USRE27639E - Certificate of correction - Google Patents

Certificate of correction Download PDF

Info

Publication number
USRE27639E
USRE27639E US27639DE USRE27639E US RE27639 E USRE27639 E US RE27639E US 27639D E US27639D E US 27639DE US RE27639 E USRE27639 E US RE27639E
Authority
US
United States
Prior art keywords
catalyst
toluene
percent
feed
benzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Application granted granted Critical
Publication of USRE27639E publication Critical patent/USRE27639E/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/08Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond
    • C07C6/12Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring
    • C07C6/123Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring of only one hydrocarbon

Definitions

  • ABSTRACT OF THE DISCLOSURE There is disclosed a process for catalytically disproportionating toluene to benzene and xylenes.
  • the toluene is disproportionated over a rare-earth and hydrogenexchanged crystalline aluminosilicate catalyst at about atmospheric pressure and a temperature of about 700 to 1100 F.
  • Methylaromatics of 9 to 10 carbon atoms and 1 to 4 methyl groups may also be introduced into the reaction zone to increase the xylene/benzene ratio in the product.
  • This application is a continuation-in-part of application Ser. No. 747,840, filed July 26, 1968, and now abandoned.
  • This invention relates to an improved process for catalytically disproportionating toluene to benzene and xylenes.
  • reaction is of particular value as a source of mixed xylenes from which the para-xylene isomer, used in the production of terephthalic acid, may be separated, for example by distillation to remove ortho-xylene bottoms, followed by crystallization to separate para-xylene from the metaisomer.
  • the yield of the para-isomer can be further increased by isomerizing the mixed xylenes in the crystallization mother liquor using known methods.
  • Venuto et al. Journal of Catalysis, vol. 4, pp. 81-98 have reported a conversion level of only 21% when toluene was disproportionated in the liquid phase using hydrogen pressure and rare earth-exchanged crystalline aluminosilicate.
  • toluene feed is introduced into the reaction zone of a moving bed reactor and contacted in the vapor phase, in the substantial absence of molecular hydrogen, with a concurrently moving bed of a catalyst containing crystalline aluminosilicate having associated therewith both rare earth and hydrogen ions, and benzene, xylenes and unreacted toluene are recovered from the reaction zone.
  • Reaction conditions include a temperature of about 700 or 800 to 1100 F., preferably about 800 or 900 to 1000" F.; a weight hourly space velocity of about 0.2 to 5, preferably about 0.5 to 2; and, as mentioned above, approximately atmospheric pressures.
  • the improved process of the present invention involves the use of a moving bed reactor and the passing of feed therethrough in the same direction as the movement of the catalyst through the reaction zone.
  • catalyst holding times of about 6 to 240, preferably about 12 to 60 minutes. Longer holding times result in higher coke buildup on the catalyst, thereby lowering catalyst activity.
  • catalyst holding time refers to the length of time that the catalyst remains in the reactor, and is determined by the equation:
  • WHSV Weight hourly space velocity
  • C/F the weight ratio of catalyst to feed
  • the catalyst employed in the present invention may be in the form of macrosize particles, e.g. spheres, pellets, tablets, etc. regular or irregular in shape and generally from about 4, to preferably about ,4; to 54, inch in diameter and, if not spherical in form, from about A to 1. preferably from about to inch in length.
  • the level of alkali metal present in the catalyst because of its poisoning eifect, should be kept below about 1 percent, preferably below about 0.4 percent, based on the weight of the catalyst.
  • a porous matrix for the crystalline aluminosilicate may advantageously be included in the catalyst; due to the relatively high cost of aluminosilicates, one wishes to use as little of this material which still permits the development of satisfactory catalyst properties.
  • the major portion of the catalyst will be porous matrix, with minor amounts, say, at least about 1 wt. percent of the catalyst, being supplied by the crystalline aluminosilicate.
  • the crystalline aluminosilicate will comprise about 5 to 20 weight percent of the catalyst, percentages being based on dried solids content.
  • the crystalline aluminosilicate component of the catalyst used in the present invention has a pore size of about 8 to 15 A. and preferably the pores have a size of 10 to 14 A.
  • the pores are relatively uniform in size, and often the crystalline aluminasilicate particles are primarily less than about 15 microns in size, preferably less than about 2 microns.
  • the molar ratio 'of silica to alumina in the aluminosilicate is generally about 2 to 12:1, preferaby about 2 to 6:1.
  • the crystalline aluminosilicate components of the catalyst used in this invention has associated therewith both rare earth cations and hydrogen ions.
  • the incorporation of these ions in the aluminosilicate may be by known methods, as for example by ion-exchange, using, for instance, the techniques disclosed by Plank et al. in U.S. Pat. No. 3,140,253.
  • a sodium aluminosilicate the form in which the aluminosilicates are generally available, can be contacted with an aqueous solution containing both ammonium ions and rare earth cations.
  • the crystalline aluminosilicate will have associated therewith about 0.4 to 1, preferably about 0.6 to 1, equivalent per gram atom of aluminum of total hydrogen (including hydro- 4 to 4 methyl groups, and thus any other alkyl groups are ethyl or propyl.
  • the aromatic streams available as a source of methyl groups for alkylation of toluene frequently do not consist only of methylaromatics.
  • zation process normally contains substantial ethyl (and about 10 to 95% of the total equivalents of positive ion possibly higher alkyl) ring substituents.
  • Ethyl or higher will be supplied by the rare earth cations and, correalkylaromatic substiutents tend to crack more readily spondingly, about 5 to 90% will be made up of hydrothan methyl groups to form olefins and the parent arogen ions.
  • Particularly preferred are ranges of about 40 10 matic ring. Higher temperatures also promote the cracking to 85% of rare earth cations and about to 60% hydroreaction. As a result, the preferred conditions for a pargen ions.
  • ticular operation can be dependent on the composition of Representative of the rare earth metals, the cations the C stream, the extent to which the 0 stream is of which are associated with the crystalline aluminosilirecycled, and the ratio of benzene to xylcnes desired in cate, are cerium, lanthanum, praesodymiurn, neodymium, 15 the product.
