USRE26698E - Mole etal- thermoelectric apparatus - Google Patents

Mole etal- thermoelectric apparatus Download PDF

Info

Publication number
USRE26698E
USRE26698E US26698DE USRE26698E US RE26698 E USRE26698 E US RE26698E US 26698D E US26698D E US 26698DE US RE26698 E USRE26698 E US RE26698E
Authority
US
United States
Prior art keywords
thermoelectric
members
block
thermopile
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US331997A external-priority patent/US3178895A/en
Application filed filed Critical
Application granted granted Critical
Publication of USRE26698E publication Critical patent/USRE26698E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered

Definitions

  • thermoelectric apparatus relates to thermoelectric apparatus and more particularly to the construction of new and etiicient arrangements of thermopiles for varying the temperature of fluid media, or for use with fluid media of differing temperatures for producing electrical power through the use of thermoelectric effects.
  • thermoelectric heat exchange device and an electrical generator utilizing a novel approach or principle for obtaining high efficiency at relatively low cost and for utilizing relatively small amounts of thermoelectric material.
  • the principle of the above device is known as direct transfer, that is, there is provided a heat flow path in the thermoelectric apparatus having no electrical or heat insulation therein, so that substantially all of the heating or cooling produced at the thermoelectric hot and cold junctions are transferred directly to the heating or cooling media of the thermoelectric heat exchanger, without passing through electrical or thermal insulation.
  • thermoelectric heat exchanger and electrical generator wherein the current flow path between adjacent thermoelectric members passes through the heat exchange arrangement exposed to the gaseous medium.
  • the electrical flow path between adjacent thermoelectric layers is maintained by means of insulating members connecting the liquid flow path so that none of the thermoelectric layers are by-passed along the liquid flow path.
  • the insulating members in the latter application are sealingly mounted between adjacent stages of the liquid flow path to form a single series connected liquid passageway.
  • thermoelectric apparatus which is not only compact but shock-proof.
  • retaining members are provided for fixedly positioning each of the component parts of the thermopile, and means are provided for absorbing thermal expansive and contractive forces exerted upon the thermopile parts.
  • this invention provides an improvement of the type of connccters for the liquid flow path in that there is provided a highly electrically resistive coupling member hermetically sealed to the electrically conductive segments of the liquid flow path and having sufiicient flexibility and mechanical compliance to withstand thermal cycling within the thermopiles.
  • the metallic tins of a metal to air heat exchange portion of the thermoelectric device form segments of the current flow path in the thermopile.
  • thermopile having no electrical Reissued Oct. 28, i?
  • Another object of this invention is to provide a new and improved thermopile having a liquid flow path formed in electrically conductive members and having connecters of insulating material hermetically joined to adjacent ones of the electrically conductive members to connect the liquid flow paths of such members in series.
  • Another object of this invention is to provide a pair of electrically conductive block members having a liquid flow path therein with a high resistance connecter to couple the flow paths in series so that the connector absorbs thermally induced expansive and compressive forces exerted upon the block members.
  • Still another object of this invention is to provide a new and improved thermopile of the air to liquid type having no electrical insulation in the heat flow path and having an air heat exchange portion of the thermopile also forming a segment of the current flow path of the device.
  • thermopile having retaining members for fixedly positioning the parts of the thermopile and having expansible connectors for absorbing thermally induced stresses exerted upon the thermopile parts.
  • Another object of this invention is to provide novel and efficient electrically resistive connccters for the liquid flow path of a thermopile.
  • Still another object of this invention is to provide an efficient connecter for the liquid flow path of a thermopile which is electrically resistive, hermetically secured to the remaining liquid flow path portions, and capable of absorbing forces exerted thereon caused by thermal expansion and contraction of the remaining liquid flow path portions.
  • the present invention accomplishes the above cited objects by providing, in one example, a liquid to gas thermoelectric construction or thermopile wherein there is provided a gaseous flow circuit disposed intermediate a pair of liquid flow circuits.
  • Each of the liquid flow circuits comprises a plurality of passageways formed in conductive members.
  • the conductive munhcru W tend between adjacent layers of thermoelectric material in the electrical fiow path and the liquid flow path is formed by each passageway being connected in series by electrically resistive coupling elements or conduits.
  • the coupling elements desirably are formed to expand and contract during thermal cycling of the thermopile, for example from bellows, and from a material compatible with the material forming the conductive members so that a hermetic joint therebetween is made.
  • the gaseous flow path means desirably extends between adjacent ones of the conductive members along a predetermined current flow path and are formed from electrically conducting material such that the heat transfer area of the gaseous llow path means also forms a segment of the electrical current fiow path of the thermopile.
  • thermopile of this invention is provided with a pair of retaining members which are interfitted with the parts of the thermopile with the retaining members being secured together to produce a compact and shock-proof thermopile construction.
  • each of the bellows cooperates to absorb forces induced thereon by thermal expansion and contraction of the fixedly positioned conductive members of the thermopile.
  • thermoelectric construction providing the hermetic sealing of the connecters of the liquid flow path and also providing the retaining members and expansive connecters to improve the shock resistance of the thermopile.
  • electrically insulated joints be tween adjacent ones of the conductive liquid accommodating members with the joints formed from ceramic sleeve and having metallic sieeves extending between the ceramic sleeve and the electrically conductive members and hermetically secured to the ceramic sleeve and the conductive member.
  • FIGURE 1 is a perspective view, partially in section, illustrating a thermopile construction incorporating the principles of the invention
  • FIGURE 2 is a side elevational view, partially in section, illustrating a modification of the thermopile arrangemerit of FIGURE 1;
  • FIGURE 3 is a sectional view of the thermopile of FIGURE 2 and taken along the lines IIIIII thereof;
  • FIGURE 4 is a sectional view of another form of connecter which can be utilized in the thermopile arrangements of FIGURES 1 to 3 as a substitute for the connecters illustrated therein;
  • FIGURE 5 is an elevational view, partially in section, of another embodiment of this invention utilizing connecters similar to those of FIGURE 4 and illustrating a liquid to liquid thermopile arrangement;
  • FIGURE 6 is a sectional view of the arrangement of FIGURE 5 taken substantially along the lines VI-VI thereof.
  • thermopile 10 constructed in accordance with the principles of this invention includes a plurality of heat conductive block members or modules 12 formed from electrically and thermally conductive material, such as copper or aluminum.
  • Each of the blocks 12 includes a flow opening 14 formed therein and extending longitudinally therethrough.
  • the blocks 12 are mounted in longitudinal rows with each row of blocks 12 being disposed at one of two levels. In the arrangement for FIGURE 1 there are provided three rows of blocks at each level with the correspond in rows of blocks at each level being in vertical align- .ment. respectively.
  • the righthand longitudinal row of blocks at the lower level in FIGURE 1 is denoted by the reference character 16 while the right-hand longitudinal row of blocks at the upper level of FIGURE 1 is denoted by the reference character 18.
  • the blocks 12 in rows 16 and 18 are provided respectively with opposed surfaces 20 and 22 and a heat exchange fin structure denoted by the reference character 24 extends between the opposed surfaces 20 and 22.
  • the fin structure 24 includes a pair of base members 26 disposed respectively adjacent the surfaces 20 and 22 with the base members 26 being bridged by a plurality of relatively thin. parallelly extending spaced fins 28 which are secured at their ends to the base members 26.
  • the base members 26 and the fins 28 are formed from eledtrically and thermally conductive material such as copper or aluminum with each heat exchange structure 24 in this example being sized with a lateral dimension of approxi mately the same size as the corresponding dimension of the block members 12.
  • the fins 28 are mounted on the base members 26 to exte d laterally with respect to the liquid openings 14 of the blocks 12. There is disposed intermediate each of the surfaces 20 and 22 of the block members 12.
  • thermoelectric material designated generally by the reference characters 32 and 34.
  • the reference character 32 denotes a layer of thcrmoclectrically negative material while the reference character 34 denotes a layer of tbermmlectrically posi i e ntutcriull
  • thermoelectric layer 32 or 34 The polarity of a given thermoelectric layer 32 or 34 is dependent upon he rim sired use of the thermopile 10, that is as a thermoelectric air cooling device or a thermoelectric air heating device, bearing in mind that, as conventional current flows from the thermoelectrically negative material to thermoelectrically positive material, a cooling effect takes place between the materials. In the embodiment of the invention illustrated in FIGURE 1, it is desired that a cooling efiect take place along the fins 28.
  • thermoelectric layer between the former block member and the adjacent base 26 desirably is of a thcrmoelectrb cally negative material while the thermoelectric layer .ie between the latter block member and the adjacent base 26 is of thermoelectrically positive material.
  • thermoelectric arrangement 10 As shown by the right-hand block 12a of row 18 and the second from the right-hand block 12b of row 16, certain of the blocks 12 are mounted to bridge adjacent heat exchange structures 24 and adjacent thermoelectric layers 32 and 34. Insulation means such as insulating sheets 36 extend between adjacent heat exchange structures 24 and adjacent thermoelectric layers 32 and 34 to create a serpentine current flow path through the thermoelectric arrangement 10 to prevent the by-passing by the current flow path of any one of the thermoelectric layers 32 or 34.
  • the thermopile 10 provides a current fiow path which begins at a terminal structure 38 secured to the module 12c located on the right-hand side of row 16, which terminal includes a post 39 connected to the positive side of the direct current source of power.
  • thermoelectric layer 32 disposed intermediate the block 12c and the adjacent base structure 26 of the adjacent heat exchange device 24.
  • Current then passes through the base structure M upwardly (as viewed in FIGURE 1) along earl of fins 28 to the upper base structure 26 and therefrom through the adjacent thermoelectric layer 34 to the block member 12a.
  • Current then passes through block 12b and therefrom to block 12d through thermoelectric layers 32 and 34 and that heat exchange structure 24 disposed to bridge blocks 12b and 12d.
  • thermopile 10 At the far right-hand end (not shown) of the thermopile 10, there is provided additional bridging connecters connecting the right-hand longitudinally extending row of blocks to the central lengitudinally extending row of blocks. While the last-mentioned terminal structure is not illustrated in FIGURE 1, it may comprise the arrangement 40 illustrated in FIGURE 1 for bridging the central longitudinal row or blocks to the left-hand longitudinal row.
  • the bridging structure 40 desirabl includes a pair of generally L-shaped terminal members 42 similar to the terminal structure 38. The members 42 are secured to the appropriate end blocks such as those similar to the blocks 12c to provide good electrical contact between the blocks 12 and members 42.
  • a bridging connecter 44 desirably is secured to the adjacent terminal members 42 to complete the bridging structure 40.
  • At the rear (not shown) of the left-hand longitudinal group of blocks there is desirably provided an additional terminal similar in structure to the terminot structure 38 for connecting the thcrmopile It] to the negative terminal of a power
  • each of the heat exchange structures 24 desirably are positioned for each longitudinal group of blocks with the corresponding fins thereof in lateral alignment so that a suitable gas such as air may be passed through the fins 28 to vary the temperature of the gas.
  • a suitable gas such as air
  • the thermopile will be utilized as a cooling or air conditioning device, as current flows from the thermoelectric layers 32 to the thermoelectric layers 34, a cooling effect will take place therebetween thereby causing through thermoelectric effects the cooling of the fins 28.
  • the fins 28 provide a suitable heat transfer area for the air flowing therepast to cool the air directly. With the cooling effect taking place in the heat exchange structures 24, it will be realized that a heating effect is concurrently occurring in each of the water blocks 12.
  • a liquid flow circuit is provided in the blocks or modules 12 so that the liquid is heated by the thermoelectric effects thereby causing the removal of the thermoelectrically generated heat from the blocks 12.
  • Each of the flow openings 14 in the blocks 12 serves as a passageway in the liquid flow circuit.
  • Conduit means are provided to connect each of the passageways 14 in a given row such as rows 16 and 18 in series. It is to be realized that the conduit means must be formed from a material having high electrical resistivity, for example from an insulator, so that the current flow path from the modules 12 is not lay-passed along the conduit means.
  • the conduit means may comprise a bellows structure 46 formed from a material having a relatively high electrical resistance, for example, front certain of the stainless steel alloys, titanium alloys, nickel, aluminum.
  • iron alloys such as the alloys sold under the trade names, lnconel or lnconelX.
  • the resistance of the coupling members of this invention such as bellows 46 desirably is of such a magnitude that the [low of current across the bellows is less than 5 percent and for most applications, is no more than 1 or 2 percent of the total current flow through the thcrmopile 10.
  • the specific composition of the material forming the coupling members such as bellows 46 is chosen from a group of relatively high resistance materials which materials are sufilciently compatible with the material forming blocks 12 to permit a good hermetic joint to be formed therebetween. in choosing a material for the bellows 46 it is to be realized that the electrical resistivity of the material must be considered.
  • each bellows 46 is formed from relatively thin material, thereby reducing its cross'scctional area to further increase the total resistance of the bellows.
  • the material forming the bellows 46 desirably is metallurgically compatible with the material forming the blocks 12, so that the bellows 46 may be suitably secured to the blocks 12 to provide a hermetic seal therebetwcen, such as by brazing.
  • each of the blocks 12 is provided with a tabulation 48 formed integrally thereon and forming an extension of the passageways 14.
  • the bellows 46 are hermetically secured to the outward surfaces of the opposed tabulations 48 of adjacent blocks 12.
  • the bellows 46 thereby provides a hermetically sealed passageway for the fluid circuit and (iii also are capable of withstanding thermal expansion an contraction of adjacent water blocks 12, since the bel e 46 contract and expand, respectively, without damsel thereto.
  • Each of the blocks 12 in row 16 are formed with their openings 14 coupled in series by coupling members or bellows 46.
  • the flow passage formed in row 16 rlesiraht is coupled in series to the flow passage formed m row it! by a suitable coupling element (not shown) conricct:r, the passageways at the rear of the thermopile 10.
  • the flow passageway of row 18 is connected in series to the flow passageway extending longitudinally through the lower longitudinal row of blocks disposed in the center of the thermopile 10 by an insulating coupling sleeve 54.
  • the flow passageway formed by the latter row is connected to the corresponding flow passage in the upper level by a rearward connection formed similarly to the sleeve 54.
  • a front connection is made by coupling sleeve 56 etween the central longitudinally extending flow passage of the upper level to the lefthand longitudinally extending flow passage at the lower level.
  • Still another connection is made at the rear of the thermopile 10 between the latter passageway and the corresponding lefthand passageway located at the upper level of the thermopile 10.
  • thermopile 10 A front connection between the latter passageway and an outlet conduit 58 is made to complete the liquid fiow circuit through the thermopile 10. It will be appreciated that the liquid fiow circuit of the thcrmopile 10 merely provides a single series flow path for liquid so that the liquid passes through each of the block members or modules 12 forming the thermopile 10.
  • each of the retaining members 60 are provided with a plurality of longitudinally extending grooves 62 which receive the rows of block members 12 and coupling elements 46 therein.
  • the grooves 62 are lllaltluilimi in spaced relationship with the spacing being suffi u n i i prevent arcing of current from one of the longitudinal rows to the other, thereby preventing the by-passing of any thermoelectric layers from the current flow path.
  • the retaining member 60 may be formed from a metal, such as copper or aluminum, or may be formed from an insulating material. In the event the retaining members 60 are formed from metal, as shown, insulation means 64 are utilized to line each of the longitudinal grooves 62 for the purpose of maintaining each of the longitudinal rows in insulated relationship with one another. Any suitable insulating material, such as a resinous sheet insulating material may be utilized as the liner 64.
