USRE26956E - Molecularly oriented bottle - Google Patents

Molecularly oriented bottle Download PDF

Info

Publication number
USRE26956E
USRE26956E US26956DE USRE26956E US RE26956 E USRE26956 E US RE26956E US 26956D E US26956D E US 26956DE US RE26956 E USRE26956 E US RE26956E
Authority
US
United States
Prior art keywords
bottle
tube
polymer
temperature
parison
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB29425/66A external-priority patent/GB1156071A/en
Application filed filed Critical
Application granted granted Critical
Publication of USRE26956E publication Critical patent/USRE26956E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0207Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/13Articles with a cross-section varying in the longitudinal direction, e.g. corrugated pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/901Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies
    • B29C48/903Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/08Biaxial stretching during blow-moulding
    • B29C49/10Biaxial stretching during blow-moulding using mechanical means for prestretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/08Biaxial stretching during blow-moulding
    • B29C49/10Biaxial stretching during blow-moulding using mechanical means for prestretching
    • B29C49/14Clamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/28Blow-moulding apparatus
    • B29C49/30Blow-moulding apparatus having movable moulds or mould parts
    • B29C49/38Blow-moulding apparatus having movable moulds or mould parts mounted on movable endless supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6409Thermal conditioning of preforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0017Combinations of extrusion moulding with other shaping operations combined with blow-moulding or thermoforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/904Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article using dry calibration, i.e. no quenching tank, e.g. with water spray for cooling or lubrication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • B29C48/912Cooling of hollow articles of tubular films
    • B29C48/913Cooling of hollow articles of tubular films externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7158Bottles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/91Product with molecular orientation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]

