USRE25527E - Gates - Google Patents

Gates Download PDF

Info

Publication number
USRE25527E
USRE25527E US25527DE USRE25527E US RE25527 E USRE25527 E US RE25527E US 25527D E US25527D E US 25527DE US RE25527 E USRE25527 E US RE25527E
Authority
US
United States
Prior art keywords
read
counter
tape
setting
skew
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Publication date
Application granted granted Critical
Publication of USRE25527E publication Critical patent/USRE25527E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/20Signal processing not specific to the method of recording or reproducing; Circuits therefor for correction of skew for multitrack recording

Definitions

  • This invention relates to a deskewing system[, and more particularly to a system for reading high density records on magnetic tape in which the problem of skew is encountered in an aggravated form.
  • the bits representing magnetically recorded characters should be disposed on the record tape in a line perpendicular to the length of the tape, and, upon the reading of the tape, such bits should be read simultaneously. It has been known, however, that the stated ideal cannot be achieved because of misalignment between the rcad-writc heads and the tape during the recording and reproducing operations. Other factors, such as variation in tape speed, as well as electrical skew, contribute to the disposition of bits upon tape and the reading thereof in a somewhat serial order in respect to the several transversely recorded characters. The phenomenon is known as skew, which may be defined as the difference in time measured between several read-back bits of a charactcr. The total skew is the sum of the skew created when writing n character on tape and the skew created when reading the same character from tape.
  • Magnetic tape having low density recording thereon i.e., 500 bits per inch or less
  • magnetic tape having low density recording thereon can be easily read, despite skew, with relatively simple reading and input equipment. Accordingly, it has been customary to read the bits of a character into an input register, one character at a time, while the bit positions of the register are held open sufficiently long to permit the storage of an entire character despite the somewhat serial arrival of the bits constituting the character.
  • all the skewed bits of: a character arc received in an input register, as stated, it is a relatively simple matter to simultaneously transfer the bits of a character from the input register to a line register or to other receiving equipment of a computer or data processing system.
  • the broad objective of this invention to provide a tape reading and input system which is capable of accurately reading and receiving data recorded on magnetic tape at high density] Regardless of the amount of skew encountered in reading a tape, the information that is recorded can be recovered if the incoming information is organized so that it can be recognized. Accordingly, the present invention provides means whereby a high density recording can be read from tape and the bits of each character are rendered intelligible to the system equipment.
  • the invention contemplates a multi-bit ice skew buffer for each longitudinal [tape] channel in conjunction with a read-in counter for each buffer, and a read-out counter, constituting a system in which [tape] information is read into and out of the skew buffers sequentially under control of the sequentially advanced read-n and read-out counters.
  • the deskewing system herein has imposed thereon a number of conditions which characterize its nature: it must determine when a bit period is occurring and sample the read amplifiers during such period; it must enter the sampled tape amplier output into the proper position of a skew buifer where it is stored until all tracks have been sampled; it must determine which position of the skew buffer is to transfer into an output register; and it must determine when to transfer a character from the skew buffers to the output register.
  • FIG. 1 is a diagrammatic illustration, in block form, of the deskewing system oi the invention, indicating the circuits associated with a pair of track channels to illustrate the organization as it would exist for any desired number of channels;
  • FIG. 2 is a block diagram of read-in gates associated with each tape track
  • FIG. 3 is a block diagram ci a read-in counter associated with each tape track
  • FIG. 4 is a block diagram of the advancing circuits associated with each readin counter
  • FIG. 4A is a timing diagram pertaining to a clock and advance pulse utilized in the system
  • FIG. 5 is a block diagram of four positions of a skew buffer und readout gates associated therewith, these positions being representative of any desired number;
  • FIG. 6 is a block diagram of a comparing circuit
  • FIG. 7 is a block diagram ofthe advance circuits associated with the read-out counter herein;
  • FIG. 7A is a timing diagram of the skew cycle pulses
  • FiG. 8 is a block diagram of a read-out decoder
  • FIG. 9 is a block diagram of the read-out counter.
  • FIG. l0 is a timing chart related to the principal components of the system.
  • a time reference is needed to determine when a bit period occurs, i.c., the time during which a bit may be expected. This reference is automatically provided if a definite output of ones and zeros is read from tape and no dropout of bits occurs.
  • the tape reading amplifiers emit an output. pulse only when a l s read from tape.
  • clock pulses are provided. The repetition rate of the clock pulses is made to vary with the speed of the tape.
  • variable frequency clock 10 which may be of any convenient construction as, for example, the variable frequency device disclosed in the concurrently tiled application of Ernest G. Newman, Serial No. 745,731, entitled Magnetic Recording System.
  • the repetition rate of the pulses from the variable frequency clock 10 is controlled by a time comparison between the clock pulses and the ones being read oit the tape. ln order to provide for the possibility of a long sequence of zeros on tape, synchronizing pulses are recorded upon the tape at regular intervals. Thus, for example, each fifth bit recorded along the tape channels may be a synchronizing bit.
  • the spacing of the synchronizing bits will depend on the character of the variable frequency clock memory, it being contemplated that some clocks may permit much greater spacing between the synchronizing bits.
  • a phase or frequency difference between the output of thc clock and the information read from the tape is utilized to correct the repetition rate of the clock.