  • tie rods 66 are passed through and secured at their ends to each of the retaining members 60 to retain the parts of the thcrmopilc 10 in position.
  • insulating material 36 is utilized to separate adjacent heat exchange structures 24 of each longitudinal row.
  • Insulation means 68 may extend between adjacent longitudinal rows of the thermopile 10 coextensively with each of the bases 26 of the heat exchange structure and with the thermoelectric layers 32 and 34, respectively.
  • insulating means such as insulating sheets 72 disposed in the same plane as the respective thermoelectric layers 32 and 34.
  • insulating sheets 72 disposed in the same plane as the respective thermoelectric layers 32 and 34.
  • thermo pile 10 when the thermo pile 10 is assembled between the retaining members 60. each of the modules 12 are fixedly positioned with respect to the retaining members 60. Accordingly, during startup and shutdown of the thermopile 10 wherein the temperature of the modules 12 and the heat exchange structures 24 are varied, there will occur thermal expansion and contraction, respectively, in each of the modules 12. Such thermal expansion and contraction are absorbed by the built-in flexibility of the high resistance bellows or insulating joints 46, resulting in a thermopile structure resistant to thermal shock. It will be further appreciated that the thermopilc 10 comprises a structure wherein there exists no electrical or thermal insulation in the heat flow path of the thermopile. More particularly thermoelectric heating and cooling are produced on opposed sides of each of the thermoelectric layers 32 and 34.
  • thermoelectric heating is conducted to the fluid passages 14 of each of the modules 12, while the thermoelectric cooling is conducted to each of the heat exchange structures 24. It is readily apparent that there is no electrical or thermal insulation located between the thermoelectric layers 34 and the adjacent modules 12 and the heat exchange structures 24, respectively. As a result the thermopile 10 provides an arrangement wherein the benefits of a direct transfer" thermoelectric system are achieved.
  • thermopile 100 which operates similarly to the thermopile 10 of FIGURE 1 with several modifications.
  • thermopile 100 has two longitudinally extending rows 108 and 110 of assemblies rather than the three rows of the FIGURE I arrangement.
  • block members or modules 112 are provided with a semicircular side disposed opposite the thermoelectric layer. rather than a generally rectangular cross section ol HI'JITRF I.
  • thermopile 100 of IIGIIRFS 2 and 3 corresponds to the arrangement of the thermopile 10 of FIGURE I.
  • the operating principles of the thermopile 100 together with the corresponding structures will not again be described.
  • each of the longitudinally extending rows 108 and 110 of heat exchange assemblies includes a pair of longitudinal rows of block members or modules 112 with a row I14 being disposed at an upper level and a row H6 being disposed at a lower level.
  • the longitudinally extending row 110 includes a modules 112 forming a row 118 at the upper level and a row 120 at the lower level.
  • the heat exchange structure 102 is disposed between the heat exchange blocks 112 at the upper and lower levels and there is positioned therebetwecn layers of thermoelectric material 122 with predetermined ones of the layers 122 being formed from thermoelectrically positive and thermoelectrically negative material. As previously described in connection uith FIGURE l.
  • certain of the block members 112 are disposed in bridging relationship between adjacent heat exchange structures 102 resulting in a serpentine current flow path.
  • the current flow path extends in part from the heat exchange structure 102 to the thermo electric layer 1221:. thence to the module 1120 and therefrom to the thermoelectric layer 122 and heat exchange structure 102/.
  • the modules 112 are each provided with openings 124 thcrcin with the openings 124 for each of the rows H4. 116, I18 and 120 being disposed in alignment.
  • the openings 124 are connected together by a ill suitable crrpansible and conttiictiblc coupling another such as bellows 126 with the latter being Iorrruzd from highly resistive material as explained in connection with the bellows 46 of FIGURE 1 to provide the desired serpentine current flow path through the thermopile 100.
  • Each of the heat exchange structures 102 includes a plurality of spaced fins 128 which are secured to a pair of spaced bHSCS 130, with the fins 128 extending laterally with respect to the openings 124. Disposed intermediate each of the adjacent fins lltl are are?
  • corrugations 132 which engage the fins 128 at severa positions along the length thereof so that the corrugations 132 serve to increase the heat transfer area in the heat exchange structure 102.
  • Adjacent heat exchange structures 102 are maintained in spaced relationship as illustrated by the space 134 to prevent the short circuiting of the current flow path directly from one heat exchange structure 102 to the other.
  • adjacent longitudinal rows 108 and 110 are maintained in spaced relationship, as illustrated in FIGURE 3.
  • each of the retaining members 106 serves to retain a pair of longitudinally extending rows. Accordingly, tie rods 104 connect the upper and lower retaining members 106 at a position intermediate th erows 108 and 110, rather than about the periphery of the thermopile as illustrated in FIGURE 1.
  • each of the modules 112 includes a semicircular surface 136 which is received in a pair of complementarily shaped longitudinally extending recesses 138 formed in each retaining member 106.
  • the retaining members 106 are formed from a metal, there is interposed between the blocks 112 and the retaining member 106 complementarily shaped insulating sheets 140 which serve to maintain each of the rows electrically insulated from one another.
  • thermopile of FIGURES 2 and 3 for the purpose of connecting the rows 108 and in electrical series with one another as well as to a source of electrical power.
  • each of the openings 124 of the rows 114. I16 and 118 and are connected in series and to inlet and outl t conduits in a manner similar o the arrangement l lliSlI'fi-( in FIGURE 1.
  • the coupling structure 150 of FIGURE 4 includes a central ring member 152 formed from insulating material such as a ceramic member formed from aluminum oxide or beryllium oxide. Secured to the ring member 152 are a pair of metallic sleeves which may be formed from any material compatible with the material forming the modules 12 or 112. The sleeves 154 may be electrically conducting and are chosen to facilitate the hermetic securing operation between the sleeves 154 and the appropriate flange. such as the flanges 52 on the module blocks 12.
  • the sleeves 154 may be formed from an electrical conductor and therefore can be formed from the same material forming the modules 12, for example copper or aluminum.
  • aus of the sleeves I54 desirably is provided with a circumferential indentution I56 therein which provides an area capable of ahsorhing thermal expansion and contraction forces exerted thereon by adjacent modules 12. In this manner each of the sleeves 154 acts as a bellows.
  • a cciamic to metallic joint is made between the ceramic sleeve I52 and the metallic sleeves 154.
  • each of the sleeves 154 is provided with an extension 158 and 1.60 thereon which overlies and closely receives the outer surface of the ceramic sleeve 152 with adjacent extensions 158 and 160 being spaced from one another in insulated relationship.
  • Procedures for forming ceramic to metallic joints, together with the choosing of ceramic and metallic materials having corresponding thermal characteristics are well known in the art.
  • the ceramic to metallic joint between the sleeves 152 and 154 can be performed prior to assembly of a thermopile 10 or 100 and that the metallic to metallic joint between the sleeve 154 and the modules 12 or 112, which are more easily fabricated, is performed during final assembly of the thermopile arrangement.
  • thermopile arrangement 200 generally similar to the thermopile arrangement 100 of FIGURES 2 and 3 with the exception that the gaseous heat exchange means 102 of FIGURES 2 and 3 has been replaced by a liquid flow path arrangement.
  • a pair of retaining members 202 for positioning the components of the thermopile 200 by means of tie rods 204 extending centrally between a pair of longitudinally extending spaced rows 206 and 208.
  • Each of the rows 206 and 208 includes a block member or module 210 having a generally semicircular shaped lower surface 212 and a plurality of upper block members or modules 214 having a generally semicircular shaped upper surface 216.
  • the modules 212 and 214 are each provided with longitudinally extending flow passages 218 therethrough with the flow passages 218 of each module 210 and 214 being connected in series to provide, in this example of the invention, a heated fluid flow circuit for the thermopile 200.
  • the cooled fluid flow circuits of the thermopile 200 comprises a plurality of block members or modules 220 formed of a generally rectangular cross section and disposed intermediate the upper and lower modules 214 and 210. Layers of thermoelectric material 222 and 224 are positioned respectively between the opposed surfaces of the module 220 and the modules 210 and 214.
  • Each of the modules 220 is provided with a longitudinally extending fluid passageway 26 therein with each of the adjacent passageways 226 being coupled together by coupling members 228 which are formed to electrically insulate adjacent modules 220 from one another.
  • each of the coupling members 228 includes a centrally disposed sleeve 230 formed from an insulating material such as a high density ceramic material.
  • each of the ceramic rings 230 Secured to each of the ceramic rings 230 are a pair of bellows arrangement 232 which may be formed from an electrically conductng material which is metallurgically compatible with the material forming the ceramic ring 230 and the material forming the modules 220.
  • Each ring 230 is provided with a flange 231 thereon to maintain the adjacent bellows 232 in insulated relationship.
  • the materials forming the connecters 228 may comprise the same materials described in connection with the connecters 150 of FIGURE 4.
  • Each of the connecters 228 is capable of becoming elongated and contracted upon thermal expansion and contraction of the modules 220 during operation of the thermopile 200.
  • Layers of insulating material 234 are mounted in vertical alignment with the connecters 228 and are disposed in the same planes as the thermoelectric layers 222 and 224.
  • each of the heated fiuid modules 210 and 214 are connected to the next adjacent modules by connecters 228 with the connecters 228 being hermetically secured to the modules 210 or 214.
  • the modules 220 desirable are constructed to be ap proximately one-half of the length of the modules 210 and 214 so that appropriate modules 210 and 214 serve till to bridge electrically adjacent layers of thermoelectri material along the desired serpentine current flow pab of the thermopile 200.
  • FiGUl'tE 5 it wit be appreciated that the current flow path through the thermopile 200 extends from the left-hand lower module 210 through the thermoelectric layer 222 to the letthand module 220. From the module 220, the current flow path passed through the thermoelectric layer 224, the upper left-hand module 214, and therefrom to the thermoelectric layer 222 located to the right of the la mentioned thermoelectric layer 224.
  • the insulating couplings 228 maintain the serpentine electric flow path in the thermopile 200 while still providing an arrangement wherein there exists no electrical or thermal insulation in the heat flow path between the thermoelectric layers and the heated and cool fluids.
  • the row of mod ules 220 located in row 206 is desirably connected in series to the modules 220 located in row 208 by suitable means such as by the insulating conduit 62 illustrated in FIGURE 1 and the series connected flow passageways 226 are connected by inlet and outlet conduits (not shown) which may couple the flow passageways 226 to a source of fluid to be cooled.
  • each of the thermoelectric layers 222 desirably is constructed from p-type thermoelectric material while the thermoelectric layers 224 are formed from n-type thermoelectric material.
  • the retaining members 202 are formed from metallic compositions, complementarity shaped layers of sheet type insulating material 236 are disposed between the modules 210 and 214 and the adjacent retaining members 202.
  • thermoelectric apparatus has been described to provide a centrally disposed cooled fluid flow path with a heated fluid flow path disposed above and below the cooled fluid flow path.
  • the thermopiles 10, and 200 herein described may also act as thermoelectric generators merely by providing fluids of differing temperatures to the heated and cooled fluid flow paths, thereby producing electrical power at the thcrmopile terminals.
  • thermoelectric device at least two block members formed from thermally, and electrically conductive material, each of said block members having a ⁇ low opcning therein, means for connecting said Ilow openings in series comprising a coupling member extending l0ngitu dinally between and hermetically sccurcd to each of said block members, said coupling mcmbcr being formed from a material which is highly resistant to the flow of electrical current thcrealong, said, coupling member having means thereon for absorbing longitudinal expansive and compressive forces exerted thereon, a layer of thermoelectric material secured to one of said block members, and means interposed between said layer and the other of said block members forming an electrically conductive path thcrcbetween.
  • thermoelectric device at least two block merrihers formed from thermally and electrically conductive material. each of said block members having a flow opening therein.
  • means for connecting said fiow openings in series comprising a coupling member extending longitudinally between and hermetically secured to each of said block members.
  • said coupling member comprising a bellows formed from a metal having a relatively high electrical resistance, a layer of thermoelectric material secured to one of said block members, and means inter posed between said layer and the other of said block members forming an electrically conductive path therebetween.
  • thermoelectric device at least two block members formed from thermally and electrically conductive material, each of said block members having a flow opening therein, a coupling member for connecting said flow openings in series.
  • said coupling member comprising a sleeve of insulating material, a pair of sleeves of electrically conductive material which is metallurgically com patible with the material forming said insulating sleeve, each of said metallic sleeves being hermetically secured at one end to said insulating sleeve in insulated relationship with one another, said metallic sleeves being metal lurgically compatible with the material forming said block members, the other ends of said metallic sleeves belng hermetically secured to said block members, respectively, a layer of thermoelectric material secured to one of said block members, and means interposed between said layer and the other of said block members forming an electrically conductive path therebetween.
  • thermoelectric device In a thermoelectric device, at least two block members formed from thermally and electrically conductive material, each of said block members having a flow opening therein, a coupling member for connecting said flow openings in series, said coupling member comprising a sleeve of insulating material, a pair of sleeves of electrically conductive material which is metallurgically compatiblc with the material forming said insulating sleeve, each or" said metallic sleeves being hermetically secured at one end to said insulating sleeve in insulated relationship with one another. said metallic sleeves being metallurgicallv compatible with the material forming said block members, he other ends of said metallic sleeves being hermetically secured to said block members.
  • At least one of said metallic sleeves having means thereon for absorbing longitudinal expansive and compressive forces exerted thereon.
  • a layer of thermoelectric material secured to one of said block members. and means inter posed between said layer and the other of said block members forming an electrically conductive path therebetween.
  • thermoelectric device at least two block members formed from thermally and electrically conductive material, each of said block members having a fiow opening therein, means for connecting said How openings in series comprising a coupling member extending longitudinally between and hermetically secured to each of said block member said coupling member being formed from a material which is highly resistant to the flow of electrical current therealong, said coupling member having means thereon for absorbing longitudinal expansive and compressive forces exerted thereon, a layer of thermoelectric materials secured to one of said block members, means interposed between said layer and the other of said block members forming an electrically conductive path therebctwecn. and retaining means fixedly positioning said block members relative to one another.
  • thermoelectric device a pair of spaced layers of thermoelectric material, one of said layers being thermoelectrically positive and the other of said layers being thermoelectrically negative, a pair of electrically conductive base members mounted in spaced relationship I ll lit)
  • thermoelectric layer tit thermoelectric material, respectively, a plurality of spaced electrically conductive fin members extending between and secured at their ends to said base members in electrical contact therewith, and terminal means coupled to said thermoelectric layers for supplying electrical current from one of said layers to the other along a path formed by said base members and said fins, whereby one of the conditions of thermoelectric cooling and thermoelectric heating is imparted to said fins.
  • thermoelectric device a pair of spaced bloc members formed from thermally and electrically conductive material, each of said block members having a flow opening therein, a layer of thermoclcctrically positive material mounted on one of said block members. a layer of thermoclectrically negative material mounted on the other of said block members, a plurality of spaced, electrically conductive fins extending between and secured to said thermoelectric layers, means for connecting said How openings in series comprising a coupling member extending longitudinally between and hermetically secured to each of said block members, said coupling member being formed from a material which is highly resistant to the flow of electrical current therealong. and said cottphng member having means thereon for absorbing longitudinal expansive and compressive forces exerted thereon.