  • the ethyl subpromethium, samarium, europium, gadolinum, terbium, stituents may also be controlled by fractionating and redysprosium, holmium, erbium, thulium, scandium, yetmoving a portion of the stream rich in n-propylbenzenes terbium and lutetium.
  • Mixtures of rare earths, are, of and ethyltoluenes, or rich in ethylxylenes.
  • the C hycourse suitable.
  • Cerium, or a mixture containing a major drocarbons can be obtained from various sources such as amount of cerium, is most preferred.
  • the con- Suitable matrices for the crystalline aluminosilicate centration of aromatics in the hydrocarbon streams can include inorganic oxide gels, especially plural gels combe increased by fractionation or solvent extraction proceprising about 55 to 90 weight percent of silica, based on dures.
  • trimcthylbenzenes for example, those dry solids, with about 10 to 45 percent of one or more formed as by-products of the disproportionation reaction, oxides of metals selected from the Groups II-A, III and can be incorporated in the toluene feed, thus effecting ad- IV-A of the Periodic Chart.
  • Amorphous silica-alumina ditional xylene production through transalkylation The containing about 55 to 90, preferably about 65 to 75, amount of the higher methylaromatics added to the feed, weight percent of silica and about 10 to 45, preferably either from an external supply or by recycling, can be a about 25 to 35, weight percent of alumina is the preferred small amount efiective to increase the xylene/benzene matrix for the crystalline aluminosilicate used in the ratio in the product, as about 5 to 60, preferably about 15 process of the present invention.
  • the feedsfmck can Varied by introducing The bench scale moving bed reactor used in these runs higher methylaromatics along with the toluene. These comprises a vertically disposed, one and one-half inch higher methylbenzenes have 9 to 10 carbon atoms and 1 (I.D.) stainless steel, cylindrical reaction column termin- TABLE I Catalyst 0 o A B (Lab. 0 (High (Low I) (equil. E (Virgin) (Virgin) 0111111.) (Virgin) equilJ equilJ (Virgin) abrad.) (Virgin) Physical pro rtles:
  • reaction products are withdrawn from the column, separately from the catalyst, via a variable position product outlet line located below the feed entry line and above the spent catalyst withdrawal zone.
  • a variable position product outlet line located below the feed entry line and above the spent catalyst withdrawal zone.
  • Streams of nitrogen are introduced to the column at points above and below the reaction zone to prevent the hydrocarbon feed and products from being carried up the column to the fresh catalyst hopper or down the column to the catalyst withdrawal zone.
  • Reactor and feed are heated by means of a radiant furnace.
  • the product outlet line is cooled to room temperature in a water bath and condensed product is collected in a one-liter flask.
  • liquid products from each run were analyzed with a gas chromatograph using a 100 ft. x 0.01 inch (I.D.) stainless steel adsorption column coated with di-n-decylphthalate. Column temperature was approximately 90 C.
  • Catalyst A A commercially available cracking catalyst consisting of a synthetic, amorphous silica-alumina xerogel and having an activity index of about 38.
  • Catalyst B A commercially available cracking catalyst substantially the same as catalyst A above, but having an activity index of about 42, apparently due to its being less severely steamed than catalyst A.
  • Catalyst C A commercially available cracking catalyst comprising a mixture of a synthetic, amorphous silica-alumina xerogel and about 7.5% of a hydrogenand rare earthexchanged, crystalline aluminosilicate (CAS), the CAS having a molar ratio of silica to alumina of about 2.5 to l, a pore size of about 13 A., and an average particle size less than about 5 microns.
  • the catalyst itself is macrosized, having an average particle diameter of about 0.15 inch, and has a rare earth oxides content of about 2.5 weight percent, with cerium oxide being the predominant component.
  • Catalyst D A commercially available catalyst similar to catalyst C but additionally containing about 33 weight percent of inert alpha-alumina fines.
  • Catalyst -E A commercially available catalyst similar to catalyst D except that catalyst E contained only about 5 weight percent of the hydrogenand rare earth-exchanged crystalline aluminosilicate and the crystalline aluminosilicate had a silica to alumina mole ratio of about 4.5: 1.
  • Run 12 In Table II are presented conditions and product analyses of sample runs with the above catalysts. In all of the runs except Run 12 the feed used was straight nitration grade toluene. Run 12 was made with a feed consisting of 95 mole percent toluene and 5 mole percent 1,2,4-trimethylbenzene. The effect on the xylene production which results from the inclusion of the trimethylbenzene in the feed can thus be observed by comparison of the recovery data presented for Run 08 (using straight toluene) and Run 12.
  • the C feedstock addition had the composition shown in Table III below.
  • Table IV shows the conditions and product analyses of the sample runs with the varying C,+ feedstock additions.
  • phase in the substantial absence of molecular hydrogen at a temperature of about 700 to 1100 F. and a weight hourly space velocity of about 0.2 to 5, with a concurrently moving bed of a crystalline aluminosilicate-containing catalyst having an alkali metal content of less than about 1 weight percent, said aluminosilicate having a molar ratio of silica to alumina of about 2 to 12:1, pore openings of about 8 to A. and having both rare earth and hydrogen ions, and removing from said reaction zone a product stream comprising benzene, xylenes and unreacted toluene.
  • a method of disproportionating toluene to benzene and xylenes comprising introducing toluene feed into a reaction zone and contacting the feed therein in the vapor ing a sufiicient amount of the C to C methylaromatics effective to increase the xylene-benzene ratio in the prodnet.
  • a method of disproportionating toluene to benzene and xylenes comprising introducing toluene feed into a reaction zone and contacting the feed therein in the vapor phase in the substantial absence of molecular hydrogen, at about atmospheric pressure, a temperature of about 900 to 1000 F., a weight hourly space velocity of about 0.5 to 2, and a catalyst holding time of about 6 to 240 minutes, with a concurrently moving bed of macrosize catalyst consisting essentially of about 5 to 20 weight percent of crystalline aluminosilicate having a molar ratio of silica to alumina of about 2 to 6:1 and pore opening of about 8 to 15 A., and an essential balance of silicaalumina xerogel containing about 55 to 90 weight percent silica and about 10 to 45 weight percent alumina, said catalyst having an alkali metal content of less than about 0.4 weight percent and said aluminosilicate having about 0.6 to 1 equivalent of positive ions, consisting essentially of about 10 to 9

