USRE25952E - Semi-conductor devices - Google Patents

Semi-conductor devices Download PDF

Info

Publication number
USRE25952E
USRE25952E US25952DE USRE25952E US RE25952 E USRE25952 E US RE25952E US 25952D E US25952D E US 25952DE US RE25952 E USRE25952 E US RE25952E
Authority
US
United States
Prior art keywords
semi
base
type
conductivity
bulk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Publication date
Application granted granted Critical
Publication of USRE25952E publication Critical patent/USRE25952E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2252Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Definitions

  • This invention relates to improved semi'conductor devices and improved methods of making them. More particularly it relates to such devices having improved electrical characteristics and relatively low surface recombination velocities.
  • a semi-conductor device generally includes a base of a semi-conductive materal of one conductivity type either n or p which has an excess of one type of electric current carriers, electrons or holes, with respect to current carriers of the opposite type.
  • the excess carriers are called majority" carriers and the opposite type carriers are called minority carriers.
  • the operation of many semi-conductor devices such as transistors depends upon minority carriers being injected into a semi-conductor body at one rectifying barrier and being collected at another rectifying barrier after traversing the base region between the barriers.
  • the efliciency of such devices depends upon the proportion of the injected minority carriers that are collected, since uncollected carriers represents a lost fraction of a signal input.
  • the minority and majority carriers being of opposite electrical sign are mutually attractive and when a minority carrier combines with a majority carrier both the carriers are lost.
  • a relatively large proportion of this loss occurs at the surface of the semi-conductor body and is called surface recombination.
  • the loss occurring within the body, bulk recombination, is generally of somewhat less importance than surface recombination and may be minimized by known techniques of preparing the semi-conductive material.
  • the surface recombination effect in a body is measured by a coefiicient called the surface recombination velocity which may be defined as the average velocity with which injected minority carrier approach the surface of the body.
  • This average velocity is determined by diffusion limitations and is increased by the surface recombination which brings about a relatively low minority carrier concentration at the surface and thus induces an increased concentration gradient adjacent to and in the direction of the surface.
  • An increase in the concentration gradient increases the diffusion velocity in the direction of the gradient.
  • One object of the instant invention is to provide an improved method of minimizing surface recombination velocity in a semiconductor device.
  • Another object is to provide improved semi-conductor devices having reduced surface recombination velocities.
  • the base of a semiconductor device is provided with .a surface film separated from the bulk of the body by a rectifying barrier.
  • the barrier extends over all, or at least a major portion of the exposed surface of the wafer and provides an electric field to repel the minority carriers from the surface.
  • the minority carriers are confined within the bulk of the body and do not .approach the surface. The surface recombination is thus effectively minimized.
  • FIGURES 1-4 are schematic, cross-sectional, energy- Re. 25,952 Reissued Dec. 14, 1965 ICC level diagrams of small regions adjacent to the surfaces of semi-conductor bodies of devices of the invention.
  • FIGURE 5 is a schematic, cross-section, elevational view of a typical device according to the invention.
  • FIGURE 6 is a perspective view of another different device according to a second embodiment of the invention.
  • a semi-conductor body of a device is treated to provide a thin Surface region, or film on the body separated from the bulk of the body by a rectifying barrier.
  • the surface region has a relatively high conductivity but is shaped to minimize its lateral conductance. It is a part of the body and is not chemically diterent except for its impurity content.
  • the region is not constituted by an oxide film, for example, but is essentially of the same chemical material as the bulk of the body and has the same crystallographic structure as the bulk.
  • the film may be continuous in nature.
  • the film is discontinuous and consists of discrete islands" isolated one from another on the surface.
  • the film may be of either the same or the opposite conductivity type as the bulk of the base body, and is produced by introducing selected impurities into a surface region of the body.
  • the energy band gap may have a width of a fraction of an electron volt to 1 or 2 electron volts, this gap increasing in width until the materials are considered to behave as insulators.
  • a crystalline semi-conductor having a substantially equal number of electrons and holes is referred to as an intrinsic semi-conductor.
  • a semi-conductor whose conductivity depends upon excess charge carriers is called an extrinsic semi-conductor. Where the electrons are present in excess, the semi-conductor is designated as n-type; for holes in excess, a ptype.
  • the doted line throughout the diagrams represents the Fermi level Ef.
  • the Fermi level for n-type material is closer to the conduction band than to the valence band.
  • the Fermi level is located closer to the valence band.
  • FIGURES 1 and 2 are schematic, cross-sectional energy-level diagrams representing the energy distributions at the surfaces of semi-conductor bodies having films of the same conductivity types as the bulk of the bodies.
  • FIGURE l represents a body of n-type conductivity having a surface film also of n-type conductivity, but having a higher concentration of donor impurities and, therefore, of majority charge carriers. This higher concentration of majority charge carriers at the surface is represented as N+ in the energy-level diagram.
  • FIGURE 2 represents a p-type conductivity body having a p-type Surface film. This higher conductivity p-type film is represented as P-lin the energy-level diagram. In these two cases the majority charge carriers, electrons and holes, respectively, exist in greater concentration in the surface regions than in the bulk of the bodies thus creating a potential step, or barrier adjacent to the surface. This barrier repels minority charge carriers away from the surface.
  • the majority carriers are electrons and the minority carriers are holes.
  • the potential gradient, or step, produced by the increased concentration of donor impurities at the surface repels holes from the surface.
  • the holes I are effectively restrained within the bulk of the material and the surface recombination velocity is minimized.
  • the converse situation exists and electrons, which are the minority charge carriers in p-type material, are repelled from the surface.
  • FIGURES 3 and 4 illustrate the energy level situation in base bodies having surface layers of a conductivity type opposite to the bulk of the bodies.
  • These bodies include p-n rectifying junctions closely adjacent to their surfaces. Although such junctions attract minority carriers to the surfaces they effectively decrease the surface recombination velocity of these carriers because once at the surface the carriers become majority carriers and do not find minority carriers with which to combine. At the surfaces minority carriers exist in insufficient numbers to cause an effective reduction in the numbers of the majority carriers.
