USRE27282E - Gold cathode gas laser discharge tube - Google Patents

Gold cathode gas laser discharge tube Download PDF

Info

Publication number
USRE27282E
USRE27282E US27282DE USRE27282E US RE27282 E USRE27282 E US RE27282E US 27282D E US27282D E US 27282DE US RE27282 E USRE27282 E US RE27282E
Authority
US
United States
Prior art keywords
cathode
discharge tube
gas laser
anode
envelope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Application granted granted Critical
Publication of USRE27282E publication Critical patent/USRE27282E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/38Cold-cathode tubes
    • H01J17/40Cold-cathode tubes with one cathode and one anode, e.g. glow tubes, tuning-indicator glow tubes, voltage-stabiliser tubes, voltage-indicator tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2893/00Discharge tubes and lamps
    • H01J2893/0064Tubes with cold main electrodes (including cold cathodes)
    • H01J2893/0065Electrode systems
    • H01J2893/0067Electrode assembly without control electrodes, e.g. including a screen

Definitions

  • ABSTRACT F THE DISCLOSURE IA cold cathode gas laser discharge tube of improved design is disclosed.
  • a cylindrical cathode is disposed coaxially about a capillary discharge tube.
  • a substantial longitudinal overlap of the capillary discharge tube and the cathode provides a shorter structure than available in the prior art, while still allowing. a large area cathode emitting surface for long-life operation.
  • This invention relates to gas laser structures and more particularly to cold cathode gas discharge apparatus for use in such structures.
  • the cold cathode laser discharge tubes have taken one of two basic structural forms.
  • the first structural form utilizes an elongated discharge tube with the cold cathode, and 'frequently the anode as well, mounted in extension tubes or bulbs off of the main axis of the tube. This arrangement, while satisfactory for many applications, requires considerable space to accommodate the extension tubes in which the electrodes are mounted.
  • the second basic structural form as exemplified in an article entitled Cold Cathodes for Possible Use in 6328 A. Single Mode He-Ne Gas Lasers by U. Hochuli and P'. Haldemann, appearing in The Review of Scientific Instruments, vol. 36, No. 10, October 1965 at p. 1403, utilizes a cathode which i's coaxially disposed along a longitudinal extension of a capillary discharge tube. Although this arrangement achieves a smaller cross-section, it does so at the expense of a greater length. yIn many applications, however, it is desirable or necessary to make the discharge tube as compact as possible while preserving its long-life operating characteristics.
  • a second embodiment utilizing a single cathode in conjunction with two anodes and two axially aligned capillary discharge tubes provides a longer effective discharge path but with lower discharge voltages than required by the sinle anode embodiment.
  • FIG. 1 is a cross-sectional view of a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a second embodiment of the present invention.
  • FIG. l is a cross-sectional view of a preferred embodiment off the present invention.
  • an outer envelope 10 Coaxially disposed and structurally integrated iwith envelope 10 is an elongated capillary discharge tube 11 having an open end region 12 communicating with the interior region of envelope 10.
  • a first end member 13, which is sealed to envelope 10, is provided with an axially aligned light transmissive window 14.
  • Window 14 is disposed opposite the end region 12 of disch-arge tube 11 and is preferably oriented at the so-called Brewster angle as shown.
  • Anode 15 can be fabricated of any suitable conductive material, such as Kovar, which can be readily fused or bonded to glass.
  • Anode 15 can be provided with an annular flange 16 or other suitable means for facilitating mechanical and electrical connections. It is apparent that the anode shown in FIG. l is merely illustrative of one possible anode configuration. Other anode configurations can be readily adapted for use in the present invention if desired.
  • a Second end member 17, having a second light transmissive window 1.8, is bonded, fused or otherwise joined to anode 15 opposite the second end of capillary discharge tube 11.
  • Envelope 10, capillary discharge ltube 11 and end members 13 and 17 are all fabricated of glass, quartz, or other suitable dielectric material, land together with anode 15, form a hollow gas-tight structure, for containing the gaseous medium.
