USRE26305E - Huang etal plastic coated container - Google Patents

Huang etal plastic coated container Download PDF

Info

Publication number
USRE26305E
USRE26305E US26305DE USRE26305E US RE26305 E USRE26305 E US RE26305E US 26305D E US26305D E US 26305DE US RE26305 E USRE26305 E US RE26305E
Authority
US
United States
Prior art keywords
panels
abhesive
polyethylene
areas
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Publication date
Application granted granted Critical
Publication of USRE26305E publication Critical patent/USRE26305E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D5/00Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
    • B65D5/02Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper by folding or erecting a single blank to form a tubular body with or without subsequent folding operations, or the addition of separate elements, to close the ends of the body
    • B65D5/06Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper by folding or erecting a single blank to form a tubular body with or without subsequent folding operations, or the addition of separate elements, to close the ends of the body with end-closing or contents-supporting elements formed by folding inwardly a wall extending from, and continuously around, an end of the tubular body
    • B65D5/067Gable-top containers

Definitions

  • a gable-top container formed from a blank of polyethylene coated paperboard and having means to facilitate opening of the container spout comprising an abhesive coating covering substantially the entire inner surface area of the end rib panels 0 the spout except for a narrow strip along the line of juncture between these end rib panels and the adjacent respective side rib panels and an abhesive coating covering a selected area on the inner surface of each of the side rib panels, the selected area including substantially the entire area 0 ⁇ contact of the side rib panels and the adjacent end rib panels and a strip of Contact between the side rib panels located above the adjacent end rib panels but beneath the upper edges of the side rib panels.
  • the present invention relates to thermoplastic coated containers.
  • thermoplastic coated paper containers have been widely used as containers for liquids
  • polyethylene coated paper containers have been widely used for merchandising dairy products, fruit juices and like beverages intended for human consumption.
  • a major advantage achieved by using polyethylene coated paper containers is that such containers may readily be Sealed against leakage by application of heat to polyethylene surfaces that are to be joined together, the heat acting to soften the polyethylene whereby when two strips of softened polyethylene are pressed together a liquidtight seal is formed.
  • Gable-topped containers e.g., containers of the type shown in United States Patent No. 2,750,095 to Alden, issued June 12, 1956, are examples of a form of container particularly well suited to manufacture from polyethylene coated paper stock.
  • the principal object of the present invention has been to provide a convenient and economically desirable solulion to the foregoing problem.
  • One specific object of the invention has been to provide a novel and improved heat-sealed polyethylene coated paper container which can conveniently be opened without exposing any major paper surface in the pouring area.
  • any desired scalingnonsealing pattern of thermoplastic material may be achieved by coating the area or areas not to be sealed with an abhesive composition which permits the use of usual heat-sealing techniques and apparatus without sealing of the abhcsive coated areas.
  • the abhesivc coating may be applied by printing, brushing or other suitable techniques, although printing will generally be [fore] more desirable for accurate location of the coated areas in a high speed production operation.
  • the abhesive coating should be such that it will readily release the contacting abhcsive coated surfaces to provide a clean break of these surfaces.
  • the abhcsivc coating should also exhibit a high heat resistance to protect the abhcsive coating during the heat-sealing operation. And the abhesivc coating should present a strong film surface to prevent the melted polyethylene materials from contacting each other during the heat-sealing operation.
  • the greatest utility of the invention is in connection wtih polyethylene coated paper cartons for merchandising milk and other beverages.
  • the utility of the invention is not limited to polyethylene, since the principles of the invention are also usable with other thermoplastic coatings which have similar heat-sealing characteristics.
  • the principles of the invention are also applicable to other containers. However, for convenience, the invention will be described largely in connection with polyethylene coated paper milk containers.
  • FIG. 1 is a perspective view illustrating one side of a container blank showing the scoring lines and the inhibitcd or abhcsive coated areas;
  • FIG. 2 is a perspective view of the opposite side of the blank of FIG. 1;
  • FIG. 3 is a perspective view showing the blank of FIGS. 1 and 2 formed into a flattened tube with the longitudinal edges heatsealcd;
  • FIG. 4 is a perspective view showing the flattened tube of FIG. 3 in opened condition just prior to the bottomforming and scaling operation;
  • FIG. 5 is a perspective view showing the tube of FIG. 4 with the bottom closed and sealed;
  • FIG. 6 is a perspective view showing the tube of FIG. 4 after having been filled and with the top partially closed;
  • FIG. 7 is a perspective view showing the tube of FIG. 6 with the top completely formed and sealed and with the prcsscr jaws retreating from the sealing position thereof;
  • FIG. 8 is a perspective view illustrating the sealed milk carton partially opened
  • FIG. 9 is a perspective view illustrating the carton of FIG. 9 in fully opened condition ready for discharge of the contents
  • FIG. 10 is an enlarged partial vertical cross-sectional view taken along the line 1010 of FIG. 1;
  • FIG. 11 is a sectional view taken along the line 11-11 of FIG. 7;
  • FIG. 12 is a view similar to FIG. 11 with the carton partially opened.
  • FIG. 13 is a view similar to FIGS. 11 and 12 but with the carton fully opened.
  • the carton is formed from a blank 20, which is a single integral sheet of paperboard coated on both sides with polyethylene.
  • the coated board is cut and scored so that when the carton is formed it assumes the shape of a rectangular container with a fiat bottom and a gable top.
  • FIG. 1 represents that surface of the blank which will become the inside of the container
  • FIG. 2 represents that surface which will become the outside of the container.
  • a central portion of the blank between transverse score lines 22 and 23 becomes the body of the container.
  • Vertical score lines 24, 25, 26 and 27 divide the blank into a side panel 28, a front panel 29, a side panel 30, a rear panel 31, and a sealing panel or flap 32.
  • Connected to and integral with the lower edges of panels 28- 32 are bottom closure flaps 33, 34, 35, 36 and 37, respectively.
  • top closure flaps 38, 39, 40, 41 and 42 Integral with the upper ends of the panels 28-32 are top closure flaps 38, 39, 40, 41 and 42, respectively. Those portions of the flaps 38-42 beneath a transverse score line 43 define roof and end panels of the carton top closure, while the areas above the score line 43 form an upwardly extending central rib 44 (FIG. 7). Panels 38 and become the gable roof panels, and projecting from these panels are panels 45 and 46, respectively, which form the sides of rib 44.