  • the majority carriers are electrons and the minority carriers are holes. When holes diffuse through the bulk of the material and approach the surface they are accelerated across the barrier into the surface region where they become majority carriers and do not nd available electrons with which to combine.
  • One embodiment of the instant invention is represented in the alloy junction transistor device shown in FIGURE 5.
  • This device comprises an n-type semi-conductive germanium base wafer 22 having a surface region, or film 24 of p-type conductivity electrically separated from the bulk of the wafer by a barrier 25.
  • An emitter electrode 26 and a collector electrode 28 are alloyed into opposite surfaces of the wafer to form two closely adjacent p-n rectifying barriers 30 and 32 respectively.
  • Electrical leads 34 and 36 are attached to the electrodes and a base tab 38 is attached by means of a non-rectifying solder connection 40 to the wafer.
  • the device may be initially prepared according to any known method. For example, a wafer of n-type semiconductive germanium of a desired size such as about 0.125" x 0.125 x .010" thick is etched in a solution of hydrofluoric and nitric acids to reduce its thickness to about .006 and to expose a fresh, crystallographically undisturbed surface. Electrode pellets of indium are placed in alignment upon opposite surfaces of the wafer and the ensemble is heated at about 500 C. for about five minutes to alloy the pellets to the wafer and to form the rectifying barriers within the wafer. A base tab 38 which may be of nickel is attached by means of a non-rectifying solder connection to the wafer.
  • the device is etched in a solution comprising hydrouoric acid, nitric acid and bromine. This etching removes contaminants that may be deposited upon the surface of the wafer during the heating. Such contaminants may provide electrical leakage paths in the device and adversely affect its operation.
  • the surface recombination velocity of the wafer is reduced according to the present embodiment of the invention by diffusing a relatively small quantity of a ptype impurity material into the surface of the wafer.
  • This may be accomplished by evaporating in vacuo a thin film of a selected ptype conductivity-imparting impurity material such as inidium, zinc or aluminum upon all the exposed surfaces of the device.
  • the film is preferably about l0 Angstroms thick, although this thickness is not critical. Sufficient material is deposited to form a film completely to cover the device. If the film is too thick, however, the p-type region subsequently formed at the surface of the wafer will be relatively thick and may adversely affect the electrical characteristics of the device.
  • the p-type surface layer formed in the device has relatively high conductivity and, if it is of substantial thickness, it tnay provide an electrical leakage path or short-circuit between the two electrodes of the device.
  • the surface region By making the surface region relatively thin, such as about Angstroms or less, the lateral conductance of the film is minimized so that it does not adversely affect the electrical operation of the device.
  • the device bearing the film of p-type impurity material is heated at about 500 C. for about one to two minutes to diffuse the material of the film into the surface of the wafer and to form a surface region in the wafer having a relatively high conductivity and being of the opposite conductivity type from the bulk of the wafer.
  • a surface film serves to minimize the surface recombination velocity in the base wafer of the device and thus improves the operational characteristics of the device.
  • the base wafer may be of n-type germanium or silicon
  • the electrodes may be formed of an alloy of lead and antimony
  • an n-type surface region may be formed by evaporating and diffusing arsenic, antimony or bismuth into the surface.
  • the practice of the invention is not limited to the particular materials described herein but is generally applicable to all semi-conductor devices having a base of a crystalline, semi-conductive material and means for injecting minority charge carriers into the bulk of the base.
  • Other semi-conductors than germanium and silicon may be utilized such as, for example, aluminum antimonide or indium phosphide. It is only necessary to provide a thin surface region forming a barrier and having a relatively high conductivity with respect to the ⁇ bulk of the base and a relatively low lateral conductance.
  • the surface region may be of either conductivity type, that is, it may be of the same conductivity type as the major portion of the base or of the opposite conductivity type.
  • the surface region serves to reduce the surface recombination velocity of the base and to improve the electrical performance of the device.
  • the conductivity type of the surface region may be selected to provide any of a number of different properties that may be desired in the device being treated.
  • the conductivity type arrangements illustrated in FIG- URES 3 and 4 are presently preferred in making photo devices since rectifying barriers of the type shown in these figures are relatively sensitive to light and the surface regions, therefore, tend to increase the photosensitivity of such devices.
  • the material may be deposited upon the surface in sufficient quantities by immersing the device in a liquid that contains dispersed ions of the selected material.
  • a liquid that contains dispersed ions of the selected material For example, if a device such as the transistor heretofore described, after being etched, is immersed in a dilute solution of copper nitrate, copper ions will adhere to the surface of the device. When the device is subsequently heated at temperatures below about 700 C. the ions will diffuse into the wafer to form a p-type conductivity surface region. Conversely, arsenic ions may be deposited on and diffused into such a device to provide an n-type surface region.
  • the impurity pellets When, in making the transistor device heretofore described, the impurity pellets are alloyed to the wafer, a portion of the impurity pellets evaporates and is deposited on the surface of the wafer to form a p-type region at the surface. Ordinarily, however, the region thus formed is relatively thick and is coated wiht a metallic layer. Such a thick region and, particularly, the metallic coating are detrimental in the operation of the device and are removed by the etching step described. Satisfactory results according to the invention may be achieved by etching away the coating and only partially etching away the surface region. This technique, however, is relatively diicult and the etching step is critical. Furthermore, the amount of etching required varies depending principally upon the time and temperature of heating in the alloy step and must be empirically determined for each particularly processing arrangement.
  • the surface recombination velocity of a semi-conductor body is minimized by means of a surface region having any one of the energy-level characteristics shown in FIGURES 1-4 but being discontinuous in form, as a mosaic.
  • a surface region need not be as thin as the continuous surface regions heretofore described since it consists of discrete regions separated one from another and its lateral conductance is limited by its discontinuous nature rather than by its thickness.
  • a discontinuous surface lm may be provided by evaporating a relatively thick film of a selected impurity material on the surface of the semi-conductor body and heating the body and film at a relatively low temperature for a relatively long time.
  • the film under such heating breaks up and the material of the film coagulates into isolated regions, or islands on the surface of the body.