Definitions

  • ABSTRACT OF THE DISCLOSURE Thernzoplastz'c polymer is stretched at a tempcraiure just belw Ihe cryslalline nzelttng poim Of the polymer 0 yield ariicles having high szrength.
  • the clarty of such articles is also enhanccd.
  • thermoplastic polymer prior to orientation thereof.
  • t relates to a method and apparatus for forming oriented articles of thermo lastc polymer by blow molding.
  • it relates to novel articles formed from oriented lhermoplastic polymer.
  • a still further object of ths invention is to provide novel articles of oriented polypropylene.
  • thermoplastic polymers such as polyethylene, polypropylene, poly-lbutene, and copolymers of these and higher mono-l-olefins can be strengthened by orientation.
  • This molecular orientation can be brought about by stretching the polymeric structure, preferably biaxially at temperatures be- 1ow the crystalline melting point of the polymer. While these principles can be readily applied to batch operations, the control of continuous processes to produce molecularly oriented structures is more diflicult.
  • an apparatus and method for the production of uniquely strengthened hollow articles such as bottles, drums, carboys and the like by blow melding after temperature conditioning the polymer which has been extruded in the form of a tube According to one aspect of my invention I have provided an apparatus for conditioning an extruded tube of thermoplastic polymer prior to orientation thereof.
  • This apparatus comprises an elongated sizing sleeve which can be fastened to the extrusion die from which the tube issues in combinaton with means for evacuating the space between the extruded tube and the sleeve wall, means for cooling the extruded tube as soon as it enters the sleeve and means for reheating at least the surface of the tube before it leaves the sleeve.
  • This apparatus een be used to provide a conditioned tube which can be oriented by inflation or drawing over en expander ring.
  • the inflation can be continuous as in the production of film or it can be carried out intermittently by expanding a parison contained between mold halves to produce hollow articles.
  • the above described temperature conditioning sleeve can be used in combination with bottle molding apparatus.
  • This ap paratus combination comprises means for extruding a parison, means for cooling the parison, means for reheating the parison, means for pulling the parison from the reheating means, a piurality of bottle molds positoned to close about successive portions of the heated parison, and means for inflating each parison portion within a mold by internal fluid pressure.
  • a method for blow molding hollow artcles from thermoplastic crystalline polymer which comprises extruding a parison, cooling the parison until the polymer is in uniform crystalline condition, reheating the parison to within a few degrees below the crystalline melting point of the polymer, passing the parison thus reheated into a mold, and expanding the parison against the wall of the mold by internal fluid pressure.
  • FIGURE 1 is an eievation drawing in secton of the cooling and reheating sleeve of my invention shown in combination with an expander ring for the production or oriented film;
  • FIGURE 2 is a schematic drawing in elevation of apparatus for temperature conditioning extruded tube and subsequently molding same in the shape of a bottle;
  • FIGURE 3 is an illustration of a modified form of the coo]ing ancl reheating sleeve which minimizes sticking of the tube within the sleeve operating in combination with continuous bottle molding apparatus.
  • the apparatus and method of my invcntion can be employed in the fabrication of articles from any thermoplastic polymer which is normally extruded, thermoformed or blow molded, but the invention is of particular advantage with those crystallizable polymers which can be oriented on stretching at carefully controlled temperatures, preferably just below the crystalline melting point of the polymer.
  • Polymers such as polystyrene, polyvinylchloride, nylons and various cellulose derivatives can be fabricated with the apparatus of my invention, but I prefer to work with the normally sold polymers of monol-olefins containing up to 8 carbon atoms, and particularly those polymers which have relatively high degrees of crystallinity, for example the high density ethylene polymers and isotactic polypropylene, poly-4-methylpentene-l, polybutene and the like.
  • the olefin polymers having a degree of crystallinity of at least 70 and more preferably at least 80 percent at 25 C.
  • Particularly suitable are the homopolymers of ethylene and co polymers of ethylene with higher monololefins having a density of about 0.940 te 0.990 grams per cubic centimeter at 25 C.
  • the term density refers to the weight per unit volume (grams/cubic centimeter) of the polymer at 25 C.
  • the density of polymer should be determined while the sample of the polymer is at thermal and phase equilibriunr. In order to insure this equilibrium it is desirable to heat the sample to a temperature to eentigrade degrees above its melting point and allow the sample to cool at a rate of about 2 centigrade degrees/minute to the temperature at which the density is to be measured. Any standard method for determining the density of a solid can be used.
  • the crystallinity of the olefin polymers can be determined by X-ray defraction or nuclear magnetic resonance.
  • the sample of the polymer Prior to the determination of crystallinity it is desirable that the sample of the polymer be treated for thermal equilibrium in a manner described in connection with the density determination.
  • the higher crystalline olefin polymers referred to above do not have a single freezing and melting point but instead have a crystalline freezing point at which maximum crystalline formation occurs upon cooling of the molten polymer and a separate crystalline melting point at which evidence of crystallinity disappears upon heating a sample of the polymer from a cooled crystalline condition. Ordinarily the latter temperature is several degrees above the crystalline freezing point.
  • the crystalline freezing point of these polymers can be determined by melting a sample of the polymer, inserting a thermocouple in the molten polymer and allowing the polymer to cool slowly.
  • the temperature is recorded and plotted on a chart versus time.
  • the crystalline freezing point is the first plateau in the time-versustemperature curve.
  • the crystalline freezing point is about 252 F.
  • the crystalline melting point of these polymers can be determined by freezing a small piece of plastic (usually film) under crossed polaroids in a microscope equipped with means for heating the polymer. The specimen is heated slowly and the melting point is the temperature at which birefringence disappears.
  • the crystalline melting point is ordinarily about 272 F.
  • the temperature at which these highly crystalline polymers are stretched is very important if maximum orientation and strengthening of the polymer is to result.
  • the crosshead die 10 is equipped with 21 die tip 11 and the temperature conditioning sleeve is mounted on the die tip so that the tube that is extruded passes immediately into the sleeve.
  • the temperature conditioning sleeve comprises an elongated cylindrical wall section 12 against which the extruded tube is pressed by internal fluid pressure.
  • a jacket 13 completely surrounds the cylndrical wall section and defines between the jacket and the wall section a plurality of annular cavities.
  • One of these annular cavities 14 is disposed in the upstrcam half of the cooling sleeve toward the extrusion die and communicates through a conduit 16 to a source of cooling liquid.
  • l-olefin polymer-s such as ethylene polymers or polypropylene where extruson temperalures in the range of about 350 to 400 F. are employed
  • water at room temperature e.g., about 70 F.
  • This cooling water flows through conduit 16, through annular orifice 14 and discharges through conduit 17.
  • This cool water circulating through the upstream end of the cooling sleeve has sufficiently low temperature that at least the surface of the tube as extruded is quenched and the polymer toward the outside of the tube reaches a crystalline state. As the sleeve passes through this quenching section of the sleeve a temperature gradient develops through the thickness of the tube.
  • the tube is next passcd through the downstream end of the conditioning sleeve where the temperature is controlled by a heating fluid which is introduced through conduit 18 and circulates through annular oritice 19 discharging through conduit 20.
  • Hot water under pressure or any other heat transfer medium can be employed for this purpose.
  • polyethylene having a density of about 0.960 pressurized water at a temperature of about 235 to 240 F.
  • Annular cavities 21 and 22 which are provided between the jacket and the inner wall section of the cooling sleeve are connected to means for drawing a vacuum so that the space between the inner wal] of the conditioning sleeve and the tube as extruded can be evacuated.
  • the annular cavity 22 communicates to the space between the sleeve and the tube through a plurality of holes 23.
  • These vacuum connections which are located at the upstream end of the conditioning sleeve and at its mid point permit operation of the extrusion and temperature conditioning so that the tube wall is maintained firmly against the inner surface of the conditioning sleeve, thereby improving heat transfer.
  • Other vacuum connections can be provided if desired and one positioned at the extreme downstream end of the conditioning sleeve is Very helpful in starting up the operation.
  • the temperature conditioned tube emerges from the inner wall 12 of the conditioning sleeve and passes between guide rolls 24.
  • the tube can then be stretched outwardly over expander ring 26 which is supported from the crosshead die by shaft 27.
  • the oriented film 28 can then be pulled to suitable takeup means not shown.
  • This type of operation can be employed to produce clear, tough polyethylene films at draw down ratios of 10:1 or less. Some clarity has been achieved in films as thick as 5 mils. Very high draw down ratios, e.g. as high as l, can be attained by this method.
  • FIGURE 1 it is ordinarily desirable to operate at a relatively high temperature but below the sticking point of the polymer.
  • the hot plastic can be passed over a sharp edge, which is preferably made of an insulating material, without sticking at temperatures where sticking would normally occur in contact with a larger surface.
  • Annular plate 30 is provided, therefore, at the end of the conditioning sleeve as shown in FIGURE 3. This annular plate serves as a guide for the polymer tube as it issues from the conditioning sleeve. Electrical resistance heaters can be used in place of the hot circulating liquid in the downstream section 29 of the conditioning sleeve.
  • the apparatus described above is very useful in the conditioning of polymeric tubes which are to be stretched to form orientecl films
  • the apparatus is also quite useful in conditioning parisons to be used for blow molding.
  • the reheating of the extruded tube can be controlled so that the exterior portion of the tube is in a crystalline condition and is strengthened by orientation while the inside of the tube is maintained relatively tacky and in a sealable condition so that when the molds close about the conditioned tube a firm seal is developed between the portion of the tube which is pinched shut.
  • Apparatus which can be used in the formation of strengthened containers formed by blow molding is illustrated in FIGURE 2.
  • thermoplastic polyroer is extruded from crosshead die 31 through die orifice 32 into a sizing and cooling sleeve 33.
  • sleeve 33 does not have the reheating function described in connection with the conditioning sleeves of FIGURES 1 and 3 but instead serves only to quench the extruded tube, or at least the exterior thereof, so that the tube can be passed into water jacket 34 where all the polymer in the tube is brought to a uniform crystalline conditon. The tube is then pulled from the water jacket by the continuous belts 36 and 37 and pushed into the heating jacket 38.