  • variable frequency clock has a memory system which maintains the clock repetition rate at its previously established value in case long gaps occur in the tape data being read. lf the variations in tape speed are small, only a slight change in the repetition rate of the clock may be expected during an average drop-out of information. Thus, at the end of any gap in information, the clock pulses will be in synchronism with the information pulses.
  • the system herein provides a variabile frequency clock of the stated characteristics for cach tape reading channel.
  • the clock 1t) is associated in the illustration of FIG. l with the reading channel for the first tape track, while the clock 10h is associated with the last reading channel.
  • Each clock is synchronized by the information read from its own track and its own output pulse is used to sample the tape amplifier output during the bit period.
  • each read-in channel has therein a skew buffer 12 (see also FIG. 5), a plurality of readin gates 14 (see also FIG. 2) associated with each skew buffer, a read-in counter 16 (see also FlG. 3), comparing circuits 18 (see also FIG. 6) and read-out gates 20 (see also FIG. 5).
  • the fact that each of the read-in channels has identical components in its organization is indicated by the components 12u, 14n, 1an, 18a and 20u in the read-iii circuits for tape track N.
  • the several readin channel circuits have associated therewith certain circuits which are common to all of the channels. Thus, it can be seen by reference to FIG.
  • comparing circuits 18-18n for all of the channels provide inputs to a common AND circuit 22 (see also FlG. 6); that a common read-out counter 24 (see also FlGS. 7 and 9) delivers its output to the comparing circuits liti-18u; that a common read-out decoder 26 (see also FIG. 8) delivers a pulse to each of the read-out gate assemblies Ztl-20m and that the output from thc common AND circuit 2() is utilized to energize the skew cycle control circuits 28 which provide common controlling impulses for the several read channels.
  • the read-in counters 1li-16h are initially set to their first position, such that the read-in gates 1414n are conditioned to store the first bit of information in the rst positions of the skew buffers.
  • a pulse from the variable frequency clocks lil- Mln will be transmitted to respective AND circuits 11-l1n and there sample the signals from their associated tape amplifiers (it being remembered that the several channels operate asynchronously).
  • the tape signal is a l
  • the l-bit line of the read-in gate l is energized such that a l is stored in the rst position of the ske'w buffer or buffers associated with the tape track or tracks in which the 1 was sensed.
  • the tape signal on any of the input channels is a 0, nothing will be stored in the skew buffer or buffers associated with the channel or channels on which the 0 was sensed.
  • advance pulses are generated in the advance control circuits 30-30n which advance the respective read-in counters 16-16n one position such that triggers T2 and TA thereof are turned On, thereby conditioning the circuits of the next higher read-in gate for the storage of the next information bits into the second position of the skew buffers 12 2n.
  • each read-in channel has its own read-in counter, its read-iii gates, and skew buffer and the remainder of the system has no control over the read-in operation, information can be read into the skew buffers at any time.
  • the several skew bui'crs 12- 2n arc provided with a sutticient number of bit storage triggers to accommodate the most aggravated skew condition.
  • the skew buiiers have been illustrated as comprising l?. trigger storage positions. This is an arbitrary capacity selected for the purpose of simplifying the disclosure. it is contemplated that the storage capacity of the several skew buffers in each case be sufficient to control whatever skew condition may be encountered.
  • bits will be continuously read into and out of skew buffers, their bit capacity will exceed the number of bits they will be required to store at any given time.
  • the read-out counter 24 is sct to its first position such that thc read-out gate for the first bulier position is conditioned.
  • a skew cycle is initiated. During this cycle, all bits of the tirst character which are in the ⁇ first position of the skew bulfers will be transferred into the output register 32. Then all the first positions of the skew buffers will be reset.
  • the read-out counter 24 is advanced to its second position such that the read-out gates for the second position of the skew bulers are conditioned.
  • the read-out counter 24 selects the appropriate one of the read-out gates 20-20n for all tracks and in this manner t'nc proper character is transferred into the output register 32.
  • both the read-in counters 16--16n and the readout counter 24 are set to their lirst position.
  • the read-in counter of every track is compared with the read-out counter 24 in the comparing circuits 18-18n.
  • the read-in counters of all tracks are greater than the read-out counter 24, it indicates that all of the bits of the character have been stored and that the character may, therefore, ⁇ be read out.
  • the comparing circuit for each track will indicate that the track is ready to be read out and a pulse indicative of the fact is transmitted to the common AND circuit 22.
  • the skew cycle control circuits 28 also emit a signal Reset Selected Skew Butler Position which is utilized to reset the position of the skew bulTers from which the character has been read. Also, the skew cycle control circuits 28 produce a signal Advance Read-Out Counter which serves to advance the read-out counter 24 and nally, the skew cycle control circuits 28 may also produce a signal Output Register to Output Buffer Register by which transfer of characters in the output register 32 may be gated therefrom into system circuits such as, for example, an output buii'er register (not shown).
  • the read-in counter 16 (see FIG. 3) is made up of two ring type counters consisting, respectively, of groups of bistable trigger elements T1 through T4 and TA through TC.
  • the two rings are used in conjunction with one another to condition a decoding matrix; in this case, the read-in gates of FIG. 2.
  • the advance and reset pulses advance the ring made up of triggers T1 through T4.
  • an advance pulse is delivered to the second ring composed of the triggers TA through TC to advance it one position.
  • the read-in counter 16 has only seven count outputs, therefore, the outputs of the counter must be decoded to produce an output count of l2 which corresponds to the bit storage positions of the skew butter 12.