  • thermoelectric heat exchange device a first, second, and third thermally and electrically conductive block member, a first pair of thermoelectric layers mounted in spaced relationship on said first block member; a second pair of thermoelectric layers mounted on said second and third block members, respectively, a first group of thermally and electrically conductive, spaced fins secured to said thermoelectric layer mounted on said second block member and to one of said first pair of thermoelectric layers, a second group of thermally and electrically conductive fins secured to said thermoelectric layer mounted on said third block member and to the other of said first pairs of thermoelectric layers, said second fin group being mounted in insulated relationship with said first group except along a path through said first block member and said first pair of thermoelectric layers, said second and said third block members each having a flow opening formed therein, a couplinu member extending between and hermetically sccurctr tr.- said second and third block mcrr bcrs for cortructiug t: flow openings in series, said
  • thermoelectric heat exchange device a first. second, and third thermally and electrically conductive block member, a first pair of spaced thermoelectric layers mounted in spaced relationship on said first block memher, a second pair of thermoelectric layers mounted on said second and third block members, respectively, a first thermally and electrically conductive bridging member Secured to said thermoelectric layer mounted on said second block member and to one of said first.
  • thermoelectric layer a second thermally and electrically conductive bridging member secured to said thermoelectric layer mounted on said third block member and to the other of said first pairs of thermoelectric layers, said second bridging member being mounted in insulated relationship with said first bridging member except along a path through said first block member and said first pair of thcrmoelectric layers, said second and said third block members each having a fiow opening formed therein, a coupling member extending between and hermetically secured to said second and third block members for connecting said flow openings in series, said coupling member being formed to prevent the fiow of electrical current therealong from one of said second and third block members to the other,
  • thermoelectric heat exchange device a first, second, and third thermally and electrically conductive block member, a first pan f spaced thermoelectric laycrs mounted in spaced relationship on said first block member, a second pair or thermoelectric layers mounted on said second and third block members, respectively, first thermally and electrically conductive bridging mourber secured to said thermoelectric layer mounted on said second block member and to one of said first pair of thermoelectric layers, a second thermally and electrically conductive bridgin member secured to said thermoelectric layer mounted on said third block member and to the other of said first pairs of thermoelectric layers, said second bridging member being mounted in insulated relationship with said first bridging member except along a path through said first block member and said first pair of thermoelectric layers, said second and said third block members each having a flow opening formed therein, a coupling member extending between and hermetically se cured to said second and third blocl: members for innectiug said flow openings in series, said coupling recurbcr comprising
  • thermoelectric heat exchange device a first, second, and third thermally and electrically conductive block member, a first pair of spaced thermoelectric layers mounted in spaced relationship on said first block member, a second pair thermoelectric layers mounted on said second and third block members, respectively. a first thermally and electrically conductive bridging member secured to said thermoelectric layer mounted on said second block member and to one ct. said first pair of thermoelectric layers, a second thermally and eiectrically conductive bridging member secured to said thermoelec tric layer mounted on said third block member and t the other of said. fir't pairs of thermoelectric layers, said second.
  • bridging member being mounted in insulated relationshi' with said first br dging member except along a path through said first irlocit member and said first pair of thermoelectric ayers, said second and said third block. members each having flow opening formed therein, a coupling member extending; between and hermetically sccured to said second and third block members for con meeting said flow o ings in series, said coupling member comprising at least one bellows structure and formed to prevent the how of electrical current therealong from one of said second and third block. members to the other, terminal means electrically coupled to said second and third block members, a pair of retaining members for fixedly positioning said. block members relative to i-tc another.
  • thermoelectric layer mounted on said second block member and to one of said first pair of thermoelectric layers
  • second group of thermally and electrically conductive fins secured to said thermoelectric layer mounted on aid third bloclr member and to the other of said Tire airs or thermoelectric layers.
  • said second fin group being mounted in insulated relationship with said first fin group except along a path through said first block member and said first pair of thermoelectric layers, said and said third block members each having a flow opening formed therein, a coupling member extending between and hermetically secured to said secand and third block members or connecting said How openings in. series, said coupling member being formed to prevent the iiow of electrical current thcrealong from one of said second and third bloclt members to the other, said coupling member being expansible and contractable to absorb thermally influenced changes in the spacing between said second and third block members, terminal IlifivJ iE electrically coupled to said second and third block members, and a pair of retaining members fixedly positioning said block members relative to one another.
  • thermoelectric heat exchange device in a thermoelectric heat exchange device, a first, second, and third thermally and electrically conductive blocl; member, a first pair of spaced thermoelectric layers, mounted in spaced relationship on said first block member, a second pair of thermoelectric layers mounted on said second and third block members, respectively, a fourth block member, secured to said thermoelectric layer mounted on said second block member and to one of said first pair of thermoelectric layer, a fifth block member secured to said thermoelectric layer mounted on said. third block member and to the other of said first pair of thermoelectric layers, said. fifth block member being mounted in insulated relationship with said fourth block member except along a path through said first bloc]: memher and said first pair of thermoelectric layers, said sec- 0nd and said third block members each having a fiow opening formed.
  • a first coupling member extending between and hermetically secured to said second and said third block members for connecting the flow openings thereof in series
  • said fourth and said fifth block members each having a flow opening formed therein
  • a second coupling member extending between and hermetically secured to said fourth and said fifth block members for connecting the [low openings thereof in series
  • said first and second coupling members each being formed to prevent the fiow of electrical current therealong
  • terminal means electrically coupled to said second and third block members.
  • thermoelectric heat exchange device a first, second, and third thermally and electrically conductive bloclt member, a first pair of spaced thermoelectric layers mounted in spaced rcltnionship on said first blocl; memhere, a second pair of thermoelectric layers mounted on said. second and third block members.
  • thermoelectric layer mounted on said second block member and to one of $212 first pair of thermoelectric layers a fifth block member secured to said thermoelectric layer mounted on said third block member and to the other of said first pairs of thermoelectric layers, said fifth block member being mounted in insulated relationship with said fourth block member except along a path through said first block member and said first pair of thermoelectric layers
  • said second and said third block members each having a flow opening formed therein
  • a first coupling member extending between and hermetically secured to said second and said third block members for connecting the ilow openings thereof in series
  • fourth and said fifth block members each having a flow opening formed therein
  • second coupling member extending between and hermetically secured to said fourth and said fifth blocl: members for connecting the flow openings thereof in series, suid first and second coupling members each being formed to prevent the flow of electrical current therealong.
  • said coupling members each being expausible and contract-able to absorb thermally influenced changes in the sizes of said block. members, a pair of retaining members fixedly positioning said block members relalive to one another, and terminal means electrically coupled to said second and third block. members.
  • thermoelectric heat exchange device a first elongated block member, a second and a third block member, each of said block members being formed from thermally and electrically conductive material, a first pair of spaced thermoelectric layers mounted in spaced 15 relationship on said first block member, a second pair of thermoelectric layers mounted on said second and third block members, respectively, a fourth block member, sccured to said thermoelectric layer mounted on said second block member and to one at said first pair of thermoelectric layers, a fifth block member secured to said thermoelectric layer mounted on said third block member and to the other of said first pairs of thermoelectric layers.
  • said fifth blocl member being mounted in insulated relationship with said fourth block member except along a path through said first block member and said first pair of thermoelectric layers, said second and said third blocl; members each having a flow opening formed therein, a first coupling member extending between and hermeticaL ly secured to said second and said third block members for connecting the How openings thereof in series, said fourth and said fifth bioclt members each having a flow opening formed therein, a second coupling member extending between and hermetically secured to said fourth and said iiith bio-cit members for connecting the flow openings thereof in series, said first and second coupling members each being formed to prevent the [low of clet; trical current thcrcalong, said fourth and fifth blocl; members and said second coupling member extending substantially coextcnsively with the longitudinal dirnen sion of said First block member, and terminal means electrically coupled to said second and third block members.
  • thermoelectric heat exchange device a pair of spaced block members formed from thermally and electrically conductive material and each having a flow passageway formed therein, a bellows formed from insulating material hermetically secured at its ends to said block members and disposed to connect said flow passageways in series, a layer of thermoelectric material se cured to one of said block members, means forming a current flow path from one of said block members o the other through said thermoelectric layer, said current path means including at least in part a heat exchange structure secured to said thermoelectric layer, and said heat exchange structure including a plurality of spaced fins thereon.
  • thermoelectric heat exchange device a pair of spaced bloelt members formed from thermally and electricaily conductive material and each having a flow passageway formed therein, a bellows formed from insulating materials hermetically secured at its ends to said block members and disposed to connect said flow passageways in series.
  • a layer of thermoelectric material secured to one of said bloclt members. means forming a current flow path from one of said block members to the other through said thermoelectric layer, said current path means including at least in part a heat exchange structure secured to said thermoelectric layer, and said heat exchange structure including a plurality of spaced fins thereon, and a corrugated heat conductive structure extending laterally between adjacent ones of said fins and engaging said fins at several places along one dimension thereof.
  • thermoelectric heat exchange device a plurality of longitudinally extending groups of electrically conducting heat exchange means, each of said groups including heat exchange means disposed at each of a lower, intermediate and upper level, each of said levels having a plurality of tandernly arranged heat exchange means with longitudinally adjacent ones thereof being mounted in insulated relationship with one another, respectively, a plurality of first thermoelectric means interposed between adjacent ones of said lower level heat exchange means plurality of second thermoelectric means interposed between adjacent ones of said intermediate level heat exchange means and said upper level heat exchange means, the polarities of said thermoelectric means being selected to produce thermoelectric cooling in each of said heat exchange means located in at least one of said levels and to produce thermoelectric heating in each of said heat iii exchange means of the remainder of said levels when electrical current liows theretltrough, those heat exchange means located in at least one of said levels each having liquid flow openings formed therein, means for connecting said liquid flow openings in series, said last-mentioned means including a plurality of connectors hermet
  • thermoelectric device at least two spaced block members formed from thermally and electrically conductive material, each of said block members having a flow opening therein to expose the adjacent surfaces of said block members directly to fluid flowing through said openings, means for connecting said flow openings in series comprising a tubular coupling member extending longitudinally between and hermetically secured at its ends to said block members, said coupling member being formed from a material which is highly resistant to the flow of electrical current therealong, a layer of thermoelectric matcrial secured to one of said block members, and means interposed between said layer and the other of said block members forming an electrically conductive path therebctwcen.
  • thermoelectric assembly comprising a plurality of pairs of bodies of semicunductive material of opposite conductivity type each having hot and cold junction ends, a plurality of first metal tubes each joined to the cold junction ends of each of said pairs of bodies 10 form a junction bridge between them, a straight fluid conduit for circulation of a fluid thererhrougli, said first metal tubes being disposed along said conduit and electrically insularcd from one another, and a plurality of second metal tubes joined to the hot junction ends of said bodies.
  • thermoelectric assembly as in claim 20 including a second straight fluid conduit for the circulation of a fluid tltrrr'rhrougli, said second metal tubes being spaced along said straight conduit and electrically insulated from one another.
  • thermoelectric hm pump as in claim 21 wherein said conduits are formed by the metal tubes held in spaced relationship by insulating rings.
  • thermoelectric assembly as in claim 21 wherein said metal tubes include cylindrical passageways there- Ihmugh and are provided with flat surface arms to receive the junction and of the bodies of srmicomluctive material.
  • thermoelectric assembly comprising a plurality of pairs of bodies of srnn'conductive material of opposite conductivity type each having Ito: and cold junction cut/r, a plurality of first metal tubes each joined to the cold fame/ion ends of each of said pairs 0) bodies to form a junction bridge between them, a first .rtmiglir fluid ermclull means for circulation of a fluid thert'llirouph, .raitl first metal tubes being disposer! along said first conduit means and electrically insulated from one number, a plurality of second metal mhrs joined to the hot junction ends of said bodies, a generally straight serum! fluid c011- dui: means for the circulation of a fluid then-through,
  • said second metal tubes being spaced along said second conduit means and electrically insulated from one an other, and said second conduit means is disposed at an angle to said first conduit means.
  • thermoelectric assembly comprising a plurality of pairs of bodies of semiconductive material of opposite conductivity type each ltaving lit)! and cold junction en ls, a plurality of metal tubes each joined to similar junction ends of eaclt of said pairs of bodies to form a junction bridge between them, said metal tubes forming junction bridges held in longitudinal alignment by electrical nonconductive means to form continuous fluid-tight conduits with the metal tubes spaced tlzerealong and electrically in sulated from one another, and a plurality of metal elements eaclz joined to the other junction end of said bodies of semiconductive material.
  • thermoelectric assembly as in claim 26 wherein said metal elements are provided with metal fins.
  • thermoelectric assembly as in claim 26 wherein said metal elements are disposed general y perpendicular to the axis of said conduits.
  • thermoelectric assembly as in claim 26 wherein said metal elements comprise metal tubes.
  • thermoelectric water to air heat pumping unit for cooling or heating of air circulated through said unit comprising a plurality of pairs of bodies of semiconductive material of opposite conductivity type each having hot and cold junction ends, a plurality of metal tubes eaclt joined to similar junction ends of each of said pairs of ll()tllt. ⁇ to form a fun. Jim. bridge l l'il'tt'fll them, a pluralit of substantially narollel fluid-tight conduits for the circulation of n fluitl tlterttlirouglt.
  • said metal tubes being disposed along said conduits and electrically insulated from one another, a plurality 0 metal elements each joined to the other function end of said bodies of semiconductive material aiswiated wit/i dificrent conduits, itteial fins in it at transfer relationship H'lili said metal elements, means for conducting water through said conduits and said metal fins being positioned to direct air flowing tltcrepast in a direction perpendicular to the axis of said conduits.
  • thermoelectric pumping unit as in claim 30 w iereln said metal fins are directly attached to said metal lJFltllIU elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

