USRE27592E - Chxchjxx - Google Patents

Chxchjxx Download PDF

Info

Publication number
USRE27592E
USRE27592E US27592DE USRE27592E US RE27592 E USRE27592 E US RE27592E US 27592D E US27592D E US 27592DE US RE27592 E USRE27592 E US RE27592E
Authority
US
United States
Prior art keywords
acid
trans
aryl
methyl
lower alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Application granted granted Critical
Publication of USRE27592E publication Critical patent/USRE27592E/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/16Sulfones; Sulfoxides having sulfone or sulfoxide groups and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C317/22Sulfones; Sulfoxides having sulfone or sulfoxide groups and singly-bound oxygen atoms bound to the same carbon skeleton with sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/02Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to acyclic carbon atoms
    • C07C317/04Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton

Definitions

  • ABSTRACT OF THE DISCLOSURE A novel process for selectively producing d,l-trans chrysanthemumic acid which has the same configuration as the naturally occurring said acid which is useful as an intermediate for pyrethreum esters widely used as insecticides and to novel intermediates formed therein.
  • Trans-chrysanthemumic acid is known to be the acid portion of natural esters of the pyrethrin and cinerin type and the synthetic esters of the allethrin type, and these different types of esters are known to have high degree of insecticidal activity and a very slight toxicity to humans and warm-blooded animals.
  • Trans-chrysanthem-umic acid may be obtained by hydrolysis of natural pyrethrines and by various synthetic methods, none of which is satisfactory for commercial production.
  • Direct synthesis methods have consisted of reacting 2,5-dimethyl-*hexa-2,4-diene with a diazoacetic acid ester or diazoacetonitrile and hydrolyzing the resulting product.
  • these direct methods give a mixture of cisand trans-chrysanthemumic acid and are not suitable for commercial use due to the danger in manipulating the not very stable diazo compounds (see Progress in the Chemistry of Organic Natural Products, vol. 19, 1961, p. 133).
  • a third indirect method starts with the Kharasch reaction by condensing B-alkoxy-isovaleraldehyde with ethyl isopropylidene cyanoacetate and converting the resulting product in five steps to trans-chrysanthemumic acid (Bull. Soc. Chim., 1963, p. 448). All these processes, however, have the disadvantages of being lengthy or using starting materials which are difiicult to obtain.
  • the process of the invention for the preparation of trans-chrysanthemumic acid comprises reducing an aryl sulfonyl halide of the formula wherein Ar is an aryl group having 1 to 4 aromatic rings and may have substituents selected from the group consisting of lower alkyl, lower alkoxy, halo lower alkyl, halogen and nitro and X is a halogen such as chlorine to the corresponding aryl sulfinic acid, forming an alkali metal salt of the aryl sulfinic acid, reacting the latter with a 3-methyl-2-butenyl halide such as the chloride or bromide to form the corresponding aryl (3-methyl-2-buteny1) sulfone, reacting the latter in a basic medium with a compound selected from the group consisting of the nitrile of senecioic acid (pl-methyl crotom'c acid) and lower alkyl esters of senecioic
  • a modification of the process to facilitate the purification when the lower alkyl ester of senecioic acid is used comprises saponifying the lower alkyl ester of 3,3,6-trimethyl-4-(aryl sulfonyD-S-hepten-l-oic acid to the free acid, isolating and purifying the free acid and then esteritying the acid for the cyclization step.
  • the sulfone function performs two successive roles due to its capability of attracting electrons.
  • the sulfone group activates the a-methylene group which permits its 1,4-addition to the conjugated double bond compound and this addition is remarkable since it occurs in spite of the unfavorable steric and electronic hindrances of the gem-dimethyl group.
  • the sulfone group aids the intermolecular cyclization in the basic medium by being eliminated in the form of the sulfinic anion, ArSO- since under these conditions the cyclization yields stereoselectively the transform of chrysanthemnmic acid. It is to be understood that the foregoing theoretical considerations are not intended to limit the inventionin any fashion.
  • vherein X is a halogen
  • Z is selected from the group :onsisting of CN and COOR
  • R is a lower alkyl radical of l to 7 carbon atoms
  • Ar is an aryl radical.
  • Suitable starting aryl sulfonyl halides are insubstituted compounds having 1 to 4 aromatic rings iuch as benzene sulfonyl chloride, naphthalene sulfonyl :hloride lower alkyl aryl sulfonyl halides such as toluene iulfonyl chloride, etc.; lower alkoxy aryl sulfonyl halides iLlCh as methoxy benzene sufonyl halide, etc.; halo lower alkyl aryl sulfonyl halides such as chloromethylbenzene sulfonyl chloride; halo aryl sulfonyl halides such as chlorobenzene sulfonyl chloride; and nitro aryl sulfonyl halides such as p-nitrobenzene sulfonyl halide, etc.
  • the aryl sulfonyl halides can be reduced to aryl sulinic acids with reducing agents such as zinc, sodium sulfite, sodium sulfide, stannous chloride or organic metallic :ompounds or lithium aluminum hydride (see, for example, Truce, Chem. Rev., vol. 48 [1951], p. 69).
  • Zinc is :he preferred reducing agent since the zinc salt of the aryl sulfinic acid is formed and can be reacted with an alkali metal carbonate such as sodium carbonate to form the alkali metal salt of the aryl sulfinic acid.
  • reaction of the alkali metal salt of aryl sulfinic acid with the haloalkene is a classic method of forming illlfOIlfiS.