  • Diagonal score lines 47 and 48 define fold-back panels 49 and 50 from panel 41.
  • An upwardly projecting extension of panel 41 is divided by a vertical score line 52 into inner rib panels 53 and 54.
  • Diagonal score lines 55 and 56 define fold-back panels 57 and 58 from panel 39.
  • An upwardly projecting extension of panel 39' is divided by a vertical score line 59 into inner rib panels 60 and 61,
  • a diagonal score line 62 extending across panel 40 and partially across panel 46 and a diagonal score line 63 extending across panel 38 and partially across panel 45 are provided to facilitate spout opening, as will be described hereinafter.
  • a first step is to fold the blank lengthwise along the score lines 25 and 27 so that the outside (FIG. 2) surface of flaps 32, 37 and 42 underlie the outer edge of the inner surfaces of panels 31, 36 and 41, respectively.
  • a polyethylene softening temperature i.e., a temperature in the range of 250600 F.
  • the side seam of the carton will be formed by a polyethylene-polyethylene heat seal, affording a liquidtight seal. This operation will normally occur at the blankforming plant, and the side-sealed blanks, as in FIG. 3, will be shipped to the dairy or other filling plant.
  • the side-sealed blank is opened from the Hat condition of FIG. 3 to the rectangular condition of FIG. 4. Then the bottom side panels 33 and 35 are pressed inwardly along the score lines 64-65 and 66 67, respectively, as shown by the arrows 68. The front and rear panels 34 and 36 are pressed inwardly, as shown by the arrows 69, and the bottom is heat-sealed, as is wellknown in the art, to provide a liquid-tight carton bottom, as shown in FIG. 5.
  • the carton is then filled with the milk, orange juice or other liquid to be packaged therein and the top is closed by exerting closing forces, as shown by the arrows 70 and 71 in FIG. 6, producing the closed carton top, as shown in FIG. 7.
  • heat is supplied to soften the polyethylene of the mating surfaces thereby to provide heat-sealing.
  • the heat for this purpose is usually supplied by an electrically energized radiant heating source.
  • the upper inside portions of the panels 45 and 46 are sealed together, the inner surfaces of the panels 53 and 61 are sealed to the inner surface of the panel 45, and the inner surfaces of the panels 54 and 60 are sealed to the inner surface of the panel 46.
  • Presser jaws 72 and 73 contact opposite faces of the panels 45 and 46, respectively, to complete the heatsealing action.
  • the presser jaws are shaped to provide maximum compression of the upper portions of the panels 45 and 46.
  • the filled and sealed carton of FIG. 7 may be opened with a pouring spout by exerting an upward and outward pushing pressure, as with the thumbs, on panels 57 and 58, as shown by the arrows 74 and 75 in FIG. 8.
  • This action breaks the seal between panels 60 and 61, leaving. the carton partially open, as shown in FIG. 8.
  • the outward motion of the panels 57 and 58 and the adjacent portions of the panels 40 and 38 is facilitated by bending of the panels 40 and 38 along the score lines 62 and 63, respectively.
  • the carton is then completely opened by exerting an inward pushing pressure along the score lines separating panels 57 and 40 and panels 58 and 38, as shown by the arrows 76 and 77 in FIG. 9.
  • This action breaks the seal between panels 60 and 46, between panels 61 and 45, and between the front portions of panels 45 and 46, and forces panels 57 and 58 outwardly to form a pouring spout, as shown in FIG. 9.
  • the usual opening forces exerted will not break previously heat-sealed polyethylene-polyethylene bonds, but instead the polyethylene coating will pull away from one or the other of the paper surfaces.
  • torn surfaces in which raw and scuffed paper is exposed are presented.
  • raw paper is meant a paper surface from which some or all of the polyethylene coating is removed by the tearing action occurring during the opening operation. In accordance with the invention, these torn areas are minimized so that only minor areas of raw paper will exist, and these areas are not in the main portions of the pouring spout surface.
  • the coating may be applied by printing, brushing or other technique, but is preferably applied by printing during the blank-forming operation. Since both the inside and outside surfaces of the blank require abhesive coating, the printing may be effected on both sides simultaneously, or first on one side and then the other. In general, the abhesive coating will be applied while the carton blank is being subjected to the usual printing operation which is conducted to provide the desired advertising matter on the carton. It is desirable that the polyethylene surfaces be receptive to ink and other coating materials, and for this purpose the polyethylene coated paper stock may be subjected to one of the usual treatment operations.
  • the polyethylene coated paper is shown in exaggerated scale in FIG. 10 and comprises a relatively stiff paperboard sheet 78 coated on each side with a layer of polyethylene, as shown as 79 and 80.
  • the paperboard 78 might be, for example, 0.018 inch thick
  • the inner polyethylene layer 79 might be, for example, 0.0011 inch thick
  • the polyethylene layer 80 might be, for example, 0.00075 inch thick.
  • Selected areas of the polyethylene are supplied with an abhesive coating, as at 81 and 82.
  • abhesive coatings 83, 84, 85 and 86 are applied to portions of panels 45, 61, 60 and 46, respectively.
  • abhesive coatings 87 and 88 are applied to portions of panels 60 and 61.
  • areas 87 and 88 are caused to overlie each other.
  • area 84 overlies area 83 and area 85 overlies area 86.
  • the upper portions of abhesive areas 83 and 86 overlie each other.
  • the polyethylene and abhesive coating thicknesses in FIG. 11, and also in FIGS. 12 and 13, are greatly exaggerated for purposes of illustration.
  • abhesive coatings 87 and 88 permit panels 60 and 61 to be separated by breaking only the seal along the joined areas of panels 60 and 61, i.e., the areas not protected by the abhesive [coating] coatings 87 and 88. This results in some tearing of the joined areas, as shown at 89 and 90 in FIG. 12, but these areas are remote from the pouring part of the spout.
  • abhesive coatings 84 and 85 and 83 and 84 permit panels 46 and 60 and panels 45 and 61, respectively, to be separated with tearing only along the joined areas designated 91 and 92, respectively, and along the joined areas between panels 45 and 46 above the respective abhesive areas 83 and 86, respectively.
  • the contact between abhesive areas 83 and 86 beyond the juncture of panels 60 and 61 restricts the tearing of the surfaces 45 and 46 to the narrow area above the abhesive areas 83 and 86.
  • abhesive coatings 84, 85, 87 and 88 should extend from the tops of their respective panels to the bottom of score line 43. Abhesive coatings 84 and 88 should terminate a short distance, preferably about from score line 25. Similarly, abhesive coatings 85 and 87 should terminate a short distance, preferably about 3 from score line 26.
  • Abhesive coatings 83 and 86 extend upwardly from the bottom of score line 43 to a maximum height such that the abhesive coatings are close to but spaced from the top edges of panels 45 and 46, respectively.