  • a transistor device 41 similar to the device heretofore described, may be treated by evaporating upon it a film of indium about 500 Angstroms thick. The device is then heated at about 300 C. for about thirty minutes or more to cause the evaporated material to migrate along the surface and to form itself into isolated, discrete islands 42 on the surface.
  • the discrete barrier regions formed at the surface may be made not only relatively small but also great in number so that they occupy a relatively high proportion of the exposed surface.
  • a semi-conductor device including a base of a crystalline semi-conductive material, emitter and collector electrodes in contact with said base; said base having a surface region adjacent at least one of said electrodes, said region being of high conductivity and low lateral conductance relative to the bulk of said base, and being of the same conductivity type as the bulk of said base and being separated therefrom by a rectifying barrier.
  • a semi-conductor device including a base of N-type semi-conductive germanium, emitter and collector electrodes in contact with said base; said base having an N-type semi-conductive surface region adjacent at least one of said electrodes, said region being of high conductivity and low lateral conductance relative to the bulk of said base, said region extending over substantially the entire exposed surface of said base.
  • a semi-conductor device including a base of P-type semi-conductive germanium, emitter and collector elec trodes in contact with said base; said base having a P-type semi-conductive surface region adjacent at least one of said electrodes, said region being of high conductivity and low lateral conductance relative to the bulk of said base.
  • a semi-conductor device including a base of a crystalline semi-conductive material, emitter and collector electrodes in contact with said base; said base having a surface region adjacent at least one of said electrodes, said region being of high conductivity and low lateral conductance relative to the bulk of said base, and being separated from the bulk of said base by a rectifying barrier, and extending over substantially the entire ex posed surface of said base and ⁇ being less than about Angstroms thick.
  • a semi-conductor device including a base of a crystalline semi-conductive material, emitter and collector electrodes in contact with said base; said base having a multiplicity of discrete surface regions adjacent at least one of said electrodes, said region being of high conductivity relative to the bulk of said base, said regions being separated ⁇ from the bulk of said base by rectifying barriers and occupying a substantial portion of the exposed surface of said ⁇ body.
  • a semi-conductor device including a base of a crystallin semi-conductive material, emitter and collector electrodes in contact with said base; said base having a discontinuous surface region adjacent at least one of said eletcrodes, said region being of high conductivity and low lateral conductance relative to the bulk of said base, said discontinuous surface region being separated from the bulk of said base by a rectifying barrier.
  • a semiconductor device comprising a body of a crystalline semiconductive material having a pair of opposed surfaces, junction electrodes disposed in each of said surfaces to form rectifying junctions in said body, and a region of high conductivity and low lateral conductance covering at least one of said surfaces adjacent the electrode therein.
  • a semiconductor device comprising a body of n-type germanium having a pair of opposed surfaces, an emitter junction electrode disposed in one surface of said body to inject minority charge carriers into the bulk of said body, a collector junction electrode disposed in the opposed surface of said body to collect said charge carriers from the bulk of said body, and an n-type semiconductive surface of high conductivity and low lateral conductance relative to the bulk of said base disposed on at least one of said surfaces adjacent the electrode therein.
  • a semiconductor device according to claim 8 wherein said surface region extends over substantially the entire exposed surface of said body and is less than about 100 Angstroms thick.
  • a transistor comprising a semi-conductive body of one conductivity type and having a given value of conductivity, tlze entire exposed surface of said body being of the same type as said one type but having a higher value of conductivity and a low lateral conductance, and a pair of electrode-forming masses fused to opposite surfaces with the higher conductivity of said body and diused within said body distances greater than the thickness of said surface layer of higher conductivity and producing wit/1in said body spaced zones of the opposite conductivity type.
  • a semi-conductive device comprising a semi-conductive body having a portion of one conductivity type at a jirst value of conductivity, and electrode connections to said body including an electrode fused to said body and forming therewithtin a portion of the opposite conductivity type thereby to produce a rectifying connection, substantially all of the exposed surface portions of said semi-conductive body exhibiting said one type of conductivity but possessing a second, higher value of conductivity and a low lateral conductance, said rectifying connection being produced at a body portion at said first value of conductivity.
  • a semi-conductive device comprising a semi-conductive body having an interior portion of one conductivity type and a first lower value of conductivity and a diused surface portion Substantially surrounding said interior portion and also of said one conductivity type but at a second higher value of conductivity and a low lateral conductance, and means traversing said diffused surface portion and providing a rectifying connection to the interior portion of said semi-conductive body.
  • a semi-conductive device comprising a semi-conductive body having an interior portion of one conductivity type and a rst value of conductivity and a diused surface portion substantially surrounding said interior portion and also of said one conductivity type but at a second, higher value of conductivity and a low lateral conductance, and an electrode fused to said body and traversing said diused surface portion and forming a rectifying connection with said interior portion of said body.
  • a semi-conductive device comprising a semi-conductive body having an interior portion of one conductivity type and a first lower value of conductivity, a surface portion substantially surrounding said interior portion and also of said one conductivity type but having a second higher value of conductivity and a low lateral conductance, and a rectifying connection to the interior portion of said semi-conductive body.
  • a semi-conductor device including a base of a crystalline semi-conductive material, a rectifying electrode in contact with said base; said base having a surface region adjacent said electrode, said region being of high conductivity and low lateral conductance relative to the bulk of said base and beting of the same conductivity type as the bulk of said base and being separated therefrom by a rectifying barrier.
  • a semi-conductor device including a base of a crystalline semi-conductive material, and a rectifying electrode in contact with said base; said base having a discontinuous surface region adjacent said electrode, said region being of high conductivity and low lateral conductance relative to the bulk of said base, said discontinuous surface region being separated from the bulk of said base by a rectifying barrier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Light Receiving Elements (AREA)
  • Bipolar Transistors (AREA)
  • Photovoltaic Devices (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