  • This heating jacket can comprise a porous bronze sleeve through which high pressure steam is blown or through which a hot heat transfer medium is pumped or it can comprise a bath of heating liquid, for example, ethylene glycol. If a bath of this type is used, pressure is maintained on the ethylene glycol in order to counter bulance any internal pressure held within the tube for blowing the tube downstream of the heating bath. In the heating bath the tube is brought to a temperature within a few degrees, for example, within about F. below the crystalline melting point of the polymer. This is the preferred temperature for orientation in order to achieve maximum strengthening eifect.
  • Bottle mold 40 comprises two mold halves which can be brought together about the heated tube as it passes from the porous sleeve.
  • One end of the tube is pinched shut by the bottom portion 41 of the mold forming the bottom of the bottle.
  • Heating elements 42 can be positioned in this portion of the mold in order to heat the portion of the tube which has been pinched, shut, thereby forming an effective seal.
  • the remainder of the mold is cooled by circulating a cool Huid through coils 43. After the mold is closed about the extruded tube, internal gas pressure injected at crosshead die 31 forces the tube out against the walls of the mold forming the bottle.
  • Air ring 44 can be provided surrounding the porous sleeve [49] 39 to aid in further temperature conditioning the tube prior to molding.
  • means can be provided within the bottle mold for evacuating the space between the tube and the mold walls, thereby vacuum-forming the conditioned tube within the mold.
  • FIGURE 3 shows still another cmbodiment which is preferred for the continuous production of relatively small containers.
  • the extruded tube properly conditioned within the sleeve as previously described, passes directly to molding apparatus 46 which comprises a plurality of mold halves 47 mounted on continuous belts 48 and 49.
  • Belt 48 is monnted on wheels 50 and 51 while belt 49 is mounted on wheels 52 and 53.
  • the belts move the mold halves 47 into position as shown by mold halves 47a.
  • these mold halves are brought together they pinch shut a portion of the extruded tube as shown between the mold halves 47b.
  • the closed molds move forward the tube is punctured by needle 54 through which air is injected into the trapped section of the parison as shown between mold halves 47c.
  • the tube is thus forced into conformity with the shape of the mold as shown between mold halves 47d and as the molds move forward the portion of the tube between the molds is severed by knife 56.
  • the mold halves are opened as belts [40] 48 and 49 pass over wheels 51 and 53 respec tively, and the molded bottles are ejected from the mold and fall into a receptacle.
  • belts 48 and 49 it is desirable to move belts 48 and 49 so that when the mold halves come together a pull is exerted on the parison, moving it forward at a rate which is slightly faster than its rate of extrusion. This subjects the conditioned parison to longitudinal tension and develops a longitudinal molecular orientation within the parison prior to molding.
  • properties include among others orientation release stress, tensile impact strength, and modulus of elasticity in flexure.
  • EXAMPLE I Polyethylene having a density of 0.960 gram per cubic centimeter at 25 C. is extruded continuously in the form of a parison 2 inches in diameter and 47 rnils thick. This tube is passed immediately into a conditioning sleeve as shown in FIGURE 3 where it is immediately quenched by water which is circulating through the jacket of the sleeve at 7() F. The surface of the tube is brought quickly below the sticking tempcrature and the tube is then reheated to 250 F. in the heating section of the conditioning sleeve. As the tube issues from the sleeve it is stretched 10ngitudnally and then trapped between mold halves which close about the tube completely sealing both ends of the tube which are in the mold.
  • the bottle is then formed by evacuating the space between the mold and the parison causing the parison to be forced into conformity with the mold surfaces.
  • the bottle thus formed possesses molecular orientation within its walls and it is substantially stronger than a bottle formed directly from the hot extruded parison without the temperature conditioning described.
  • Blow-molded 10-ounce bottles were made from homopolymer polypropylene and from homopolymer lnear polyethylene. Extruded parisons trom each of the two plastic materials were blow-molded to produce both hotblown-blow molded from the parison which was in the hot-melt state directly after it came fro mthe extruder and. orientedblow molded trom parisons that had initially cooled to ambient conditions and were reheated to a temperature slightly below the melting point and then blow molded into bottles.
  • Bottles-As molded
  • Range Rmrgu 1 1 where ordinary unoriented polypropylene could not be used. Essentially the phenomenon of orientation in polypropylene has resulted in the formation of a plastic material significantly different in certain physical and mechanical properties that will allow many applications now not being associated with normal polypropylene.
  • Distilled water was used as the immersion medium and the test sample consisted of the center main section of a bottle measuring about 2.4 inches in the longitudinal direction, and using the full circumference. A small weight was attached to the test sample to make it sink below the water surface. and a small percentage of wetting agent was added to reduce surface tension. Five determinations were made for each bottle type using five diierent bottles in each case.
  • Temperature tolerance during immersion was i2 F. It was determined by trial and error testing that 10 seconds was an adequate time for maximum shrinkback to occur in each case. The test samples were inch wide by 2 inches long. Shrink-back was expressed as the percentage change in length which occurred during his hightemperature immersion. Normally mineral oil attacks polyethylene and polypropylene, but the time element was too short for this attack to be eflective and possibly influence shrinkage characteristics. At least one specimen from each principal direction of each bottle evaluated was tested.
  • Heating rate was controlled manually by adjusting the power input to the cylindrical heater to follow a standard heating curve, which was superimposed on the recording monitor that was activated by a low-inertia thermocouple placed within /s of an inch of the center of the test specimen, but not contacting it. Two determinations were made for each bottle type in each principal direction.
  • Temperature control was maintained by manual means, adjusting the input of CO coolant to maintain the temperature within 32 of that desired.
  • Sample size was 2 inches long by A inch wide.
  • Test Specimens were carcfully prepared by cutting with a new, sharp razor blade and subsequent examination was made of the cut edges under magnification to insure that no edge imperfections were present. All tests used the 4 ft. 1b. capacity impact hammer.
  • Bottle-Drop Testing Bottle-drop impact resistance was determined following the essential procedures of an ASTM D20 Committee Proposed Tentative entitled, Method of Test for Measurng the Drop Impact Resist ance of Blow-Molded Containers. This method recommended three types of drops, one on the bottom, one on the side, and a 45-degree angle bottom drop. Ten bottles of each type except the oriented polyethylene were drop-impact tested in each recommended position at 73 F., using water at the test temperature inside the bottle. The orient ed polyethlene was eliminated from this test series because of the lmited number of bottles available.
  • the test apparatus for controlling the angle of drop and height consisted of a horizontal trap door arrangement that could be positioned at any height up to 12 feet with a positioning jig which held the bottle in the precise position of drop and a release mechanism that snapped the trap door down and away from the test bottle in such a marmer that it allowed the bottle to drop freely without rotation t impact in exactly the Same position as that held by the bottle when resting on the horizontal trap door. Similar testing was performed at 40 F. using only the bottom drop position, and testing al] bottle types.
  • Bottle Water Vapor Transmission Water vapor transmission characteristics were determined by exposing the whole bottle to an environment of 100 F. and 90 percent relative humidity using 150 grams of desiccant (calcium sulfate) inside the bottle and checking weight pickup versus time. Three bottles of each type were so evaluated, using weighing technques as recommended by ASTM E96, with at least three suecessive daily determiations that resulted in essentially a straight-line plot of moisture pickup versus time. Bottle thicknesses were determined after the test by dissection and micrometer measurements, and this thickness was included in the calculations for water vapor transmission, which were expressed as gram-mil per 24 hours. This thickness consideration in the calcllation allowed a direct comparison numerically between bottle types. Bottles were positively sealed under a screw cap using a resilient rubber gasket.
  • a molecularly oriented bottle formed from a crystalline polymer of [polyethylene] ethylene, said bottle having a circumferential orientation release stress in the range of 64 to 65 p.s.i. an axial orientation release stress in the range of 48 to 65 p.s.i., a circumferential modulus of elasticity in flexure at 73 F. in the range of 2.46 10 to 2.97 p.s.i., an axial modulus of elasticity in flexure in the range of 3.61 10 to 4.47 10 p.s.i. a circumferential tensile impact strength at 73 F. in the range of 25-0 to 650 ft. lb./in. and an axial tensile impact strength at 73 F. in the range of 420 to 580 R. lb./infi.
  • a molecularly oriented bottle formed from a crystalline poIymer of '[polypropylene] propylene, said bottle having a cireumferential orientation release stress in the range of 135 to 180 p.s.i., an axal orientation release stress in the range of to p.s.i., a circum ferential modulus of elasticity in flexure at 73 F. in the range of 3,28X10 to 4.21 x 10 p.s.., an axial modulus of elasticity in flexure in the range of 3.54 10 to 4.08 10 p.s.i. a crcumferential tensile impact strength at 73 F. in the range of 610 to 870 ft. lb./in. and an axial tensile impact strength at 73 F. in the range of 770-1140 ft. lb./in..
  • a bottle according to claim 3 being further characterized by having a transmittance to 700 millimicron wave lengtth light of at least 86.9 percent.
  • a bottle according to claim 3 being farther chatacterized by havng a transmittance to 700 millimz'cron wave length light equal w at least 95 percent of the transmittance of microscope cover glass.
  • a bottle according to claim 6 being further characterzed by having a transmirtance to 700 miilimicron wave length light of at least 86.9 percent.
  • a bottle according to claim 6 being further characterized by having a transmittance 10 700 milh'mticron wave length Iight equal to at least 95 percent of the transmittance of microscope cover glass.
  • a molecularly oriented polypropylene bottle having a transmittance to 700 millimicron wave length light of at least 86.9 percent.
  • a molecularly oriented bottle formed fr m a crystaiiine poIymer of propylene, said bottle having a circumferential modulus of elasticity in flexnre at 73 F. in the range of 3.28 10 10 4.21 10 p.s.i. an axal modulus of elasticity in fiexure in this range of 3.54 10 t0 4.08 10 p.s.i. a circumferentia! tensile impact strength at 73 F. in the range of 610 10 870 jt. lb./in. and an axal tens1e impact strength at 73 F. in the range of 770-1140 jt. 1b./inn.
  • a bottle according za claim 12 being further characterized by having a transmittance to 700 millimicron wave length light 0 at least 59.2 percent.
  • a bottle according to claim 12 being further characterizea' by having a transmittance to 700 miilimcron wave length Iight equal w at least 65 percent of the trans mittance of microscope cover glass.
  • a bottle accora'ing to claim 15 being further characterized by having a transmittance to 700 millimicrorz wave length light of at least 59.2 percent.
  • a bottle according to claim 15 being further characterized by having a transmittance to 700 millimicron wave Iength light equal t0 at least 65 percent of the transmittance of microscope cover glass.
  • a molecularly orenled battle formed from a polymer selected from the group conssting of polyelhylene, polypropylene, poly-I-butene, and copolymers of these un(l higlze mona-l-olefins, said battle bez'ng characterz'zed' by havng a drop impact resszance al 40 F while conmnng water at said 40 F, of at least 12 feet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