  • This minimum spacing from the top edges is preferably between V8" and 5 and the lateral location of this minimum spacing from score lines and 26, respectively, is equal approximately to the lateral length of the panels 60 and 61.
  • top edges of the coating areas 83 and 86 are inclined downwardly from the point of minimum spacing toward the score lines 25 and 26, respectively, but at all points along these inclined edges the areas 83 and 86 extend above the corresponding points of areas 84 and 85, respectively, so that, when the carton top is heat-sealed, upper portions of abhesive areas 83 and 86 will overlie each other. These upper portions are above the top edges of the panels 60 and 61.
  • the top edges of the coating areas 83 and 86 are also inclined downwardly from the point of minimum spacing away from score lines 25 and 26, respectively, to correspond to the shape of the rear walls of the pouring spout when the carton is fully opened. In this way the carton may be opened and the spout formed without tearing the panels and 46 except along their upper edges and adjacent the score lines 25 and 26.
  • the spacing between abhesive areas 83 and 86 and score lines 25 and 26, respectively, should be the same as that between these score lines and the abhesive areas 84 and 85.
  • the spacing between the abhesive areas 83 and 86 and score lines 24 and 27, respectively, is not critical and should be sufiicient to permit spout formation without tearing along the rear edges of the areas 83 and 86.
  • the abhesive coating material used must meet certain requirements. First, it must adhere to the polyethylene or other thermoplastic surface. In the case of beverage containers, and especially milk cartons, there must be no appreciable flaking of the abhesive coating into the packaged beverage and no transference of the coating into the beverage even under prolonged contact conditions.
  • the abhesive coating should not be heat-scalable at the heat-sealing temperature used e.g., 250600 F., and under the sealing pressures used, e.g., 2000 psi. And the abhesive coating should have substantial physical strength to prevent the polyethylene from breaking through the abhesive coating under the abrasive and pressure conditions encountered in heat-sealing.
  • This composition is basically a varnish with an R5 nitrocellulose base, a suitable solvent system, a plasticizcr and additives to atlord adhesion to the polyethylene or other thermoplastic surface and to facilitate release when two abhesive coated surfaces are to be sepa rated.
  • nitrocellulose is greatly preferred, and particularly RS nitrocellulose.
  • the high nitrogen content of RS nitrocellulose (as compared to SS nitrocellulose) aflords a greater resistance to heat-sealing at higher temperatures.
  • the abhesive composition of the invention should include a plasticizer, diethyl phthalate, di-iso-octyl phthlate, and alkyl plasticizers being examples of suitable plasticizers.
  • the amount of plasticizer to be used should be kept to a bare minimum in order to obtain maximum heat resistance of the abhesive coating; the plasticizer should be less than 3% by weight of the composition and preferably the plasticizer is about 2% to 3% by weight of the abhesive composition. Higher plasticizer contents are found to degrade the heat release characteristics of the abhesive composition.
  • solvent systems may be used, a number of examples being given in the specific examples below.
  • the drying rate of the composition may be suitably adjusted.
  • the solvent concentration should be in the range of about 10% to 70% by weight.
  • Shellac and/or wax have been found to be desirable additives to increase the adhesion of the abhesive coating to the polyethylene surface.
  • the wax should be a hard wax and preferably carnauba Wax to provide improved release characteristics due to the resulting hard surface of the dried varnish.
  • Silicone compounds can be used as a desirable additive to improve release characteristics.
  • Rosin can be used as an additive to provide a coating with an improved scuff resistant.
  • the ethyl acetate, ethanol, iso'propanol, toluene and Cellosolve form the solvent system, the Cellosolve being used to slow somewhat the drying rate.
  • Cellosolve is a trademark of Carbide and Carbon Chemicals Company for ethylene glycol monethyl ether.
  • Example No. 2 Parts by weight RS /2 sec. nitrocellulose 28 Ethyl acetate 28 Toluene 14 Ethyl alcohol 24 Shellac, in 40% alcohol solution 134 Dioctyl phthalate 7
  • the high shellac content of Example No. 2 renders this composition suitable for use with polyethylene which has not been treated to improve the adherence characteristics thereof.
  • Example No. 3 actually represents several examples, since ranges are given for the nitrocellulose, iso-propano], diethyl phthalate, shellac, wax and silicone.
  • the abhesive coating thicknesses different on the outside and inside carton surfaces, with the abhesive coating thickness being greater on the inside carton surfaces.
  • the abhesive coatings on the inside blank surface might, for example, be about 0.0005 to 0.00075 inch thick, while the outside blank surface (FIG. 2) might, for example, have an abhesive coating thickness of about 0.0001 inch.
  • a gable-top container formed from a blank of paperboard having a polyethylene coating covering each surface thereof and comprising a tubular body having a bottom closure thereon, a pair of opposed roof panels inclined toward each other and overlying said body, a pair of opposed triangular end panels in-folded between said roof panels from the opposite gable ends formed by the latter, two pairs of triangular fold-back panels each pair of which is integral with a respective one of said infolded triangular end panels along fold lines which are substantially in contact with said roof panels, said foldback panels being folded against the undersides of said roof panels, a pair of side rib panels each integral with and surmounting a respective roof panel, two pairs of end rib panels, each end rib panel being integral with and surmounting a respective fold-back panel, the end rib panels of each pair being folded to lie against each other and to lie against the inner surface of a respective side rib panel, the height of said end rib panels being less than the height of said side rib panels, said rib
  • a gable-lop container formed from a blank of paperboard having a polyethylene coating covering each surface thereof and comprising a tubular body having a bottom closure thereon, a pair of opposed roof panels inclined Ioward each other and overlying said body, a pair of opposed triangular and panels iii-folded between said roof panels from the opposite gable ends formed by the latter, two pairs of triangular fold-back panels each pair of which is integral with a respective one of said in-folded triangular end panels along fold lines which are substantially in contact with said roof panels, said fold-back panels being folded against the undersidcs of said roof panels, a pair of side rib panels each integral with and surmounling a respective roof panel, two pairs of end rib panels, each and rib panel being integral with and cur-mounting a respective fold-back panel, the end rib panels of each pair being folded to lie against each other and to lie against the inner surface of a respective side rib panel, the height of said end rib panels being less