  • a preferred method is reacting the aryl sulfinic acid with sodium methylate in methanol to form the salt and adding the halo alkene thereto.
  • the lower alkyl esters of senecioic acid can be obtained by oxidation of mesityl oxide to senecioic acid followed by conventional esterification with a lower alkanol such as methanol, ethanol, tert.-butanol, etc.
  • Senecionitrile can be prepared from the cyanohydrin of isobutyraldehyde or by condensation of acetone and cyano acetic acid.
  • the reaction of the aryl (3-methyl-2-butenyl) sulfone with the senecioic acid derivative is performed in the presence of a basic agent such as an alkali metal alcobolate, i.e., sodium or potassium t-butanolate, under anhydrous conditions in the presence of an organic solvent such as an aromatic hydrocarbon, ethers, di-lower alkyl amides of lower alkanoic acids, di-lower alkyl sulfoxides, etc.
  • a preferred mode is reacting equimolar amounts of the reactants at temperatures of about in the presence of at least one molar equivalent of potassium t-butanolate in tetrahydrofuran.
  • the duration of the said reaction and the amounts of the basic agent may have some influence on the reaction.
  • ethyl trans-chrysanthemumate could be directly isolated.
  • the addition and cyclization reactions occur successively without isolation or purification of the intermediate compound, the alkyl ester of 3,3,6-trimethyl-4-(aryl sulfonyl)- S-hepten-l-oic acid.
  • the said intermediates may be isolated and purified if desired by reducing the reaction times and using a smaller excess of the basic agent.
  • the e ster is preferably saponified to the free acid which is purified and re esterified, i.e., with diazomethane.
  • the cyclization is effected under anhydrous conditions in the presence of a basic agent such as an alkali metal alcoholate, i.e., sodium tert. amylate, potassium tertbutanolate, alkali metal amides and hydrides such as sodium amide, sodium hydride, etc.
  • the solvent may be an aromatic hydrocarbon such as benzene, toluene, etc.; an ether such as tetrahydrofuran; di-lower alkylamides of lower alkanoic acids such as dimethylformamide, dimethylacetamide, etc.; or di-lower alkyl sulfoxides such as dimethylsulfoxide.
  • a preferred mode is sodium tert.- amylate in benzene at about room temperature.
  • the reaction mixture was again heated at reflux for about one hour, then cooled and filtered.
  • the recovered precipitate was washed with water, then taken up in a solution of 100 gm. of sodium carbonate in 500 cc. of water, and the mixture was heated to about to C. for a period of 45 minutes under strong agitation.
  • the mixture was then cooled and the insoluble matter was removed by filtration.
  • the aqueous filtrate was concentrated to about 400 cc. and after cooling, it was acidified by the addition of dilute hydrochloric acid.
  • the precipitate formed was vacuum filtered, washed with water, dried under vacuum at room temperature to a constant weight to obtain 73 gm. of benzene sulfinic acid.
  • Step B Preparation of phenyl (S-methyI-Z-butenyl) sulfone.--34 gm. of benzene sulfinic acid were introduced with agitation at room temperatures into 80 cc. of a 2.9 N solution of sodium methylate in methanol and then a few minutes later, 35 gm. of 3-methyl-2-butenyl bromide were added very slowly, and the agitation was continued for 10 minutes after the addition. Next, the methanol was removed while maintaining the initial volume constant by first adding water to the mixture and then extracting it with methylene chloride. The organic extract was washed with Water, dried and the solvent was removed by distillation.
  • the residue was crystallized from petroleum ether (boiling point of 60 to 80 C.) by cooling the ether for one-half hour.
  • the crystallized residue was then vacuum filtered, washed with a mixture of isopropyl ether and petroleum ether (1:1) and dried under vacuum to obtain 35 gm. of phenyl (3-methyl-2-butenyl) sulfone having a melting point of 54 to 56 C.
  • This compound was insoluble in water but was soluble in most of the usual organic solvents.
  • Example II Preparation of p-tolyl (3-methyl-2-butenyl) sulfone Using the procedure of Example I, p-toluene sulfonyl chloride was reduced with zinc to obtain p-toluene sulfinic acid. Then, 20 gm. of p-toluene sulfinic acid were reacted with 19.1 gm. of 3-methyl-2-butenyl bromide to obtain 20.5 gm. of p-tolyl (3-methyl-2-butenyl) sulfone having a melting point of 82 to 84 C.
  • the aqueous phase was acidified with 2 N hydrochloric acid and then extracted with methylene chloride.
  • the organic extracts were washed with water until the wash waters were neutral, dried and evaporated to dryness.
  • the residue thus obtained was crystallized from isopropyl ether to obtain 3,3,6-trimethyl-4-(phenyl sulfonyl)--hepten-1-oic acid having a melting point of 108 C.
  • the 3 ,3 ,6-trimethyl-4- (phenyl sulfonyl -5-hepten-1-oic acid was characterized by its p-bromophenacyl ester prepared in the following manner.
  • Step B Preparation of the methyl ester of 3,3,6-trimethyl-4(phenyl sulfonyD-S-hepten-l-oic 'acid.--0.7 gm. of 3,3,6 trimethyl 4-(phenyl sulfonyl)-5-hepten-1-oic acid were dissolved in 10 cc. of methylene chloride the solution was cooled to 5 C. and a solution of diazomethane in methylene chloride was added thereto until a persistent yellow color appeared. The reaction mixture was allowed to stand for 10 minutes at 0 C. and then excess diazometh'ane was destroyed by addition of alumina.
  • This compound occurred in the form of colorless crystals insoluble in water and dilute aqueous acids and soluble in most of the usual organic solvents.