Dec. 14, 1965 J. PANKovE SEMI-CONDUCTOR DEVICES Original Filed April l. 1954 m m w f f/yfesy GHP L oww/vai /Nra 5,455
INVENTOR. Iannus I. PnNHnvE United States Patent O 25,952 SEMI-CNDUCTOR DEVICES Jacques l. Pankove, Princeton, NJ., assignor t0 Radio Corporation of America, a corporation ot' Delaware Original No. 2,843,511, dated July 15, 1958, Ser. No.
420,401, Apr. 1, 1954. Application for reissue Dec. 23,
1959, Ser. No. 861,733
16 Claims. (Cl. 148-33) Matter enclosed in heavy brackets appears in the original patent but forms no part of this reissue specilication; matter printed in italics indicates the additions made by reissue.
This invention relates to improved semi'conductor devices and improved methods of making them. More particularly it relates to such devices having improved electrical characteristics and relatively low surface recombination velocities.
A semi-conductor device generally includes a base of a semi-conductive materal of one conductivity type either n or p which has an excess of one type of electric current carriers, electrons or holes, with respect to current carriers of the opposite type. The excess carriers are called majority" carriers and the opposite type carriers are called minority carriers. The operation of many semi-conductor devices such as transistors depends upon minority carriers being injected into a semi-conductor body at one rectifying barrier and being collected at another rectifying barrier after traversing the base region between the barriers.
The efliciency of such devices depends upon the proportion of the injected minority carriers that are collected, since uncollected carriers represents a lost fraction of a signal input. The minority and majority carriers being of opposite electrical sign are mutually attractive and when a minority carrier combines with a majority carrier both the carriers are lost. A relatively large proportion of this loss occurs at the surface of the semi-conductor body and is called surface recombination. The loss occurring within the body, bulk recombination, is generally of somewhat less importance than surface recombination and may be minimized by known techniques of preparing the semi-conductive material.
The surface recombination effect in a body is measured by a coefiicient called the surface recombination velocity which may be defined as the average velocity with which injected minority carrier approach the surface of the body. This average velocity is determined by diffusion limitations and is increased by the surface recombination which brings about a relatively low minority carrier concentration at the surface and thus induces an increased concentration gradient adjacent to and in the direction of the surface. An increase in the concentration gradient increases the diffusion velocity in the direction of the gradient.
One object of the instant invention is to provide an improved method of minimizing surface recombination velocity in a semiconductor device.
Another object is to provide improved semi-conductor devices having reduced surface recombination velocities.
These and other objects are accomplished by the instant invention according to which the base of a semiconductor device is provided with .a surface film separated from the bulk of the body by a rectifying barrier. The barrier extends over all, or at least a major portion of the exposed surface of the wafer and provides an electric field to repel the minority carriers from the surface. The minority carriers are confined within the bulk of the body and do not .approach the surface. The surface recombination is thus effectively minimized.
The invention will be described in greater detail in connection with the accompanying drawing of which:
FIGURES 1-4 are schematic, cross-sectional, energy- Re. 25,952 Reissued Dec. 14, 1965 ICC level diagrams of small regions adjacent to the surfaces of semi-conductor bodies of devices of the invention.
FIGURE 5 is a schematic, cross-section, elevational view of a typical device according to the invention.
FIGURE 6 is a perspective view of another different device according to a second embodiment of the invention.
According to the invention a semi-conductor body of a device is treated to provide a thin Surface region, or film on the body separated from the bulk of the body by a rectifying barrier. The surface region has a relatively high conductivity but is shaped to minimize its lateral conductance. It is a part of the body and is not chemically diterent except for its impurity content. The region is not constituted by an oxide film, for example, but is essentially of the same chemical material as the bulk of the body and has the same crystallographic structure as the bulk.
According to a first embodiment of the invention the film may be continuous in nature. According to a second embodiment the film is discontinuous and consists of discrete islands" isolated one from another on the surface. The film may be of either the same or the opposite conductivity type as the bulk of the base body, and is produced by introducing selected impurities into a surface region of the body.
In the energy band theory of solids, several discrete levels of energy are postulated. An electron is raised in energy by moving from a lower band or level to a higher one. The lowest band is designated the valence band or normally filled band. The highest band is called the conduction band or the normally empty band. Between these two bands exists an energy band gap referred to as the forbidden band or energy band gap region. For a metallic conductor such as copper the filled band and conduction bands overlap with substantially no energy band gap existing. For typical semi-conductors, the energy band gap may have a width of a fraction of an electron volt to 1 or 2 electron volts, this gap increasing in width until the materials are considered to behave as insulators. It has been found that in semi-conductive materials such as germanium, silicon, and the like imperfections or impurities present in the crystal structure result in either an excess of free electrons or a deficiency of such electrons being present. These excees free electrons act as negative charge carriers and are responsible for the conduction of electricity in the crystal. Where a deficiency of electrons exists because of electrons having been effectively ejected from the crystal structure, empty spaces called holes are left behind in the crystal structure. These holes can be filled by the movement of electrons into them leaving behind other holes. Under the iniiuence of an electric field in the hole behaves essentially as an excess electron with a positive electronic charge. Thus it has been found extremely convenient and useful in solid-state theory to regard the conduction of electricity in the semi-conductor crystal as being earried on by negative and positive electric charge carriers, namely electrons and holes. A crystalline semi-conductor having a substantially equal number of electrons and holes is referred to as an intrinsic semi-conductor. A semi-conductor whose conductivity depends upon excess charge carriers is called an extrinsic semi-conductor. Where the electrons are present in excess, the semi-conductor is designated as n-type; for holes in excess, a ptype. The doted line throughout the diagrams represents the Fermi level Ef. This is the level at absolute zero temperature where statistically the available electrons fill all the energy levels below Ef while none of the energy levels above Ef is occupied. As may be noted, the Fermi level for n-type material is closer to the conduction band than to the valence band. For p-type material, the Fermi level is located closer to the valence band.