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cartons (AREA)

Description

NOV. 21, 1967 D, MUANG ETAL Re. 26,305
PLASTIC COATED CONTAINER I5 Sheets-Sheet 1 Original Filed May 5 1961 NOV.21,1967 D HUANG ET Re.2605
PLASTIC COATED CONTAINER 5 Sheets-Sheet 2 Original Filed May 5, 1961 NOV. 21, 1967 D HUANG ETAL Re. 26,305
PLASTIC COATED CONTA TNER 5 Sheets-Sheet 7 Original Filed May 5 1961 mm B wwmm mm.
United States Patent 26,305 PLASTIC COATED CONTAINER Denis K. Huang, Laurel, Md., and Harold B. Moors,
Richboro, Pa., assignors to International Paper Comnany, New York, N.Y., a corporation of New York Original No. 3,292,842, dated Dec. 20, 1966, Ser. No. 107,348, May 3, 1961. Application for reissue Feb. 2, 1967, Ser. No. 617,437
4 Claims. (Cl. 22917) Matter enclosed in heavy brackets appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
ABSTRACT OF THE DISCLOSURE A gable-top container formed from a blank of polyethylene coated paperboard and having means to facilitate opening of the container spout comprising an abhesive coating covering substantially the entire inner surface area of the end rib panels 0 the spout except for a narrow strip along the line of juncture between these end rib panels and the adjacent respective side rib panels and an abhesive coating covering a selected area on the inner surface of each of the side rib panels, the selected area including substantially the entire area 0} contact of the side rib panels and the adjacent end rib panels and a strip of Contact between the side rib panels located above the adjacent end rib panels but beneath the upper edges of the side rib panels.
The present invention relates to thermoplastic coated containers.
In the packaging industry, thermoplastic coated paper containers have been widely used as containers for liquids, and, notably, polyethylene coated paper containers have been widely used for merchandising dairy products, fruit juices and like beverages intended for human consumption. A major advantage achieved by using polyethylene coated paper containers is that such containers may readily be Sealed against leakage by application of heat to polyethylene surfaces that are to be joined together, the heat acting to soften the polyethylene whereby when two strips of softened polyethylene are pressed together a liquidtight seal is formed. Gable-topped containers, e.g., containers of the type shown in United States Patent No. 2,750,095 to Alden, issued June 12, 1956, are examples of a form of container particularly well suited to manufacture from polyethylene coated paper stock.
One major difficulty which has been encountered in using polyethylene coated containers, especially when used for beverages, is that the bond between heat-scaled surfaces is so strong that, when an efifort is made to open the container by pulling apart two or more such surfaces, the polyethylene will be pulled away from the paper backing on one or the other of the surfaces, exposing a roughened paper surface to the action of liquid as the container is used. Action of liquid on the paper soon produces an unsightly and unsanitary condition which is particularly undesirable where a container is to be opened and tilted repeatedly in dispensing the contents, as in the case of milk containers.
In making polyethylene coated paper milk cartons, heatsealing is usually effected over limited areas in a definite complicated pattern to yield an operable pouring spout. However, practical production problems prevent limitation of the heat-scaling to only those areas which must be sealed for a liquid-tight container, and it is the additional areas which are undesirably heat-sealed which cause the greatest problem when the spout is opened for dis- "ice pensing liquid from the container. This problem has been attacked by inserting a strip of metal foil or cellophane tape in the package unit to cover those areas for which heat-sealing is not desired. In this case, the metal foil or [celluphane] cellophane tape prevents bonding between adjacent polyethylene areas. However, use of metal foil or cellophane tape inserts involves substantial added labor and material costs, and, of greater significance, presents a serious obstacle to high speed carton blank manufacture.
The principal object of the present invention has been to provide a convenient and economically desirable solulion to the foregoing problem.
One specific object of the invention has been to provide a novel and improved heat-sealed polyethylene coated paper container which can conveniently be opened without exposing any major paper surface in the pouring area.
Other and further objects, features and advantages of the invention will appear more fully from the following description of the invention.
In accordance with the invention, any desired scalingnonsealing pattern of thermoplastic material may be achieved by coating the area or areas not to be sealed with an abhesive composition which permits the use of usual heat-sealing techniques and apparatus without sealing of the abhcsive coated areas. The abhesivc coating may be applied by printing, brushing or other suitable techniques, although printing will generally be [fore] more desirable for accurate location of the coated areas in a high speed production operation. The abhesive coating should be such that it will readily release the contacting abhcsive coated surfaces to provide a clean break of these surfaces. The abhcsivc coating should also exhibit a high heat resistance to protect the abhcsive coating during the heat-sealing operation. And the abhesivc coating should present a strong film surface to prevent the melted polyethylene materials from contacting each other during the heat-sealing operation.
So far as is presently known, the greatest utility of the invention is in connection wtih polyethylene coated paper cartons for merchandising milk and other beverages. However, the utility of the invention is not limited to polyethylene, since the principles of the invention are also usable with other thermoplastic coatings which have similar heat-sealing characteristics. The principles of the invention are also applicable to other containers. However, for convenience, the invention will be described largely in connection with polyethylene coated paper milk containers.
The invention will now be described in greater detail with reference to the appended drawings, in which:
FIG. 1 is a perspective view illustrating one side of a container blank showing the scoring lines and the inhibitcd or abhcsive coated areas;
FIG. 2 is a perspective view of the opposite side of the blank of FIG. 1;
FIG. 3 is a perspective view showing the blank of FIGS. 1 and 2 formed into a flattened tube with the longitudinal edges heatsealcd;
FIG. 4 is a perspective view showing the flattened tube of FIG. 3 in opened condition just prior to the bottomforming and scaling operation;
FIG. 5 is a perspective view showing the tube of FIG. 4 with the bottom closed and sealed;
FIG. 6 is a perspective view showing the tube of FIG. 4 after having been filled and with the top partially closed;
FIG. 7 is a perspective view showing the tube of FIG. 6 with the top completely formed and sealed and with the prcsscr jaws retreating from the sealing position thereof;
FIG. 8 is a perspective view illustrating the sealed milk carton partially opened;
FIG. 9 is a perspective view illustrating the carton of FIG. 9 in fully opened condition ready for discharge of the contents;
FIG. 10 is an enlarged partial vertical cross-sectional view taken along the line 1010 of FIG. 1;