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

THERE IS DISCLOSED A PROCESS FOR CATALYTICALLY DISPROPORTIONATING TOLUENE TO BENZENE AND XYLENES. THE TOLUENE IS DISPROPORTIONATED OVER A RARE-EARTH AND HYDROGENEXCHANGED CRYSTALLINE AUMINOSILICATE CATALYST AT ABOUT ATMOSPHERIC PRESSURE AND A TEMPERATURE OF ABOUT 700 TO 1100*F. METHYLAROMATICS OF 9 TO 10 CARBON ATOMS AND 1 TO 4 METHYL GROUPS MAY ALSO BE INTRODUCED INTO THE REACTION ZONE TO INCREASE THE XYLENE/BENZENE RATIO IN THE PRODUCT.

Description

United States Patent MOVING BED PROCESS USING SIEVE CATALYST TO MAKE XYLENES BY TOLUENE DISPROPOR- TIONATION AND TRANSALKYLATION WITH C -C ALKYLBENZENES Owen H. Thomas, South Holland, Thomas A. Beck, Park Forest, and Robert F. Wickmau, Dalton, Ill., assignors to Atlantic Richfield Co., New York, N.Y.
N0 Drawing. Original No. 3,551,509, dated Dec. 29, 1970,
Ser. No. 798,185, Feb. 10, 1969, which is a continuation-in-part of Ser. No. 747,840, July 26, 1968. Application for reissue Nov. 16, 1971, Ser. No. 199,338
Int. Cl. C07c 3/62 U.S. Cl. 260-672 T 12 Claims Matter enclosed in heavy brackets appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
ABSTRACT OF THE DISCLOSURE There is disclosed a process for catalytically disproportionating toluene to benzene and xylenes. The toluene is disproportionated over a rare-earth and hydrogenexchanged crystalline aluminosilicate catalyst at about atmospheric pressure and a temperature of about 700 to 1100 F. Methylaromatics of 9 to 10 carbon atoms and 1 to 4 methyl groups may also be introduced into the reaction zone to increase the xylene/benzene ratio in the product.
This application is a continuation-in-part of application Ser. No. 747,840, filed July 26, 1968, and now abandoned. This invention relates to an improved process for catalytically disproportionating toluene to benzene and xylenes.
Under appropriate conditions and in the presence of a suitable catalyst, two moles of toluene will undergo disproportionation to yield benzene and xylene. The reaction is of particular value as a source of mixed xylenes from which the para-xylene isomer, used in the production of terephthalic acid, may be separated, for example by distillation to remove ortho-xylene bottoms, followed by crystallization to separate para-xylene from the metaisomer. The yield of the para-isomer can be further increased by isomerizing the mixed xylenes in the crystallization mother liquor using known methods.
It has been known that disproportionation of toluene can be effected by use of a crystalline aluminosilicatecontaining catalyst; this reaction has been accompanied, however, by impractically low yields and conversion levels. Thus, in U.S. Pat. No. 3,140,253 to Plank et al. is disclosed a toluene disproportionation experiment employing as the catalyst a rare earth and hydrogen-exchanged aluminosilicate promoted with tungsten and nickel. Helium pressure and a fixed catalyst bed were used, with a resultant conversion of 26.3 Weight percent of the toluene feed, even though the catalyst contained nickel and tungsten promoters.
Similarly, Venuto et al. (Journal of Catalysis, vol. 4, pp. 81-98) have reported a conversion level of only 21% when toluene was disproportionated in the liquid phase using hydrogen pressure and rare earth-exchanged crystalline aluminosilicate.
By the method of the present invention exceptionally good yields of benzene and xylenes are obtained by disproportionation of toluene over rare earthand hydrogenexchanged crystalline aluminosilicate at about atmospheric pressure. The process may be operated continuously at economically feasible conversion and product yield levels without the formation of substantial quantities of undesirable coke or gas.
In accordance with the present invention toluene feed is introduced into the reaction zone of a moving bed reactor and contacted in the vapor phase, in the substantial absence of molecular hydrogen, with a concurrently moving bed of a catalyst containing crystalline aluminosilicate having associated therewith both rare earth and hydrogen ions, and benzene, xylenes and unreacted toluene are recovered from the reaction zone. Reaction conditions include a temperature of about 700 or 800 to 1100 F., preferably about 800 or 900 to 1000" F.; a weight hourly space velocity of about 0.2 to 5, preferably about 0.5 to 2; and, as mentioned above, approximately atmospheric pressures.
As stated above, the improved process of the present invention involves the use of a moving bed reactor and the passing of feed therethrough in the same direction as the movement of the catalyst through the reaction zone. Generally, there will be employed catalyst holding times of about 6 to 240, preferably about 12 to 60 minutes. Longer holding times result in higher coke buildup on the catalyst, thereby lowering catalyst activity. As used herein the expression catalyst holding time" refers to the length of time that the catalyst remains in the reactor, and is determined by the equation:
1 (WHSV) (C/F) wherein WHSV is the Weight hourly space velocity and C/F is the weight ratio of catalyst to feed.