Oct. 28, 1969 c, MOLE ETAL THERIOELECTRIC APPARATUS 3 Sheets-Sheet 1 Original Filed Dec. 20, 1963 Oct. 28, 1969 c. J. MOLE ET AL THERWOELECTRIC APPARATUS I5 Sheets-Sheet I Original Filed Dec. 20, 1963 Mfg @01 of 6m.
Get. 28, 1969 E ET AL THEHMOELEIGTRIC APPARATUS 5 Sheets-Sheet 3 Original Filed Dec. 20, 1965 NON mum
woN EN NNN mom 2N Umted States Patent Ofice 26,698 THERMOELECTRIC APPARATUS Cecil J. Mole, Murrysville, and William M. Wepfer, Pittsburgh, Pa., assignors to Westinghouse Electric Corporation, East Pittsburgh, Pin, a corporation of Pennsylvania Original No. 3,178,895, dated Apr. 20, 1965, Ser. No. 331,997, Dec. 20, 1963. Application for reissue Feb. 4, 1966, Ser. No. 532,508
int. Cl. F25!) 21/02; l-lfllv 1/30 US. Cl. 62-3 31 Claims Matter enclosed in heavy brackets appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
This invention relates to thermoelectric apparatus and more particularly to the construction of new and etiicient arrangements of thermopiles for varying the temperature of fluid media, or for use with fluid media of differing temperatures for producing electrical power through the use of thermoelectric effects.
In our copending application, Serial No. 320,160, filed October 30, 1963, entitled Thermoelectric Heat Pumping Apparatus, and assigned to the present assignee, there are described in detail a thermoelectric heat exchange device and an electrical generator utilizing a novel approach or principle for obtaining high efficiency at relatively low cost and for utilizing relatively small amounts of thermoelectric material. The principle of the above device is known as direct transfer, that is, there is provided a heat flow path in the thermoelectric apparatus having no electrical or heat insulation therein, so that substantially all of the heating or cooling produced at the thermoelectric hot and cold junctions are transferred directly to the heating or cooling media of the thermoelectric heat exchanger, without passing through electrical or thermal insulation.
In another of our copending, coassigned applications, Serial No. 332,010 filed concurrently herewith and entitled Thermoelectric Apparatus, there is described a liquid to air thermoelectric heat exchanger and electrical generator wherein the current flow path between adjacent thermoelectric members passes through the heat exchange arrangement exposed to the gaseous medium. The electrical flow path between adjacent thermoelectric layers is maintained by means of insulating members connecting the liquid flow path so that none of the thermoelectric layers are by-passed along the liquid flow path. The insulating members in the latter application are sealingly mounted between adjacent stages of the liquid flow path to form a single series connected liquid passageway.
The present invention is directed to modifications and improvements of the latter patent application in that there is provided a structure for the thermoelectric apparatus which is not only compact but shock-proof. in the instant arrangement, retaining members are provided for fixedly positioning each of the component parts of the thermopile, and means are provided for absorbing thermal expansive and contractive forces exerted upon the thermopile parts. More particularly, this invention provides an improvement of the type of connccters for the liquid flow path in that there is provided a highly electrically resistive coupling member hermetically sealed to the electrically conductive segments of the liquid flow path and having sufiicient flexibility and mechanical compliance to withstand thermal cycling within the thermopiles. In addition, the metallic tins of a metal to air heat exchange portion of the thermoelectric device form segments of the current flow path in the thermopile.
Accordingly, it is an object of this invention to provide a new and improved thermopile having no electrical Reissued Oct. 28, i?
insulation in the heat flow path and being of compact size and shocloproof construction.
Another object of this invention is to provide a new and improved thermopile having a liquid flow path formed in electrically conductive members and having connecters of insulating material hermetically joined to adjacent ones of the electrically conductive members to connect the liquid flow paths of such members in series.
Another object of this invention is to provide a pair of electrically conductive block members having a liquid flow path therein with a high resistance connecter to couple the flow paths in series so that the connector absorbs thermally induced expansive and compressive forces exerted upon the block members.
Still another object of this invention is to provide a new and improved thermopile of the air to liquid type having no electrical insulation in the heat flow path and having an air heat exchange portion of the thermopile also forming a segment of the current flow path of the device.
It is a further object of this invention to provide a new and improved thermopile having retaining members for fixedly positioning the parts of the thermopile and having expansible connectors for absorbing thermally induced stresses exerted upon the thermopile parts.
Another object of this invention is to provide novel and efficient electrically resistive connccters for the liquid flow path of a thermopile.
Still another object of this invention is to provide an efficient connecter for the liquid flow path of a thermopile which is electrically resistive, hermetically secured to the remaining liquid flow path portions, and capable of absorbing forces exerted thereon caused by thermal expansion and contraction of the remaining liquid flow path portions.
Briefly, the present invention accomplishes the above cited objects by providing, in one example, a liquid to gas thermoelectric construction or thermopile wherein there is provided a gaseous flow circuit disposed intermediate a pair of liquid flow circuits. Each of the liquid flow circuits comprises a plurality of passageways formed in conductive members. The conductive munhcru W tend between adjacent layers of thermoelectric material in the electrical fiow path and the liquid flow path is formed by each passageway being connected in series by electrically resistive coupling elements or conduits. The coupling elements desirably are formed to expand and contract during thermal cycling of the thermopile, for example from bellows, and from a material compatible with the material forming the conductive members so that a hermetic joint therebetween is made. The gaseous flow path means desirably extends between adjacent ones of the conductive members along a predetermined current flow path and are formed from electrically conducting material such that the heat transfer area of the gaseous llow path means also forms a segment of the electrical current fiow path of the thermopile.
The thermopile of this invention is provided with a pair of retaining members which are interfitted with the parts of the thermopile with the retaining members being secured together to produce a compact and shock-proof thermopile construction. in this connection, each of the bellows cooperates to absorb forces induced thereon by thermal expansion and contraction of the fixedly positioned conductive members of the thermopile.
In a further embodiment of this invention there is provided a liquid to liquid thermoelectric construction providing the hermetic sealing of the connecters of the liquid flow path and also providing the retaining members and expansive connecters to improve the shock resistance of the thermopile. in a still further embodiment of this invention there are provided electrically insulated joints be tween adjacent ones of the conductive liquid accommodating members with the joints formed from ceramic sleeve and having metallic sieeves extending between the ceramic sleeve and the electrically conductive members and hermetically secured to the ceramic sleeve and the conductive member.
Further objects and advantages of this invention will become apparent as the following description proceeds and features of novelty which characterize the invention will be pointed out in particularity in the claims annexed to and forming a part of this specification.
For a better understanding of this invention, reference may be had to the accompanying drawings, in which:
FIGURE 1 is a perspective view, partially in section, illustrating a thermopile construction incorporating the principles of the invention;
FIGURE 2 is a side elevational view, partially in section, illustrating a modification of the thermopile arrangemerit of FIGURE 1;
FIGURE 3 is a sectional view of the thermopile of FIGURE 2 and taken along the lines IIIIII thereof;
FIGURE 4 is a sectional view of another form of connecter which can be utilized in the thermopile arrangements of FIGURES 1 to 3 as a substitute for the connecters illustrated therein;
FIGURE 5 is an elevational view, partially in section, of another embodiment of this invention utilizing connecters similar to those of FIGURE 4 and illustrating a liquid to liquid thermopile arrangement; and
FIGURE 6 is a sectional view of the arrangement of FIGURE 5 taken substantially along the lines VI-VI thereof.
Referring now to the embodiment of this invention illustrated in FIGURE 1, it will be seen that the thermopile 10, constructed in accordance with the principles of this invention includes a plurality of heat conductive block members or modules 12 formed from electrically and thermally conductive material, such as copper or aluminum. Each of the blocks 12 includes a flow opening 14 formed therein and extending longitudinally therethrough. The blocks 12 are mounted in longitudinal rows with each row of blocks 12 being disposed at one of two levels. In the arrangement for FIGURE 1 there are provided three rows of blocks at each level with the correspond in rows of blocks at each level being in vertical align- .ment. respectively. The righthand longitudinal row of blocks at the lower level in FIGURE 1 is denoted by the reference character 16 while the right-hand longitudinal row of blocks at the upper level of FIGURE 1 is denoted by the reference character 18. The blocks 12 in rows 16 and 18 are provided respectively with opposed surfaces 20 and 22 and a heat exchange fin structure denoted by the reference character 24 extends between the opposed surfaces 20 and 22.
In the example of the invention illustrated in FIGURE 1, the fin structure 24 includes a pair of base members 26 disposed respectively adjacent the surfaces 20 and 22 with the base members 26 being bridged by a plurality of relatively thin. parallelly extending spaced fins 28 which are secured at their ends to the base members 26. The base members 26 and the fins 28 are formed from eledtrically and thermally conductive material such as copper or aluminum with each heat exchange structure 24 in this example being sized with a lateral dimension of approxi mately the same size as the corresponding dimension of the block members 12. The fins 28 are mounted on the base members 26 to exte d laterally with respect to the liquid openings 14 of the blocks 12. There is disposed intermediate each of the surfaces 20 and 22 of the block members 12. and the adjacent confronting surface of the adjacent base members 26 a layer of thermoelectric material designated generally by the reference characters 32 and 34. The reference character 32 denotes a layer of thcrmoclectrically negative material while the reference character 34 denotes a layer of tbermmlectrically posi i e ntutcriull The thermoelectric materials may lie l't=|in,..-l from any suitable thermoelectric composition such as s muth telluride and in this arrangement of the invention is formed from a plurality of pellets which are extended across the entire confronting area of the respective surfaces 20 and 22 in the adjacent surfaces of the base mem' bers 26 and are secured to such surfaces by suitable means such as by brazing or soldering. The polarity of a given thermoelectric layer 32 or 34 is dependent upon he rim sired use of the thermopile 10, that is as a thermoelectric air cooling device or a thermoelectric air heating device, bearing in mind that, as conventional current flows from the thermoelectrically negative material to thermoelectrically positive material, a cooling effect takes place between the materials. In the embodiment of the invention illustrated in FIGURE 1, it is desired that a cooling efiect take place along the fins 28. Thus, as conventional current flows from the left-hand block member 12 in row 16 to the left-hand block member 12 in row 18, tilt: thermoelectric layer between the former block member and the adjacent base 26 desirably is of a thcrmoelectrb cally negative material while the thermoelectric layer .ie between the latter block member and the adjacent base 26 is of thermoelectrically positive material.
As shown by the right-hand block 12a of row 18 and the second from the right-hand block 12b of row 16, certain of the blocks 12 are mounted to bridge adjacent heat exchange structures 24 and adjacent thermoelectric layers 32 and 34. Insulation means such as insulating sheets 36 extend between adjacent heat exchange structures 24 and adjacent thermoelectric layers 32 and 34 to create a serpentine current flow path through the thermoelectric arrangement 10 to prevent the by-passing by the current flow path of any one of the thermoelectric layers 32 or 34. The thermopile 10 provides a current fiow path which begins at a terminal structure 38 secured to the module 12c located on the right-hand side of row 16, which terminal includes a post 39 connected to the positive side of the direct current source of power. Current then passes from the terminal structure 38 to the block 12c and therefrom to the thermoelectric layer 32 disposed intermediate the block 12c and the adjacent base structure 26 of the adjacent heat exchange device 24. Current then passes through the base structure M upwardly (as viewed in FIGURE 1) along earl of fins 28 to the upper base structure 26 and therefrom through the adjacent thermoelectric layer 34 to the block member 12a. From a block 12a current flows through thermoelectric layer 32. base 26, fins 28, base 26, thermoelectric layer 34 of the heat exchange structure 24 that bridges block 12a and block 12b. Current then passes through block 12b and therefrom to block 12d through thermoelectric layers 32 and 34 and that heat exchange structure 24 disposed to bridge blocks 12b and 12d.
At the far right-hand end (not shown) of the thermopile 10, there is provided additional bridging connecters connecting the right-hand longitudinally extending row of blocks to the central lengitudinally extending row of blocks. While the last-mentioned terminal structure is not illustrated in FIGURE 1, it may comprise the arrangement 40 illustrated in FIGURE 1 for bridging the central longitudinal row or blocks to the left-hand longitudinal row. The bridging structure 40 desirabl includes a pair of generally L-shaped terminal members 42 similar to the terminal structure 38. The members 42 are secured to the appropriate end blocks such as those similar to the blocks 12c to provide good electrical contact between the blocks 12 and members 42. A bridging connecter 44 desirably is secured to the adjacent terminal members 42 to complete the bridging structure 40. At the rear (not shown) of the left-hand longitudinal group of blocks, there is desirably provided an additional terminal similar in structure to the terminot structure 38 for connecting the thcrmopile It] to the negative terminal of a power supply.