  • Step C Preparation of methyl d,l-transchrysanthemumate.0.868 gm. of the methyl ester of 3,3,6-trimethyl-4-(phenyl sulfonyl)-5-hepten-1-oic acid were introduced into 5 cc. of anhydrous benzene. Then 2.9 cc. of a solution of 1.86 N sodium t-amylate were adedd and the mixture was agitated for 16 hours at room temperature under an atmosphere of nitrogen. Next, the mixture was poured into iced 2 N hydrochloric acid and extracted with ether. The organic extract was washed first with a solution of sodium bicarbonate, then with water and dried. The solvent was removed to obtain an oil residue which was distilled under vacuum to obtain methyl d,l-transchrysanthemumate.
  • Step D Preparation of d,l-trans-chrysanthemumic acid.-0.l7 gm. of methyl d,l-trans-chrysanthemumate were introduced into 2 cc. of about a 2 N aqueous methanolic solution of potassium hydroxide and the mixture was heated at reflux for 2 hours. Then the mixture was concentrated, diluted with Water and extracted with ether. The aqueous phase was acidified by addition of 2 N hydrochloric acid and then was extracted with methylene chloride.
  • the organic extract was washed with water and the solvent was evaporated to obtain d,l-trans-chrysanthemumic acid having a melting point of 47 to 50 C., identical to the original sample of d,l-trans-chrysanthemumic acid.
  • the d,l-trans-chrysanthemumic acid was characterized by its p-bromophenacyl ester prepared in the following manner.
  • the compound occurred in the form of colorless needles insoluble in water and dilute aqueous acids and soluble in most of the common organic solvents.
  • Example IV Preparation of d,l-trans-chrysanthemumic acid Step A: Preparation of 3,3,6-trimethyl-4-(p-tolyl sul- ?onyl)-5-hepten-1-oic acid.3,3,6-trimethyl 4 (p-tolyl sulfonyl)-5-hepten-l-oic acid was prepared by the reaction of ethyl senecioate and p-tolyl (3-methyl-2- Jutenyl)-sulfone under conditions identical to Step A of Example III.
  • Step B Preparation of the methyl ester of 3,3,6-trinethyl-4-(p-tolyl sulfonyl) S-hepten-l-oic acid.
  • the methyl ester )f 3,3,6-trimethyl-4-(p-tolyl sulfonyD-S-hepten-l-oic acid was prepared which after crystallization from petroleum ether occurred in the form of colorless crystals having a nelting point of 45 to 47 C.
  • Step C Preparation of methyl d,l-trans-chrysanthe- .”numate.
  • Step C of Example 111 :he methyl ester of 3,3,6-trimethyl-4-(p-tolyl sulfonyl)- S-hepten-l-oic acid was cyclized to methyl d,1-trans- :hrysanthemumate.
  • Step D Preparation of d,l trans chrysanthemumic rcid.
  • nethyl d,l-trans-chrysanthemumate was hydrolyzed to 1,1-trans-chrysanthemumic acid which when isolated was identical to the product obtained in Example III.
  • the mixture was extracted with ether and the ether extract was washed with an aqueous solution of sodium bicarbonate and then with water and dried.
  • the solvent was distilled off under vacium and the residual oil was distilled under vacuum to Jbtain ethyl d,l-trans-chrysanthemumate having a boiling point of 62 to 65" C./0.7 mm.
  • Step B Preparation of d,l trans-chrysanthemumic 1cid.0.348 gm. of ethyl d,l-trans-chrysanthemumate were introduced into 1.3 cc. of 2 N sodium hydroxide, 5 cc. of methanol and 0.5 cc. of water and the mixture ieated under reflux for 2 hours. Next, the mixture was :oncentrated, diluted with water and extracted with ether. The aqueous phase was acidified with 2 N hydrochloric acid and extracted with methylene chloride.
  • the organic :xtract was washed with water and the solvent was :vaporated to obtain crystalline d,l -trans-chrysanthemumic acid having a melting point of 50 C. which was .dentical to an original sample obtained by another method.
  • a process for the preparation of a derivative of 3,3, 6-trimethyl-4-(ary1 sulfony1)-5-hepten-1-oic acid selected from the group consisting of its lower alkyl esters and its nitrile which comprises reacting under anhydrous conditions in a basic medium an aryl-(3-methyl-2-butenyl)-sultone in which the aryl has 1 to 4 aromatic rings and may have substituents selected from the group consisting of lower alkyl, lower alkoxy, halo lower alkyl, halogen and nitro with a compound selected from the group consisting of lower alkyl esters of senecioic acid and senecionitrile to form the corresponding derivative of 3,3,6-tri methyl-4- (aryl sulfonyl -5-hepten-1-oic acid.
  • a process for the production of a compound selected from the group consisting of lower alkyl esters and the nitrile of trans-chrysanthemumic acid which comprises cyclizing under anhydrous basic conditions a compound selected from the group consisting of lower alkyl esters and the nitrile of 3,3,6-trimethyl-4-(aryl sulfonyl)-5-hepten-l-oic acid in which the aryl has 1 to 4 aromatic rings and may have substituents selected from the group consisting of lower alkyl, lower alkoxy, halo lower alkyl, halogen and nitro to form the corresponding derivative of tr ans-chrysanthemumic acid.
  • a process for the production of a compound selected from the group consisting of lower alkyl esters and the nitrile of trans-chrysanthemumic acid which comprises reacting under anhydrous conditions an aryl (3-methyl-2- butenyl)-sul-fone in which the aryl has 1 to 4 aromatic rings and may have substituents selected from the group consisting of lower alkyl, lower alkoxy, halo lower alkyl, halogen and nitro with a compound selected from the group consisting of lower alkyl esters of senecioic acid and senecionitrile in the presence of [at least 2 molar equivalents of] a basic agent to form a compound selected from the group consisting of lower alkyl esters and nitrile of trans-chrysanthemumic acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A NOVEL PROCESS FOR SELECTIVELY PRODUCING D,L-TRANS CHRYSANTHEMUNIC ACID WHICH HAS THE SAME CONFIGURATION AS THE NATURALLY OCCURING SAID ACID WHICH IS USEFUL AS AN INTERMEDIATE FOR PYRETHREUM ESTERS WIDELY USED AS INSECTICIDES AND TO NOVEL INTERMEDIATES FORMED THEREIN.