  • a cathode electrode 19 of cylindrical cross-section is disposed within envelope 10, with its outer surface substantially coinciding with the inside surface of envelope 10.
  • Cathode 19 extends longitudinally from the end of envelope 10 near end member 13 toward the opposite end. There is thus a substantial longitudinal overlap of cathode 13 and capillary discharge tube 11.
  • An annular supporting ring 20 is mechanically joined to cathode 19, thereby lending structural support and spacing for capillary discharge tube 11 and cathode 19.
  • Conductive pins 21 extend through envelope 10 and are joined to cathode ⁇ 19 by means of spring-like conductors 22. In addition to providing electrical coupling, pins 21, with conductors 22, also lend structural support to cathode 19. Although two conductive pins 21 are shown in the embodiment of FIG. 1, it is apparent that 'only one is necessary to provide electrical contact to cathode 19. In practice, however, two, three, or even more may be desirable for mechanical support.
  • the gas through which the electrical discharge is to take place is conned Within the structure of FIG. 1, usually at a very low pressure.
  • a suitable power supply of conventional design is connected between the cathode 19 and anode 1S by means of pins 21 and ange 16, respectively.
  • the power supply as is well-known in the art, should be capable of providing a relatively high voltage at a relatively low current. The magnitudes of the voltage and current are largely determined by the particular design requirements of the discharge tube.
  • the emitted electrons, in traversing this path interact with the gas within the discharge tube, thereby ionizing a portion of the atoms thereof and creating the desired discharge and energy level population inversion.
  • the cold cathode laser discharge tube of FIG. l can be disposed in an appropriate resonant optical cavity which is provided with output coupling means for extracting a portion of the output wave energy.
  • windows 14 and 18 can be replaced by reflecting members such as mirrors for a unitary laser oscillator structure.
  • FIG. 2 A second embodiment of the present invention, capable of providing greater output power but also utilizing the overlapping cold cathode coniiguration, is shown in the cross-sectional view of FIG. 2.
  • the embodiment of FIG. 2 is a symmetrical extension of the embodiment of FIG. 1, incorporating a single cathode 40 and two anodes 41 and 42.
  • the capillary discharge tubes 43 and 44 are both provided with rst end regions 4S and 46 which communicate with the interior region of the device.
  • the second ends of capillary discharge tubes 43 and 44 are, as before, sealed to an outer envelope 47 which surrounds cathode 40.
  • Cathode 40 is mechanically supported at either end by first and second supporting rings 48 and 49.
  • Conductive pins 50 extend through the wall of envelope 47 and are conductively connected to cathode 40 by means of springlike conductors 51.
  • a second pair of pins 52 and springlike contuctors S3 are similarly provided at the other end region of cathode 40.
  • all of the pins 50 and 52 are not essential to the operation of the present invention since adequate electrical coupling is provided by one pin.
  • pins and springlike conductors can be utilized.
  • end members 54 and 55 each provided with optically transmissive windows 56 and 57, respectively, are fused or otherwise joined to the outer end regions of anodes 42 and 41.
  • the entire structure forms a gas-tight container for confining the gaseous medium therein.
  • a gas laser discharge apparatus comprising, in combination:
  • At least one elongated capillary discharge tube' At least one elongated capillary discharge tube'
  • an anode electrode disposed at one end of said capillary discharge tube
  • conductive means extending through said envelope, said conductive means being conductively connected to said cathode.
  • a gas laser discharge apparatus comprising, in combination:
  • first and second elongated capillary discharge tubes said capillary discharge tubes being aligned along a common axis
  • cathode electrode coaxially disposed with respect to said axis, said cathode electrode extending longitudinally a substantially distance along the respective lengths of said capillary discharge tubes
  • first and second anode electrodes disposed at opposite ends of said first and second capillary discharge tubes, respectively;
  • coaxally aligned end members [including axially aligned optically transmissive windows], said end members and said envelope being adapted to provide a gas-tight structure for containing a gaseous medium therein;