In the present example of this invention, each of the heat exchange structures 24 desirably are positioned for each longitudinal group of blocks with the corresponding fins thereof in lateral alignment so that a suitable gas such as air may be passed through the fins 28 to vary the temperature of the gas. Assuming that the thermopile will be utilized as a cooling or air conditioning device, as current flows from the thermoelectric layers 32 to the thermoelectric layers 34, a cooling effect will take place therebetween thereby causing through thermoelectric effects the cooling of the fins 28. The fins 28 provide a suitable heat transfer area for the air flowing therepast to cool the air directly. With the cooling effect taking place in the heat exchange structures 24, it will be realized that a heating effect is concurrently occurring in each of the water blocks 12. In accordance with the invention, a liquid flow circuit is provided in the blocks or modules 12 so that the liquid is heated by the thermoelectric effects thereby causing the removal of the thermoelectrically generated heat from the blocks 12. Each of the flow openings 14 in the blocks 12 serves as a passageway in the liquid flow circuit. Conduit means are provided to connect each of the passageways 14 in a given row such as rows 16 and 18 in series. It is to be realized that the conduit means must be formed from a material having high electrical resistivity, for example from an insulator, so that the current flow path from the modules 12 is not lay-passed along the conduit means. Still another criterion for the conduit means is that the resulting conduit means must be capable of absorbing relative motion caused by the thermal expansion and contraction of the block members 12 relative to one another. In accordance with the invention the conduit means may comprise a bellows structure 46 formed from a material having a relatively high electrical resistance, for example, front certain of the stainless steel alloys, titanium alloys, nickel, aluminum. iron alloys such as the alloys sold under the trade names, lnconel or lnconelX.
By high electrical resistance it is meant that the resistance of the coupling members of this invention such as bellows 46 desirably is of such a magnitude that the [low of current across the bellows is less than 5 percent and for most applications, is no more than 1 or 2 percent of the total current flow through the thcrmopile 10. The specific composition of the material forming the coupling members such as bellows 46 is chosen from a group of relatively high resistance materials which materials are sufilciently compatible with the material forming blocks 12 to permit a good hermetic joint to be formed therebetween. in choosing a material for the bellows 46 it is to be realized that the electrical resistivity of the material must be considered. However, total resistance across the bellows 46 is directly proportional to the length of the bellows and inversely proportional to the cross-sectional area of the material forming the bellows. The corrugated form of the bcl lows serves to increase the effective length and therefore the resistance thercacross. In addition, each bellows 46 is formed from relatively thin material, thereby reducing its cross'scctional area to further increase the total resistance of the bellows.
The material forming the bellows 46 desirably is metallurgically compatible with the material forming the blocks 12, so that the bellows 46 may be suitably secured to the blocks 12 to provide a hermetic seal therebetwcen, such as by brazing. in furtherance of this purpose each of the blocks 12 is provided with a tabulation 48 formed integrally thereon and forming an extension of the passageways 14. The bellows 46 are hermetically secured to the outward surfaces of the opposed tabulations 48 of adjacent blocks 12. The bellows 46 thereby provides a hermetically sealed passageway for the fluid circuit and (iii also are capable of withstanding thermal expansion an contraction of adjacent water blocks 12, since the bel e 46 contract and expand, respectively, without damsel thereto. The liquid flow circuit for a thermopile 1ft dcsirably includes an inlet conduit 50, desirably formed from insulating material and secured to the tabulation 52 formed on the righthand end of opening 14 of block 12c. Each of the blocks 12 in row 16 are formed with their openings 14 coupled in series by coupling members or bellows 46. The flow passage formed in row 16 rlesiraht is coupled in series to the flow passage formed m row it! by a suitable coupling element (not shown) conricct:r, the passageways at the rear of the thermopile 10. The flow passageway of row 18 is connected in series to the flow passageway extending longitudinally through the lower longitudinal row of blocks disposed in the center of the thermopile 10 by an insulating coupling sleeve 54. The flow passageway formed by the latter row is connected to the corresponding flow passage in the upper level by a rearward connection formed similarly to the sleeve 54. A front connection is made by coupling sleeve 56 etween the central longitudinally extending flow passage of the upper level to the lefthand longitudinally extending flow passage at the lower level. Still another connection is made at the rear of the thermopile 10 between the latter passageway and the corresponding lefthand passageway located at the upper level of the thermopile 10. A front connection between the latter passageway and an outlet conduit 58 is made to complete the liquid fiow circuit through the thermopile 10. It will be appreciated that the liquid fiow circuit of the thcrmopile 10 merely provides a single series flow path for liquid so that the liquid passes through each of the block members or modules 12 forming the thermopile 10.
In accordance with the invention means are provided for retaining the modules 12, heat exchange structures 24 and the remaining portions of the thermoelectric assembly 10 in fixed position resulting in a compact, shock-proof structure. In furtherance of this purpose there are provided a pair of retaining members 60 with each member being formed to coextend with the thermopile 10. More particularly, each of the retaining members 60 are provided with a plurality of longitudinally extending grooves 62 which receive the rows of block members 12 and coupling elements 46 therein. The grooves 62 are lllaltluilimi in spaced relationship with the spacing being suffi u n i i prevent arcing of current from one of the longitudinal rows to the other, thereby preventing the by-passing of any thermoelectric layers from the current flow path. The retaining member 60 may be formed from a metal, such as copper or aluminum, or may be formed from an insulating material. In the event the retaining members 60 are formed from metal, as shown, insulation means 64 are utilized to line each of the longitudinal grooves 62 for the purpose of maintaining each of the longitudinal rows in insulated relationship with one another. Any suitable insulating material, such as a resinous sheet insulating material may be utilized as the liner 64.
in order to complete the assembly of the thermopile 10, tie rods 66 are passed through and secured at their ends to each of the retaining members 60 to retain the parts of the thcrmopilc 10 in position.
As pointed out previously sheet insulating material 36 is utilized to separate adjacent heat exchange structures 24 of each longitudinal row. Insulation means 68 may extend between adjacent longitudinal rows of the thermopile 10 coextensively with each of the bases 26 of the heat exchange structure and with the thermoelectric layers 32 and 34, respectively. it will be further noted that the portions of each of the heat exchange structures 24 which extend coextensivcly with the insulating fluid conduits 46 are separated therefrom by insulating means such as insulating sheets 72 disposed in the same plane as the respective thermoelectric layers 32 and 34. Also there is desirably positioned about the outer periphery of the thermopile 10 insulation sheets 70 disposed in the same plane as the bases 26 and contiguous thermoelectric layers 32 and 34.
It will therefore be appreciated that when the thermo pile 10 is assembled between the retaining members 60. each of the modules 12 are fixedly positioned with respect to the retaining members 60. Accordingly, during startup and shutdown of the thermopile 10 wherein the temperature of the modules 12 and the heat exchange structures 24 are varied, there will occur thermal expansion and contraction, respectively, in each of the modules 12. Such thermal expansion and contraction are absorbed by the built-in flexibility of the high resistance bellows or insulating joints 46, resulting in a thermopile structure resistant to thermal shock. It will be further appreciated that the thermopilc 10 comprises a structure wherein there exists no electrical or thermal insulation in the heat flow path of the thermopile. More particularly thermoelectric heating and cooling are produced on opposed sides of each of the thermoelectric layers 32 and 34. The thermoelectric heating is conducted to the fluid passages 14 of each of the modules 12, while the thermoelectric cooling is conducted to each of the heat exchange structures 24. It is readily apparent that there is no electrical or thermal insulation located between the thermoelectric layers 34 and the adjacent modules 12 and the heat exchange structures 24, respectively. As a result the thermopile 10 provides an arrangement wherein the benefits of a direct transfer" thermoelectric system are achieved.
Referring now to the embodiment of this invention illustrated in FIGURES 2 and 3, it will be appreciated that there is provided a thermopile 100 which operates similarly to the thermopile 10 of FIGURE 1 with several modifications. In the arrangement of FIGURES 2 and 3. there is provided a different form of heat exchange structure 102 of FIGURES 2 and 3, a different form of tie rod arrangement 104 and retaining member arrangement 106. In addition, a thermopile 100 has two longitudinally extending rows 108 and 110 of assemblies rather than the three rows of the FIGURE I arrangement. Furthermore, in FIGURES 2 and 3, the block members or modules 112 are provided with a semicircular side disposed opposite the thermoelectric layer. rather than a generally rectangular cross section ol HI'JITRF I. In all other rcspcctS, the thermopile 100 of IIGIIRFS 2 and 3 corresponds to the arrangement of the thermopile 10 of FIGURE I. In this regard. the operating principles of the thermopile 100 together with the corresponding structures will not again be described.
In the thermopile arrangement of FIGURES 2 and 3 each of the longitudinally extending rows 108 and 110 of heat exchange assemblies includes a pair of longitudinal rows of block members or modules 112 with a row I14 being disposed at an upper level and a row H6 being disposed at a lower level. Similarly, the longitudinally extending row 110 includes a modules 112 forming a row 118 at the upper level and a row 120 at the lower level. The heat exchange structure 102 is disposed between the heat exchange blocks 112 at the upper and lower levels and there is positioned therebetwecn layers of thermoelectric material 122 with predetermined ones of the layers 122 being formed from thermoelectrically positive and thermoelectrically negative material. As previously described in connection uith FIGURE l. certain of the block members 112 are disposed in bridging relationship between adjacent heat exchange structures 102 resulting in a serpentine current flow path. The current flow path extends in part from the heat exchange structure 102 to the thermo electric layer 1221:. thence to the module 1120 and therefrom to the thermoelectric layer 122 and heat exchange structure 102/. The modules 112 are each provided with openings 124 thcrcin with the openings 124 for each of the rows H4. 116, I18 and 120 being disposed in alignment. The openings 124 are connected together by a ill suitable crrpansible and conttiictiblc coupling another such as bellows 126 with the latter being Iorrruzd from highly resistive material as explained in connection with the bellows 46 of FIGURE 1 to provide the desired serpentine current flow path through the thermopile 100. Each of the heat exchange structures 102 includes a plurality of spaced fins 128 which are secured to a pair of spaced bHSCS 130, with the fins 128 extending laterally with respect to the openings 124. Disposed intermediate each of the adjacent fins lltl are are? ill; corrugations 132 which engage the fins 128 at severa positions along the length thereof so that the corrugations 132 serve to increase the heat transfer area in the heat exchange structure 102. Adjacent heat exchange structures 102 are maintained in spaced relationship as illustrated by the space 134 to prevent the short circuiting of the current flow path directly from one heat exchange structure 102 to the other. Similarly, adjacent longitudinal rows 108 and 110 are maintained in spaced relationship, as illustrated in FIGURE 3.
In this example of the invention, each of the retaining members 106 serves to retain a pair of longitudinally extending rows. Accordingly, tie rods 104 connect the upper and lower retaining members 106 at a position intermediate th erows 108 and 110, rather than about the periphery of the thermopile as illustrated in FIGURE 1. In addition, each of the modules 112 includes a semicircular surface 136 which is received in a pair of complementarily shaped longitudinally extending recesses 138 formed in each retaining member 106. In the event the retaining members 106 are formed from a metal, there is interposed between the blocks 112 and the retaining member 106 complementarily shaped insulating sheets 140 which serve to maintain each of the rows electrically insulated from one another.
It will be appreciated that appropriate bridging struc tures such as the structure 40 of FIGURE 1 and appropriate terminals such as the terminal 38 are utilized with the thermopile of FIGURES 2 and 3 for the purpose of connecting the rows 108 and in electrical series with one another as well as to a source of electrical power. Furthermore, it will be appreciated that each of the openings 124 of the rows 114. I16 and 118 and are connected in series and to inlet and outl t conduits in a manner similar o the arrangement l lliSlI'fi-( in FIGURE 1.
Referring now to FIGURE 4 there is illustrated an alternate coupling member which may be substituted for the high resistance bellows structures 46 and 126 of FIGURES I to 3. The coupling structure 150 of FIGURE 4 includes a central ring member 152 formed from insulating material such as a ceramic member formed from aluminum oxide or beryllium oxide. Secured to the ring member 152 are a pair of metallic sleeves which may be formed from any material compatible with the material forming the modules 12 or 112. The sleeves 154 may be electrically conducting and are chosen to facilitate the hermetic securing operation between the sleeves 154 and the appropriate flange. such as the flanges 52 on the module blocks 12. With the coupling element of FIGURE 4 the problems encountered in the hermetic sealing of a high resistance material forming the bellows 46 of FIGURE 1 with the material forming the modules 12 is avoidedv In the FIGURE 4 arrangement. the sleeves 154 may be formed from an electrical conductor and therefore can be formed from the same material forming the modules 12, for example copper or aluminum. Fach of the sleeves I54 desirably is provided with a circumferential indentution I56 therein which provides an area capable of ahsorhing thermal expansion and contraction forces exerted thereon by adjacent modules 12. In this manner each of the sleeves 154 acts as a bellows. A cciamic to metallic joint is made between the ceramic sleeve I52 and the metallic sleeves 154. In furtherance of this purpose each of the sleeves 154 is provided with an extension 158 and 1.60 thereon which overlies and closely receives the outer surface of the ceramic sleeve 152 with adjacent extensions 158 and 160 being spaced from one another in insulated relationship. Procedures for forming ceramic to metallic joints, together with the choosing of ceramic and metallic materials having corresponding thermal characteristics are well known in the art.
It will be appreciated that the ceramic to metallic joint between the sleeves 152 and 154 can be performed prior to assembly of a thermopile 10 or 100 and that the metallic to metallic joint between the sleeve 154 and the modules 12 or 112, which are more easily fabricated, is performed during final assembly of the thermopile arrangement.
Referring now to the embodiment of the invention illustrated in FIGURES and 6, it will be appreciated that there is provided therein a thermopile arrangement 200 generally similar to the thermopile arrangement 100 of FIGURES 2 and 3 with the exception that the gaseous heat exchange means 102 of FIGURES 2 and 3 has been replaced by a liquid flow path arrangement.