Description

United States Patent Olfice Re. 27,592 Reissued Mar. 6, 1973 27,592 NOVEL PROCESS FOR THE PREPARATION OF TRANS-CHRYSANTHEMUMIC ACID Jacques Martel, Bondy, Chanh Huynh, Le Raincy, Edmond Toromanolf, Paris, and Gerard Nomin, Noisyle-Sec, France, assignors to Roussel-UCLAF, Paris, France No Drawing. Original No. 3,445,499, dated May 20, 1969, Ser. No. 454,691, May 10, 1965. Application for reissue Mar. 22, 1971, Ser. No. 127,019 Claims priority, application France, May 26, 1964, 975,870, 975,871 Int. Cl. C07c 147/06, 148/08, 51/09 U.S. Cl. 260464 11 Claims Matter enclosed in heavy brackets appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
ABSTRACT OF THE DISCLOSURE A novel process for selectively producing d,l-trans chrysanthemumic acid which has the same configuration as the naturally occurring said acid which is useful as an intermediate for pyrethreum esters widely used as insecticides and to novel intermediates formed therein.
PRIOR ART Trans-chrysanthemumic acid is known to be the acid portion of natural esters of the pyrethrin and cinerin type and the synthetic esters of the allethrin type, and these different types of esters are known to have high degree of insecticidal activity and a very slight toxicity to humans and warm-blooded animals.
Trans-chrysanthem-umic acid may be obtained by hydrolysis of natural pyrethrines and by various synthetic methods, none of which is satisfactory for commercial production. Direct synthesis methods have consisted of reacting 2,5-dimethyl-*hexa-2,4-diene with a diazoacetic acid ester or diazoacetonitrile and hydrolyzing the resulting product. However, these direct methods give a mixture of cisand trans-chrysanthemumic acid and are not suitable for commercial use due to the danger in manipulating the not very stable diazo compounds (see Progress in the Chemistry of Organic Natural Products, vol. 19, 1961, p. 133).
Recently, different but indirect methods have been described. Two of these consist of preparing pyrocine, the lactone compound, in several steps by starting either from isobutylidene acetone and a bro-moacetic acid ester or from levulinic acid and methyl allylic alcohol, then opening the lactone ring and eiiecting cyclization to transchrysanthemumic acid esters (French Patent No. 1,269,- 127 and C. R. Acad. Sci, vol. 256 [1963], p. 436). A third indirect method starts with the Kharasch reaction by condensing B-alkoxy-isovaleraldehyde with ethyl isopropylidene cyanoacetate and converting the resulting product in five steps to trans-chrysanthemumic acid (Bull. Soc. Chim., 1963, p. 448). All these processes, however, have the disadvantages of being lengthy or using starting materials which are difiicult to obtain.
OBJECTS OF THE INVENTION It is an object of the invention to provide a simple, direct, economical process for the selective preparation of trans-chrysanthemumic acid.
It is another object of the invention to provide a novel process for the preparation of trans-chrysanthemumic acid from safe starting materials which are easily prepared.
It is a further object of the invention to provide novel intermediates for the preparation of trans-chrysanthemumic acid.
These and other objects and advantages of the invention will become obvious from the following detailed description.
THE INVENTION The process of the invention for the preparation of trans-chrysanthemumic acid comprises reducing an aryl sulfonyl halide of the formula wherein Ar is an aryl group having 1 to 4 aromatic rings and may have substituents selected from the group consisting of lower alkyl, lower alkoxy, halo lower alkyl, halogen and nitro and X is a halogen such as chlorine to the corresponding aryl sulfinic acid, forming an alkali metal salt of the aryl sulfinic acid, reacting the latter with a 3-methyl-2-butenyl halide such as the chloride or bromide to form the corresponding aryl (3-methyl-2-buteny1) sulfone, reacting the latter in a basic medium with a compound selected from the group consisting of the nitrile of senecioic acid (pl-methyl crotom'c acid) and lower alkyl esters of senecioic acid to form the corresponding 3,3,6- trimethyl-4-(aryl su1fonyl)-5-hepten-l-oic acid derivative, cyclizing the latter in a basic medium to form the corresponding ester or nitrile derivative of trans-chrysanthemumic acid and hydrolyzing the latter to trans-chrysanthemumic acid. The reaction scheme is illustrated in Table I.
A modification of the process to facilitate the purification when the lower alkyl ester of senecioic acid is used comprises saponifying the lower alkyl ester of 3,3,6-trimethyl-4-(aryl sulfonyD-S-hepten-l-oic acid to the free acid, isolating and purifying the free acid and then esteritying the acid for the cyclization step.
One of the characteristics of the process of the invention which distinguishes it from prior art processes is that the sulfone function performs two successive roles due to its capability of attracting electrons. In the third step of the process, the sulfone group activates the a-methylene group which permits its 1,4-addition to the conjugated double bond compound and this addition is remarkable since it occurs in spite of the unfavorable steric and electronic hindrances of the gem-dimethyl group. In the fourth step of the process, the sulfone group aids the intermolecular cyclization in the basic medium by being eliminated in the form of the sulfinic anion, ArSO- since under these conditions the cyclization yields stereoselectively the transform of chrysanthemnmic acid. It is to be understood that the foregoing theoretical considerations are not intended to limit the inventionin any fashion.
vherein X is a halogen, Z is selected from the group :onsisting of CN and COOR, R is a lower alkyl radical of l to 7 carbon atoms and Ar is an aryl radical.
Examples of suitable starting aryl sulfonyl halides are insubstituted compounds having 1 to 4 aromatic rings iuch as benzene sulfonyl chloride, naphthalene sulfonyl :hloride lower alkyl aryl sulfonyl halides such as toluene iulfonyl chloride, etc.; lower alkoxy aryl sulfonyl halides iLlCh as methoxy benzene sufonyl halide, etc.; halo lower alkyl aryl sulfonyl halides such as chloromethylbenzene sulfonyl chloride; halo aryl sulfonyl halides such as chlorobenzene sulfonyl chloride; and nitro aryl sulfonyl halides such as p-nitrobenzene sulfonyl halide, etc.
The aryl sulfonyl halides can be reduced to aryl sulinic acids with reducing agents such as zinc, sodium sulfite, sodium sulfide, stannous chloride or organic metallic :ompounds or lithium aluminum hydride (see, for example, Truce, Chem. Rev., vol. 48 [1951], p. 69). Zinc is :he preferred reducing agent since the zinc salt of the aryl sulfinic acid is formed and can be reacted with an alkali metal carbonate such as sodium carbonate to form the alkali metal salt of the aryl sulfinic acid.
