 12 by upstanding supports 66 which support the bridge in a horizontal position, a distance above the frame. The magazine wall flanges 56 and 58 are secured to the bridge flange 64 by bolts 68 which extend through slots in the bridge flange to permit adjustment of the spacing between the wall members 42 and 44, in the manner explained above.
Mounted on each of the main frame angles 48 are a pair of supporting guides 70. As shown best in FIGURE 3b, the guides on the two frame angles are aligned laterally of the frame 12. One of the pair of laterally aligned guides 70 is located adjacent the forward ends of the magazine wall members 42 and 44. The other pair of guides are located a distance forwardly of the rear ends of these wall members. As shown best in FIG- URE 8a, each supporting guide 70 comprises a base plate 72 which is welded to the undersurface of the
US27825D 1972-02-07 1972-02-07 Bottom sealing machine Expired USRE27825E (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US22435172A 1972-02-07 1972-02-07

Publications (1)

Publication Number Publication Date
USRE27825E true USRE27825E (en) 1973-12-04

Family

ID=22840292

Family Applications (1)

Application Number Title Priority Date Filing Date
US27825D Expired USRE27825E (en) 1972-02-07 1972-02-07 Bottom sealing machine

Country Status (1)

Country Link
US (1) USRE27825E (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080081754A1 (en) * 2006-09-29 2008-04-03 W.E. Plemons Machinery Services, Inc. Container forming machines and methods
US9475247B1 (en) * 2011-03-14 2016-10-25 Thatbox Design, Llc Apparatus and methods relating to corrugated materials, containers, and packaging

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080081754A1 (en) * 2006-09-29 2008-04-03 W.E. Plemons Machinery Services, Inc. Container forming machines and methods
WO2008042176A2 (en) * 2006-09-29 2008-04-10 W.E. Plemons Machinery Services, Inc. Container forming machines and methods
WO2008042176A3 (en) * 2006-09-29 2008-07-10 W E Plemons Machinery Services Container forming machines and methods
US9475247B1 (en) * 2011-03-14 2016-10-25 Thatbox Design, Llc Apparatus and methods relating to corrugated materials, containers, and packaging
US9701089B1 (en) * 2011-03-14 2017-07-11 Thatbox Design, Llc Apparatus and methods relating to corrugated materials, containers, and packaging

Similar Documents

Publication Publication Date Title
US3817018A (en) Method for forming a package
US6520898B1 (en) Process of making a compartmented container
CA1178254A (en) Display boxes
AU692160B2 (en) Structural member and articles made therewith and method
US2603923A (en) Method of packaging articles in handled carriers
US4948033A (en) Moisture resistant container
US4282999A (en) H-divider containers
US5958171A (en) Method of making a structural member
US7517307B2 (en) Method of assembling a carton blank into a carton
US20080039308A1 (en) Method for Forming a Double Glued Corner Tray Structure
US4345905A (en) Making of containers with tri-laminated end walls
US3002672A (en) Stacking carton
US3342116A (en) Bottom sealing machine
US5599267A (en) Display boxes
US3945558A (en) Paperboard bulk bin
US3659505A (en) Apparatus and method for erecting containers
US3843039A (en) Container partitions
US3084831A (en) Article carrier
US4601687A (en) Machine for manufacture of H-divider containers having improved compression resistance
US4398902A (en) Method of making container with hinged cover
US2217504A (en) Method of making knockdown boxes
USRE27825E (en) Bottom sealing machine
US2943427A (en) Method of forming a carton
US20030201062A1 (en) Cushioning material for packaging and method and device for manufacturing the cushioning material
US3416789A (en) Blank feeder for a bottom sealing machine