2 Sheets-Sheet 1 Origina1 Fled July 1, 1965 .PDO
BY W
Sept. 29., 1970 w Re. 26,956
MOLEGULARLY ORIENTED BOTTLE Original Filed July 1. 1965 2 Sheets-Sheet 2 INVENTOR. F.E. WILEY United States Patent O Int. Cl. B6Sd 23/00 U.S. Cl. 2151 22 Claims Matter enclosed in heavy brackets appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
ABSTRACT OF THE DISCLOSURE Thernzoplastz'c polymer is stretched at a tempcraiure just belw Ihe cryslalline nzelttng poim Of the polymer 0 yield ariicles having high szrength. The clarty of such articles is also enhanccd.
This application is a continuation-in-part of my copending application Serial. No. 153,355, filed November 20, 1961, and now abandoned.
This inventon relates to apparatus for conditioning thermoplastic polymer prior to orientation thereof. In another aspect t relates to a method and apparatus for forming oriented articles of thermo lastc polymer by blow molding. In a further aspect it relates to novel articles formed from oriented lhermoplastic polymer. A still further object of ths invention is to provide novel articles of oriented polypropylene.
It is well known that many crystallizable thermoplastic polymers such as polyethylene, polypropylene, poly-lbutene, and copolymers of these and higher mono-l-olefins can be strengthened by orientation. This molecular orientation can be brought about by stretching the polymeric structure, preferably biaxially at temperatures be- 1ow the crystalline melting point of the polymer. While these principles can be readily applied to batch operations, the control of continuous processes to produce molecularly oriented structures is more diflicult.
I have discovered an apparatus and method for the production of uniquely strengthened hollow articles such as bottles, drums, carboys and the like by blow melding after temperature conditioning the polymer which has been extruded in the form of a tube. According to one aspect of my invention I have provided an apparatus for conditioning an extruded tube of thermoplastic polymer prior to orientation thereof. This apparatus comprises an elongated sizing sleeve which can be fastened to the extrusion die from which the tube issues in combinaton with means for evacuating the space between the extruded tube and the sleeve wall, means for cooling the extruded tube as soon as it enters the sleeve and means for reheating at least the surface of the tube before it leaves the sleeve. This apparatus een be used to provide a conditioned tube which can be oriented by inflation or drawing over en expander ring. The inflation can be continuous as in the production of film or it can be carried out intermittently by expanding a parison contained between mold halves to produce hollow articles.
Re. 26,956 Reissued Sept. 29, 1970 According to another aspect of my invention the above described temperature conditioning sleeve can be used in combination with bottle molding apparatus. This ap paratus combination comprises means for extruding a parison, means for cooling the parison, means for reheating the parison, means for pulling the parison from the reheating means, a piurality of bottle molds positoned to close about successive portions of the heated parison, and means for inflating each parison portion within a mold by internal fluid pressure. According to my invention a method is provided for blow molding hollow artcles from thermoplastic crystalline polymer which comprises extruding a parison, cooling the parison until the polymer is in uniform crystalline condition, reheating the parison to within a few degrees below the crystalline melting point of the polymer, passing the parison thus reheated into a mold, and expanding the parison against the wall of the mold by internal fluid pressure. According to a further aspect of my invention I have discovered that hollow articles produced in accordance with the above aspects possess unique and desirable properties when formed from polypropylene.
It is an object of my invention to provide apparatus suitable for conditioning an extruded tube of thermoplastic polymer prior to orientation thereof by stretching. Another object of my invention is to provide apparatus for the continuous production of hollow articles by blow molding successive portions of an extruded parison. Still another object of my invention is to provide an apparatus and method by which an extruded parison can be conditoned so that when the parison is subsequently blow molded to form a hollow article a satisfactory seal is produced between the inner portions of the parison which are pressed together while the walls of the parison are substantially strengthened by molecular orientation. Other objects, advantages and features of my invention will be apparent to those skilled in the art from the fol lowing discussion and drawings of which FIGURE 1 is an eievation drawing in secton of the cooling and reheating sleeve of my invention shown in combination with an expander ring for the production or oriented film;
FIGURE 2 is a schematic drawing in elevation of apparatus for temperature conditioning extruded tube and subsequently molding same in the shape of a bottle; and
FIGURE 3 is an illustration of a modified form of the coo]ing ancl reheating sleeve which minimizes sticking of the tube within the sleeve operating in combination with continuous bottle molding apparatus.
The apparatus and method of my invcntion can be employed in the fabrication of articles from any thermoplastic polymer which is normally extruded, thermoformed or blow molded, but the invention is of particular advantage with those crystallizable polymers which can be oriented on stretching at carefully controlled temperatures, preferably just below the crystalline melting point of the polymer. Polymers such as polystyrene, polyvinylchloride, nylons and various cellulose derivatives can be fabricated with the apparatus of my invention, but I prefer to work with the normally sold polymers of monol-olefins containing up to 8 carbon atoms, and particularly those polymers which have relatively high degrees of crystallinity, for example the high density ethylene polymers and isotactic polypropylene, poly-4-methylpentene-l, polybutene and the like.
I prefer to practice the invention with the olefin polymers having a degree of crystallinity of at least 70 and more preferably at least 80 percent at 25 C. Particularly suitable are the homopolymers of ethylene and co polymers of ethylene with higher monololefins having a density of about 0.940 te 0.990 grams per cubic centimeter at 25 C.
As used herein the term density" refers to the weight per unit volume (grams/cubic centimeter) of the polymer at 25 C. The density of polymer should be determined while the sample of the polymer is at thermal and phase equilibriunr. In order to insure this equilibrium it is desirable to heat the sample to a temperature to eentigrade degrees above its melting point and allow the sample to cool at a rate of about 2 centigrade degrees/minute to the temperature at which the density is to be measured. Any standard method for determining the density of a solid can be used. The crystallinity of the olefin polymers can be determined by X-ray defraction or nuclear magnetic resonance.
Prior to the determination of crystallinity it is desirable that the sample of the polymer be treated for thermal equilibrium in a manner described in connection with the density determination. The higher crystalline olefin polymers referred to above do not have a single freezing and melting point but instead have a crystalline freezing point at which maximum crystalline formation occurs upon cooling of the molten polymer and a separate crystalline melting point at which evidence of crystallinity disappears upon heating a sample of the polymer from a cooled crystalline condition. Ordinarily the latter temperature is several degrees above the crystalline freezing point. The crystalline freezing point of these polymers can be determined by melting a sample of the polymer, inserting a thermocouple in the molten polymer and allowing the polymer to cool slowly. The temperature is recorded and plotted on a chart versus time. The crystalline freezing point is the first plateau in the time-versustemperature curve. For polyethylene having a density of about 0.960 the crystalline freezing point is about 252 F. The crystalline melting point of these polymers can be determined by freezing a small piece of plastic (usually film) under crossed polaroids in a microscope equipped with means for heating the polymer. The specimen is heated slowly and the melting point is the temperature at which birefringence disappears. For polyethylene having a density of about 0.960 the crystalline melting point is ordinarily about 272 F.
The temperature at which these highly crystalline polymers are stretched is very important if maximum orientation and strengthening of the polymer is to result. For
example, if it is necessary that polymer be in a substantially crystalline condition, but if the temperature of the polymer is too low the stretching tends to be uneven and the thin wall of the structure which is formed tends to rupture. It is desirable, therefore, that at least a portion of the polymer wall be temperature conditioned so that it is in a crystalline state very near the melting point of the polymer crystallites. Apparatus which can be used to accomplish this temperature conditioning is shown in FIGURE 1.