The reaction of the alkali metal salt of aryl sulfinic acid with the haloalkene is a classic method of forming illlfOIlfiS. A preferred method is reacting the aryl sulfinic acid with sodium methylate in methanol to form the salt and adding the halo alkene thereto.
The lower alkyl esters of senecioic acid can be obtained by oxidation of mesityl oxide to senecioic acid followed by conventional esterification with a lower alkanol such as methanol, ethanol, tert.-butanol, etc. Senecionitrile can be prepared from the cyanohydrin of isobutyraldehyde or by condensation of acetone and cyano acetic acid.
The reaction of the aryl (3-methyl-2-butenyl) sulfone with the senecioic acid derivative is performed in the presence of a basic agent such as an alkali metal alcobolate, i.e., sodium or potassium t-butanolate, under anhydrous conditions in the presence of an organic solvent such as an aromatic hydrocarbon, ethers, di-lower alkyl amides of lower alkanoic acids, di-lower alkyl sulfoxides, etc. A preferred mode is reacting equimolar amounts of the reactants at temperatures of about in the presence of at least one molar equivalent of potassium t-butanolate in tetrahydrofuran.
The duration of the said reaction and the amounts of the basic agent may have some influence on the reaction. For example, when reacting phenyl (3-methyl-2-butenyl) sulfone with ethyl senecioate in the presence of two molar equivalents of potassium t-butanolate for 20 to 40 hours, ethyl trans-chrysanthemumate could be directly isolated. The addition and cyclization reactions occur successively without isolation or purification of the intermediate compound, the alkyl ester of 3,3,6-trimethyl-4-(aryl sulfonyl)- S-hepten-l-oic acid.
The said intermediates may be isolated and purified if desired by reducing the reaction times and using a smaller excess of the basic agent. For purification purposes, the e ster is preferably saponified to the free acid which is purified and re esterified, i.e., with diazomethane.
' The cyclization is effected under anhydrous conditions in the presence of a basic agent such as an alkali metal alcoholate, i.e., sodium tert. amylate, potassium tertbutanolate, alkali metal amides and hydrides such as sodium amide, sodium hydride, etc. The solvent may be an aromatic hydrocarbon such as benzene, toluene, etc.; an ether such as tetrahydrofuran; di-lower alkylamides of lower alkanoic acids such as dimethylformamide, dimethylacetamide, etc.; or di-lower alkyl sulfoxides such as dimethylsulfoxide. A preferred mode is sodium tert.- amylate in benzene at about room temperature.
In the following examples there are described several preferred embodiments to illustrate the invention. However, it should be understood that the invention is not intended to be limited to the specific embodiments.
Example I.-Preparation of phenyl (3-methyl-2-butenyl) sulfone Step A: Preparation of benzene sulfinic acid.--l00 gm. of zinc dust were suspended in 500 cc. of ether and after 5 cc. of water were added thereto, the mixture was energetically agitated while a few cc. of benzene sulfonyl chloride were introduced. The suspension was heated to reflux to initiate the reaction and then the heating was stopped. 100 gm. of benzene sulfonyl chloride were added thereto over a period of about one-half hour in order to maintain the ether under reflux. After the introduction the benzene sulfonyl chloride was completed, the reaction mixture was again heated at reflux for about one hour, then cooled and filtered. The recovered precipitate was washed with water, then taken up in a solution of 100 gm. of sodium carbonate in 500 cc. of water, and the mixture was heated to about to C. for a period of 45 minutes under strong agitation. The mixture was then cooled and the insoluble matter was removed by filtration. The aqueous filtrate was concentrated to about 400 cc. and after cooling, it was acidified by the addition of dilute hydrochloric acid. The precipitate formed was vacuum filtered, washed with water, dried under vacuum at room temperature to a constant weight to obtain 73 gm. of benzene sulfinic acid.
Step B: Preparation of phenyl (S-methyI-Z-butenyl) sulfone.--34 gm. of benzene sulfinic acid were introduced with agitation at room temperatures into 80 cc. of a 2.9 N solution of sodium methylate in methanol and then a few minutes later, 35 gm. of 3-methyl-2-butenyl bromide were added very slowly, and the agitation was continued for 10 minutes after the addition. Next, the methanol was removed while maintaining the initial volume constant by first adding water to the mixture and then extracting it with methylene chloride. The organic extract was washed with Water, dried and the solvent was removed by distillation. The residue was crystallized from petroleum ether (boiling point of 60 to 80 C.) by cooling the ether for one-half hour. The crystallized residue was then vacuum filtered, washed with a mixture of isopropyl ether and petroleum ether (1:1) and dried under vacuum to obtain 35 gm. of phenyl (3-methyl-2-butenyl) sulfone having a melting point of 54 to 56 C.
This compound was insoluble in water but was soluble in most of the usual organic solvents.
Analysis.-C H SO molecular weight=210.8. Calculated: C, 62.84%; H, 6.71%; S, 15.22%. Found: C, 62.9%; H, 6.7%; S, 14.9%.
This compound is not described in the literature.
Example II.Preparation of p-tolyl (3-methyl-2-butenyl) sulfone Using the procedure of Example I, p-toluene sulfonyl chloride was reduced with zinc to obtain p-toluene sulfinic acid. Then, 20 gm. of p-toluene sulfinic acid were reacted with 19.1 gm. of 3-methyl-2-butenyl bromide to obtain 20.5 gm. of p-tolyl (3-methyl-2-butenyl) sulfone having a melting point of 82 to 84 C.
Analysis.-C H SO molecular weight=224.32. Calculated: C, 64.24%; H, 7.19%; S, 14.29%. Found: C, 64.4%; H, 7.2%; S, 14.0%.
This compound is not described in the literature.