The catalyst employed in the present invention may be in the form of macrosize particles, e.g. spheres, pellets, tablets, etc. regular or irregular in shape and generally from about 4, to preferably about ,4; to 54, inch in diameter and, if not spherical in form, from about A to 1. preferably from about to inch in length. The level of alkali metal present in the catalyst because of its poisoning eifect, should be kept below about 1 percent, preferably below about 0.4 percent, based on the weight of the catalyst.
As more fully discussed hereinafter, a porous matrix for the crystalline aluminosilicate may advantageously be included in the catalyst; due to the relatively high cost of aluminosilicates, one wishes to use as little of this material which still permits the development of satisfactory catalyst properties. Advantageously, then, the major portion of the catalyst will be porous matrix, with minor amounts, say, at least about 1 wt. percent of the catalyst, being supplied by the crystalline aluminosilicate. Preferably, the crystalline aluminosilicate will comprise about 5 to 20 weight percent of the catalyst, percentages being based on dried solids content.
The crystalline aluminosilicate component of the catalyst used in the present invention has a pore size of about 8 to 15 A. and preferably the pores have a size of 10 to 14 A. Usually, with a given material, the pores are relatively uniform in size, and often the crystalline aluminasilicate particles are primarily less than about 15 microns in size, preferably less than about 2 microns. The molar ratio 'of silica to alumina in the aluminosilicate is generally about 2 to 12:1, preferaby about 2 to 6:1.
As mentioned above, the crystalline aluminosilicate components of the catalyst used in this invention has associated therewith both rare earth cations and hydrogen ions. The incorporation of these ions in the aluminosilicate may be by known methods, as for example by ion-exchange, using, for instance, the techniques disclosed by Plank et al. in U.S. Pat. No. 3,140,253. Thus, for exampic, a sodium aluminosilicate, the form in which the aluminosilicates are generally available, can be contacted with an aqueous solution containing both ammonium ions and rare earth cations. Exchange of the sodium ions by the ammonium and rare earth ions results, and sub- Holding time= sequent calcination converts the ammonium ions to hydrogen ions (protons). Advantageously, the crystalline aluminosilicate will have associated therewith about 0.4 to 1, preferably about 0.6 to 1, equivalent per gram atom of aluminum of total hydrogen (including hydro- 4 to 4 methyl groups, and thus any other alkyl groups are ethyl or propyl. Thus, the aromatic streams available as a source of methyl groups for alkylation of toluene frequently do not consist only of methylaromatics. For example, the product obtained from a xylene isomerigen ion precursors) and rare earth cations. Preferably, zation process normally contains substantial ethyl (and about 10 to 95% of the total equivalents of positive ion possibly higher alkyl) ring substituents. Ethyl or higher will be supplied by the rare earth cations and, correalkylaromatic substiutents tend to crack more readily spondingly, about 5 to 90% will be made up of hydrothan methyl groups to form olefins and the parent arogen ions. Particularly preferred are ranges of about 40 10 matic ring. Higher temperatures also promote the cracking to 85% of rare earth cations and about to 60% hydroreaction. As a result, the preferred conditions for a pargen ions. ticular operation can be dependent on the composition of Representative of the rare earth metals, the cations the C stream, the extent to which the 0 stream is of which are associated with the crystalline aluminosilirecycled, and the ratio of benzene to xylcnes desired in cate, are cerium, lanthanum, praesodymiurn, neodymium, 15 the product. In a process involving recycle, the ethyl subpromethium, samarium, europium, gadolinum, terbium, stituents may also be controlled by fractionating and redysprosium, holmium, erbium, thulium, scandium, yetmoving a portion of the stream rich in n-propylbenzenes terbium and lutetium. Mixtures of rare earths, are, of and ethyltoluenes, or rich in ethylxylenes. The C hycourse, suitable. Cerium, or a mixture containing a major drocarbons can be obtained from various sources such as amount of cerium, is most preferred. naphtha reformate and coal tar, and in addition, the con- Suitable matrices for the crystalline aluminosilicate centration of aromatics in the hydrocarbon streams can include inorganic oxide gels, especially plural gels combe increased by fractionation or solvent extraction proceprising about 55 to 90 weight percent of silica, based on dures. Thus, trimcthylbenzenes, for example, those dry solids, with about 10 to 45 percent of one or more formed as by-products of the disproportionation reaction, oxides of metals selected from the Groups II-A, III and can be incorporated in the toluene feed, thus effecting ad- IV-A of the