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

A COLD CATHODE GAS LASER DISCHARGE TUBE OF IMPROVED DESIGN IS DISCLOSED. A CYLINDRICAL CATHODE IS DISPOSED COAXIALLY ABOUT A CAPILLARY DISCHARGE TUBE. A SUBSTANTIAL LONGITUDINAL OVERLAP OF THE CAPILLARY DISCHARGE TUBE AND THE CATHODE PROVIDES A SHORTER STRUCTURE THAN AVAILABLE IN

THE PRIOR ART, WHILE STILL ALLOWING A LARGE AREA CATHODE EMITTING SURFACE FOR LONG-LIFE OPERATION.

Description

Feb. 15, 1972 w. P. KoLB, JR
GOLD CATHODE GAS LASER DISCHARGE TUBE Original Filed Feb. s, 1968 Arran/y United States Patent 'Office Re. 27,282 Reissued Feb. 15, 1972 27,282 COLD CATHODE GAS LASER DISCHARGEI TUBE William P. Kolb, Jr., Manhattan Beach, Calif., assigner to Hughes Aircraft Company, Culver City, Calif.
Original No. 3,495,119, dated Feb. 10, 1970, Ser. No.
703,384, Feb. 6, 1968. Application for reissue June 11, 1970, Ser. No. 45,602
Int. Cl. H01j 17/04; H013 3/22 U.S. Cl. 313--217 7 Claims Matter enclosed in heavy brackets appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
ABSTRACT F THE DISCLOSURE IA cold cathode gas laser discharge tube of improved design is disclosed. A cylindrical cathode is disposed coaxially about a capillary discharge tube. A substantial longitudinal overlap of the capillary discharge tube and the cathode provides a shorter structure than available in the prior art, while still allowing. a large area cathode emitting surface for long-life operation.
Field of the invention This invention relates to gas laser structures and more particularly to cold cathode gas discharge apparatus for use in such structures.
Description of the prior art One of the more commonly used methods for pumping the active medium of gas lasers to the necessary inverted energy level condition is by means of a cathode-anode electron discharge. In the past, both hot cathode and cold cathode structures have been used. For relatively low power laser apparatus the cold cathode arrangement is generally preferred.
Understandably, much development effort has been expended in the design of gas laser discharge tubes. Such effort has been largely directed to the development of improved cathode materials and structural design to achieve efficient long-life operation.
Accordingly, it is an object of the present invention to increase the reliability and lifetime of cold cathode laser discharge tubes.
In the past, the cold cathode laser discharge tubes have taken one of two basic structural forms. The first structural form utilizes an elongated discharge tube with the cold cathode, and 'frequently the anode as well, mounted in extension tubes or bulbs off of the main axis of the tube. This arrangement, while satisfactory for many applications, requires considerable space to accommodate the extension tubes in which the electrodes are mounted.
The second basic structural form, as exemplified in an article entitled Cold Cathodes for Possible Use in 6328 A. Single Mode He-Ne Gas Lasers by U. Hochuli and P'. Haldemann, appearing in The Review of Scientific Instruments, vol. 36, No. 10, October 1965 at p. 1403, utilizes a cathode which i's coaxially disposed along a longitudinal extension of a capillary discharge tube. Although this arrangement achieves a smaller cross-section, it does so at the expense of a greater length. yIn many applications, however, it is desirable or necessary to make the discharge tube as compact as possible while preserving its long-life operating characteristics.
It is therefore another object of the present invention to provide a cold cathode laser discharge tube of decreased longitudinal and cross-sectional dimensions.
Summary of the invention In accordance with the principles of the present invention, these objects are accomplished with a cylindrical cathode configuration which, to a `substantial degree, is coextensive with the coaxially disposed capillary discharge tube. Electrons emitted from the surface of the cathode traverse a tfolded path through the bore entrance of the capillary discharge tube to the anode where they are collected. Areas of very high localized fields which give rise to rapid cathode sputtering and shortened lifetime are avoided in the cathode design.
A second embodiment utilizing a single cathode in conjunction with two anodes and two axially aligned capillary discharge tubes provides a longer effective discharge path but with lower discharge voltages than required by the sinle anode embodiment.
Brief description of the drawings The above-mentioned and other features and objects of the present invention will become more apparent by reference to the following description taken in conjunction with the accompanying drawings, in which:
FIG. 1 is a cross-sectional view of a first embodiment of the present invention; and
FIG. 2 is a cross-sectional view of a second embodiment of the present invention.