FIG. 11 is a sectional view taken along the line 11-11 of FIG. 7;
FIG. 12 is a view similar to FIG. 11 with the carton partially opened; and
FIG. 13 is a view similar to FIGS. 11 and 12 but with the carton fully opened.
Referring now to the drawings, and more particularly to FIGS. 1 and 2, the carton is formed from a blank 20, which is a single integral sheet of paperboard coated on both sides with polyethylene. The coated board is cut and scored so that when the carton is formed it assumes the shape of a rectangular container with a fiat bottom and a gable top.
FIG. 1 represents that surface of the blank which will become the inside of the container, while FIG. 2 represents that surface which will become the outside of the container. A central portion of the blank between transverse score lines 22 and 23 becomes the body of the container. Vertical score lines 24, 25, 26 and 27 divide the blank into a side panel 28, a front panel 29, a side panel 30, a rear panel 31, and a sealing panel or flap 32. Connected to and integral with the lower edges of panels 28- 32 are bottom closure flaps 33, 34, 35, 36 and 37, respectively.
Integral with the upper ends of the panels 28-32 are top closure flaps 38, 39, 40, 41 and 42, respectively. Those portions of the flaps 38-42 beneath a transverse score line 43 define roof and end panels of the carton top closure, while the areas above the score line 43 form an upwardly extending central rib 44 (FIG. 7). Panels 38 and become the gable roof panels, and projecting from these panels are panels 45 and 46, respectively, which form the sides of rib 44.
Diagonal score lines 47 and 48 define fold- back panels 49 and 50 from panel 41. An upwardly projecting extension of panel 41 is divided by a vertical score line 52 into inner rib panels 53 and 54. Diagonal score lines 55 and 56 define fold- back panels 57 and 58 from panel 39. An upwardly projecting extension of panel 39' is divided by a vertical score line 59 into inner rib panels 60 and 61,
A diagonal score line 62 extending across panel 40 and partially across panel 46 and a diagonal score line 63 extending across panel 38 and partially across panel 45 are provided to facilitate spout opening, as will be described hereinafter.
In forming the carton, a first step is to fold the blank lengthwise along the score lines 25 and 27 so that the outside (FIG. 2) surface of flaps 32, 37 and 42 underlie the outer edge of the inner surfaces of panels 31, 36 and 41, respectively. Prior to bringing these surfaces together, they should be heated to a polyethylene softening temperature, i.e., a temperature in the range of 250600 F. In this way the side seam of the carton will be formed by a polyethylene-polyethylene heat seal, affording a liquidtight seal. This operation will normally occur at the blankforming plant, and the side-sealed blanks, as in FIG. 3, will be shipped to the dairy or other filling plant.
In setting up the carton, the side-sealed blank is opened from the Hat condition of FIG. 3 to the rectangular condition of FIG. 4. Then the bottom side panels 33 and 35 are pressed inwardly along the score lines 64-65 and 66 67, respectively, as shown by the arrows 68. The front and rear panels 34 and 36 are pressed inwardly, as shown by the arrows 69, and the bottom is heat-sealed, as is wellknown in the art, to provide a liquid-tight carton bottom, as shown in FIG. 5.
The carton is then filled with the milk, orange juice or other liquid to be packaged therein and the top is closed by exerting closing forces, as shown by the arrows 70 and 71 in FIG. 6, producing the closed carton top, as shown in FIG. 7. During the top-closing operation, heat is supplied to soften the polyethylene of the mating surfaces thereby to provide heat-sealing. The heat for this purpose is usually supplied by an electrically energized radiant heating source. Specifically, the upper inside portions of the panels 45 and 46 are sealed together, the inner surfaces of the panels 53 and 61 are sealed to the inner surface of the panel 45, and the inner surfaces of the panels 54 and 60 are sealed to the inner surface of the panel 46. Presser jaws 72 and 73 contact opposite faces of the panels 45 and 46, respectively, to complete the heatsealing action. The presser jaws are shaped to provide maximum compression of the upper portions of the panels 45 and 46.
Sealing across the entire areas of the mating top closure surfaces is not needed to provide a liquid-tight seal, and with respect to certain of these surfaces sealing across the entire areas is undesirable, as will be explained hereinafter.
The filled and sealed carton of FIG. 7 may be opened with a pouring spout by exerting an upward and outward pushing pressure, as with the thumbs, on panels 57 and 58, as shown by the arrows 74 and 75 in FIG. 8. This action breaks the seal between panels 60 and 61, leaving. the carton partially open, as shown in FIG. 8. The outward motion of the panels 57 and 58 and the adjacent portions of the panels 40 and 38 is facilitated by bending of the panels 40 and 38 along the score lines 62 and 63, respectively. The carton is then completely opened by exerting an inward pushing pressure along the score lines separating panels 57 and 40 and panels 58 and 38, as shown by the arrows 76 and 77 in FIG. 9. This action breaks the seal between panels 60 and 46, between panels 61 and 45, and between the front portions of panels 45 and 46, and forces panels 57 and 58 outwardly to form a pouring spout, as shown in FIG. 9.
In the carton opening and spout forming step, the usual opening forces exerted will not break previously heat-sealed polyethylene-polyethylene bonds, but instead the polyethylene coating will pull away from one or the other of the paper surfaces. When this happens, torn surfaces in which raw and scuffed paper is exposed are presented. By raw paper is meant a paper surface from which some or all of the polyethylene coating is removed by the tearing action occurring during the opening operation. In accordance with the invention, these torn areas are minimized so that only minor areas of raw paper will exist, and these areas are not in the main portions of the pouring spout surface.
This is accomplished by providing an abhesive coating on selected polyethylene surface areas before the carton is heat-sealed. The coating may be applied by printing, brushing or other technique, but is preferably applied by printing during the blank-forming operation. Since both the inside and outside surfaces of the blank require abhesive coating, the printing may be effected on both sides simultaneously, or first on one side and then the other. In general, the abhesive coating will be applied while the carton blank is being subjected to the usual printing operation which is conducted to provide the desired advertising matter on the carton. It is desirable that the polyethylene surfaces be receptive to ink and other coating materials, and for this purpose the polyethylene coated paper stock may be subjected to one of the usual treatment operations.
The polyethylene coated paper is shown in exaggerated scale in FIG. 10 and comprises a relatively stiff paperboard sheet 78 coated on each side with a layer of polyethylene, as shown as 79 and 80. The paperboard 78 might be, for example, 0.018 inch thick, the inner polyethylene layer 79 might be, for example, 0.0011 inch thick, while the polyethylene layer 80 might be, for example, 0.00075 inch thick. Selected areas of the polyethylene are supplied with an abhesive coating, as at 81 and 82.