FIGURES 1 and 2 are schematic, cross-sectional energy-level diagrams representing the energy distributions at the surfaces of semi-conductor bodies having films of the same conductivity types as the bulk of the bodies. FIGURE l represents a body of n-type conductivity having a surface film also of n-type conductivity, but having a higher concentration of donor impurities and, therefore, of majority charge carriers. This higher concentration of majority charge carriers at the surface is represented as N+ in the energy-level diagram. FIGURE 2 represents a p-type conductivity body having a p-type Surface film. This higher conductivity p-type film is represented as P-lin the energy-level diagram. In these two cases the majority charge carriers, electrons and holes, respectively, exist in greater concentration in the surface regions than in the bulk of the bodies thus creating a potential step, or barrier adjacent to the surface. This barrier repels minority charge carriers away from the surface.
In the case of the ntype material shown in FIGURE l, for example, the majority carriers are electrons and the minority carriers are holes. The potential gradient, or step, produced by the increased concentration of donor impurities at the surface repels holes from the surface. Thus the holes Iare effectively restrained within the bulk of the material and the surface recombination velocity is minimized. In the p-type material of FIGURE 2 the converse situation exists and electrons, which are the minority charge carriers in p-type material, are repelled from the surface.
FIGURES 3 and 4 illustrate the energy level situation in base bodies having surface layers of a conductivity type opposite to the bulk of the bodies. These bodies include p-n rectifying junctions closely adjacent to their surfaces. Although such junctions attract minority carriers to the surfaces they effectively decrease the surface recombination velocity of these carriers because once at the surface the carriers become majority carriers and do not find minority carriers with which to combine. At the surfaces minority carriers exist in insufficient numbers to cause an effective reduction in the numbers of the majority carriers. In the n-type body illustrated by FIGURE 3, for example, the majority carriers are electrons and the minority carriers are holes. When holes diffuse through the bulk of the material and approach the surface they are accelerated across the barrier into the surface region where they become majority carriers and do not nd available electrons with which to combine. A relatively high concentration of holes is thus produced at the surface, which concentration causes a space charge effect in the direction which repels further holes from leaving the bulk toward the surface. The converse situation exists in the p-type body of FIGURE 4 wherein electrons are the minority carriers in the bulk of the body but are the majority carriers at the surface.
One embodiment of the instant invention is represented in the alloy junction transistor device shown in FIGURE 5. This device comprises an n-type semi-conductive germanium base wafer 22 having a surface region, or film 24 of p-type conductivity electrically separated from the bulk of the wafer by a barrier 25. An emitter electrode 26 and a collector electrode 28 are alloyed into opposite surfaces of the wafer to form two closely adjacent p-n rectifying barriers 30 and 32 respectively. Electrical leads 34 and 36 are attached to the electrodes and a base tab 38 is attached by means of a non-rectifying solder connection 40 to the wafer.
The device may be initially prepared according to any known method. For example, a wafer of n-type semiconductive germanium of a desired size such as about 0.125" x 0.125 x .010" thick is etched in a solution of hydrofluoric and nitric acids to reduce its thickness to about .006 and to expose a fresh, crystallographically undisturbed surface. Electrode pellets of indium are placed in alignment upon opposite surfaces of the wafer and the ensemble is heated at about 500 C. for about five minutes to alloy the pellets to the wafer and to form the rectifying barriers within the wafer. A base tab 38 which may be of nickel is attached by means of a non-rectifying solder connection to the wafer. The device is etched in a solution comprising hydrouoric acid, nitric acid and bromine. This etching removes contaminants that may be deposited upon the surface of the wafer during the heating. Such contaminants may provide electrical leakage paths in the device and adversely affect its operation.
The surface recombination velocity of the wafer is reduced according to the present embodiment of the invention by diffusing a relatively small quantity of a ptype impurity material into the surface of the wafer. This may be accomplished by evaporating in vacuo a thin film of a selected ptype conductivity-imparting impurity material such as inidium, zinc or aluminum upon all the exposed surfaces of the device. The film is preferably about l0 Angstroms thick, although this thickness is not critical. Sufficient material is deposited to form a film completely to cover the device. If the film is too thick, however, the p-type region subsequently formed at the surface of the wafer will be relatively thick and may adversely affect the electrical characteristics of the device. The p-type surface layer formed in the device has relatively high conductivity and, if it is of substantial thickness, it tnay provide an electrical leakage path or short-circuit between the two electrodes of the device. By making the surface region relatively thin, such as about Angstroms or less, the lateral conductance of the film is minimized so that it does not adversely affect the electrical operation of the device.
The device bearing the film of p-type impurity material is heated at about 500 C. for about one to two minutes to diffuse the material of the film into the surface of the wafer and to form a surface region in the wafer having a relatively high conductivity and being of the opposite conductivity type from the bulk of the wafer. As explained heretofore, and as shown schematically in FIGURE 3, such a surface film serves to minimize the surface recombination velocity in the base wafer of the device and thus improves the operational characteristics of the device.