Description of the preferred embodiments Referring more particularly to the drawings, FIG. l is a cross-sectional view of a preferred embodiment off the present invention. In FIG. 1 there is shown an outer envelope 10. Coaxially disposed and structurally integrated iwith envelope 10 is an elongated capillary discharge tube 11 having an open end region 12 communicating with the interior region of envelope 10. A first end member 13, which is sealed to envelope 10, is provided with an axially aligned light transmissive window 14. Window 14 is disposed opposite the end region 12 of disch-arge tube 11 and is preferably oriented at the so-called Brewster angle as shown.
A hollow anode 15, formed of conductive material, is coaxially disposed and bonded to the other end of capillary discharge tube 11, where it joins the narrowed end of envelope 10. Anode 15 can be fabricated of any suitable conductive material, such as Kovar, which can be readily fused or bonded to glass. Anode 15 can be provided with an annular flange 16 or other suitable means for facilitating mechanical and electrical connections. It is apparent that the anode shown in FIG. l is merely illustrative of one possible anode configuration. Other anode configurations can be readily adapted for use in the present invention if desired.
A Second end member 17, having a second light transmissive window 1.8, is bonded, fused or otherwise joined to anode 15 opposite the second end of capillary discharge tube 11. Envelope 10, capillary discharge ltube 11 and end members 13 and 17 are all fabricated of glass, quartz, or other suitable dielectric material, land together with anode 15, form a hollow gas-tight structure, for containing the gaseous medium.
A cathode electrode 19 of cylindrical cross-section is disposed within envelope 10, with its outer surface substantially coinciding with the inside surface of envelope 10. Cathode 19 extends longitudinally from the end of envelope 10 near end member 13 toward the opposite end. There is thus a substantial longitudinal overlap of cathode 13 and capillary discharge tube 11. An annular supporting ring 20 is mechanically joined to cathode 19, thereby lending structural support and spacing for capillary discharge tube 11 and cathode 19.
Many materials have been suggested for use as cold cathodes in laser discharge tubes. See, for example, the above-cited article Cold Cathodes for Possible Use in 6328 A. Single Mode HeNe Gas Lasers. In addition, it has been found that tantalum, having a thin oxide layer, is also well-suited for use in the fabrication of cold cathode 19. Supporting ring can be formed of the same material or other suitable conductive or dielectric materials without detracting appreciably from the operation of the present invention.
Conductive pins 21 extend through envelope 10 and are joined to cathode `19 by means of spring-like conductors 22. In addition to providing electrical coupling, pins 21, with conductors 22, also lend structural support to cathode 19. Although two conductive pins 21 are shown in the embodiment of FIG. 1, it is apparent that 'only one is necessary to provide electrical contact to cathode 19. In practice, however, two, three, or even more may be desirable for mechanical support.
In operation, the gas through which the electrical discharge is to take place is conned Within the structure of FIG. 1, usually at a very low pressure. To establish the electrical discharge a suitable power supply of conventional design, not shown, is connected between the cathode 19 and anode 1S by means of pins 21 and ange 16, respectively. The power supply, as is well-known in the art, should be capable of providing a relatively high voltage at a relatively low current. The magnitudes of the voltage and current are largely determined by the particular design requirements of the discharge tube.
Electrons emitted xfrom the inner surface of cathode 19, traverse a path through the open end 12 of capillary discharge tube 11 on their way to the inner surface of anode 15 where they are collected. The emitted electrons, in traversing this path interact with the gas within the discharge tube, thereby ionizing a portion of the atoms thereof and creating the desired discharge and energy level population inversion. When used in a laser oscillator structure, the cold cathode laser discharge tube of FIG. l can be disposed in an appropriate resonant optical cavity which is provided with output coupling means for extracting a portion of the output wave energy. In the alternative, windows 14 and 18 can be replaced by reflecting members such as mirrors for a unitary laser oscillator structure.
A second embodiment of the present invention, capable of providing greater output power but also utilizing the overlapping cold cathode coniiguration, is shown in the cross-sectional view of FIG. 2. The embodiment of FIG. 2 is a symmetrical extension of the embodiment of FIG. 1, incorporating a single cathode 40 and two anodes 41 and 42. The capillary discharge tubes 43 and 44 are both provided with rst end regions 4S and 46 which communicate with the interior region of the device. The second ends of capillary discharge tubes 43 and 44 are, as before, sealed to an outer envelope 47 which surrounds cathode 40.