  • the read-in counter of FIG. 3 should, therefore, be considered in connection with the read-in gates 14 of FIG. 2.
  • the read-in gates constitute a matrix of coincident circuits which receive the outputs from the triggers T1 through T4 and the triggers TA through TC of the read-in counter such that a count of l2 is obtained from the read-in gates.
  • Both the read-in counter' of FIG. 3 and the read-out counter of FIG. 9 should be considered in connection with their respective advance and reset circuits of FIGS. 4 and 7. More will be said of these advance and reset circuits at a later point herein. It is presently suiiicient to say that the diagrammatic illustration of the read-in counter 16 of FIG. 3 and the read-out counter 24 of FIG. 9 have been simplified to show only the entry of advance and reset pulses and do not include the coincident logic of the advance and reset circuits of FIGS. 4 and 7, respectively. The manner in which the AND circuits of FIGS. 4 and 7 combine respectively with the circuits of FIGS. 3 and 9 will be apparent when it is appreciated that the triggers T1 through T4 and TA through T11 of FIG.
  • FIGS. 4 and 7 are the same as the triggers T1 through T., and TA through TC of FIG. 3, and that the triggers T1 through T1 and TA through TC of FIG. 7 are the same as the triggers T1 through T4 and TA through Tc of FIG. 9.
  • the purpose and operation of the advancing and reset circuits of FIGS. 4 and 7 will be dwelt on at greater length hereinafter.
  • the comparing circuits of FIG. 6 comprise six AND circuits which are, respectively, adapted to receive the output of the several corresponding stages ot the read-in counter 16 and the read-out counter 24.
  • the comparing circuit of FIG. 6 is designed to emit a signal when all of a particular position in the skew buffer is completely filled. To perform this function, a comparison is made between the setting of the read-in counter 16 for each channel and the setting of the read-out counter 24.
  • the read-in counter initially advances, it will give an indication to its comparing circuit by activating one of the two-way AND circuits of its comparing unit. Essentially it must be determined that the setting of the read-in counter is greater than the setting of the read-out counter.
  • each comparing circuit as noted by reference to FIG. 6, however, utilizes the output of only six of these stages for the purpose of its comparisons.
  • the read-in counter has made a complete cycle, i.e., when it has counted to its full capacity and has started to recycle, it may appear to the circuits controlled thereby that the read-out counter is greater than the read-in counter, when, in fact, this is not the case.
  • the read-in counter has an overllow trigger TOF which is turned On when the counter begins to recycle. The output from the overflow trigger is fed directly to the OR circuit in the comparing unit.
  • the overtiow trigger TOF When the read-out counter is completely cycled, the overtiow trigger TOF is turned Off.
  • the overtlow trigger therefore, serves to indicate that the read-in counter is greater than the read-out counter in the case where the read-in counter has cycled but the read-out counter has not.
  • the read-in counters and the read-out counters are made up of a pair of rings which characteristically are coupled in cascade such that only one position of the counter will be On at any given time.
  • the first trigger position being On, it will turn the second trigger On.
  • This type of advance continues through the ring operation. It can he seen, therefore, that immediately after the advance pulse, two triggers will be 0n.
  • the resetmodule will come along and leave only the newly set trigger On.
  • the logic of the trigger is such that output may be taken from either the On side or from the Off side. or from both sides.
  • the On side will produce a positive indication and the Off side will produce a negative indication.
  • one side of the trigger is Ofi its other side is conducting, or On, thus, the outputs are available in complement form.
  • the reset pulse is also transmitted through AND circuits whose other input is the output of the next following trigger, i.e., the trigger which has just been turned On.
  • a multiposition storage register for [the reading channel for each tape track,] cach channel, a read-in counter operative with cach register, means for entering [tape] channel originated pulses into successive positions of said registers under control of [a] the read-in counter individual to each register, a read-out counter, [means for comparing the setting of each of said read-in counters with the setting of said read-out counten] means for determining when the setting of each of said read-in counters is greater than the setting of said read-out counter, and means under control of said last named means for simultaneously reading from said registers the bits of a single character when said determining means indicates that the setting of each of said read-in counters is greater than the setting of said read-out counter.
  • a reading channel for each tape track a multi-position storage register for the reading channel for each tape track, at least one read-in counter, means for entering tape originated pulses into successive positions of said registers under control of [a] the read-in counter individual to each register, a read-out counter, means for comparing the setting of each of said read-in counters with the setting of said read-out counter, a coincidence circuit for determining when the setting of each of said read-in counters is greater than the setting of said read-out counter, inputs from each of said comparing means to said coincidence circuit, and means under control of an output from said coincidence circuit for simultaneously reading from said registers the bits of a single character when said determining means indicates that the setting of each of said read-in counters is greater than the setting of said read-out counter.