On the inner surface of the blank (FIG. 1), abhesive coatings 83, 84, 85 and 86 (shown as stippled areas) are applied to portions of panels 45, 61, 60 and 46, respectively. On the outer surface of the blank (FIG. 2), abhesive coatings 87 and 88 are applied to portions of panels 60 and 61.
As best shown in FIG. ll, during carton top sealing, areas 87 and 88 are caused to overlie each other. Similarly, area 84 overlies area 83 and area 85 overlies area 86. The upper portions of abhesive areas 83 and 86 overlie each other. The polyethylene and abhesive coating thicknesses in FIG. 11, and also in FIGS. 12 and 13, are greatly exaggerated for purposes of illustration.
During the first part of the carton opening operation (FIG. 12), abhesive coatings 87 and 88 permit panels 60 and 61 to be separated by breaking only the seal along the joined areas of panels 60 and 61, i.e., the areas not protected by the abhesive [coating] coatings 87 and 88. This results in some tearing of the joined areas, as shown at 89 and 90 in FIG. 12, but these areas are remote from the pouring part of the spout. During the second part of the carton opening operation, abhesive coatings 84 and 85 and 83 and 84 permit panels 46 and 60 and panels 45 and 61, respectively, to be separated with tearing only along the joined areas designated 91 and 92, respectively, and along the joined areas between panels 45 and 46 above the respective abhesive areas 83 and 86, respectively. The contact between abhesive areas 83 and 86 beyond the juncture of panels 60 and 61 restricts the tearing of the surfaces 45 and 46 to the narrow area above the abhesive areas 83 and 86.
The abhesive coatings 84, 85, 87 and 88 should extend from the tops of their respective panels to the bottom of score line 43. Abhesive coatings 84 and 88 should terminate a short distance, preferably about from score line 25. Similarly, abhesive coatings 85 and 87 should terminate a short distance, preferably about 3 from score line 26.
Abhesive coatings 83 and 86 extend upwardly from the bottom of score line 43 to a maximum height such that the abhesive coatings are close to but spaced from the top edges of panels 45 and 46, respectively. This minimum spacing from the top edges is preferably between V8" and 5 and the lateral location of this minimum spacing from score lines and 26, respectively, is equal approximately to the lateral length of the panels 60 and 61. The top edges of the coating areas 83 and 86 are inclined downwardly from the point of minimum spacing toward the score lines 25 and 26, respectively, but at all points along these inclined edges the areas 83 and 86 extend above the corresponding points of areas 84 and 85, respectively, so that, when the carton top is heat-sealed, upper portions of abhesive areas 83 and 86 will overlie each other. These upper portions are above the top edges of the panels 60 and 61.
The top edges of the coating areas 83 and 86 are also inclined downwardly from the point of minimum spacing away from score lines 25 and 26, respectively, to correspond to the shape of the rear walls of the pouring spout when the carton is fully opened. In this way the carton may be opened and the spout formed without tearing the panels and 46 except along their upper edges and adjacent the score lines 25 and 26. The spacing between abhesive areas 83 and 86 and score lines 25 and 26, respectively, should be the same as that between these score lines and the abhesive areas 84 and 85. The spacing between the abhesive areas 83 and 86 and score lines 24 and 27, respectively, is not critical and should be sufiicient to permit spout formation without tearing along the rear edges of the areas 83 and 86.
The abhesive coating material used must meet certain requirements. First, it must adhere to the polyethylene or other thermoplastic surface. In the case of beverage containers, and especially milk cartons, there must be no appreciable flaking of the abhesive coating into the packaged beverage and no transference of the coating into the beverage even under prolonged contact conditions. The abhesive coating should not be heat-scalable at the heat-sealing temperature used e.g., 250600 F., and under the sealing pressures used, e.g., 2000 psi. And the abhesive coating should have substantial physical strength to prevent the polyethylene from breaking through the abhesive coating under the abrasive and pressure conditions encountered in heat-sealing.
In accordance with a further aspect of the invention, there will [not] now be described a particularly desirable abhesive coating composition which has been found well c suited to the requirements of polyethylene coated milk carton service. This composition is basically a varnish with an R5 nitrocellulose base, a suitable solvent system, a plasticizcr and additives to atlord adhesion to the polyethylene or other thermoplastic surface and to facilitate release when two abhesive coated surfaces are to be sepa rated.
While other varnish bases such as acrylic or other suitable filnrforming resins can be used to produce a usable abhesive composition, nitrocellulose is greatly preferred, and particularly RS nitrocellulose. The high nitrogen content of RS nitrocellulose (as compared to SS nitrocellulose) aflords a greater resistance to heat-sealing at higher temperatures. To achieve the best results, it is important that the nitrocellulose content of the abhesive composition be in the range of about 20 to 50 parts by weight.
As is generally the case with varnish compositions, the abhesive composition of the invention should include a plasticizer, diethyl phthalate, di-iso-octyl phthlate, and alkyl plasticizers being examples of suitable plasticizers. The amount of plasticizer to be used should be kept to a bare minimum in order to obtain maximum heat resistance of the abhesive coating; the plasticizer should be less than 3% by weight of the composition and preferably the plasticizer is about 2% to 3% by weight of the abhesive composition. Higher plasticizer contents are found to degrade the heat release characteristics of the abhesive composition.
A variety of solvent systems may be used, a number of examples being given in the specific examples below. By appropriate choice of solvent system, the drying rate of the composition may be suitably adjusted. The solvent concentration should be in the range of about 10% to 70% by weight.
Shellac and/or wax have been found to be desirable additives to increase the adhesion of the abhesive coating to the polyethylene surface. The wax should be a hard wax and preferably carnauba Wax to provide improved release characteristics due to the resulting hard surface of the dried varnish. Silicone compounds can be used as a desirable additive to improve release characteristics. Rosin can be used as an additive to provide a coating with an improved scuff resistant.
The following are examples of abhesive varnish compositions in accordance with the invention and which are particularly suitable in carrying out the method of the invention and producing the product of the invention.
EXAMPLE NO. 1
Parts by weight RS /2 sec. nitrocellulose, wet basis 35 Ethyl acetate 19 Ethanol 15 Iso-propanol 12.5 Toluene 10.0 Cellosolve 6.5 Shellac, in 40% alcohol solution 6.5 Carnauba wax 1.5
Diethyl phthalate 1.5 Silicone 0.5
in the foregoing example, the ethyl acetate, ethanol, iso'propanol, toluene and Cellosolve form the solvent system, the Cellosolve being used to slow somewhat the drying rate. Cellosolve is a trademark of Carbide and Carbon Chemicals Company for ethylene glycol monethyl ether.