Other devices corresponding to the energy-level diagrams of FIGURES 1, 2 and 4 may be made in a similar manner to the transistor device heretofore described except that different materials are utilized to provide the different type conductivities shown. For example, to produce a device corresponding to the energy-level diagram of FIGURE 1, the base wafer may be of n-type germanium or silicon, the electrodes may be formed of an alloy of lead and antimony, and an n-type surface region may be formed by evaporating and diffusing arsenic, antimony or bismuth into the surface.
The practice of the invention is not limited to the particular materials described herein but is generally applicable to all semi-conductor devices having a base of a crystalline, semi-conductive material and means for injecting minority charge carriers into the bulk of the base. Other semi-conductors than germanium and silicon may be utilized such as, for example, aluminum antimonide or indium phosphide. It is only necessary to provide a thin surface region forming a barrier and having a relatively high conductivity with respect to the `bulk of the base and a relatively low lateral conductance. The surface region may be of either conductivity type, that is, it may be of the same conductivity type as the major portion of the base or of the opposite conductivity type. In either event the surface region serves to reduce the surface recombination velocity of the base and to improve the electrical performance of the device. The conductivity type of the surface region may be selected to provide any of a number of different properties that may be desired in the device being treated. For example, the conductivity type arrangements illustrated in FIG- URES 3 and 4 are presently preferred in making photo devices since rectifying barriers of the type shown in these figures are relatively sensitive to light and the surface regions, therefore, tend to increase the photosensitivity of such devices.
Alternatively, instead of evaporating the selected impurity material on the surface of the device, the material may be deposited upon the surface in sufficient quantities by immersing the device in a liquid that contains dispersed ions of the selected material. For example, if a device such as the transistor heretofore described, after being etched, is immersed in a dilute solution of copper nitrate, copper ions will adhere to the surface of the device. When the device is subsequently heated at temperatures below about 700 C. the ions will diffuse into the wafer to form a p-type conductivity surface region. Conversely, arsenic ions may be deposited on and diffused into such a device to provide an n-type surface region.
When, in making the transistor device heretofore described, the impurity pellets are alloyed to the wafer, a portion of the impurity pellets evaporates and is deposited on the surface of the wafer to form a p-type region at the surface. Ordinarily, however, the region thus formed is relatively thick and is coated wiht a metallic layer. Such a thick region and, particularly, the metallic coating are detrimental in the operation of the device and are removed by the etching step described. Satisfactory results according to the invention may be achieved by etching away the coating and only partially etching away the surface region. This technique, however, is relatively diicult and the etching step is critical. Furthermore, the amount of etching required varies depending principally upon the time and temperature of heating in the alloy step and must be empirically determined for each particularly processing arrangement.
According to a second embodiment of the invention the surface recombination velocity of a semi-conductor body is minimized by means of a surface region having any one of the energy-level characteristics shown in FIGURES 1-4 but being discontinuous in form, as a mosaic. Such a surface region need not be as thin as the continuous surface regions heretofore described since it consists of discrete regions separated one from another and its lateral conductance is limited by its discontinuous nature rather than by its thickness.
A discontinuous surface lm may be provided by evaporating a relatively thick film of a selected impurity material on the surface of the semi-conductor body and heating the body and film at a relatively low temperature for a relatively long time. The film under such heating breaks up and the material of the film coagulates into isolated regions, or islands on the surface of the body. As a particular example, and referring to FIGURE 6, a transistor device 41, similar to the device heretofore described, may be treated by evaporating upon it a film of indium about 500 Angstroms thick. The device is then heated at about 300 C. for about thirty minutes or more to cause the evaporated material to migrate along the surface and to form itself into isolated, discrete islands 42 on the surface. Because of the relatively low temperature of heating, only minute quantities of the film material diffuse into the semi-conductor wafer and the depth of diffusion is small. There is thus formed a large number of discrete, isolated barrier regions dispersed over the surface of the semi-conductor body. At those portions of the surface which comprise the barrier regions, the surface recombination velocity is minimized. By suitable selection of materials, that is, by selecting an impurity material having a relatively low melting point and a relatively small diffusion coeicient in the semi-conductor, and by evaporating a lm of controlled thickness, preferably not more than about 500 Angstroms, the discrete barrier regions formed at the surface may be made not only relatively small but also great in number so that they occupy a relatively high proportion of the exposed surface.
There have thus been described improved semi-conductor devices having relatively low surface recombination velocities and methods of making such devices.
What is claimed is:
1. A semi-conductor device including a base of a crystalline semi-conductive material, emitter and collector electrodes in contact with said base; said base having a surface region adjacent at least one of said electrodes, said region being of high conductivity and low lateral conductance relative to the bulk of said base, and being of the same conductivity type as the bulk of said base and being separated therefrom by a rectifying barrier.
2. A semi-conductor device including a base of N-type semi-conductive germanium, emitter and collector electrodes in contact with said base; said base having an N-type semi-conductive surface region adjacent at least one of said electrodes, said region being of high conductivity and low lateral conductance relative to the bulk of said base, said region extending over substantially the entire exposed surface of said base.