Periodic Chart. Amorphous silica-alumina ditional xylene production through transalkylation. The containing about 55 to 90, preferably about 65 to 75, amount of the higher methylaromatics added to the feed, weight percent of silica and about 10 to 45, preferably either from an external supply or by recycling, can be a about 25 to 35, weight percent of alumina is the preferred small amount efiective to increase the xylene/benzene matrix for the crystalline aluminosilicate used in the ratio in the product, as about 5 to 60, preferably about 15 process of the present invention. Mixing of the aluminoto 50, weight percent based on the toluene fed to the reacsilicate with the porous matrix can be by known methods tion zone. and can be undertaken either before or after modifica- The following examples are submitted for purposes of tion of the aluminosilicate with rare earth and/or hydroillustration only, and are not to be considered limiting. gen, or hydrogen precursor, ions. Thus, for instance, EXAMPLE I t g a i ii g? gel 1 1?; a f l 5 Toluene was disproportionated to benzene and xylenes a i a E g 3 i i j s using a bench scale moving bed reactor. In each run the i a 51 ca-a umina y toga e m e i ca catalyst was dried and/or calcined at 950l000 F. in with a water solution of rare earth and ammonium salts, a mum film Ce to use hed with water and dried The exchange of the soe a P g l t th 1k t l l 1 Toluene feed was moved through the reactor in the 3: i 2:? 3 g d E i g 1 E same direction as the bed until the reaction zone temperays t "t i 1 3?; e i a fil tures were lining out. After line-out an equilibration preor examp a a u l f comer S e run was made equal in time to the catalyst holding time alumina hydrogel P as melftloned used in any given run. Sufficient product was collected to above, converts the ammomum 10118 to hydroge 1 insure obtaining accurate data on liquid product, gas
If more xylenes in relation to benzenes are desired from and coke distributiom Procfiss, the feedsfmck can Varied by introducing The bench scale moving bed reactor used in these runs higher methylaromatics along with the toluene. These comprises a vertically disposed, one and one-half inch higher methylbenzenes have 9 to 10 carbon atoms and 1 (I.D.) stainless steel, cylindrical reaction column termin- TABLE I Catalyst 0 o A B (Lab. 0 (High (Low I) (equil. E (Virgin) (Virgin) 0111111.) (Virgin) equilJ equilJ (Virgin) abrad.) (Virgin) Physical pro rtles:
surface rea,m. Ig 202 200 224 147 115 107 113 Tyler screen analysis, wt percent:
h 2.5 4.3 10.3 5.0 3.8 11.0 22.4 92. 7 s5. 5 s7. 2 87. s 89.7 84. 0 00. 7 4.s 0.2 2.5 0.0 0.5 4.4 7.0 Average particle diameter. in 0.141 0.140 0.152 0.149 0.14s 0.151 0.153 Cat-A activity, volhgercent (Gasoline, 410 10., E.P.)- as. s 40.0 00. 5 01. 5 54. 4 4s. 0 05.0 53. 0 0a. 5 Composition (Over A1201, wt. percent 0.7 11.1; 11.01 11.43 12.01 45.20 41. 53 48.91 Bi01,wt.pereent----- 00.0 87.9 83.44) 83.90 -53 -52 55.80 40.20 v, p.p.rn 0.0005 20 37 73 117 31 44 on, wt. percent 0.15 0 0 0. 050 0.084 0.064 .13 Ni, p.p.m 10 38 36 7.6 19 6 Na,wt. percent- 0.221 0.221 0 11s 0.200 0.138 0.01 Fe, wt. percent.-. 0.04 0. 0 052 0. 030 0 035 0 020 MgO, wt. percent. 0 0 (3110, wt. percent- 0 Ba, wt. percent 804, wt. cent Oxides a rare earths, wt. percent".
Volatiles, wt. percent 1 Weight percent. I Laboratory equillbrated by steaming for 4 hours at l,200 F.
I Severely eqnilibrated in commercial cracking unit to relatively w activity.
I Equillbrated in commercial cracking unit, than abraded to remove 130.804, 0 surface lubricant.
ating at its upper end in a fresh catalyst hopper and at its lower end in a spent catalyst withdrawal zone. The particulate catalyst moves continuously downward through the column by force of gravity and there is continuously introduced midway in the moving bed of catalyst the preheated, vaporized feed. Reaction products are withdrawn from the column, separately from the catalyst, via a variable position product outlet line located below the feed entry line and above the spent catalyst withdrawal zone. Thus, an intermediate section of the vertical column, the length of which is variable according to the location of the outlet line, comprises the reaction zone. Streams of nitrogen are introduced to the column at points above and below the reaction zone to prevent the hydrocarbon feed and products from being carried up the column to the fresh catalyst hopper or down the column to the catalyst withdrawal zone. Reactor and feed are heated by means of a radiant furnace. The product outlet line is cooled to room temperature in a water bath and condensed product is collected in a one-liter flask.
The liquid products from each run were analyzed with a gas chromatograph using a 100 ft. x 0.01 inch (I.D.) stainless steel adsorption column coated with di-n-decylphthalate. Column temperature was approximately 90 C.
The following catalysts were employed in the runs:
Catalyst A A commercially available cracking catalyst consisting of a synthetic, amorphous silica-alumina xerogel and having an activity index of about 38.