EXAMPLE NO. 2
Parts by weight RS /2 sec. nitrocellulose 28 Ethyl acetate 28 Toluene 14 Ethyl alcohol 24 Shellac, in 40% alcohol solution 134 Dioctyl phthalate 7 The high shellac content of Example No. 2 renders this composition suitable for use with polyethylene which has not been treated to improve the adherence characteristics thereof.
EXAMPLE NO. 3
Parts by Weight RS /2 sec. nitrocellulose 20-50 Ethyl acetate 35 Iso-propanol 12-5 Toluol 10 Cellosolve 6.5 Diethyl phthalate 1.5-5 Shellac, in 40% alcohol solution 5-15 Carnauba wax 15 Silicone 0.25-5
Example No. 3 actually represents several examples, since ranges are given for the nitrocellulose, iso-propano], diethyl phthalate, shellac, wax and silicone.
In general, it has been found desirable to make the abhesive coating thicknesses different on the outside and inside carton surfaces, with the abhesive coating thickness being greater on the inside carton surfaces. Thus, with abhesive coating compositions of the type described above, the abhesive coatings on the inside blank surface (FIG. 1) might, for example, be about 0.0005 to 0.00075 inch thick, while the outside blank surface (FIG. 2) might, for example, have an abhesive coating thickness of about 0.0001 inch.
While the invention has been described in connection with specific embodiments thereof and in specific uses, various modifications thereof Will occur to those skilled in the art without departing from the spirit and scope of the invention as set forth in the appended claims.
What is claimed is:
1. A gable-top container formed from a blank of paperboard having a polyethylene coating covering each surface thereof and comprising a tubular body having a bottom closure thereon, a pair of opposed roof panels inclined toward each other and overlying said body, a pair of opposed triangular end panels in-folded between said roof panels from the opposite gable ends formed by the latter, two pairs of triangular fold-back panels each pair of which is integral with a respective one of said infolded triangular end panels along fold lines which are substantially in contact with said roof panels, said foldback panels being folded against the undersides of said roof panels, a pair of side rib panels each integral with and surmounting a respective roof panel, two pairs of end rib panels, each end rib panel being integral with and surmounting a respective fold-back panel, the end rib panels of each pair being folded to lie against each other and to lie against the inner surface of a respective side rib panel, the height of said end rib panels being less than the height of said side rib panels, said rib panels defining a central laminar top rib divided longitudinally into a fixed portion and a movable portion, a sanitarily protected extensible pouring spout housed in collapsed condition within said container and defined in part by one of said triangular end panels, an adjacent pair of said fold-back panels and an adjacent pair of said end rib panels, said spout also being defined by adjacent portions of said roof panels and side rib panels, said rib panels being adapted to be sealed together to form a liquid-tight seal by the application of heat and pressure thereto to bond together the contacting polyethylene coated surfaces thereof, and means to facilitate opening of said spout into said extended condition thereof comprising an abhesive coating covering substantially the entire inner and outer surface areas of said adjacent pair of end rib panels except for a narrow strip along the line of juncture between said adjacent pair of end rib panels and said respective side rib panels, and an abhesive coating covering a selected area on the inner surface of each of said side rib panels, said selected area on each of said side rib panels including substantially the entire area of contact of said side rib panels and said adjacent end rib panels and a strip of contact between said side rib panels located above said adjacent end rib panels but beneath the upper edges of said side rib panels.
2. A container as set forth in claim 1 in which said selected area on each of said side rib panels includes a strip of each side rib panel extending away from the line of juncture between said adjacent pair of end rib panels and the respective side rib panels.
3. A container as set forth in claim 1 in which said strip of contact between said side rib panels located above said adjacent end rib panels but beneath the upper edges of said side rib panels is located not less than about one-eighth inch below the upper edges of said side rib panels.
4. A gable-lop container formed from a blank of paperboard having a polyethylene coating covering each surface thereof and comprising a tubular body having a bottom closure thereon, a pair of opposed roof panels inclined Ioward each other and overlying said body, a pair of opposed triangular and panels iii-folded between said roof panels from the opposite gable ends formed by the latter, two pairs of triangular fold-back panels each pair of which is integral with a respective one of said in-folded triangular end panels along fold lines which are substantially in contact with said roof panels, said fold-back panels being folded against the undersidcs of said roof panels, a pair of side rib panels each integral with and surmounling a respective roof panel, two pairs of end rib panels, each and rib panel being integral with and cur-mounting a respective fold-back panel, the end rib panels of each pair being folded to lie against each other and to lie against the inner surface of a respective side rib panel, the height of said end rib panels being less than the height of said side rib panels, said rib panels defining a central laminar top rib divided longitudinally into a fixed portion and a movable portion, a sanl'rarily protccred extensible pouring spout housed in collapsed condition within said container and defined in part by one of said triangular end panels, an adjacent pair of said foldback panels anld an adjacent pair of said end rib panels, said spout also being defined by adjacent portions of said roof panels and side rib panels, said rib panels being adapted to be sealed together to form a liquid-tight seal by the application of heat and pressure thereto to bond together the contacting polyethylene coated surfaces thereof, and means to facilitate opening of said spout into said extended condition thereof comprising an abhesive coating covering substantially the entire inner surface area of said adjacent pair of end rib panels except for a narrow strip along the line of juncture between said adjacent pair of end rib panels and said respective side rib panels, and an abhesive coating covering a selected area on the inner surface of each of said side rib panels, said selected area on each of said side rib panels including substantially the entire area of Contact of said side rib panels and said adjacent end rib panels and a strip of contaet between said side rib panels located above said adjacent and rib panels but beneath the upper edges of said side rib panels.
References Cited The following references, cited by the Examiner, are of record in the patented file of this patent or the original patent.
10 DAVID M 10 UNITED STATES PATENTS 11/1926 Metzgcr 2/ 1930 Metzger 7/1958 Koeneckc et a1 1 7/1959 Bader et a1 l FOREIGN PATENTS 10/1959 Australia.
. BOCKENEK, Primary Examiner.
US26305D Huang etal plastic coated container Expired USRE26305E (en)