In FIGURE 1 the crosshead die 10 is equipped with 21 die tip 11 and the temperature conditioning sleeve is mounted on the die tip so that the tube that is extruded passes immediately into the sleeve. The temperature conditioning sleeve comprises an elongated cylindrical wall section 12 against which the extruded tube is pressed by internal fluid pressure. A jacket 13 completely surrounds the cylndrical wall section and defines between the jacket and the wall section a plurality of annular cavities. One of these annular cavities 14 is disposed in the upstrcam half of the cooling sleeve toward the extrusion die and communicates through a conduit 16 to a source of cooling liquid. For the extrusion of l-olefin polymer-s such as ethylene polymers or polypropylene where extruson temperalures in the range of about 350 to 400 F. are employed, water at room temperature, e.g., about 70 F., is suitable for this purpose. This cooling water flows through conduit 16, through annular orifice 14 and discharges through conduit 17. This cool water circulating through the upstream end of the cooling sleeve has sufficiently low temperature that at least the surface of the tube as extruded is quenched and the polymer toward the outside of the tube reaches a crystalline state. As the sleeve passes through this quenching section of the sleeve a temperature gradient develops through the thickness of the tube. In order to make the temperature of the tube more uniform the tube is next passcd through the downstream end of the conditioning sleeve where the temperature is controlled by a heating fluid which is introduced through conduit 18 and circulates through annular oritice 19 discharging through conduit 20. Hot water under pressure or any other heat transfer medium can be employed for this purpose. For example, when conditioning polyethylene having a density of about 0.960 pressurized water at a temperature of about 235 to 240 F. can be used. Annular cavities 21 and 22 which are provided between the jacket and the inner wall section of the cooling sleeve are connected to means for drawing a vacuum so that the space between the inner wal] of the conditioning sleeve and the tube as extruded can be evacuated. As shown in FIGURE 1 the annular cavity 22 communicates to the space between the sleeve and the tube through a plurality of holes 23. These vacuum connections which are located at the upstream end of the conditioning sleeve and at its mid point permit operation of the extrusion and temperature conditioning so that the tube wall is maintained firmly against the inner surface of the conditioning sleeve, thereby improving heat transfer. Other vacuum connections can be provided if desired and one positioned at the extreme downstream end of the conditioning sleeve is Very helpful in starting up the operation.
The temperature conditioned tube emerges from the inner wall 12 of the conditioning sleeve and passes between guide rolls 24. The tube can then be stretched outwardly over expander ring 26 which is supported from the crosshead die by shaft 27. The oriented film 28 can then be pulled to suitable takeup means not shown. This type of operation can be employed to produce clear, tough polyethylene films at draw down ratios of 10:1 or less. Some clarity has been achieved in films as thick as 5 mils. Very high draw down ratios, e.g. as high as l, can be attained by this method. When operating as shown in FIGURE 1 it is ordinarily desirable to operate at a relatively high temperature but below the sticking point of the polymer. This is particularly truc on start-up in order to faclitate stretching the tube over the expander ring. In many instances, however, the desirable stretching temperature is somewhat above the temperature at which polymer sticking develops. In these cases it is desirable to modify the conditioning sleeve as shown in FIGURE 3 by enlarging the inside diameter of the wall section at the downstream end thereof. Since a vacuum tap is not provided at this point the tube does not come into contact with this portion of the inner wa]l of the conditioning sleeve and the final reheating is carried out by radiation. This section of enlarged diameter is indicated by numeral 29, FIGURE 3. It has also been found that the hot plastic can be passed over a sharp edge, which is preferably made of an insulating material, without sticking at temperatures where sticking would normally occur in contact with a larger surface. Annular plate 30 is provided, therefore, at the end of the conditioning sleeve as shown in FIGURE 3. This annular plate serves as a guide for the polymer tube as it issues from the conditioning sleeve. Electrical resistance heaters can be used in place of the hot circulating liquid in the downstream section 29 of the conditioning sleeve.
While the apparatus described above is very useful in the conditioning of polymeric tubes which are to be stretched to form orientecl films, the apparatus is also quite useful in conditioning parisons to be used for blow molding. In this application the reheating of the extruded tube can be controlled so that the exterior portion of the tube is in a crystalline condition and is strengthened by orientation while the inside of the tube is maintained relatively tacky and in a sealable condition so that when the molds close about the conditioned tube a firm seal is developed between the portion of the tube which is pinched shut. Apparatus which can be used in the formation of strengthened containers formed by blow molding is illustrated in FIGURE 2. The thermoplastic polyroer is extruded from crosshead die 31 through die orifice 32 into a sizing and cooling sleeve 33. In this arrangement sleeve 33 does not have the reheating function described in connection with the conditioning sleeves of FIGURES 1 and 3 but instead serves only to quench the extruded tube, or at least the exterior thereof, so that the tube can be passed into water jacket 34 where all the polymer in the tube is brought to a uniform crystalline conditon. The tube is then pulled from the water jacket by the continuous belts 36 and 37 and pushed into the heating jacket 38. This heating jacket can comprise a porous bronze sleeve through which high pressure steam is blown or through which a hot heat transfer medium is pumped or it can comprise a bath of heating liquid, for example, ethylene glycol. If a bath of this type is used, pressure is maintained on the ethylene glycol in order to counter bulance any internal pressure held within the tube for blowing the tube downstream of the heating bath. In the heating bath the tube is brought to a temperature within a few degrees, for example, within about F. below the crystalline melting point of the polymer. This is the preferred temperature for orientation in order to achieve maximum strengthening eifect.
The heated tube can be further conditioned in a porous sleeve 39 which supports the tube as it passes to bottle mold 40. Bottle mold 40 comprises two mold halves which can be brought together about the heated tube as it passes from the porous sleeve. One end of the tube is pinched shut by the bottom portion 41 of the mold forming the bottom of the bottle. Heating elements 42 can be positioned in this portion of the mold in order to heat the portion of the tube which has been pinched, shut, thereby forming an effective seal. The remainder of the mold is cooled by circulating a cool Huid through coils 43. After the mold is closed about the extruded tube, internal gas pressure injected at crosshead die 31 forces the tube out against the walls of the mold forming the bottle. Air ring 44 can be provided surrounding the porous sleeve [49] 39 to aid in further temperature conditioning the tube prior to molding. As an alternative to using pressurized air within the tube, means can be provided within the bottle mold for evacuating the space between the tube and the mold walls, thereby vacuum-forming the conditioned tube within the mold.
FIGURE 3 shows still another cmbodiment which is preferred for the continuous production of relatively small containers. The extruded tube, properly conditioned within the sleeve as previously described, passes directly to molding apparatus 46 which comprises a plurality of mold halves 47 mounted on continuous belts 48 and 49. Belt 48 is monnted on wheels 50 and 51 while belt 49 is mounted on wheels 52 and 53. As these wheels are rotated the belts move the mold halves 47 into position as shown by mold halves 47a. As these mold halves are brought together they pinch shut a portion of the extruded tube as shown between the mold halves 47b. As the closed molds move forward the tube is punctured by needle 54 through which air is injected into the trapped section of the parison as shown between mold halves 47c. The tube is thus forced into conformity with the shape of the mold as shown between mold halves 47d and as the molds move forward the portion of the tube between the molds is severed by knife 56. The mold halves are opened as belts [40] 48 and 49 pass over wheels 51 and 53 respec tively, and the molded bottles are ejected from the mold and fall into a receptacle. In the operation of ths apparatus it is desirable to move belts 48 and 49 so that when the mold halves come together a pull is exerted on the parison, moving it forward at a rate which is slightly faster than its rate of extrusion. This subjects the conditioned parison to longitudinal tension and develops a longitudinal molecular orientation within the parison prior to molding. This initial longitudinal stretching strengthens the tube so that it is less lkely to rupture or form thin spots on blowing. As discussed in connection with FIGURE 2, means can be provided to draw a vacuum between the entrapped parison sections and the walls of the mold halves. The gas pressure present within the tube at the time the molds closed is trapped within the portion of the tube surrounded by the mold so that evacuating the space between the mold and the parison results in that portion of the parison being forced into conformty with the walls of the mold. By a proper combination of these features, sufiicient pressure can be maintained continuously within the extruded parison so that only a slight reduction in the pressure within the mold is necessary in order to effect the desired inflation of the parison.
Articles such as bottles formed in accordance with the present invention of oriented polymers of l-olefins, particularly polypropylene, possess unique properties which in turn enables the articles to be used for rnany purposes in the art. Such properties include among others orientation release stress, tensile impact strength, and modulus of elasticity in flexure.
The following examples are presented in order to illustrate further the method of my invention.
EXAMPLE I Polyethylene having a density of 0.960 gram per cubic centimeter at 25 C. is extruded continuously in the form of a parison 2 inches in diameter and 47 rnils thick. This tube is passed immediately into a conditioning sleeve as shown in FIGURE 3 where it is immediately quenched by water which is circulating through the jacket of the sleeve at 7() F. The surface of the tube is brought quickly below the sticking tempcrature and the tube is then reheated to 250 F. in the heating section of the conditioning sleeve. As the tube issues from the sleeve it is stretched 10ngitudnally and then trapped between mold halves which close about the tube completely sealing both ends of the tube which are in the mold. The bottle is then formed by evacuating the space between the mold and the parison causing the parison to be forced into conformity with the mold surfaces. The bottle thus formed possesses molecular orientation within its walls and it is substantially stronger than a bottle formed directly from the hot extruded parison without the temperature conditioning described.