  • a reading channel for each tape track multi-position storage register for the reading channel for each tape track, means individual to each reading channel controlled by synchronizing pulses from a tape being read for generating pulses defining bit entry periods, a read-in counter adapted to control entry of tape originated pulses on said channels into their respective register positions, a connection hclll Ween said synchronizing pulse controlled means and its related counter whereby said counters are advanced at each bit entry period, a read-out counter, means for comparing the setting 0i each of said read-in counters with the setting of said read-out counter, means for determining when the setting of each of said read-in counters is greater than the setting of said read-out counter, and means under control of said last named means for simultaneously reading from said registers the bits of a single character when said determining means indicates that the setting of each of said
  • a reading channel for each tape track In a system for reading bits constituting the characters from a multiplicity of parallel channels, a multi-position storage register for [the reading channel for each tape tracto] cach cha/mel, a phtrcrtity of read-in counters, means for entering [tape] channel originated pulses directly into successive positions of said registers under control oi a] thtI read-in counter individual to each register, a read-out counter, [means for comparing the setting of each of said read-in counters with the setting oi said read-out countcrl means for determining when the setting of each of said read-in counters is greater than the setting of said read-out counter, means under control of said last named means for simultaneously reading from said registers the bits of a single character when said determining means indicates that the setting of each of said read-in counters is greater than the
  • a multi-position storage register for [the reading channel for each tape track] cach channel a plurality of renti-in counters means for entering [tape] channel originated pulses into successive positions of said registers under control of [a] the read-in counter individual to each register, a read-out counter, [means for comparing the setting of each of said read-in counters with the setting of said read-out eounter,] means for determining when the setting of each of said read-in counters is greater than the setting of said read-out counter, means under control of said last named means for simultaneously reading from said registers the bits of. a single character when said determining means indicates that the setting of each of said read-in counters is greater than the setting of said read-out
  • a reading channel for each tape track a multi-position storage register composed of bistable electronic elements for the reading channel for each tape track, means for entering tape originated pulses into successive positions of said registers under control of a read-in counter individual to each register, a read-out counter, means consisting of a plurality of coincidence circuits for comparing the setting of each of said read-in counters with the setting of said read-out counter, an additional coincidence circuit for receiving the output oi said comparing means, and means under control of said additional coincidence circuit for simul taneously reading from said registers the bits of a Single character when said additional coincidence circuit emits an output to indicate that the setting of each of said readin counters is greater than the setting of said read-out counter.
  • a reading channel for each tape track a multi-position storage register composed of bistable electronic elements for the reading channel for each tape track, means for entering tape originated pulses into successive positions of said registers under control of a read-in counter individual to each register, a read-out counter, means consisting of a plurality of coincidence circuits for comparing the setting of each of said read-in counters with the setting of said read-out counter, an additional coincidence circuit for receiving the output of said comparing means, means under control of said additional coincidence circuit for simultaneously reading from said registers the bits of a single character when said additional coincidence circuit emits an output to indicate that the setting of each of said readin counters is greater than the setting of said read-out counter, and means for advancing said read-out counter after each character read-out operation.
  • a reading7 channel for each tape track a multi-position storage register composed of bistable electronic elements for the reading channel for each tape track, means for entering tape originated pulses into successive positions of said registers under control of a read-in counter individual to each register, a read-out counter, means consisting of a plurality of coincidence circuits for comparing the setting of each of said read-in counters with the setting of said read-out counter, an additional coincidence circuit for receiving the output of said comparing means, means under control of said additional coincidence circuit for simultaneously reading from said registers the bits of a single character when said additional coincidence circuit emits an output to indicate that the setting of each of said readin counters is greater than the setting of said read-out counter, and means also under control of said last named means for resetting the register positions from which the bits of a character have been read.
  • a reading channel for each tape track a multi-position storage register composed of bistable electronic elements for the reading channel for each tape track, means for entering tape originated pulses into successive positions of said registers under control of a read-in counter individual to each register, a read-out counter, means consisting of a plurality of coincidence circuits for comparing the setting of each of said read-in counters with the setting of said read-out counter, an additional coincidence circuit for receiving the output of said comparing means, means under control of said additional coincidence circuit for simultaneously reading from said registers the bits of a single character when said additional coincidence circuit emits an output to indicate that the setting of each of said readin counters is greater than the setting of said read-out counter, and means also under control of said last named means for advancing said read-out counter.
  • a multiposition storage register for each channel, means for entering channel originated pulses resulting from said bits into predetermined positions of their associated registers, a rend-out counter common to all of said storage registers and having n setting associated with each storage register position, and means under control of said rend-out counter for enabling read-out of individual groups of predetermined parallel pulses before all positions of any storage register have been lled.
  • l2. ln o system for obtaining parallel alignment for each group of parallel-recorded bits received from a multiplicity of parallel channels a multi-position storage register for each channel, means for entering channel originated bits into successive positions of their associated registers', n rend-out counter common to all of said storage registers and having a setting corresponding with cach storage register position, means under control of said read-out Counter for .separately controlling7 a readout of Vietnamese parallel-recorded channel originated pulses immediately after erich group has filled all similar positions in the storage registers, means for resetting only the register positions for cach rend-out group without resetting other register positions, ond means operative when the slorogc registers are read out for changing the setting of the read-out counter.
  • a multiposition storage register for Vietnamese channel a read-in counter associated with each channel, means for entering channel originated pulses into positions of the storage register for the associated channel under control of its associated read-in counter, a read-ont counter common to all of said storage registers and having a setting associated with cach storage register position, and means under control of said read-ont counter and operative when the channel originated pulses have filled a single equivalent position of the storage register in cach channel for simultaneously reading out the single position of the storage register for the associated setting of the readout counter.