Cathode 40 is mechanically supported at either end by first and second supporting rings 48 and 49. Conductive pins 50 extend through the wall of envelope 47 and are conductively connected to cathode 40 by means of springlike conductors 51. A second pair of pins 52 and springlike contuctors S3 are similarly provided at the other end region of cathode 40. As mentioned hereinabove, all of the pins 50 and 52 are not essential to the operation of the present invention since adequate electrical coupling is provided by one pin. However, in order to provide increased structural support for cathode 40, pins and springlike conductors can be utilized.
To complete the structure of FIG. 2, end members 54 and 55, each provided with optically transmissive windows 56 and 57, respectively, are fused or otherwise joined to the outer end regions of anodes 42 and 41. Thus, the entire structure forms a gas-tight container for confining the gaseous medium therein.
The operation of the device is similar to that of FIG. 1, except that both anodes 41 and 42 are coupled to the source of electrical potential. Appropriate means, such as potentiometers, can be provided in the power supply circuit to equalize the current to each anode, if desired. It should be noted that since the embodiment of FIG. 2 essentially consists of two parallel connected electron discharge paths the current drain upon the power supply will be substantially twice that of the embodiment of FIG. l. However, since the two capillary discharge tubes 43 and 44 are coaxially aligned, the discharge length is effectively doubled.
In all cases it is understood that the above-described embodiments are merely illustrative of but a small number of the many possible specific embodiments which can represent applications of the present invention. Numerous and varied other arrangements, rincluding other envelope and anode configurations, can be readily devised in accordance with these principles by those skilled in the art without departing from the spirit and scope of the invention.
What is claimed is:
1. A gas laser discharge apparatus comprising, in combination:
at least one elongated capillary discharge tube',
a cylindrical cathode electrode coaxially disposed with respect to said capillary discharge tube, the projection of said cathode and said capillary discharge tube being coextensive over a substantial portion of their respective lengths;
an anode electrode disposed at one end of said capillary discharge tube;
envelope means surrounding said cathode and capillary discharge tube;
couxz'ally aligned end members [having axially aligned optically transmissive windows], said end members and said envelope being adapted to provide a gastight structure Ifor confining a gaseous medium therein; and
conductive means extending through said envelope, said conductive means being conductively connected to said cathode.
2. The gas laser discharge apparatus according to claim 1 wherein said anode is of cylindrical shape and is coaxially disposed at one end of said capillary discharge tube.
3. The gas laser discharge apparatus according to claim 1 wherein said cathode is fabricated of tantalum.
4. The gas laser discharge apparatus according to claim 3 wherein the inner surface of said cathode comprises a layer of tantalum oxide.
5. A gas laser discharge apparatus comprising, in combination:
first and second elongated capillary discharge tubes, said capillary discharge tubes being aligned along a common axis;
a cylindrical cathode electrode coaxially disposed with respect to said axis, said cathode electrode extending longitudinally a substantially distance along the respective lengths of said capillary discharge tubes,
first and second anode electrodes disposed at opposite ends of said first and second capillary discharge tubes, respectively;
envelope means surrounding said cathode and capillary discharge tubes;
coaxally aligned end members [including axially aligned optically transmissive windows], said end members and said envelope being adapted to provide a gas-tight structure for containing a gaseous medium therein; and
conductive means extending through said envelope, said I conductive means being conductively connected to said cathode electrode. i 6. The gas laser discharge apparatus according to claim 5 wherein said cathode is fabricated of tantalum.
5 7. The gas laser discharge apparatus according to claim FOREIGN PATENTS 6 wherein the inner surface of said cathode comprises a 6707770 12/1967 Netherlands 313 220 layer of tantalum oxide.
ROY LAKE, Primary Examiner References Cited 5 P. C. DEMEO, Assistant Examiner The following reference, cited by the Examiner, are
gkfltrelctord in the patented le of this patent or the original U'S C1. X R UNITED STATES PATENTS 313-220; 331-945 3,396,301 s/196s Kobayashi et al 33194.5 10
3,486,058 12/19'69 Hernqvist 331--94-5
US27282D 1970-06-11 1970-06-11 Gold cathode gas laser discharge tube Expired USRE27282E (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US4560270A 1970-06-11 1970-06-11