EXAMPLE II Blow-molded 10-ounce bottles were made from homopolymer polypropylene and from homopolymer lnear polyethylene. Extruded parisons trom each of the two plastic materials were blow-molded to produce both hotblown-blow molded from the parison which was in the hot-melt state directly after it came fro mthe extruder and. orientedblow molded trom parisons that had initially cooled to ambient conditions and were reheated to a temperature slightly below the melting point and then blow molded into bottles.
7 The following table sets forth the basic cxtrusion conditions and equipment used:
TABLE I.-PARISON EXTRUSION CONDITIONS The basic extrusion conditions and equipmcnt uscd arc listed below: (A) Gcneral:
Extruder-lb" Screw Extrudcr (Made by Modem Plastic Machinery Corp., 64 Lakeview Avenue, Clifton, N.J.)
Die90 crosshead die De tip0.323" diameter Screw-Nylon type (B) Parisons for Oriented Bottles:
(C) Parisons for Hot-Blown Bottles:
The following table sets forth the basic conditions for blowmoldng bottles:
TABLE II.BOTTLE BLOW-MOLDING CONDlTIONS AND PROCEDURES lhe basic conditions for blow-molding bottles zue as follows: (A) HotBlown Bottles:
Parison conditionas cxtruded Mold assembly-Standard Phillips Petroleum Compe1ny l-ounce boltle mold utlizing 6-inch cylnders for closing pressure. 1 Polypropylenc boltles:
(a) Parison extruded into mold position and stopped. (b) Air flow of 3 c.f.h. applicd and closed meld. (c) Paused 4 seconds and applied 30 p.s.i.g. for
additional 4 seconds. (d) Removecl bottle and repeated procedure. Note: Mold maintained at room temperature by water cooling. (2) Polyethylene bottles (u) Parison extruded into meld position and stopped. (b) Ali fiow of 10 c.f.h. applied and molrl closecl. (c) Paused 1 second and applied 200 p.s.i.g. for
additiorral 4 seconds. (d) Removed bottle and repeated procedure. Note: Mold maintainc-d at 55 F. by tap water coolng. (B) Oriented Bottles:
(1) Parison temperature conditioning block MaleriaL-aluminum Heating method steam through cored block ID block-O.Sfi5
Stvam prussurron block Bottles formed under the above conditions were subjected to the following tests for comparativc 1est evaluation:
TESTS PERFORMED The tests performed for this comparative Lest evaluation we1e as follows:
(A) Molding Compound-Pellets as receved:
(1) Flow Rate-ASTM D123862T, 230 C.
(a) 2l60-gram load (b) 21,600-gram load BottlesTest specimens fxom sidewall:
(l) Density-ASTM D792-T, Method A, water immersion.
(2) Thickness of sidcwalls of bottles used for test- (3) Shrinkbackl\laximum in both principal directions.
(4) Orienation Release S.I' SSWEIXIHUHI in both principal direciions; ASTM D1504-61.
(5) Orienlation Release Temperature at maximum stress in both prncipal drections; ASTM D1504-61.
(6) Tensile Impact Strength in both principal directions at 73 F., 40 F., and 0 F.; De Bell & Richardson, Inc. parallel-strip film-impact lest, short specrmen.
(7) Flexurnl Modulus of Elasticity in both prncipal directions; ASTM D790-63.
(8) Lght T1anSmission-ASTM Dl0036l, Procedure B (recording spectrophotomeler using visual wavelength range of 400-700 millimicrons).
Bottles-As molded:
(l) Drop-Impact Resistance ut 73 F. on all bottlc types except oriented polyethylene using a bottom drop, a side drop, and a 4S-degrcc bottom drop. Also, a bottom drop test was performed at 40 F. on all bottle types; ASTM D-20 Committce Proposed Tentative Method of Test for Measuring the Drop Impact Resistance of Blow-Molded Containers.
(2) Water Vap0r Transmissionl0 F., relative humidity, with desiccant inside bottle.
Range Rmrgu 1 1 where ordinary unoriented polypropylene could not be used. Essentially the phenomenon of orientation in polypropylene has resulted in the formation of a plastic material significantly different in certain physical and mechanical properties that will allow many applications now not being associated with normal polypropylene.
(5) The clarity of both materials is improved by orientation but the polypropylene has improved as a result of this orientation to a degree that its light transmission in the visible spectrum is approaching that of glass. It is improbable that linear polyethylene will ever approach this degree of clarity regardless of polymer or processing conditions.
(6) Water vapor transmission resistance of the oriented polypropylene bottles is improved over the hot blown bottle to a degree that is considered significant.
The above data was obtained in accordance with the following test procedures. Where applicable, ASTM test procedures were employed. Otherwise, strictly comparative testing was performed, using procedures that were technically valid, giving results that would permit a comparison between the samples and bottles tested. Unless otherwise specified, all tests were performed in an environment of 73 F. and 50% relative humidity with preconditioning of at least 24 beurs in the same environment just prior to testing.
(A) Flow Rate: Procedures of ASTM D1238 were followed using a temperature of 230 C. a 4-gram charge, and respective weights of 2160 grams and 21,600 grarns for the two tests involved. Duplicate tests were performed in each case. The compounds were tested as received in the pellet form. The standard equipment as described in the above ASTM nurnber was utilized with dead weights to apply the load.
(B) Density: ASTM D792-60T, Method A was used.
Distilled water was used as the immersion medium and the test sample consisted of the center main section of a bottle measuring about 2.4 inches in the longitudinal direction, and using the full circumference. A small weight was attached to the test sample to make it sink below the water surface. and a small percentage of wetting agent was added to reduce surface tension. Five determinations were made for each bottle type using five diierent bottles in each case.
(C) Thickness: All of the bottles used for this evaluation were checked for profile thckness at three longitudinal points on the bottles. Five measurements were made at each point in the circumferential direction at the center, /4 inch from the bottom and /4 inch from the top of the sidewall. A standard machinists micrometer was used with a bal! attachment impinging on the concave surface.
(D) Shrinkback: All of the bottles used for testing were checked for shrinkback characteristics using individual test speciments cut from each principal direction of the bottle. The De Bell & Richardson, Inc., shrinkback tester was utilized with white mineral oil as the immersion medium. These test samples were exposed for a period of seconds at total immersion at temperatures above the respective melting points. For polyethylene this temperature was 300 F., and for polypropylene it was 340 F.
Temperature tolerance during immersion was i2 F. It was determined by trial and error testing that 10 seconds was an adequate time for maximum shrinkback to occur in each case. The test samples were inch wide by 2 inches long. Shrink-back was expressed as the percentage change in length which occurred during his hightemperature immersion. Normally mineral oil attacks polyethylene and polypropylene, but the time element was too short for this attack to be eflective and possibly influence shrinkage characteristics. At least one specimen from each principal direction of each bottle evaluated was tested.
(E) Orienlation Release Stress, Maximum: Orientation release stress in a stretched plastic sheet is the internal stress which remains frozen into the structure of the material after the manufacturing process. This property was measured using the essential procedures of ASTM D1504- 61. The Instron tester was utilized hy clamping a parallelstrip, z-inch-wide test sample between tensile jaws, and closing the test specimen assembly with a cylindrical heater which was adjusted to give a heating rate of 10 C. per minute. The load imposed by the test specimen was automatically recorded and the maximum load picked from this curve to calculate the maximum orientation stress. Heating rate was controlled manually by adjusting the power input to the cylindrical heater to follow a standard heating curve, which was superimposed on the recording monitor that was activated by a low-inertia thermocouple placed within /s of an inch of the center of the test specimen, but not contacting it. Two determinations were made for each bottle type in each principal direction.
(F) Orientation Release Temperature at Maximum Stress: This property was determined during the above orientation release stress testing. The temperature at maximum stress was determined by picking the temperature ol the curve plotted on the temperature recorder at the moment maximum load on the test sample was obtained.
(G) Tensile Impact Strength: This property was measured in both principal directions of all bottle types at temperatures of 73 F. 40 F., and 0 F. 'Ihe test method employed was the De Bel] & Richardson, Inc. parallelstrip tensile impact test usng the short specimen. Ten determinations were made for each bottle type in each principal direction. A Baldwin impact tester was utilized with liquid CO injection to obtain subnormal testing temperatures. The test specimen and jig holding it were entirely enclosed in the removable environmental chamber and both maintained at the test temperature for a period of 3 minutes prior to impacting. Prior to any given test series, the specimen-holding jig was cooled to the approximate temperature of testing.
Temperature control was maintained by manual means, adjusting the input of CO coolant to maintain the temperature within 32 of that desired. Sample size was 2 inches long by A inch wide. Test Specimens were carcfully prepared by cutting with a new, sharp razor blade and subsequent examination was made of the cut edges under magnification to insure that no edge imperfections were present. All tests used the 4 ft. 1b. capacity impact hammer.