  • a multiposition storage register for each channel having o setting associated with each storage register position for each channel, read-in means for entering channel originoted pulses into positions of the storage register for the associated setting of the read-in counter for each channel, means operative when a storage register reads in for changing the setting of the associated read-in courtier, a read-out counter common to all of said storage registers and having a setting associa!4 cd with erich storage register position, and means under control of said read-out counter and operative to read out the channel originated pulses filling a similar position in each of the storage registers of said parallel channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Description

March 3, 1964 T. G. FLoRos DEsKEwING SYSTEM '7 Sheets-Sheet 1 Original Filed June 30. 1958 s |||em s wm m Y 5 Q mm .m z @N m F n w ml Tl w m s. m w w m E n um x E Ez 2222 D ||1 |111! m -Il Il T s Y 1| iIlN B z NNN L 2e f z z cm 5m E z g :2 :2 o :Q mwSn. w moz o mmi om z L E: s P g z z lmz EN :NT w N w S @v z @v 5N m5 om g l1 w Z z .ZHHHHHHHMNMJN Q March 3, 1964 T, G, FLOROS Re. 25,527
DESKEWING SYSTEM Original Filed June 30, 1958 7 Sheets-Sheet 2 FIG. 2
RTcTRA A Ll A A A A 1 l A 5 s ST0 sKEw Y BUTTER W r-* RosA RLcTRR A H A A A A i A 9 To T1 T2 R1. cTRc Aw A A A A j RT. cTRT RT. cTRz RT. cTRa R1. cTR4 RT. RT Rl 1, RT. GATES GATES GATES GATES coRR cRT cnMR CRT com? cRT. Tom), CRT Ts TI T2 '|'E5 OFF T4 N RuvANcE 1 1 1 A RESET RLcATEsa R1 CoMRcRT GATES j- A- coMRlcRT. TA TB Tc TOF I A A l TOFOvERELRw TRTccER March 3, 1964 T. G. FLoRos Re- 25,527
DESKEWING SYSTEM Original Filed June 30, 1958 7 Sheets-Sheet 3 RESET *ADVANCE CLOCK PULSE FIG. 4
CLOCK PULSE ADVANCE ADV I F| G 4o RESET R March 3, 1964 T. G. FLoRos DEsKEwING SYSTEM 'T Sheets-Sheet 4 Original Filed June 30, 1958 March 3, 1964 T. G. FLoRos Re. 25,527
DESKEWING SYSTEM Orignl Filed June 30, 1958 '7 Sheets-Sheet 5 R0. RO. RO. RO. CSC. GATES CSC. GATES 0.0. GATES Il()A GATES 0.o. DATES Dc. DATES A RESET ALL ovERELDw TDR.
SKT-:w CYCLE PULSE RESET ALL ovERELDw TGR ITL ADVANCE READ DDT cTR |+2| |+3| RESET READ DDT DTR rm FIG. 7G
im NDTEI PULSE wTDTH OAD SED,
March 3, 1964 T. G. FLoRos Re 25,527
DESKEWING SYSTEM Original Filed June 30, 1958 'T Sheets-Sheet 6 REsET RESET F G 8 To AEETFT ALLRFT To AEL5 ALEM TUALUEB R0. BATES BUFFER RB. GATES BUFFER RB. BATES RESET Ros Fos l ALLTFB A +2 A A +`2 A A +2 A BUFFER RUBTRT i i f Pos TBALLTFE RESET ToALLTFB RESET TUALLTFTU RUBATES ALLEZ R.o.cATEs mi RBBATEs BUFFER BUFFER RESU E A s A. A A of A A MEMO +`2 LA 2 BUFFER RBBTB2 1E i 1 P05 To ALEM To ALLFFT To ALLFFTT RUUATEB BUFFER RBBATES BUFFER RBBATEB RESET A Aj A ASwA AME*EH +2 +2 +2 BUFFER RUCTRB 1 F Pos To ALL# 4 ALLFFA To ALLBEB ALL# B To ALL#T2 R.0. GATES BUFFER R.0.GATES BUFFER R.0. GATES RESET +`2 +'2 i?, BUFFER RBBTRA f 1 Pos R.o.cTRA RBCTRB Ro. cTRc \26 To REABoUT DEcUUER T4 OEE T2 T3 T4 AUvANcE+2 l f REBET+4 & V 'E J To ALL coUPARE cRTs 24 To ALL L COMPARE cRTs FIG.9 TA UEE TB W TC Y TO READOUT DECODER March 3, 1964 Original Filed June 30. 1958 TRACK TRACK 4* N A READ AMP vFc PUESE uUNE" Bn SKEW BUFFER PDS, 1
S PUSl 2 Pos. 3
PoS. A`
READ IN CTR E COMPARE CKT.
READ OUT CTR,
POS, 4
READ IN CTR k COMPARE CKT.
SKEW CYCLE TRANS SKEW BUFF RESET sAEw UUEE ADVANCE READ OUT CTR,
T. G. FLoRos Re. 25,527
DESKEWING SYSTEM 7 Sheets-Sheet 7 F I G 1 O |1lf`1-L 0 [-11 0 IL n n n n n n n n n n J F L n n n I'l Vl j Jl n Il United States Patent O 25,527 DESKEWING SYSTEM Theodore G. Flores, Poughkeepsie, N.Y., assigner t0 internationaal Business Machines Corporation, `New York, NX., a corporation of New York Original No. 2,92l,296, dated Jan. 12, 1960, Ser. No. 745,501, June 30, 1958. Application for reissue May 3, 1961, Ser. No. 107,605
14 Claims. (Cl. S40-172.5)
Matter enclosed in heavy brackets [Il appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
This invention relates to a deskewing system[, and more particularly to a system for reading high density records on magnetic tape in which the problem of skew is encountered in an aggravated form.