Example HI.--Preparation of d,l-trans-chrysanthemumic acid Step A: Preparation of 3,36-trimethyl-4-(phenyl sulfonyl)-5-hepten-1-oic acid.-12.85 gm. of phenyl (Ii-methyI-Z-butenyl) sulfone were added to a solution of 6.9 gm. of potassium l-butanolate in 100 cc. of tetrahydrofuran cooled to C. After agitating the mixture for a few minutes at 0 C., 8.8 cc. of ethyl senecioate, about a molar equivalent, were added and the reaction mixture was allowed to stand for 15 hours at a temperature of 0 C. Then, while cooling, some 2 N hydrochloric acid was added and the reaction mixture was extracted with ether. The combined ether extracts were washed first with an aqueous solution of sodium bicarbonate, then with water and dried. The solvent was distilled off and a residual oil was obtained. 60 cc. of methanol, 6 cc. of water and 4 cc. of sodium hydroxide were added to this residue and the mixture was heated at reflux for one and a half hours. Then, the methanol was distilled off under vacuum and the reaction mixture was diluted with water and extracted with ether. The aqueous phase was acidified with 2 N hydrochloric acid and then extracted with methylene chloride. The organic extracts were washed with water until the wash waters were neutral, dried and evaporated to dryness. The residue thus obtained was crystallized from isopropyl ether to obtain 3,3,6-trimethyl-4-(phenyl sulfonyl)--hepten-1-oic acid having a melting point of 108 C.
Analysis.-C H O S; molecular weight=310.4. Calculated: C, 61.90%; H, 7.14%; S, 10.33%. Found: C, 61.8%; H, 7.1%; S, 9.9%.
This compound is not described in the literature.
The 3 ,3 ,6-trimethyl-4- (phenyl sulfonyl -5-hepten-1-oic acid was characterized by its p-bromophenacyl ester prepared in the following manner.
0.321 gm. of 3,3,6-tr imethyl-t4-(phenyl sulfonyl)-5- hepten-l-oic acid was neutralized with N sodium hydroxide and after a solution of 0.5 gm. of p-bromophenacyl bromide in cc. of ethanol was added, the reaction mixture was heated at reflux for 3 hours. Next, the ethanol was distilled off under vacuum and the reaction mixture was diluted with water and extracted with methylene chloride. The organic phase was washed with water and the solvent was removed by distillation. A resin residue was obtained which was crystallized from a mixture of isopropyl ether and petroleum ether (boiling point=60 to 80 C.) to obtain the p-bromophenacyl ester of 3,3,6- trimethyl-4-(phenyl sulfonyl)-5-hepten-1-oic acid which after recrystallization from ether, had a melting point of 80 C.
This compound occurred in the form of colorless crys- 6 tals insoluble in Water, slightly soluble in ether and soluble in acetone, benzene and chloroform.
Analysis.-C H O SBr; molecular weight=507.45.
Calcaluated; C, 56.8%; H, 5.36%; Br, 15.75%. Found: C,
56.6%; H, 5.5%; Br, 15.6%.
This compound is not described in the literature.
Step B: Preparation of the methyl ester of 3,3,6-trimethyl-4(phenyl sulfonyD-S-hepten-l-oic 'acid.--0.7 gm. of 3,3,6 trimethyl 4-(phenyl sulfonyl)-5-hepten-1-oic acid were dissolved in 10 cc. of methylene chloride the solution was cooled to 5 C. and a solution of diazomethane in methylene chloride was added thereto until a persistent yellow color appeared. The reaction mixture was allowed to stand for 10 minutes at 0 C. and then excess diazometh'ane was destroyed by addition of alumina. The solvent was distilled off and the residue was crystallized from petroleum ether (boiling point of 60 to C.). The precipitate was vacuum filtered to obtain 0.646 gm. of methyl ester of 3,3,6-trimethyl-4-(phenyl sulfonyl)-5-hepten-1-oic acid having a melting point of 57 C.
This compound occurred in the form of colorless crystals insoluble in water and dilute aqueous acids and soluble in most of the usual organic solvents.
Analysis.-C H O S; molecular weight=324.43. Calculated: C, 62.93%; -H, 7.46%; S, 9.88%. Found: C. 63.1%;H, 7.3%; S, 9.9%.
This compound is not described in the literature.
Step C: Preparation of methyl d,l-transchrysanthemumate.0.868 gm. of the methyl ester of 3,3,6-trimethyl-4-(phenyl sulfonyl)-5-hepten-1-oic acid were introduced into 5 cc. of anhydrous benzene. Then 2.9 cc. of a solution of 1.86 N sodium t-amylate were adedd and the mixture was agitated for 16 hours at room temperature under an atmosphere of nitrogen. Next, the mixture was poured into iced 2 N hydrochloric acid and extracted with ether. The organic extract was washed first with a solution of sodium bicarbonate, then with water and dried. The solvent was removed to obtain an oil residue which was distilled under vacuum to obtain methyl d,l-transchrysanthemumate.
Step D: Preparation of d,l-trans-chrysanthemumic acid.-0.l7 gm. of methyl d,l-trans-chrysanthemumate were introduced into 2 cc. of about a 2 N aqueous methanolic solution of potassium hydroxide and the mixture was heated at reflux for 2 hours. Then the mixture was concentrated, diluted with Water and extracted with ether. The aqueous phase was acidified by addition of 2 N hydrochloric acid and then was extracted with methylene chloride. The organic extract was washed with water and the solvent was evaporated to obtain d,l-trans-chrysanthemumic acid having a melting point of 47 to 50 C., identical to the original sample of d,l-trans-chrysanthemumic acid.
This acid occurred in the form of colorless crystals slightly soluble in water and soluble in most of the usual organic solvent.
The d,l-trans-chrysanthemumic acid was characterized by its p-bromophenacyl ester prepared in the following manner.
0.14 gm. of d,l-trans-chrysanthemumic acid were dissolved in sodium hydroxide and the solution hydroxide and the solution obtained was slightly acidified by adding 0.1 N hydrochloric acid. Then, 0.166 gm. of p-bromophenacyl bromide dissolved in 3 cc. of ethanol were introduced into the solution, and the reaction mixture was heated at reflux for 2 hours. Next, the reaction mixture was diluted with ice water, extracted with methylene chloride and the organic extract was washed with water and dried. The solvent as removed by distillation and the residue was crystallized from petroleum ether. The crystals were filtered and washed with petroleum ether (boiling poir1t=60 to 80 C.) to obtain the p-bromophenacyl ester of d,l-trans-chrystanthemumic acid having a melting point of 72 to 74 C.
The compound occurred in the form of colorless needles insoluble in water and dilute aqueous acids and soluble in most of the common organic solvents.
Analysis.C H O Br; molecular weight=365.27. Calculated: C, 59.18%; H, 5.8%; Br, 21.88%. Found: C, 59.1%;H, 5.9%;Br,2l.6%.
This compound is not described in the literature.
Example IV.Preparation of d,l-trans-chrysanthemumic acid Step A: Preparation of 3,3,6-trimethyl-4-(p-tolyl sul- ?onyl)-5-hepten-1-oic acid.3,3,6-trimethyl 4 (p-tolyl sulfonyl)-5-hepten-l-oic acid was prepared by the reaction of ethyl senecioate and p-tolyl (3-methyl-2- Jutenyl)-sulfone under conditions identical to Step A of Example III. In this manner, after crystallization from .sopropyl ether, 3,3,6-trimethyl-4-(p-tolyl sultonyl) 5- iepten-l-oic acid was recovered in the form of colorless :rystals having a melting point of 130 C.
Analysis.-C H O S; molecular weight=324.43. Cal- :ulated: C, 62.93%; H, 7.46%; S, 9.88%. Found: C, 53.2%; H, 7.6%; S, 9.7%.
This compound is not described in the literature.