(H) Flexural Modulus of Elasticity: The procedures of ASTM D79063 were followed. Test samples were /4 inch wide by 1 inch long cut with a razor blade in both principal directions of the bottle. The span was 0.5 inch using a one-point loading and a radius of nose and supports of inch. The Instron tester was utilized for this work, using a load range of 0 to 0.2 pound. A rate of crosshead motion of 0.02 inch per minute was used, and deflection of the test specimen was assumed to be essentially identical to crosshead movement, which was used for calculations. Five determinations were made in each principal direction for each bottle type.
(I)) Light Transmission: Light transmisson was determined on each bottle type by using test specimens of approximately the same thckness cut directly from the bottle walls. The test apparatus utilized was a Bausch & Lomb recording spectrophotometer (Spectronic 505), using the visible light range from 400-700 millmicrons. Light transmission was expressed as the percentage of light transmitted through the test sample using a reference beam which represented percent transmission. To aid in comparatively judging the test samples, a comparator of microscope cover glass having an approximating thckness relative to the test samples (0.0085 inch) was used. This testing was performed at ambient room conditons with duplicate determinations being made on separate test specimens. The test samples were tasted as cut from the bottle with no eifort to flatten the samples. Thus the 1 3 natural curvature of the bottle Wal] was present during these light transmission tests. The values picked for comparison were those obtained at wavelengths of 400, 550. and 700 millimicrons, respectively representing violet, green, and red.
(J) Bottle-Drop Testing: Bottle-drop impact resistance was determined following the essential procedures of an ASTM D20 Committee Proposed Tentative entitled, Method of Test for Measurng the Drop Impact Resist ance of Blow-Molded Containers. This method recommended three types of drops, one on the bottom, one on the side, and a 45-degree angle bottom drop. Ten bottles of each type except the oriented polyethylene were drop-impact tested in each recommended position at 73 F., using water at the test temperature inside the bottle. The orient ed polyethlene was eliminated from this test series because of the lmited number of bottles available.
The test apparatus for controlling the angle of drop and height consisted of a horizontal trap door arrangement that could be positioned at any height up to 12 feet with a positioning jig which held the bottle in the precise position of drop and a release mechanism that snapped the trap door down and away from the test bottle in such a marmer that it allowed the bottle to drop freely without rotation t impact in exactly the Same position as that held by the bottle when resting on the horizontal trap door. Similar testing was performed at 40 F. using only the bottom drop position, and testing al] bottle types.
In each of these tests, for each bottle type, ten samples were tested to obtain the minimum breaking height range of each. This failure height range was determined by finding the maximum height at which no fracture occurred and the minimum height at which fracture did occur. The range expressed by these two values is considered to be essentially the minimum failure height range of the bottles. T he type failure in each case was recorded. Bach bottle was tightly sealed by a screw cap after completely filling with tap water at the test temperature.
(K) Bottle Water Vapor Transmission: Water vapor transmission characteristics were determined by exposing the whole bottle to an environment of 100 F. and 90 percent relative humidity using 150 grams of desiccant (calcium sulfate) inside the bottle and checking weight pickup versus time. Three bottles of each type were so evaluated, using weighing technques as recommended by ASTM E96, with at least three suecessive daily determiations that resulted in essentially a straight-line plot of moisture pickup versus time. Bottle thicknesses were determined after the test by dissection and micrometer measurements, and this thickness was included in the calculations for water vapor transmission, which were expressed as gram-mil per 24 hours. This thickness consideration in the calcllation allowed a direct comparison numerically between bottle types. Bottles were positively sealed under a screw cap using a resilient rubber gasket.
As will be apparent to those skilled in the art, various modifications can be made in my invention without departing from the spirit or the scope thereof.
I claim:
1. A molecularly oriented bottle formed from a crystalline polymer of [polyethylene] ethylene, said bottle having a circumferential orientation release stress in the range of 64 to 65 p.s.i. an axial orientation release stress in the range of 48 to 65 p.s.i., a circumferential modulus of elasticity in flexure at 73 F. in the range of 2.46 10 to 2.97 p.s.i., an axial modulus of elasticity in flexure in the range of 3.61 10 to 4.47 10 p.s.i. a circumferential tensile impact strength at 73 F. in the range of 25-0 to 650 ft. lb./in. and an axial tensile impact strength at 73 F. in the range of 420 to 580 R. lb./infi.
2. A molecularly oriented bottle formed from a crystalline poIymer of '[polypropylene] propylene, said bottle having a cireumferential orientation release stress in the range of 135 to 180 p.s.i., an axal orientation release stress in the range of to p.s.i., a circum ferential modulus of elasticity in flexure at 73 F. in the range of 3,28X10 to 4.21 x 10 p.s.., an axial modulus of elasticity in flexure in the range of 3.54 10 to 4.08 10 p.s.i. a crcumferential tensile impact strength at 73 F. in the range of 610 to 870 ft. lb./in. and an axial tensile impact strength at 73 F. in the range of 770-1140 ft. lb./in..
3. A bottle formed from a: crystalline poIymer of propyiene, said bottle having a circumferential tensile impact strength at 73 F. dj at least 610 ft. lb./in. and an axial tensile impact strength at 73 F. 0 at least 770 ft. Ib./in.
4. A bottle according to claim 3 being further characterized by having a transmittance to 700 millimicron wave lengtth light of at least 86.9 percent.
5. A bottle according to claim 3 being farther chatacterized by havng a transmittance to 700 millimz'cron wave length light equal w at least 95 percent of the transmittance of microscope cover glass.
6. A bottle according to claim 3 wherein said circumferential tensile impact strength at 72 F. is wit/zin the range 0] 610-870 )t Ilr./in. and said axia! tensile impact sterngth at 73 F. is within the range of 770-1140 ft. lb./ in.
7. A bottle according to claim 6 being further characterzed by having a transmirtance to 700 miilimicron wave length light of at least 86.9 percent.
8. A bottle according to claim 6 being further characterized by having a transmittance 10 700 milh'mticron wave length Iight equal to at least 95 percent of the transmittance of microscope cover glass.
9. A molecularly oriented polypropylene bottle having a transmittance to 700 millimicron wave length light of at least 86.9 percent.
10. A bottle formed from a crystaliine polymer- 0f propylene, sad bottle having a transmittance to 700 milli micron wave length light equal to at least 95 percent of the transmittance of microscope cover glass.
11. A molecularly oriented bottle formed fr m a crystaiiine poIymer of propylene, said bottle having a circumferential modulus of elasticity in flexnre at 73 F. in the range of 3.28 10 10 4.21 10 p.s.i. an axal modulus of elasticity in fiexure in this range of 3.54 10 t0 4.08 10 p.s.i. a circumferentia! tensile impact strength at 73 F. in the range of 610 10 870 jt. lb./in. and an axal tens1e impact strength at 73 F. in the range of 770-1140 jt. 1b./inn.
12. A bottle formed from a crystaliine poIymer of ethylene, said bottle having a circumferentiat' tensile impact strength at 73 F. 0 at least 250 ft. Ib./in. and an axial tensi1e impact strength at 73 F. of at least 420 ft. lb./in.
13. A bottle according za claim 12 being further characterized by having a transmittance to 700 millimicron wave length light 0 at least 59.2 percent.
14. A bottle according to claim 12 being further characterizea' by having a transmittance to 700 miilimcron wave length Iight equal w at least 65 percent of the trans mittance of microscope cover glass.
15. A bottle according to claim 12 wheren said cir cumferential tensile impact strength at 73 F. is within the range of 250650 ft. Ib./in. and said axial lensile impact strength at 73 F. is in the range of 420-580 ft. lb./in..
16. A bottle accora'ing to claim 15 being further characterized by having a transmittance to 700 millimicrorz wave length light of at least 59.2 percent.
17. A bottle according to claim 15 being further characterized by having a transmittance to 700 millimicron wave Iength light equal t0 at least 65 percent of the transmittance of microscope cover glass.
18. A m1olecularly oriented polyethylene bottle haring a transmittance to 700 millimicron wave Iength light of at least 59.2 percent.
1 9. A battle formed from a crystallne polymer of etlzylene, said battle having a transmittance zo 700 millimcr0n wave length light equal t0 at least 65 percent of the trunsmittance of mz'croscope cover glass.
20. A molecularly orenled battle formed from a polymer selected from the group conssting of polyelhylene, polypropylene, poly-I-butene, and copolymers of these un(l higlze mona-l-olefins, said battle bez'ng characterz'zed' by havng a drop impact resszance al 40 F while conmnng water at said 40 F, of at least 12 feet.
21. An arttcle according to claim 20 wherein said battle is made of polypropylene.
22. An artcle according z0 claim 20 wheret'n sad battle is made of polyetltylene.
References Cited The followng references, cited by the Examiner, are of record in the patented file of this patent 0r the original patent.
UNITED STATES PATENTS 2,616,127 11/1952 Pfeiffer et al 18-14 2792591 5/1957 Cardot et al. 185 2,836,318 5/1958 Pinsky et al 2151 2,854,691 10/1958 Strong 185 2963,742 12/1960 Ahlich et al. 1814 3,001239 9/1961 Santellic et al 26498 3,008,191 11/1961 Park 264-98 3152,710 10/1964 Platte 2151 DONALD F. NORTON, Primary Examiner
US26956D 1965-07-01 1968-11-19 Molecularly oriented bottle Expired USRE26956E (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US472393A US3288317A (en) 1965-07-01 1965-07-01 Molecularly oriented bottle
GB29425/66A GB1156071A (en) 1965-07-01 1966-06-30 Apparatus and method for Polymer Molding and Orientation and articles formed therefrom
US78650768A 1968-11-19 1968-11-19