Ideally, the bits representing magnetically recorded characters should be disposed on the record tape in a line perpendicular to the length of the tape, and, upon the reading of the tape, such bits should be read simultaneously. It has been known, however, that the stated ideal cannot be achieved because of misalignment between the rcad-writc heads and the tape during the recording and reproducing operations. Other factors, such as variation in tape speed, as well as electrical skew, contribute to the disposition of bits upon tape and the reading thereof in a somewhat serial order in respect to the several transversely recorded characters. The phenomenon is known as skew, which may be defined as the difference in time measured between several read-back bits of a charactcr. The total skew is the sum of the skew created when writing n character on tape and the skew created when reading the same character from tape.
Magnetic tape having low density recording thereon, i.e., 500 bits per inch or less, can be easily read, despite skew, with relatively simple reading and input equipment. Accordingly, it has been customary to read the bits of a character into an input register, one character at a time, while the bit positions of the register are held open sufficiently long to permit the storage of an entire character despite the somewhat serial arrival of the bits constituting the character. When all the skewed bits of: a character arc received in an input register, as stated, it is a relatively simple matter to simultaneously transfer the bits of a character from the input register to a line register or to other receiving equipment of a computer or data processing system.
Tapes having recording density of more than 5000 bits per inch in a large number of parallel tracks on tape, are now visualized. At a recording density of 1G00 bits per inch or more, the problem presented by skew becomes more troublesome such that conventional data input equipment is no longer adequate to the problem. In the conventional deskewing method, a character gate of xed length is started by the arrival of the first bit of the character. In the high density tape system envisioned herein the bit period is much smaller than the total skew and the character gate method is, therefore, not feasible.
[It is, therefore, the broad objective of this invention to provide a tape reading and input system which is capable of accurately reading and receiving data recorded on magnetic tape at high density] Regardless of the amount of skew encountered in reading a tape, the information that is recorded can be recovered if the incoming information is organized so that it can be recognized. Accordingly, the present invention provides means whereby a high density recording can be read from tape and the bits of each character are rendered intelligible to the system equipment.
Broadly stated, the invention contemplates a multi-bit ice skew buffer for each longitudinal [tape] channel in conjunction with a read-in counter for each buffer, and a read-out counter, constituting a system in which [tape] information is read into and out of the skew buffers sequentially under control of the sequentially advanced read-n and read-out counters.
Essentially, the deskewing system herein has imposed thereon a number of conditions which characterize its nature: it must determine when a bit period is occurring and sample the read amplifiers during such period; it must enter the sampled tape amplier output into the proper position of a skew buifer where it is stored until all tracks have been sampled; it must determine which position of the skew buffer is to transfer into an output register; and it must determine when to transfer a character from the skew buffers to the output register.
How the invention herein fulfills its objectives and requirements will become clear from a perusal of the following description when read in light of the drawings forming a part hereof, in which drawings like reference numerals identify like parts, and in which:
FIG. 1 is a diagrammatic illustration, in block form, of the deskewing system oi the invention, indicating the circuits associated with a pair of track channels to illustrate the organization as it would exist for any desired number of channels;
FIG. 2 is a block diagram of read-in gates associated with each tape track;
FIG. 3 is a block diagram ci a read-in counter associated with each tape track;
FIG. 4 is a block diagram of the advancing circuits associated with each readin counter;
FIG. 4A is a timing diagram pertaining to a clock and advance pulse utilized in the system;
FIG. 5 is a block diagram of four positions of a skew buffer und readout gates associated therewith, these positions being representative of any desired number;
FIG. 6 is a block diagram of a comparing circuit;
FIG. 7 is a block diagram ofthe advance circuits associated with the read-out counter herein;
FIG. 7A is a timing diagram of the skew cycle pulses;
FiG. 8 is a block diagram of a read-out decoder;
FIG. 9 is a block diagram of the read-out counter; and
FIG. l0 is a timing chart related to the principal components of the system.
When information is read from magnetic tape into a register, a time reference is needed to determine when a bit period occurs, i.c., the time during which a bit may be expected. This reference is automatically provided if a definite output of ones and zeros is read from tape and no dropout of bits occurs. In accordance with the well known and widely used non-return to zero magnetic recording system, however, the tape reading amplifiers emit an output. pulse only when a l s read from tape. In order to provide a definite output when zeros are read or when bit drop-out occurs, clock pulses are provided. The repetition rate of the clock pulses is made to vary with the speed of the tape. This function is accomplished in the present invention by utiliizng a variable frequency clock 10 which may be of any convenient construction as, for example, the variable frequency device disclosed in the concurrently tiled application of Ernest G. Newman, Serial No. 745,731, entitled Magnetic Recording System.