3. A semi-conductor device including a base of P-type semi-conductive germanium, emitter and collector elec trodes in contact with said base; said base having a P-type semi-conductive surface region adjacent at least one of said electrodes, said region being of high conductivity and low lateral conductance relative to the bulk of said base.
4. A semi-conductor device including a base of a crystalline semi-conductive material, emitter and collector electrodes in contact with said base; said base having a surface region adjacent at least one of said electrodes, said region being of high conductivity and low lateral conductance relative to the bulk of said base, and being separated from the bulk of said base by a rectifying barrier, and extending over substantially the entire ex posed surface of said base and `being less than about Angstroms thick.
5. A semi-conductor device including a base of a crystalline semi-conductive material, emitter and collector electrodes in contact with said base; said base having a multiplicity of discrete surface regions adjacent at least one of said electrodes, said region being of high conductivity relative to the bulk of said base, said regions being separated `from the bulk of said base by rectifying barriers and occupying a substantial portion of the exposed surface of said `body.
6. A semi-conductor device including a base of a crystallin semi-conductive material, emitter and collector electrodes in contact with said base; said base having a discontinuous surface region adjacent at least one of said eletcrodes, said region being of high conductivity and low lateral conductance relative to the bulk of said base, said discontinuous surface region being separated from the bulk of said base by a rectifying barrier.
'7. A semiconductor device comprising a body of a crystalline semiconductive material having a pair of opposed surfaces, junction electrodes disposed in each of said surfaces to form rectifying junctions in said body, and a region of high conductivity and low lateral conductance covering at least one of said surfaces adjacent the electrode therein.
8. A semiconductor device comprising a body of n-type germanium having a pair of opposed surfaces, an emitter junction electrode disposed in one surface of said body to inject minority charge carriers into the bulk of said body, a collector junction electrode disposed in the opposed surface of said body to collect said charge carriers from the bulk of said body, and an n-type semiconductive surface of high conductivity and low lateral conductance relative to the bulk of said base disposed on at least one of said surfaces adjacent the electrode therein.
9. A semiconductor device according to claim 8 wherein said surface region extends over substantially the entire exposed surface of said body and is less than about 100 Angstroms thick.
I0. A transistor comprising a semi-conductive body of one conductivity type and having a given value of conductivity, tlze entire exposed surface of said body being of the same type as said one type but having a higher value of conductivity and a low lateral conductance, and a pair of electrode-forming masses fused to opposite surfaces with the higher conductivity of said body and diused within said body distances greater than the thickness of said surface layer of higher conductivity and producing wit/1in said body spaced zones of the opposite conductivity type.
ll. A semi-conductive device comprising a semi-conductive body having a portion of one conductivity type at a jirst value of conductivity, and electrode connections to said body including an electrode fused to said body and forming therewithtin a portion of the opposite conductivity type thereby to produce a rectifying connection, substantially all of the exposed surface portions of said semi-conductive body exhibiting said one type of conductivity but possessing a second, higher value of conductivity and a low lateral conductance, said rectifying connection being produced at a body portion at said first value of conductivity.
12. A semi-conductive device comprising a semi-conductive body having an interior portion of one conductivity type and a first lower value of conductivity and a diused surface portion Substantially surrounding said interior portion and also of said one conductivity type but at a second higher value of conductivity and a low lateral conductance, and means traversing said diffused surface portion and providing a rectifying connection to the interior portion of said semi-conductive body.
13. A semi-conductive device comprising a semi-conductive body having an interior portion of one conductivity type and a rst value of conductivity and a diused surface portion substantially surrounding said interior portion and also of said one conductivity type but at a second, higher value of conductivity and a low lateral conductance, and an electrode fused to said body and traversing said diused surface portion and forming a rectifying connection with said interior portion of said body.
J4. A semi-conductive device comprising a semi-conductive body having an interior portion of one conductivity type and a first lower value of conductivity, a surface portion substantially surrounding said interior portion and also of said one conductivity type but having a second higher value of conductivity and a low lateral conductance, and a rectifying connection to the interior portion of said semi-conductive body.
15. A semi-conductor device including a base of a crystalline semi-conductive material, a rectifying electrode in contact with said base; said base having a surface region adjacent said electrode, said region being of high conductivity and low lateral conductance relative to the bulk of said base and beting of the same conductivity type as the bulk of said base and being separated therefrom by a rectifying barrier.
16. A semi-conductor device including a base of a crystalline semi-conductive material, and a rectifying electrode in contact with said base; said base having a discontinuous surface region adjacent said electrode, said region being of high conductivity and low lateral conductance relative to the bulk of said base, said discontinuous surface region being separated from the bulk of said base by a rectifying barrier.
References Cited by the Examiner The following references, cited by the Examiner, are of record in the patented le of this patent or the original patent.
UNITED STATES PATENTS 2,524,035 10/1950 Bardeen et al. 298-6 2,560,792 7/1951 Gibney 14S-1.5 2,561,411 7/1951 Pfann 14S-1.5 X 2,589,658 3/1952 Bardeen et al. 317-235 2,597,028 5/1952 Pfann 14S-1.5 2,603,693 7/1952 Kircher 148-186 2,603,694 7/1952 Kircher 317-235 2,623,102 12/1952 Shockley 14S-1.5 X 2,770,761 11/1956 Pfann 317-235 DAVID L. RECK, Primary Examiner.
RAY K. WINDHAM, Examiner.
B. M. MULLIN, C. N. LOVELL, H. BIZOT,
Assistant Examiners.
US25952D 1954-04-01 Semi-conductor devices Expired USRE25952E (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US420401A US2843511A (en) 1954-04-01 1954-04-01 Semi-conductor devices
GB10949/54A GB766671A (en) 1954-04-01 1954-04-14 Improvements in or relating to semi-conductor materials