Publications (1)

Publication Number Publication Date
USRE26956E true USRE26956E (en) 1970-09-29

Family

ID=27258811

Family Applications (2)

Application Number Title Priority Date Filing Date
US472393A Expired - Lifetime US3288317A (en) 1965-07-01 1965-07-01 Molecularly oriented bottle
US26956D Expired USRE26956E (en) 1965-07-01 1968-11-19 Molecularly oriented bottle

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US472393A Expired - Lifetime US3288317A (en) 1965-07-01 1965-07-01 Molecularly oriented bottle

Country Status (1)

Country Link
US (2) US3288317A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357288A (en) 1980-02-25 1982-11-02 Deacon Machinery, Inc. Method of making clear transparent polypropylene containers

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1129626A (en) * 1965-03-08 1968-10-09 Kureha Chemical Ind Co Ltd Method and apparatus for successively moulding hollow articles of thermoplastic resins
US3392032A (en) * 1965-10-23 1968-07-09 Weston Chemical Corp Bottles
US3543342A (en) * 1969-02-07 1970-12-01 Union Oil Co Continuous injection molding and filling apparatus
US3686379A (en) * 1969-08-18 1972-08-22 Phillips Petroleum Co Sealing parisons using preblow and contoured sealing surface
US3655480A (en) * 1969-08-18 1972-04-11 Phillips Petroleum Co Heating parison preforms in liquid fluorinated organic compound
US3806587A (en) * 1969-12-31 1974-04-23 Continental Can Co Apparatus for forming oriented containers
DE2055628A1 (en) * 1970-11-12 1972-05-18 Dynamit Nobel Ag Method and device for extrusion of hollow bodies
US3870181A (en) * 1973-02-12 1975-03-11 Monsanto Co Molecularly oriented bottle
GB1504355A (en) * 1974-11-29 1978-03-22 Scholz Gmbh Co Kg Maschbau Vulcanising device
US4261473A (en) * 1975-12-17 1981-04-14 Toyo Seikan Kaisha Limited Molded container having wall composed of oriented resin blend
US4128379A (en) * 1977-06-23 1978-12-05 The B. F. Goodrich Company Apparatus for processing extruded thermoplastic polymer
DE3068584D1 (en) * 1980-05-16 1984-08-23 Bekum Maschf Gmbh Process and device for moulding molecular oriented thermoplastic hollow bodies
JPS57182407A (en) * 1981-05-07 1982-11-10 Idemitsu Petrochem Co Ltd Method and apparatus for preparing biaxially stretched sheet film
FI86158C (en) * 1989-09-22 1992-07-27 Jrt Finland Oy KALIBRERINGSVERKTYG.
US8562885B2 (en) * 2009-02-21 2013-10-22 Dow Global Technologies Inc. Multilayer structures having annular profiles and methods and apparatus of making the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2616127A (en) * 1950-09-21 1952-11-04 Nixon Nitration Works Double finish drawing die
FR1031320A (en) * 1951-01-23 1953-06-23 Raint Gobain Process for the continuous production of hollow articles in thermoplastic material
US3008191A (en) * 1954-07-14 1961-11-14 Brockway Glass Co Inc Method for blow molding hollow articles
US2854691A (en) * 1955-04-12 1958-10-07 Shipton & Company Ltd E Plastic extrusion machine
US2963742A (en) * 1957-03-18 1960-12-13 Dow Chemical Co Film tube guide
US2836318A (en) * 1957-08-13 1958-05-27 Plax Corp Coated plastic articles
US3001239A (en) * 1958-11-28 1961-09-26 Owens Illinois Glass Co Method for blowing parisons
US3152710A (en) * 1964-03-25 1964-10-13 Hoover Ball & Bearing Co Plastic milk bottle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357288A (en) 1980-02-25 1982-11-02 Deacon Machinery, Inc. Method of making clear transparent polypropylene containers

Also Published As

Publication number Publication date
US3288317A (en) 1966-11-29

Similar Documents

Publication Publication Date Title
USRE26956E (en) Molecularly oriented bottle
US3496258A (en) Method of polymer molding
US4512948A (en) Method for making poly(ethylene terephthalate) article
US4476170A (en) Poly(ethylene terephthalate) articles and method
US5478906A (en) Ultrahigh molecular weight linear polyethylene and articles thereof
CA1158821A (en) Clear transparent polypropylene containers and method of making same
US3801692A (en) Production of novel open-celled microporous film
US3470282A (en) Method of making a blown article
US3141912A (en) Process of treating polymeric film
US3248463A (en) Continuous production of biaxially oriented crystalline thermoplastic film
US3333032A (en) Treated polymer surfaces of shaped articles
US3814784A (en) Forming deep articles having relatively balanced molecular orientation
US3294885A (en) Method for blow molding thermoplastic
US3632713A (en) Blow molding oriented articles using elongated oval plug
IE46749B1 (en) Process for the production of oriented hollow body from a thermoplastics material
US3821349A (en) Internal cooling of polyethylene terephthalate tubing
US3246061A (en) Process for preparing biaxially oriented polypropylene film
CA1197961A (en) Poly(ethylene terephthalate) articles and method
US3382220A (en) Transparent linear polymers
US3801690A (en) Closing mold halves on stretched portion of individual parison preform at orientation temperature
US4462953A (en) Process for the manufacture of polyester film
US3427375A (en) External and internal falling water film quench of polymer tubing
JPS596216B2 (en) Method for manufacturing stretch-molded containers with excellent heat resistance
US3488804A (en) Matched mold and sizing rod to form parisons
US3632264A (en) Neck-forming collet having alternate inverted wedge-shaped jaws