Catalyst B A commercially available cracking catalyst substantially the same as catalyst A above, but having an activity index of about 42, apparently due to its being less severely steamed than catalyst A.
Catalyst C A commercially available cracking catalyst comprising a mixture of a synthetic, amorphous silica-alumina xerogel and about 7.5% of a hydrogenand rare earthexchanged, crystalline aluminosilicate (CAS), the CAS having a molar ratio of silica to alumina of about 2.5 to l, a pore size of about 13 A., and an average particle size less than about 5 microns. The catalyst itself is macrosized, having an average particle diameter of about 0.15 inch, and has a rare earth oxides content of about 2.5 weight percent, with cerium oxide being the predominant component.
Catalyst D A commercially available catalyst similar to catalyst C but additionally containing about 33 weight percent of inert alpha-alumina fines.
Catalyst -E A commercially available catalyst similar to catalyst D except that catalyst E contained only about 5 weight percent of the hydrogenand rare earth-exchanged crystalline aluminosilicate and the crystalline aluminosilicate had a silica to alumina mole ratio of about 4.5: 1.
In Table I are presented further analytical data on the various catalysts employed.
In Table II are presented conditions and product analyses of sample runs with the above catalysts. In all of the runs except Run 12 the feed used was straight nitration grade toluene. Run 12 was made with a feed consisting of 95 mole percent toluene and 5 mole percent 1,2,4-trimethylbenzene. The effect on the xylene production which results from the inclusion of the trimethylbenzene in the feed can thus be observed by comparison of the recovery data presented for Run 08 (using straight toluene) and Run 12.
TABLE II Run number Catalyst A (Vin B (Yir- B (Lab. B (Lab. B (Lab 0 (Vir C (Vir- C (Vin C (High 0 (High D (Vir- D (E oil. 0 Low C (Low 0 H h fin) gm) None equil.) equil.) equil.) gin) gin) gin) equil) equil) gin) abrdh.) etiuil) eqnil) hqr li) percent toluene converted.
y, mole percent:
$ see percent para in x lenes Ultimate y yield (wt. percent of conversion product):
Benmna Xylenes C" and greater Gas..."
Low area inert alumina used in place of catalyst. 1 5 mole percent 1,2,4-trimethylbenzene included in the feed.
7 EXAMPLE II Toluene was transalkylated in a bench scale, moving catalyst bed reactor using varying amounts of C -lmethylaromatics added to the feedstock. The catalyst in each run was catalyst E described in Example I. The feed was moved through the reactor in the same direction as the catalyst bed until the reaction zone temperatures were lined out. After lineout, an equilibration pre-run was made equal in time to the catalyst holding time used in the runs. Sufficient product was collected to insure obtaining accurate data on liquid product, gas and coke distribution. The apparatus used was similar to that described in Example I.
The C feedstock addition had the composition shown in Table III below. Table IV shows the conditions and product analyses of the sample runs with the varying C,+ feedstock additions.
phase in the substantial absence of molecular hydrogen, at a temperature of about 700 to 1100 F. and a weight hourly space velocity of about 0.2 to 5, with a concurrently moving bed of a crystalline aluminosilicate-containing catalyst having an alkali metal content of less than about 1 weight percent, said aluminosilicate having a molar ratio of silica to alumina of about 2 to 12:1, pore openings of about 8 to A. and having both rare earth and hydrogen ions, and removing from said reaction zone a product stream comprising benzene, xylenes and unreacted toluene.
2. The method of claim 1 wherein the crystalline aluminosilicate is present in a matrix of amorphous silicaalumina xerogel.
3. The method of claim 2 wherein the crystalline aluminosilicate is present in the catalyst in an amount of about 1 to weight percent, the essential balance being the silica-alumina xerogel.
TABLE III 4. The method of claim 3 wherein the crystalline alu- Component: Weight percent 20 minosilicate has about 0.4 to 1 equivalent of rare earth n-Propylbenzene 0.36 cations and hydrogen ions per gram atom of alumina in Ethyltoluenes 10.71 said aluminosilicate. Trimethylbenzenes 68.20 5. The method of claim 4 wherein at least a major por- Diethylbenzenes 2.65 tion of the rare earth cations is cerium cations. Ethylxylenes 14.06 6. The method of claim 1 wherein methylaromatics of Tetramethylbenzenes 2.83 9 to 10 carbon atoms and 1 to 4 methyl groups are fed to C 1-13 the reaction zone to provide a combined feed contain- TABLE IV Run number 69 65 75 c7 72 Temperature, F 9-19 002 950 8.31 J51 Total WHSV 1. 61 1.10 1. 54 1.61 1. 56 Cat ulyst holding time tmin.) 36 36 36 30 Pressure (p.s.i.a.). 24. 83 24.01 24. 83 210'.) 25. U2 N omlnal wt. percent C 5 9 25 50 50 Feed Product Feed Product Feed Product Feed Product Product Analyses, wt. percent' Nonaromatics 0.06 0. 01 0 l9 0. 15 0. 10 0. 11 0. 04 0. 34 0. l3 Benzene 0. 10 7. 32 0. l0 5. 0O 0. 09 4. 41 0. 05 1. l3 1. B4 Toluene 95. 24 74. 17 91. 13 74. 33 75. 32 58. 03 49. 54 38. 57 40. 13 Ethylbenzene- 0.32 0.03 0.52 0.03 .88 1.05 0. 99 Xylenes 14. 88 15. 50 24. 50 25. 78 27. 81 n-Propylbenzene. 0.02 0. 10 0. 01 0. 17 0.08 0. 04 Etllyltoluencs. 0.51 0. 04 1.29 2. 7l 2. 33 5.31 5. 32 4. 05 Trin1ethylbenzenes 3. 34 2. 32 17. 02 7. I7 34. 76 10. 38 13. 48 Dicthylbenzenes. 0. 04 0. 01 0. 41 U. 02 1.00 l). 20 0. H Ethylxylenes. 0. 52 0. 14 3. 29 0. 56 7. 18 3.15 1. 83 Tetralnethylhenzen 0.19 0.06 0.37 0.52 1.43 3. U7 2. 12 Cu 0. 03 0. 38 0. 05 0. '13 0. 53 0. 16 Gas 0. 0.86 0.86 1.45 Coke 0. 0. 56 0. 48 0. 52 Results:
Toluene conversion, wt. percent 22. 96 22.14 18. 99 (DH-conversion wt. percent-" 56.42 36. 89 46.16 Percent methy group recovery 98. 67 08. 2t 97. 00 Percent ethyl group recovery- 55. 86 73. 89 50. 79 Wt. percent xylene per pass.-. 25. 2G. 83 28. F0 Wt. percent benzene per pass- 4. 32 1.08 It. 79 Wt. ratio xylenes/benzene 5. 87 24. 81 16. 09
1 Trees.
A comparison of runs 69, 75 and 72 which vary C,-{- content at comparable reaction conditions demonstrates increased xylene make with increased Cg+. As may be seen from the product data, the xylene to benzene ratio of the product under these comparable conditions increased from about 2:1 at 5% Cg+ (which is slightly larger than the ratio for 0% C feed addition) to about 6:1 for 25% C and about 14:1 for C -lfeedstock additions. It is thus apparent that not only will small amounts of (3 feedstock additions increase the xylene make in the product but that the amount of xylenes in the product increases when up to equimolar amounts of C and toluene are present in the feedstock. A comparison of runs 67 and 72 at 50 weight percent (3 and temperatures of 850 F. and 950 F., respectively, demonstrates a decrease in xylenes/benzene ratio with increasing temperature as well as net increases in both xylene and benzene per pass. The same runs point up the increased loss in ethyl groups with increased temperature.
It is claimed:
1. A method of disproportionating toluene to benzene and xylenes comprising introducing toluene feed into a reaction zone and contacting the feed therein in the vapor ing a sufiicient amount of the C to C methylaromatics effective to increase the xylene-benzene ratio in the prodnet.
7. The method of claim 6 wherein said methylaromatics of 9 to 10 carbon atoms are fed to the reaction zone in an amount of about 15 to 50 weight percent of the toluene feed to the reaction zone.
8. A method of disproportionating toluene to benzene and xylenes comprising introducing toluene feed into a reaction zone and contacting the feed therein in the vapor phase in the substantial absence of molecular hydrogen, at about atmospheric pressure, a temperature of about 900 to 1000 F., a weight hourly space velocity of about 0.5 to 2, and a catalyst holding time of about 6 to 240 minutes, with a concurrently moving bed of macrosize catalyst consisting essentially of about 5 to 20 weight percent of crystalline aluminosilicate having a molar ratio of silica to alumina of about 2 to 6:1 and pore opening of about 8 to 15 A., and an essential balance of silicaalumina xerogel containing about 55 to 90 weight percent silica and about 10 to 45 weight percent alumina, said catalyst having an alkali metal content of less than about 0.4 weight percent and said aluminosilicate having about 0.6 to 1 equivalent of positive ions, consisting essentially of about 10 to 95% cerium cations and about 5 to 90% hydrogen ions, per gram atom of aluminum in the aluminosilicate, and recovering from said reaction zone a product stream comprising benzene, xylenes and unreacted toluene.
9. The method of claim 8 wherein the catalyst holding time is about 12 to 60 minutes.
10. The method of claim 9 wherein about 40 to 85% of the positive ions of the aluminosilicate are cerium cations and about 15 to 60% are hydrogen ions.
11. The method of claim 10 wherein the crystalline aluminosilicate has pore openings of about 10 to 14 A.
12. The method of claim 11 wherein methylaromatics of 9 to 10 carbon atoms are fed to the reaction zone in an amount of about 15 to 50 weight percent of the toluene feed to the reaction zone.
References Cited The following references, cited by the Examiner, are of record in the patented file of this patent or the original patent.
UNITED STATES PATENTS CURTIS R. DAVIS, Primary Examiner US. Cl. X.R.
UNHED STATES EAQENT 02mm CERT?HEATH 0F CURREURWN It is certified that error appears in the abnve-Jdentificd patent and that said Letters Pater t are hereby corrected as shown below:
Patent Front Page Format after related U i. application data and before the International Classification should appear:
-Claims priority, application Canada,
January 8, l968.
Signed and sealed this 27th day of November 1973.
(SEAL) Attest:
EDWARD M.I-"LETGHER,JR RENE D. TEGTMEYER Attesting Officer Acting Commissioner of Patents
US27639D 1971-11-16 1971-11-16 Certificate of correction Expired USRE27639E (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US19933871A 1971-11-16 1971-11-16