The repetition rate of the pulses from the variable frequency clock 10 is controlled by a time comparison between the clock pulses and the ones being read oit the tape. ln order to provide for the possibility of a long sequence of zeros on tape, synchronizing pulses are recorded upon the tape at regular intervals. Thus, for example, each fifth bit recorded along the tape channels may be a synchronizing bit. The spacing of the synchronizing bits will depend on the character of the variable frequency clock memory, it being contemplated that some clocks may permit much greater spacing between the synchronizing bits. A phase or frequency difference between the output of thc clock and the information read from the tape is utilized to correct the repetition rate of the clock. The variable frequency clock, as suggested above, has a memory system which maintains the clock repetition rate at its previously established value in case long gaps occur in the tape data being read. lf the variations in tape speed are small, only a slight change in the repetition rate of the clock may be expected during an average drop-out of information. Thus, at the end of any gap in information, the clock pulses will be in synchronism with the information pulses.
As indicated in FIG. l, the system herein provides a variabile frequency clock of the stated characteristics for cach tape reading channel. Thus, the clock 1t) is associated in the illustration of FIG. l with the reading channel for the first tape track, while the clock 10h is associated with the last reading channel. Each clock is synchronized by the information read from its own track and its own output pulse is used to sample the tape amplifier output during the bit period.
As shown in FIG. l, each read-in channel has therein a skew buffer 12 (see also FIG. 5), a plurality of readin gates 14 (see also FIG. 2) associated with each skew buffer, a read-in counter 16 (see also FlG. 3), comparing circuits 18 (see also FIG. 6) and read-out gates 20 (see also FIG. 5). The fact that each of the read-in channels has identical components in its organization is indicated by the components 12u, 14n, 1an, 18a and 20u in the read-iii circuits for tape track N. The several readin channel circuits have associated therewith certain circuits which are common to all of the channels. Thus, it can be seen by reference to FIG. 1 that the comparing circuits 18-18n for all of the channels provide inputs to a common AND circuit 22 (see also FlG. 6); that a common read-out counter 24 (see also FlGS. 7 and 9) delivers its output to the comparing circuits liti-18u; that a common read-out decoder 26 (see also FIG. 8) delivers a pulse to each of the read-out gate assemblies Ztl-20m and that the output from thc common AND circuit 2() is utilized to energize the skew cycle control circuits 28 which provide common controlling impulses for the several read channels.
The read-in counters 1li-16h are initially set to their first position, such that the read-in gates 1414n are conditioned to store the first bit of information in the rst positions of the skew buffers. When the first bit period occurs, a pulse from the variable frequency clocks lil- Mln will be transmitted to respective AND circuits 11-l1n and there sample the signals from their associated tape amplifiers (it being remembered that the several channels operate asynchronously). If the tape signal is a l, the l-bit line of the read-in gate l is energized such that a l is stored in the rst position of the ske'w buffer or buffers associated with the tape track or tracks in which the 1 was sensed. If the tape signal on any of the input channels is a 0, nothing will be stored in the skew buffer or buffers associated with the channel or channels on which the 0 was sensed.
When the pulses from the variable frequency clocks lil-10u fall, advance pulses are generated in the advance control circuits 30-30n which advance the respective read-in counters 16-16n one position such that triggers T2 and TA thereof are turned On, thereby conditioning the circuits of the next higher read-in gate for the storage of the next information bits into the second position of the skew buffers 12 2n.
Since each read-in channel has its own read-in counter, its read-iii gates, and skew buffer and the remainder of the system has no control over the read-in operation, information can be read into the skew buffers at any time.
The several skew bui'crs 12- 2n arc provided with a sutticient number of bit storage triggers to accommodate the most aggravated skew condition. llcrein, the skew buiiers have been illustrated as comprising l?. trigger storage positions. This is an arbitrary capacity selected for the purpose of simplifying the disclosure. it is contemplated that the storage capacity of the several skew buffers in each case be sufficient to control whatever skew condition may be encountered. Furthermore, since bits will be continuously read into and out of skew buffers, their bit capacity will exceed the number of bits they will be required to store at any given time.
Since the lilling of a skew butler cannot `be a criterion for the read-out thereof, means must be provided for determining when butler positions and should be read out. This function is primarily determined by the comparing circuits 18-l8n which compare the read-out counter 24 with all of the read-in counters 16-16n, the position of the buffers to be read-out being determined by the relative setting of the read-out counter. Characters are read into the skew buffers sequentially so that all bits of the iirst character are stored in the rst position of the buffers all bits of the second character are stored in the second position. etc.
Initially, the read-out counter 24 is sct to its first position such that thc read-out gate for the first bulier position is conditioned. When all bits of the lirst charactei have been stored, a skew cycle is initiated. During this cycle, all bits of the tirst character which are in the `first position of the skew bulfers will be transferred into the output register 32. Then all the first positions of the skew buffers will be reset. After the resetting operation, the read-out counter 24 is advanced to its second position such that the read-out gates for the second position of the skew bulers are conditioned. Thus, the read-out counter 24 selects the appropriate one of the read-out gates 20-20n for all tracks and in this manner t'nc proper character is transferred into the output register 32.
The following method is used to determine iwhen all bits of a character have been read into skew buffers and that the character is, therefore, ready for subsequent read-out. Initially, both the read-in counters 16--16n and the readout counter 24 are set to their lirst position. The read-in counter of every track is compared with the read-out counter 24 in the comparing circuits 18-18n. When the read-in counters of all tracks are greater than the read-out counter 24, it indicates that all of the bits of the character have been stored and that the character may, therefore, `be read out. The comparing circuit for each track will indicate that the track is ready to be read out and a pulse indicative of the fact is transmitted to the common AND circuit 22. When all of the bits of a character are stored, ie., the input counter for each track is greater than the output counter 24, and consequently all of the inputs of the common AND circuit 22 are positive, a pulse is transmitted from the AND circuit 22 to the skew cycle control circuits 28 such that an output signal Transfer Selected Skew Buffer Position to Output Register is emitted from the skew cycle control circuits 28 and this signal is utilized to gate the bits in the selected position of the skew buiers through AND circuits 34-34n whereby the character selected by the read-out counter is transferred to tlic output register 32.