Step B: Preparation of the methyl ester of 3,3,6-trinethyl-4-(p-tolyl sulfonyl) S-hepten-l-oic acid.Using the procedure of Step B of Example III, the methyl ester )f 3,3,6-trimethyl-4-(p-tolyl sulfonyD-S-hepten-l-oic acid was prepared which after crystallization from petroleum ether occurred in the form of colorless crystals having a nelting point of 45 to 47 C.
Analysis.C H- O S; molecular weight=338.45. Cal- :ulated: C, 63.88%; H, 7.34%; S, 9.47%. Found: C, 53.7%; H, 7.9%; S, 9.2%.
This compound is not described in the literature.
Step C: Preparation of methyl d,l-trans-chrysanthe- ."numate.Using the procedure of Step C of Example 111, :he methyl ester of 3,3,6-trimethyl-4-(p-tolyl sulfonyl)- S-hepten-l-oic acid was cyclized to methyl d,1-trans- :hrysanthemumate.
Step D: Preparation of d,l trans chrysanthemumic rcid.Using the procedure of Step D of Example III, nethyl d,l-trans-chrysanthemumate was hydrolyzed to 1,1-trans-chrysanthemumic acid which when isolated was identical to the product obtained in Example III.
Example V.Preparation of d,l-transchrysanthemumic acid Step A: Preparation of ethyl d,l-t-rans-chrysanthenumate.First 4.3 gm. of phenyl (3-methyl-2-butenyl) iulfone, then 3 cc. (i.e. about an equirnolar amount) of :thyl senecioate were added to a solution of 4.6 gm. of potassium t-butanolate in 40 cc. of tetrahydrofuran cooled 0 C. The reaction mixture was allowed to stand at J C. for 40 hours and then while cooling 2 N hydro- :hloric acid was added to the mixture. The mixture was extracted with ether and the ether extract was washed with an aqueous solution of sodium bicarbonate and then with water and dried. The solvent was distilled off under vacium and the residual oil was distilled under vacuum to Jbtain ethyl d,l-trans-chrysanthemumate having a boiling point of 62 to 65" C./0.7 mm.
Step B: Preparation of d,l trans-chrysanthemumic 1cid.0.348 gm. of ethyl d,l-trans-chrysanthemumate were introduced into 1.3 cc. of 2 N sodium hydroxide, 5 cc. of methanol and 0.5 cc. of water and the mixture ieated under reflux for 2 hours. Next, the mixture was :oncentrated, diluted with water and extracted with ether. The aqueous phase was acidified with 2 N hydrochloric acid and extracted with methylene chloride. The organic :xtract was washed with water and the solvent was :vaporated to obtain crystalline d,l -trans-chrysanthemumic acid having a melting point of 50 C. which was .dentical to an original sample obtained by another method.
Various modifications of the process of the invention may be made without departing from the spirit or scope thereof and it is to be understood that the invention is to be limited only as defined in the appended claims.
We claim:
1. A process for the preparation of a derivative of 3,3, 6-trimethyl-4-(ary1 sulfony1)-5-hepten-1-oic acid selected from the group consisting of its lower alkyl esters and its nitrile which comprises reacting under anhydrous conditions in a basic medium an aryl-(3-methyl-2-butenyl)-sultone in which the aryl has 1 to 4 aromatic rings and may have substituents selected from the group consisting of lower alkyl, lower alkoxy, halo lower alkyl, halogen and nitro with a compound selected from the group consisting of lower alkyl esters of senecioic acid and senecionitrile to form the corresponding derivative of 3,3,6-tri methyl-4- (aryl sulfonyl -5-hepten-1-oic acid.
2. A process for the production of a compound selected from the group consisting of lower alkyl esters and the nitrile of trans-chrysanthemumic acid which comprises cyclizing under anhydrous basic conditions a compound selected from the group consisting of lower alkyl esters and the nitrile of 3,3,6-trimethyl-4-(aryl sulfonyl)-5-hepten-l-oic acid in which the aryl has 1 to 4 aromatic rings and may have substituents selected from the group consisting of lower alkyl, lower alkoxy, halo lower alkyl, halogen and nitro to form the corresponding derivative of tr ans-chrysanthemumic acid.
3. A process for the production of a compound selected from the group consisting of lower alkyl esters and the nitrile of trans-chrysanthemumic acid which comprises reacting under anhydrous conditions an aryl (3-methyl-2- butenyl)-sul-fone in which the aryl has 1 to 4 aromatic rings and may have substituents selected from the group consisting of lower alkyl, lower alkoxy, halo lower alkyl, halogen and nitro with a compound selected from the group consisting of lower alkyl esters of senecioic acid and senecionitrile in the presence of [at least 2 molar equivalents of] a basic agent to form a compound selected from the group consisting of lower alkyl esters and nitrile of trans-chrysanthemumic acid.
4. The process of claim 1 wherein the senecioic acid compound is a lower alkyl ester of senecioic acid.
5. The process of claim 2 wherein the cyclization is effected in the presence of an excess of potassium tert.- butanolate.
6. The process of claim 2 wherein the cyclization is effected with sodium tert.-amylate.
7. A compound of the formula wherein Z is -COOR, R is selected from hydrogen and a lower alkyl radical of 1 to 7 carbon atoms and Ar is selected from the group consisting of lower alkylphenyl and phenyl.
8. The methyl ester of 3,3,6-trimethyl-4-(phenyl sulfonyl)-5-hepten-1-oic acid.
9. The methyl ester of 3,3,6-trimethyl-4-(p-tolyl sulfonyl) -5-hepten-1-oic acid.
10. 3,3,6-trimethyl-4-(phenylsulfonyl) 5 hepten-loic acid.
11. 3,3,6-trimethyl-4-(p-tolyl sulfonyl) S hepten-loic acid.
References Cited The following references, cited by the Examiner, are of record in the patented file of this patent or the original patent.
UNITED STATES PATENTS 2,435,552 2/1948 Bruson 260-465 2,815,362 12/1957 Harper 260-464 3,077,496 2/1963 Julia 260-468 H X (nfhm' rofarnnnnc nn Pnllnwinu namfi 10 FOREIGN PATENTS C. R. Acad. Sci., vol. 256, p. 436 (1963). 1 269 127 7/1961 France Progress in Chemistry of Org. Natural Prod., vol. 19,
OTHER REFERENCES p Bateman et al.: Journal Chem. Soc., 1958, p. 2889. 5 JOSEPH BRUST Primary Examiner Shriner et a1.: Systematic Identification of Org. C0rnpds., 4th edition, John Wiley & Sons, NY. (1962).
Houben-Weyl: Methoden der Organischen Chemie, 4th 260-465 K, 465 G, 465 F, 465.9, 468 H, 470, 486, 513.7, edition, v01. 9, pp. 281-283. 514 P, 515 N, 520, 521, 526, 607
Bull. Soc. Chim., 1963, p.448. 10
US27592D 1964-05-26 1971-03-22 Chxchjxx Expired USRE27592E (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR975870A FR1483715A (en) 1964-05-26 1964-05-26 Novel unsaturated substituted aryl sulfones and method of preparation
FR975871A FR1488209A (en) 1964-05-26 1964-05-26 Process for the preparation of cyclopropane derivatives and products obtained during this process