Publications (1)

Publication Number Publication Date
USRE27639E true USRE27639E (en) 1973-05-08

Family

ID=22737124

Family Applications (1)

Application Number Title Priority Date Filing Date
US27639D Expired USRE27639E (en) 1971-11-16 1971-11-16 Certificate of correction

Country Status (1)

Country Link
US (1) USRE27639E (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4790982A (en) 1986-04-07 1988-12-13 Katalistiks International, Inc. Metal-containing spinel composition and process of using same
US4883783A (en) 1984-05-30 1989-11-28 Uop Composition of matter for conversion of hydrocarbons
US4885426A (en) 1987-09-02 1989-12-05 Mobil Oil Corporation Transalkylation of polyaromatics
US4957892A (en) 1980-07-29 1990-09-18 Uop Process for combusting solid sulfur containing material
US5030787A (en) * 1990-01-24 1991-07-09 Mobil Oil Corp. Catalytic disproportionation/transalkylation utilizing a C9+ aromatics feed
US5157185A (en) * 1989-09-01 1992-10-20 Mobil Oil Corporation Alkylation of aromatics

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4957892A (en) 1980-07-29 1990-09-18 Uop Process for combusting solid sulfur containing material
US4883783A (en) 1984-05-30 1989-11-28 Uop Composition of matter for conversion of hydrocarbons
US4790982A (en) 1986-04-07 1988-12-13 Katalistiks International, Inc. Metal-containing spinel composition and process of using same
US4963520A (en) * 1986-04-07 1990-10-16 Uop Metal-containing spinel composition and process of using same
US4885426A (en) 1987-09-02 1989-12-05 Mobil Oil Corporation Transalkylation of polyaromatics
US5157185A (en) * 1989-09-01 1992-10-20 Mobil Oil Corporation Alkylation of aromatics
US5030787A (en) * 1990-01-24 1991-07-09 Mobil Oil Corp. Catalytic disproportionation/transalkylation utilizing a C9+ aromatics feed

Similar Documents

Publication Publication Date Title
US3647682A (en) Olefin production by the catalytic treatment of hydrocarbons
US3551509A (en) Moving bed process using sieve catalyst to make xylenes by toluene disproportionation and transalkylation with c9-c10 alkylbenzenes
US2983670A (en) Hydrocracking process and catalyst
US4777312A (en) Process for the isomerization of dimethylnaphthalenes
US4172813A (en) Process for selectively hydrodealkylating/transalkylating heavy reformate
US3557235A (en) Production of ethylbenzene and benzene from toluene
US2403757A (en) Process of isomerizing dialkyl benzenes
KR930003862B1 (en) Process for conversion of ethylbenzene in c8 aromatic hydrocarbon mixture
US3525775A (en) Catalytic xylene isomerization process and catalyst therefor
US2960545A (en) Demethylation process for pseudocumene
US4252636A (en) Catalyst and process for conversion of hydrocarbons
US4177219A (en) Process for selective ethyl scission of ethylaromatics to methylaromatics
USRE27639E (en) Certificate of correction
US4245130A (en) Isomerization of alkyl aromatics using a gallium containing aluminosilicate catalyst
US3598879A (en) Alkyl transfer of alkyl aromatics with group i-a,ii-a,iv,or rare earth metals on boria alumina
US3912659A (en) Catalyst for conversion of alkylaromatics
US3078318A (en) Production of specific xylene isomers
US4310715A (en) Steam dealkylation process
EP0234679B1 (en) Hydrocarbon conversion processes over crystalline borosilicate catalysts for pseudocumene recovery
US3836594A (en) Hydrocarbon conversion process and silica and/or alumina-containing catalyst therefor
US4503269A (en) Isomerization of cresols
US3197523A (en) Dealkylation of alkylaromatic compounds
US4041089A (en) Process for the isomerization of dimethylnaphthalenes using a mordenite/alumina catalyst
US3646236A (en) Disproportionation of toluene with a platinum-rhenium-solid oxide catalyst
EP1251961A1 (en) Hydrocarbon dehydrogenation catalyst and process