Publications (1)

Publication Number Publication Date
USRE27282E true USRE27282E (en) 1972-02-15

Family

ID=21938861

Family Applications (1)

Application Number Title Priority Date Filing Date
US27282D Expired USRE27282E (en) 1970-06-11 1970-06-11 Gold cathode gas laser discharge tube

Country Status (1)

Country Link
US (1) USRE27282E (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4853938A (en) * 1987-02-04 1989-08-01 Deutsche Forschungs- Und Versuchsanstalt Fur Luft- Und Raumfahrt E.V. He--Ne gas discharge tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4853938A (en) * 1987-02-04 1989-08-01 Deutsche Forschungs- Und Versuchsanstalt Fur Luft- Und Raumfahrt E.V. He--Ne gas discharge tube

Similar Documents

Publication Publication Date Title
US3868593A (en) Hollow-cathode laser tube
US3851272A (en) Gaseous laser with cathode forming optical resonator support and plasma tube envelope
US3784927A (en) Gas laser
US3495119A (en) Cold cathode gas laser discharge tube
US3628175A (en) Optical maser having concentric reservoirs and cylindrical resonator
US4639926A (en) Efficient cathode assembly for metal vapor laser
US3387226A (en) Laser comprising a block of insulating material having a channel therein filled with a gas
US4257015A (en) Ring laser gyroscope anode
US3670262A (en) Gas laser with discharge and gas return paths through a common cylindrical body
US3528028A (en) Gaseous laser of improved construction
US4268799A (en) Curved mirror lasers and methods of operating same
US4001720A (en) Gas laser
US3396301A (en) Gas laser tube having a hollow elongated cathode electrode
USRE27282E (en) Gold cathode gas laser discharge tube
US3469207A (en) Metal-ceramic gas laser discharge tube
US3402367A (en) Three-electrode cold-cathode gas laser tube
US3771066A (en) Gas laser
US3713043A (en) Gas lasers with electrically-conductive plasma tube
US3887883A (en) Gas laser tube and method of fabricating same
US3611183A (en) Double-ended ion laser tube
US3688217A (en) Laser cold cathode arrangement
US4442523A (en) High power metal vapor laser
US3497827A (en) Gas laser utilizing the negative glow in a cold cathode glow discharge tube
US3522551A (en) Laser tube construction
US3599107A (en) Thermally compensated laser discharge structure