More particularly, there are provided a pair of retaining members 202 for positioning the components of the thermopile 200 by means of tie rods 204 extending centrally between a pair of longitudinally extending spaced rows 206 and 208. Each of the rows 206 and 208 includes a block member or module 210 having a generally semicircular shaped lower surface 212 and a plurality of upper block members or modules 214 having a generally semicircular shaped upper surface 216. The modules 212 and 214 are each provided with longitudinally extending flow passages 218 therethrough with the flow passages 218 of each module 210 and 214 being connected in series to provide, in this example of the invention, a heated fluid flow circuit for the thermopile 200. The cooled fluid flow circuits of the thermopile 200 comprises a plurality of block members or modules 220 formed of a generally rectangular cross section and disposed intermediate the upper and lower modules 214 and 210. Layers of thermoelectric material 222 and 224 are positioned respectively between the opposed surfaces of the module 220 and the modules 210 and 214. Each of the modules 220 is provided with a longitudinally extending fluid passageway 26 therein with each of the adjacent passageways 226 being coupled together by coupling members 228 which are formed to electrically insulate adjacent modules 220 from one another. In furtherance of this purpose, each of the coupling members 228 includes a centrally disposed sleeve 230 formed from an insulating material such as a high density ceramic material. Secured to each of the ceramic rings 230 are a pair of bellows arrangement 232 which may be formed from an electrically conductng material which is metallurgically compatible with the material forming the ceramic ring 230 and the material forming the modules 220. Each ring 230 is provided with a flange 231 thereon to maintain the adjacent bellows 232 in insulated relationship. The materials forming the connecters 228 may comprise the same materials described in connection with the connecters 150 of FIGURE 4. Each of the connecters 228 is capable of becoming elongated and contracted upon thermal expansion and contraction of the modules 220 during operation of the thermopile 200. Layers of insulating material 234 are mounted in vertical alignment with the connecters 228 and are disposed in the same planes as the thermoelectric layers 222 and 224. In accordance with the invention, each of the heated fiuid modules 210 and 214 are connected to the next adjacent modules by connecters 228 with the connecters 228 being hermetically secured to the modules 210 or 214.
The modules 220 desirable are constructed to be ap proximately one-half of the length of the modules 210 and 214 so that appropriate modules 210 and 214 serve till to bridge electrically adjacent layers of thermoelectri material along the desired serpentine current flow pab of the thermopile 200. Referring to FiGUl'tE 5. it wit be appreciated that the current flow path through the thermopile 200 extends from the left-hand lower module 210 through the thermoelectric layer 222 to the letthand module 220. From the module 220, the current flow path passed through the thermoelectric layer 224, the upper left-hand module 214, and therefrom to the thermoelectric layer 222 located to the right of the la mentioned thermoelectric layer 224. and downwardly therefrom through the adjacent module 220, tllCl'llr r electric layer 224 and module 210. The insulating couplings 228 maintain the serpentine electric flow path in the thermopile 200 while still providing an arrangement wherein there exists no electrical or thermal insulation in the heat flow path between the thermoelectric layers and the heated and cool fluids. The row of mod ules 220 located in row 206 is desirably connected in series to the modules 220 located in row 208 by suitable means such as by the insulating conduit 62 illustrated in FIGURE 1 and the series connected flow passageways 226 are connected by inlet and outlet conduits (not shown) which may couple the flow passageways 226 to a source of fluid to be cooled.
It will be appreciated that the foregoing description of the arrangement of FIGURES S and 6 relate to the provision of fluid to be heated through the passageways 218 and the provision of fluid to be cooled through the passagewavs 226. In this connection each of the thermoelectric layers 222 desirably is constructed from p-type thermoelectric material while the thermoelectric layers 224 are formed from n-type thermoelectric material. It will be further appreciated that in the event the retaining members 202 are formed from metallic compositions, complementarity shaped layers of sheet type insulating material 236 are disposed between the modules 210 and 214 and the adjacent retaining members 202.
In connection with the aforedescribed embodiments of this invention, it will be appreciated that in the arrangements of FIGURE l, FIGURES 2 and 3, and FIGURES 5 and 6, the thermoelectric apparatus has been described to provide a centrally disposed cooled fluid flow path with a heated fluid flow path disposed above and below the cooled fluid flow path. In the event the rcvtmr. twat ilow pattern is desired in the thcrni pilcs. it i n-r'i 3 necessary to reverse the current flow path to provide for cooled fluid at the upper and lower levels of the thermopile with the heating of fluid occurring at the central or intermediate level. Furthermore, the thermopiles 10, and 200 herein described may also act as thermoelectric generators merely by providing fluids of differing temperatures to the heated and cooled fluid flow paths, thereby producing electrical power at the thcrmopile terminals.
In this connection, it will be appreciated that many further modifications of the apparatus described in detail herein may be made without departing from the broad spirit and scope of this invention. Accordingly, it is specifically intended that the specific embodiments of the invention described herein be interpreted in an illustrative, rather than in a limiting sense.
We claim as our invention:
1. In a thermoelectric device, at least two block members formed from thermally, and electrically conductive material, each of said block members having a {low opcning therein, means for connecting said Ilow openings in series comprising a coupling member extending l0ngitu dinally between and hermetically sccurcd to each of said block members, said coupling mcmbcr being formed from a material which is highly resistant to the flow of electrical current thcrealong, said, coupling member having means thereon for absorbing longitudinal expansive and compressive forces exerted thereon, a layer of thermoelectric material secured to one of said block members, and means interposed between said layer and the other of said block members forming an electrically conductive path thcrcbetween.
2. In a thermoelectric device, at least two block merrihers formed from thermally and electrically conductive material. each of said block members having a flow opening therein. means for connecting said fiow openings in series comprising a coupling member extending longitudinally between and hermetically secured to each of said block members. said coupling member comprising a bellows formed from a metal having a relatively high electrical resistance, a layer of thermoelectric material secured to one of said block members, and means inter posed between said layer and the other of said block members forming an electrically conductive path therebetween.
3. In a thermoelectric device, at least two block members formed from thermally and electrically conductive material, each of said block members having a flow opening therein, a coupling member for connecting said flow openings in series. said coupling member comprising a sleeve of insulating material, a pair of sleeves of electrically conductive material which is metallurgically com patible with the material forming said insulating sleeve, each of said metallic sleeves being hermetically secured at one end to said insulating sleeve in insulated relationship with one another, said metallic sleeves being metal lurgically compatible with the material forming said block members, the other ends of said metallic sleeves belng hermetically secured to said block members, respectively, a layer of thermoelectric material secured to one of said block members, and means interposed between said layer and the other of said block members forming an electrically conductive path therebetween.
4, In a thermoelectric device, at least two block members formed from thermally and electrically conductive material, each of said block members having a flow opening therein, a coupling member for connecting said flow openings in series, said coupling member comprising a sleeve of insulating material, a pair of sleeves of electrically conductive material which is metallurgically compatiblc with the material forming said insulating sleeve, each or" said metallic sleeves being hermetically secured at one end to said insulating sleeve in insulated relationship with one another. said metallic sleeves being metallurgicallv compatible with the material forming said block members, he other ends of said metallic sleeves being hermetically secured to said block members. respectively, at least one of said metallic sleeves having means thereon for absorbing longitudinal expansive and compressive forces exerted thereon. a layer of thermoelectric material secured to one of said block members. and means inter posed between said layer and the other of said block members forming an electrically conductive path therebetween.
5, In a thermoelectric device, at least two block members formed from thermally and electrically conductive material, each of said block members having a fiow opening therein, means for connecting said How openings in series comprising a coupling member extending longitudinally between and hermetically secured to each of said block member said coupling member being formed from a material which is highly resistant to the flow of electrical current therealong, said coupling member having means thereon for absorbing longitudinal expansive and compressive forces exerted thereon, a layer of thermoelectric materials secured to one of said block members, means interposed between said layer and the other of said block members forming an electrically conductive path therebctwecn. and retaining means fixedly positioning said block members relative to one another.
6, In a thermoelectric device, a pair of spaced layers of thermoelectric material, one of said layers being thermoelectrically positive and the other of said layers being thermoelectrically negative, a pair of electrically conductive base members mounted in spaced relationship I ll lit)
and secured in electrical contact to said layers tit thermoelectric material, respectively, a plurality of spaced electrically conductive fin members extending between and secured at their ends to said base members in electrical contact therewith, and terminal means coupled to said thermoelectric layers for supplying electrical current from one of said layers to the other along a path formed by said base members and said fins, whereby one of the conditions of thermoelectric cooling and thermoelectric heating is imparted to said fins.
7. In a thermoelectric device, a pair of spaced bloc members formed from thermally and electrically conductive material, each of said block members having a flow opening therein, a layer of thermoclcctrically positive material mounted on one of said block members. a layer of thermoclectrically negative material mounted on the other of said block members, a plurality of spaced, electrically conductive fins extending between and secured to said thermoelectric layers, means for connecting said How openings in series comprising a coupling member extending longitudinally between and hermetically secured to each of said block members, said coupling member being formed from a material which is highly resistant to the flow of electrical current therealong. and said cottphng member having means thereon for absorbing longitudinal expansive and compressive forces exerted thereon.
8. In a thermoelectric heat exchange device, a first, second, and third thermally and electrically conductive block member, a first pair of thermoelectric layers mounted in spaced relationship on said first block member; a second pair of thermoelectric layers mounted on said second and third block members, respectively, a first group of thermally and electrically conductive, spaced fins secured to said thermoelectric layer mounted on said second block member and to one of said first pair of thermoelectric layers, a second group of thermally and electrically conductive fins secured to said thermoelectric layer mounted on said third block member and to the other of said first pairs of thermoelectric layers, said second fin group being mounted in insulated relationship with said first group except along a path through said first block member and said first pair of thermoelectric layers, said second and said third block members each having a flow opening formed therein, a couplinu member extending between and hermetically sccurctr tr.- said second and third block mcrr bcrs for cortructiug t: flow openings in series, said coupling member being formed to prevent the flow of electrical current therealong from one of said second and third block members to the other, and terminal means electrically coupled to said second and third block members.
9. In a thermoelectric heat exchange device, a first. second, and third thermally and electrically conductive block member, a first pair of spaced thermoelectric layers mounted in spaced relationship on said first block memher, a second pair of thermoelectric layers mounted on said second and third block members, respectively, a first thermally and electrically conductive bridging member Secured to said thermoelectric layer mounted on said second block member and to one of said first. pair of thermoelectric layers, a second thermally and electrically conductive bridging member secured to said thermoelectric layer mounted on said third block member and to the other of said first pairs of thermoelectric layers, said second bridging member being mounted in insulated relationship with said first bridging member except along a path through said first block member and said first pair of thcrmoelectric layers, said second and said third block members each having a fiow opening formed therein, a coupling member extending between and hermetically secured to said second and third block members for connecting said flow openings in series, said coupling member being formed to prevent the fiow of electrical current therealong from one of said second and third block members to the other,
l3 and terminal means electrically coupled to said second and third block members.
10. In a thermoelectric heat exchange device, a first, second, and third thermally and electrically conductive block member, a first pan f spaced thermoelectric laycrs mounted in spaced relationship on said first block member, a second pair or thermoelectric layers mounted on said second and third block members, respectively, first thermally and electrically conductive bridging mourber secured to said thermoelectric layer mounted on said second block member and to one of said first pair of thermoelectric layers, a second thermally and electrically conductive bridgin member secured to said thermoelectric layer mounted on said third block member and to the other of said first pairs of thermoelectric layers, said second bridging member being mounted in insulated relationship with said first bridging member except along a path through said first block member and said first pair of thermoelectric layers, said second and said third block members each having a flow opening formed therein, a coupling member extending between and hermetically se cured to said second and third blocl: members for innectiug said flow openings in series, said coupling recurbcr comprising at least one bellows structure and formed to prevent the flow of electrical current therealong from one of said second and lillit' block members to the other, and [thermalfi terminal rue ans electrically coupled to said second and third block members.
11. In a thermoelectric heat exchange device, a first, second, and third thermally and electrically conductive block member, a first pair of spaced thermoelectric layers mounted in spaced relationship on said first block member, a second pair thermoelectric layers mounted on said second and third block members, respectively. a first thermally and electrically conductive bridging member secured to said thermoelectric layer mounted on said second block member and to one ct. said first pair of thermoelectric layers, a second thermally and eiectrically conductive bridging member secured to said thermoelec tric layer mounted on said third block member and t the other of said. fir't pairs of thermoelectric layers, said second. bridging member being mounted in insulated relationshi' with said first br dging member except along a path through said first irlocit member and said first pair of thermoelectric ayers, said second and said third block. members each having flow opening formed therein, a coupling member extending; between and hermetically sccured to said second and third block members for con meeting said flow o ings in series, said coupling member comprising at least one bellows structure and formed to prevent the how of electrical current therealong from one of said second and third block. members to the other, terminal means electrically coupled to said second and third block members, a pair of retaining members for fixedly positioning said. block members relative to i-tc another.