Publications (1)

Publication Number Publication Date
USRE27592E true USRE27592E (en) 1973-03-06

Family

ID=26207890

Family Applications (2)

Application Number Title Priority Date Filing Date
US454691A Expired - Lifetime US3445499A (en) 1964-05-26 1965-05-10 Novel process for the preparation of transchrysanthemumic acid
US27592D Expired USRE27592E (en) 1964-05-26 1971-03-22 Chxchjxx

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US454691A Expired - Lifetime US3445499A (en) 1964-05-26 1965-05-10 Novel process for the preparation of transchrysanthemumic acid

Country Status (10)

Country Link
US (2) US3445499A (en)
BE (2) BE698126A (en)
BR (1) BR6569889D0 (en)
CH (1) CH436246A (en)
DE (1) DE1289046B (en)
DK (1) DK121855B (en)
FR (2) FR1483715A (en)
GB (1) GB1069038A (en)
IL (3) IL31081A (en)
SE (1) SE312137B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997586A (en) * 1967-08-22 1976-12-14 Roussel-Uclaf Cyclopropanecarboxylic acids and esters
FR1519895A (en) * 1966-10-12 1968-04-05 Rhone Poulenc Sa New process for preparing pyrocine
JPS5220473B1 (en) * 1970-06-29 1977-06-03
BE794874A (en) * 1972-02-02 1973-08-01 Rhone Poulenc Sa NEW ISOPRENIC SULPHONES WITH ETHERS FUNCTIONS
FR2179499B1 (en) * 1972-04-10 1977-08-05 Rhone Poulenc Ind
FR2181113A5 (en) * 1972-04-17 1973-11-30 Rhone Poulenc Sa
DE2926671A1 (en) * 1979-07-02 1981-01-15 Bayer Ag METHOD FOR THE PRODUCTION OF CYCLOPROPANE-CARBONIC ACID DERIVATIVES AND NEW INTERMEDIATE PRODUCTS THEREFOR AND METHOD FOR THE PRODUCTION THEREOF
DE2936038A1 (en) * 1979-09-06 1981-03-26 Bayer Ag, 51373 Leverkusen METHOD FOR PRODUCING 1-AMINOCYCLOPROPANE-CARBONIC ACID AND THEIR DERIVATIVES
FR2479213A1 (en) * 1980-03-28 1981-10-02 Roussel Uclaf PROCESS FOR PREPARING PENTENOIC ACID HAVING ALDEHYDE FUNCTION
FR2479192A1 (en) * 1980-03-28 1981-10-02 Roussel Uclaf PROCESS FOR THE PREPARATION OF TETRA-SUBSTITUTED CYCLOPROPANIC DERIVATIVES
FR2490633A1 (en) * 1980-09-24 1982-03-26 Roussel Uclaf PROCESS FOR THE PREPARATION OF CYCLOPROPANE CARBOXYLIC ACID DERIVATIVES WITH ALDEHYDE FUNCTION
US5157146A (en) * 1990-08-27 1992-10-20 E. R. Squibb & Sons, Inc. Method for preparing isoprenoid cyclopropane 1,1-dicarboxylates
US5095136A (en) * 1990-08-27 1992-03-10 E. R. Squibb & Sons, Inc. Method for preparing isoprenoid cyclopropane 1,1-dicarboxylates and derivatives thereof and novel intermediates

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2435552A (en) * 1945-05-04 1948-02-03 Resinous Prod & Chemical Co Addition products of acrylonitrile and aryl sulfones and process for preparing same
FR1269127A (en) * 1960-06-20 1961-08-11 Rhone Poulenc Sa Process for preparing chrysanthemum acid

Also Published As

Publication number Publication date
FR1488209A (en) 1967-07-13
IL23530A (en) 1969-01-29
BE698126A (en) 1967-10-16
IL31082A (en) 1969-05-28
GB1069038A (en) 1967-05-17
US3445499A (en) 1969-05-20
BR6569889D0 (en) 1973-12-26
BE700357A (en) 1967-12-01
FR1483715A (en) 1967-06-09
DE1289046B (en) 1969-02-13
IL31081A (en) 1969-05-28
CH436246A (en) 1967-05-31
SE312137B (en) 1969-07-07
DK121855B (en) 1971-12-13

Similar Documents

Publication Publication Date Title
SU1151211A3 (en) Method of obtaining 5-aroyl-1,2-dihydro-3h-pyrrole /1,2-a/-pyrrole-1-carboxylic acid
USRE27592E (en) Chxchjxx
JP3701974B2 (en) Method for purifying 2,6-diisopropylphenol
US4228299A (en) Chemical process for preparing alkyl esters or the amide of 3-(β,.beta.
US2753357A (en) Lactones of 1, 12-dimethyl-6, 10-dihydroxy-9-oxo-1, 2, 3, 4, 9, 10, 11, 12-octahydrophenanthrene-1-carboxylic acid
JPS5929050B2 (en) Production method of cyclohexanedione-(1,3)
HU201523B (en) Process for producing retinoyl chlorides
US3989654A (en) Process for preparing cis-chrysanthemic acid
SU645551A3 (en) Method of obtaining benzophenonalkylcarboxylic acids
IE891996L (en) Process for the preparation of¹2,6-dichlorodiphenylamino-acetic acid derivatives
US4131618A (en) Preparation of salicylic acid and derivatives
US4264500A (en) Process of making 6-chloro-α-methyl-carbazole-2-acetic acid
SU1039439A3 (en) Process for preparing 2-(3-phenoxyphenyl)-proprionic acid or its calcium salt
US3943257A (en) 4-Alkyl-4-naphthyl butenes
SU577966A3 (en) Method of splitting d,l-alletrolon
US4009172A (en) 2,3,3A,6,7,7A-Hexahydro-thieno[3,2-b]pyridin-(4H)5-ones
US3813432A (en) Substituted 1-hydroxy cyclopropane-1-carboxylic acids
US3870744A (en) Process for oxygen-alkylation of sterically hindered phenols
US3382251A (en) Benzylidenic derivatives of substituted gamma-lactones and their process of preparation
LUTZ et al. THE CIS AND TRANS 3-AROYL-2, 3-DIMETHYLACRYLIC1 ACIDS WITH PARTICULAR REFERENCE TO THE OPEN-CHAIN AND CYCLIC FORMS OF THE CIS DERIVATIVES
US2821540A (en) Preparation of hindered 4-acylamido-benzoates
US3694472A (en) Synthesis of pyrethric acid
US5153330A (en) Thiapentanamide derivatives
GB1574416A (en) Preparation of organic acids and/or esters
Shahak et al. Studies of the Ramberg‐Bäcklund Rearrangement. Part I. Rearrangement of α‐Bromo‐β‐Keto‐and α‐Bromo‐α‐Carbethoxy‐Sulphones