Publications (1)

Publication Number Publication Date
USRE25952E true USRE25952E (en) 1965-12-14

Family

ID=26247883

Family Applications (2)

Application Number Title Priority Date Filing Date
US25952D Expired USRE25952E (en) 1954-04-01 Semi-conductor devices
US420401A Expired - Lifetime US2843511A (en) 1954-04-01 1954-04-01 Semi-conductor devices

Family Applications After (1)

Application Number Title Priority Date Filing Date
US420401A Expired - Lifetime US2843511A (en) 1954-04-01 1954-04-01 Semi-conductor devices

Country Status (7)

Country Link
US (2) US2843511A (en)
AU (1) AU204456B1 (en)
BE (2) BE539649A (en)
CH (2) CH363416A (en)
DE (2) DE967322C (en)
GB (2) GB766671A (en)
NL (3) NL94819C (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1207012B (en) * 1955-12-24 1965-12-16 Telefunken Patent Semiconductor component with an injecting and a collecting electrode
US3145328A (en) * 1957-04-29 1964-08-18 Raytheon Co Methods of preventing channel formation on semiconductive bodies
US3111611A (en) * 1957-09-24 1963-11-19 Ibm Graded energy gap semiconductor devices
US3065392A (en) * 1958-02-07 1962-11-20 Rca Corp Semiconductor devices
US2956913A (en) * 1958-11-20 1960-10-18 Texas Instruments Inc Transistor and method of making same
US3132057A (en) * 1959-01-29 1964-05-05 Raytheon Co Graded energy gap semiconductive device
NL113824C (en) * 1959-09-14
DE1151605C2 (en) * 1960-08-26 1964-02-06 Telefunken Patent Semiconductor component
US3094633A (en) * 1960-09-29 1963-06-18 Itt Semiconductor multiplanar rectifying junction diode
US3242392A (en) * 1961-04-06 1966-03-22 Nippon Electric Co Low rc semiconductor diode
US3341377A (en) * 1964-10-16 1967-09-12 Fairchild Camera Instr Co Surface-passivated alloy semiconductor devices and method for producing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL144803C (en) * 1948-02-26
US2524035A (en) * 1948-02-26 1950-10-03 Bell Telphone Lab Inc Three-electrode circuit element utilizing semiconductive materials
US2589658A (en) * 1948-06-17 1952-03-18 Bell Telephone Labor Inc Semiconductor amplifier and electrode structures therefor
BE489418A (en) * 1948-06-26
NL82014C (en) * 1949-11-30
US2561411A (en) * 1950-03-08 1951-07-24 Bell Telephone Labor Inc Semiconductor signal translating device
BE509110A (en) * 1951-05-05
US2770761A (en) * 1954-12-16 1956-11-13 Bell Telephone Labor Inc Semiconductor translators containing enclosed active junctions

Also Published As

Publication number Publication date
GB804000A (en) 1958-11-05
BE539649A (en)
BE536988A (en)
NL94819C (en)
NL196136A (en)
CH356209A (en) 1961-08-15
GB766671A (en) 1957-01-23
CH363416A (en) 1962-07-31
DE1047944B (en) 1958-12-31
US2843511A (en) 1958-07-15
NL197918A (en)
DE967322C (en) 1957-10-31
AU204456B1 (en) 1955-09-29

Similar Documents

Publication Publication Date Title
US3196058A (en) Method of making semiconductor devices
US3028655A (en) Semiconductive device
US2811653A (en) Semiconductor devices
US2790940A (en) Silicon rectifier and method of manufacture
US3078195A (en) Transistor
US3249831A (en) Semiconductor controlled rectifiers with a p-n junction having a shallow impurity concentration gradient
US3341755A (en) Switching transistor structure and method of making the same
US2972092A (en) Semiconductor devices
USRE25952E (en) Semi-conductor devices
US2861229A (en) Semi-conductor devices and methods of making same
US2994018A (en) Asymmetrically conductive device and method of making the same
US2836523A (en) Manufacture of semiconductive devices
US3451866A (en) Semiconductor device
US3445735A (en) High speed controlled rectifiers with deep level dopants
US3381188A (en) Planar multi-channel field-effect triode
US2857527A (en) Semiconductor devices including biased p+p or n+n rectifying barriers
US2829075A (en) Field controlled semiconductor devices and methods of making them
US3041508A (en) Tunnel diode and method of its manufacture
US3132057A (en) Graded energy gap semiconductive device
US3349299A (en) Power recitfier of the npnp type having recombination centers therein
US3316131A (en) Method of producing a field-effect transistor
US3244566A (en) Semiconductor and method of forming by diffusion
US3466512A (en) Impact avalanche transit time diodes with heterojunction structure
US3225272A (en) Semiconductor triode
US3111611A (en) Graded energy gap semiconductor devices