12. In rt illfif toelectri heat exchange device, a first, second, and third thermally and electrically conductive block member, s t pair of spaced thermoelectric layers mounted n s awed relationship on said first block member, a secor iir of thermoelectric layers mounted on said second and third block members, respectively, a first group of thermally and electrically conductive spaced fins secured to said thermoelectric layer mounted on said second block member and to one of said first pair of thermoelectric layers, a second group of thermally and electrically conductive fins secured to said thermoelectric layer mounted on aid third bloclr member and to the other of said Tire airs or thermoelectric layers. said second fin group being mounted in insulated relationship with said first fin group except along a path through said first block member and said first pair of thermoelectric layers, said and said third block members each having a flow opening formed therein, a coupling member extending between and hermetically secured to said secand and third block members or connecting said How openings in. series, said coupling member being formed to prevent the iiow of electrical current thcrealong from one of said second and third bloclt members to the other, said coupling member being expansible and contractable to absorb thermally influenced changes in the spacing between said second and third block members, terminal IlifivJ iE electrically coupled to said second and third block members, and a pair of retaining members fixedly positioning said block members relative to one another.
lid. in a thermoelectric heat exchange device, a first, second, and third thermally and electrically conductive blocl; member, a first pair of spaced thermoelectric layers, mounted in spaced relationship on said first block member, a second pair of thermoelectric layers mounted on said second and third block members, respectively, a fourth block member, secured to said thermoelectric layer mounted on said second block member and to one of said first pair of thermoelectric layer, a fifth block member secured to said thermoelectric layer mounted on said. third block member and to the other of said first pair of thermoelectric layers, said. fifth block member being mounted in insulated relationship with said fourth block member except along a path through said first bloc]: memher and said first pair of thermoelectric layers, said sec- 0nd and said third block members each having a fiow opening formed. therein, a first coupling member extending between and hermetically secured to said second and said third block members for connecting the flow openings thereof in series, said fourth and said fifth block members each having a flow opening formed therein, a second coupling member extending between and hermetically secured to said fourth and said fifth block members for connecting the [low openings thereof in series, said first and second coupling members each being formed to prevent the fiow of electrical current therealong, and terminal means electrically coupled to said second and third block members.
14. In a thermoelectric heat exchange device a first, second, and third thermally and electrically conductive bloclt member, a first pair of spaced thermoelectric layers mounted in spaced rcltnionship on said first blocl; memhere, a second pair of thermoelectric layers mounted on said. second and third block members. respectively, :1 to i block member, secured to said thermoelectric layer mounted on said second block member and to one of $212 first pair of thermoelectric layers, a fifth block member secured to said thermoelectric layer mounted on said third block member and to the other of said first pairs of thermoelectric layers, said fifth block member being mounted in insulated relationship with said fourth block member except along a path through said first block member and said first pair of thermoelectric layers, said second and said third block members each having a flow opening formed therein, a first coupling member extending between and hermetically secured to said second and said third block members for connecting the ilow openings thereof in series, said fourth and said fifth block members each having a flow opening formed therein, a second coupling member extending between and hermetically secured to said fourth and said fifth blocl: members for connecting the flow openings thereof in series, suid first and second coupling members each being formed to prevent the flow of electrical current therealong. said coupling members each being expausible and contract-able to absorb thermally influenced changes in the sizes of said block. members, a pair of retaining members fixedly positioning said block members relalive to one another, and terminal means electrically coupled to said second and third block. members.
15 In a thermoelectric heat exchange device, a first elongated block member, a second and a third block member, each of said block members being formed from thermally and electrically conductive material, a first pair of spaced thermoelectric layers mounted in spaced 15 relationship on said first block member, a second pair of thermoelectric layers mounted on said second and third block members, respectively, a fourth block member, sccured to said thermoelectric layer mounted on said second block member and to one at said first pair of thermoelectric layers, a fifth block member secured to said thermoelectric layer mounted on said third block member and to the other of said first pairs of thermoelectric layers. said fifth blocl; member being mounted in insulated relationship with said fourth block member except along a path through said first block member and said first pair of thermoelectric layers, said second and said third blocl; members each having a flow opening formed therein, a first coupling member extending between and hermeticaL ly secured to said second and said third block members for connecting the How openings thereof in series, said fourth and said fifth bioclt members each having a flow opening formed therein, a second coupling member extending between and hermetically secured to said fourth and said iiith bio-cit members for connecting the flow openings thereof in series, said first and second coupling members each being formed to prevent the [low of clet; trical current thcrcalong, said fourth and fifth blocl; members and said second coupling member extending substantially coextcnsively with the longitudinal dirnen sion of said First block member, and terminal means electrically coupled to said second and third block members.
16. In a thermoelectric heat exchange device, a pair of spaced block members formed from thermally and electrically conductive material and each having a flow passageway formed therein, a bellows formed from insulating material hermetically secured at its ends to said block members and disposed to connect said flow passageways in series, a layer of thermoelectric material se cured to one of said block members, means forming a current flow path from one of said block members o the other through said thermoelectric layer, said current path means including at least in part a heat exchange structure secured to said thermoelectric layer, and said heat exchange structure including a plurality of spaced fins thereon.
17. In a thermoelectric heat exchange device, a pair of spaced bloelt members formed from thermally and electricaily conductive material and each having a flow passageway formed therein, a bellows formed from insulating materials hermetically secured at its ends to said block members and disposed to connect said flow passageways in series. a layer of thermoelectric material secured to one of said bloclt members. means forming a current flow path from one of said block members to the other through said thermoelectric layer, said current path means including at least in part a heat exchange structure secured to said thermoelectric layer, and said heat exchange structure including a plurality of spaced fins thereon, and a corrugated heat conductive structure extending laterally between adjacent ones of said fins and engaging said fins at several places along one dimension thereof.
18. In a thermoelectric heat exchange device, a plurality of longitudinally extending groups of electrically conducting heat exchange means, each of said groups including heat exchange means disposed at each of a lower, intermediate and upper level, each of said levels having a plurality of tandernly arranged heat exchange means with longitudinally adjacent ones thereof being mounted in insulated relationship with one another, respectively, a plurality of first thermoelectric means interposed between adjacent ones of said lower level heat exchange means plurality of second thermoelectric means interposed between adjacent ones of said intermediate level heat exchange means and said upper level heat exchange means, the polarities of said thermoelectric means being selected to produce thermoelectric cooling in each of said heat exchange means located in at least one of said levels and to produce thermoelectric heating in each of said heat iii exchange means of the remainder of said levels when electrical current liows theretltrough, those heat exchange means located in at least one of said levels each having liquid flow openings formed therein, means for connecting said liquid flow openings in series, said last-mentioned means including a plurality of connectors hermetically secured to said last-mentioned heat exchange means, respectively, and formed from material resistant to the flow of electrical current therethrough, said connectors each being expansible and contractable to absorb thermally influenced changes in the sizes of said last-mentioned heat exchange means, at least some of said lower level heat exchange means being sized to engage two predetermined longitudinally adiacent ones of said first thermoelectric means, said upper lcvel heat exchange means being sized to engage two predetermined longitudinally adjacent ones of said second thermoelectric means to form a serpentine current flow path through said heat exhange means and through said thermoelectric means, and retaining means disposed to engage said heat exchange means of said upper and lowest levels of each of said groups to fixedly position all of said heat exchange means.
19. In a thermoelectric device, at least two spaced block members formed from thermally and electrically conductive material, each of said block members having a flow opening therein to expose the adjacent surfaces of said block members directly to fluid flowing through said openings, means for connecting said flow openings in series comprising a tubular coupling member extending longitudinally between and hermetically secured at its ends to said block members, said coupling member being formed from a material which is highly resistant to the flow of electrical current therealong, a layer of thermoelectric matcrial secured to one of said block members, and means interposed between said layer and the other of said block members forming an electrically conductive path therebctwcen.
20. A thermoelectric assembly comprising a plurality of pairs of bodies of semicunductive material of opposite conductivity type each having hot and cold junction ends, a plurality of first metal tubes each joined to the cold junction ends of each of said pairs of bodies 10 form a junction bridge between them, a straight fluid conduit for circulation of a fluid thererhrougli, said first metal tubes being disposed along said conduit and electrically insularcd from one another, and a plurality of second metal tubes joined to the hot junction ends of said bodies.
21. A thermoelectric assembly as in claim 20 including a second straight fluid conduit for the circulation of a fluid tltrrr'rhrougli, said second metal tubes being spaced along said straight conduit and electrically insulated from one another.
22. A thermoelectric hm: pump as in claim 21 wherein said conduits are formed by the metal tubes held in spaced relationship by insulating rings.
23. A thermoelectric assembly as in claim 21 wherein said metal tubes include cylindrical passageways there- Ihmugh and are provided with flat surface arms to receive the junction and of the bodies of srmicomluctive material.
24. A lllifll'lOCltClt'lC assembly as in claim 2] wherein said second C(Ntrll'tlf is parallel to the first conduit.
25. A thermoelectric assembly comprising a plurality of pairs of bodies of srnn'conductive material of opposite conductivity type each having Ito: and cold junction cut/r, a plurality of first metal tubes each joined to the cold fame/ion ends of each of said pairs 0) bodies to form a junction bridge between them, a first .rtmiglir fluid ermclull means for circulation of a fluid thert'llirouph, .raitl first metal tubes being disposer! along said first conduit means and electrically insulated from one number, a plurality of second metal mhrs joined to the hot junction ends of said bodies, a generally straight serum! fluid c011- dui: means for the circulation of a fluid then-through,
said second metal tubes being spaced along said second conduit means and electrically insulated from one an other, and said second conduit means is disposed at an angle to said first conduit means.
26. A thermoelectric assembly comprising a plurality of pairs of bodies of semiconductive material of opposite conductivity type each ltaving lit)! and cold junction en ls, a plurality of metal tubes each joined to similar junction ends of eaclt of said pairs of bodies to form a junction bridge between them, said metal tubes forming junction bridges held in longitudinal alignment by electrical nonconductive means to form continuous fluid-tight conduits with the metal tubes spaced tlzerealong and electrically in sulated from one another, and a plurality of metal elements eaclz joined to the other junction end of said bodies of semiconductive material.
27. A thermoelectric assembly as in claim 26 wherein said metal elements are provided with metal fins.
28. A thermoelectric assembly as in claim 26 wherein said metal elements are disposed general y perpendicular to the axis of said conduits.
29. A thermoelectric assembly as in claim 26 wherein said metal elements comprise metal tubes.
30. A thermoelectric water to air heat pumping unit for cooling or heating of air circulated through said unit comprising a plurality of pairs of bodies of semiconductive material of opposite conductivity type each having hot and cold junction ends, a plurality of metal tubes eaclt joined to similar junction ends of each of said pairs of ll()tllt.\ to form a fun. Jim. bridge l l'il'tt'fll them, a pluralit of substantially narollel fluid-tight conduits for the circulation of n fluitl tlterttlirouglt. said metal tubes being disposed along said conduits and electrically insulated from one another, a plurality 0 metal elements each joined to the other function end of said bodies of semiconductive material aiswiated wit/i dificrent conduits, itteial fins in it at transfer relationship H'lili said metal elements, means for conducting water through said conduits and said metal fins being positioned to direct air flowing tltcrepast in a direction perpendicular to the axis of said conduits.
3!. A thermoelectric pumping unit as in claim 30 w iereln said metal fins are directly attached to said metal lJFltllIU elements.
References (Tiled The following, references, cited by the Examiner. are of record in the patented file of this patent or the original oatcnt.
WZLLIAM J. WYE, Primary Examiner US. Cl. KR.
US26698D 1963-12-20 1966-02-04 Mole etal- thermoelectric apparatus Expired USRE26698E (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US331997A US3178895A (en) 1963-12-20 1963-12-20 Thermoelectric apparatus
US53250866A 1966-02-04 1966-02-04