Publications (1)

Publication Number Publication Date
USRE26305E true USRE26305E (en) 1967-11-21

Family

ID=2095814

Family Applications (1)

Application Number Title Priority Date Filing Date
US26305D Expired USRE26305E (en) Huang etal plastic coated container

Country Status (1)

Country Link
US (1) USRE26305E (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946041A (en) 1988-03-11 1990-08-07 Fbi Brands Ltd. Easy opening gable top carton
US5242701A (en) * 1988-10-24 1993-09-07 Fbi Brands Ltd. Method for shelf stable packaging of liquid food in hermetically sealed easy-to-open gable top cartons
US6024280A (en) 1996-12-09 2000-02-15 Tetra Laval Holdings & Finance, S A Gable-top containers and container blanks

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946041A (en) 1988-03-11 1990-08-07 Fbi Brands Ltd. Easy opening gable top carton
US5421512A (en) * 1988-03-11 1995-06-06 Fbi Brands Ltd. System for packaging perishable liquids in gable top cartons
US5242701A (en) * 1988-10-24 1993-09-07 Fbi Brands Ltd. Method for shelf stable packaging of liquid food in hermetically sealed easy-to-open gable top cartons
US6024280A (en) 1996-12-09 2000-02-15 Tetra Laval Holdings & Finance, S A Gable-top containers and container blanks

Similar Documents

Publication Publication Date Title
US3270940A (en) Container with extensible pouring spout
US2362862A (en) Paper container for fluid
US2416332A (en) Container for distribution of food and other products
US2758775A (en) Container structure with integral closures
US2341845A (en) Container and method of making the same
US2750096A (en) Paper containers
US4093115A (en) Liquid-tight flat top container
US3319868A (en) Composition for sealing plastic coated containers
US2593019A (en) Paper container with dispensing and filling openings for liquids
US3334799A (en) Container top closure construction
US2581237A (en) Dispensing container
US2549048A (en) Liquidtight carton and method
US3389849A (en) Plastic gable top container
JPS6252039A (en) Outflow edge of packaging vessel
US3185377A (en) Container and blank therefor
US3130649A (en) Method of making lined cartons
US2387272A (en) Method of forming cardboard boxes
USRE26305E (en) Huang etal plastic coated container
US3327920A (en) Container for liquids
US2470199A (en) Carton and secondary closure therefor
US3292842A (en) Plastic coated container
US4046308A (en) Packaging
US5118036A (en) Packaging container and material for manufacture of the same
US4903891A (en) Gable top carton sealing construction
US4189986A (en) Method and apparatus for heat sealing a package blank