Publications (1)

Publication Number Publication Date
USRE26698E true USRE26698E (en) 1969-10-28

Family

ID=26988013

Family Applications (1)

Application Number Title Priority Date Filing Date
US26698D Expired USRE26698E (en) 1963-12-20 1966-02-04 Mole etal- thermoelectric apparatus

Country Status (1)

Country Link
US (1) USRE26698E (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0076077A2 (en) * 1981-09-25 1983-04-06 The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Improvements in or relating to heat exchangers
FR2550324A1 (en) * 1983-08-05 1985-02-08 Buffet Jean Improvements made to thermoelectric installations with thermo-elements placed between hot and cold pipes
WO1999044405A1 (en) * 1998-02-27 1999-09-02 Hi-Z Technology, Inc. Thermoelectric generator for natural gas well head

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0076077A2 (en) * 1981-09-25 1983-04-06 The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Improvements in or relating to heat exchangers
EP0076077A3 (en) * 1981-09-25 1983-08-10 The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Improvements in or relating to heat exchangers
FR2550324A1 (en) * 1983-08-05 1985-02-08 Buffet Jean Improvements made to thermoelectric installations with thermo-elements placed between hot and cold pipes
WO1999044405A1 (en) * 1998-02-27 1999-09-02 Hi-Z Technology, Inc. Thermoelectric generator for natural gas well head

Similar Documents

Publication Publication Date Title
US3178895A (en) Thermoelectric apparatus
US3213630A (en) Thermoelectric apparatus
US5254178A (en) Thermoelectric transducer apparatus comprising N- and P-type semiconductors and having electronic control capabilities
US6385976B1 (en) Thermoelectric module with integrated heat exchanger and method of use
US4499329A (en) Thermoelectric installation
US4281516A (en) Thermoelectric heat exchanger including a liquid flow circuit
US3617390A (en) Thermogenerator having heat exchange elongated flexible metallic tube of wavy corrugated construction
RU2360328C2 (en) Advanced thermoelectric heat pumps
US2992538A (en) Thermoelectric system
US8378205B2 (en) Thermoelectric heat exchanger
US3819418A (en) Thermoelectric generator and method of producing the same
US3208877A (en) Thermoelectric panels
CN102738378A (en) Thermoelectric cluster, method for operating same, device for connecting an active element in said cluster to a thermoelectric drive, generator (variants) and heat pump (variants) based thereon
US4306426A (en) Thermoelectric heat exchanger assembly for transferring heat between a gas and a second fluid
US1804072A (en) Apparatus for electric cooling
US4023616A (en) Thyristor cooling arrangement
US2992539A (en) Thermoelectric devices
US20140007916A1 (en) Thermoelectric Device, In Particular Intended To Generate An Electric Current In A Motor Vehicle
USRE26698E (en) Mole etal- thermoelectric apparatus
US3290177A (en) Thermoelectric heat exchange apparatus
US3110628A (en) Thermoelectric assembly
US3183121A (en) Thermoelectric generator with heat transfer and thermal expansion adaptor
US3500650A (en) Multistage direct transfer thermoelectric apparatus
US3167926A (en) Thermoelectric apparatus
KR101724847B1 (en) Thermoelectric Generation Device for vehicle