The skew cycle control circuits 28 also emit a signal Reset Selected Skew Butler Position which is utilized to reset the position of the skew bulTers from which the character has been read. Also, the skew cycle control circuits 28 produce a signal Advance Read-Out Counter which serves to advance the read-out counter 24 and nally, the skew cycle control circuits 28 may also produce a signal Output Register to Output Buffer Register by which transfer of characters in the output register 32 may be gated therefrom into system circuits such as, for example, an output buii'er register (not shown).
The read-in counter 16 (see FIG. 3) is made up of two ring type counters consisting, respectively, of groups of bistable trigger elements T1 through T4 and TA through TC. The two rings are used in conjunction with one another to condition a decoding matrix; in this case, the read-in gates of FIG. 2. The advance and reset pulses advance the ring made up of triggers T1 through T4. When the first ring is in a state such that trigger T1 is to be turned On, and trigger T4 is to be turned Otl, an advance pulse is delivered to the second ring composed of the triggers TA through TC to advance it one position.
When the second ring composed of the triggers 'FA-TC is ready to recycle, that is, turn trigger TA On and turn trigger TC Off, a special advance pulse is applied to an overtiow trigger TOF. This trigger indicates that the entire read-in counter has advanced through its full cycle, or has counted to its full capacity; in this instance 1 through 12.
The read-in counter 16 has only seven count outputs, therefore, the outputs of the counter must be decoded to produce an output count of l2 which corresponds to the bit storage positions of the skew butter 12. The read-in counter of FIG. 3 should, therefore, be considered in connection with the read-in gates 14 of FIG. 2. The read-in gates constitute a matrix of coincident circuits which receive the outputs from the triggers T1 through T4 and the triggers TA through TC of the read-in counter such that a count of l2 is obtained from the read-in gates.
Both the read-in counter' of FIG. 3 and the read-out counter of FIG. 9 should be considered in connection with their respective advance and reset circuits of FIGS. 4 and 7. More will be said of these advance and reset circuits at a later point herein. It is presently suiiicient to say that the diagrammatic illustration of the read-in counter 16 of FIG. 3 and the read-out counter 24 of FIG. 9 have been simplified to show only the entry of advance and reset pulses and do not include the coincident logic of the advance and reset circuits of FIGS. 4 and 7, respectively. The manner in which the AND circuits of FIGS. 4 and 7 combine respectively with the circuits of FIGS. 3 and 9 will be apparent when it is appreciated that the triggers T1 through T4 and TA through T11 of FIG. 4 are the same as the triggers T1 through T., and TA through TC of FIG. 3, and that the triggers T1 through T1 and TA through TC of FIG. 7 are the same as the triggers T1 through T4 and TA through Tc of FIG. 9. As stated above, the purpose and operation of the advancing and reset circuits of FIGS. 4 and 7 will be dwelt on at greater length hereinafter.
The comparing circuits of FIG. 6 comprise six AND circuits which are, respectively, adapted to receive the output of the several corresponding stages ot the read-in counter 16 and the read-out counter 24. The comparing circuit of FIG. 6 is designed to emit a signal when all of a particular position in the skew buffer is completely filled. To perform this function, a comparison is made between the setting of the read-in counter 16 for each channel and the setting of the read-out counter 24. When the read-in counter initially advances, it will give an indication to its comparing circuit by activating one of the two-way AND circuits of its comparing unit. Essentially it must be determined that the setting of the read-in counter is greater than the setting of the read-out counter.
Initially all the read-in counters are set with their rst position On and all other positions Off. At the same time, the initial condition of the read-out counter will be the same, i.e., read-out counter position one On, all other positions thereof Ott. When the read-in counter for a particular channel advances, as may be determined, for example, by reference to FIG. 6, the I position of the read-in counter comes On at the same time the 2 position comes On. Thus, the first two-way AND circuit, FIG. 6, of the comparing unit is conditioned to give an output; that is, read-in counter On, read-out counter l On.
This indicates that the read-in counter is at some value other than 1 and that the read-out counter is still at 1. The condition that the read-in counter for the particular channel be greater than the read-out counter is, therefore, fulfilled in this particular case. An output pulse will, therefore, be transmitted through the seven-way OR circuit to the AND circuit 22. The inputs to the AND circuit 22 are the outputs from each of the comparing circuits lS-lSIL When the comparing circuits for all of the channels indicate that the read-in counters thereof are greater than the read-out counter, AND circuit 22 will be conditioned to emit an output pulse to the skew cycle control circuits 28. The process is repeated sequentially through each AND circuit of the comparing units.
i he read-in counter and the read-out counter, as shown in FIGS. 3 and 9 respectively, each has seven trigger positions therein. Each comparing circuit, as noted by reference to FIG. 6, however, utilizes the output of only six of these stages for the purpose of its comparisons. When the read-in counter has made a complete cycle, i.e., when it has counted to its full capacity and has started to recycle, it may appear to the circuits controlled thereby that the read-out counter is greater than the read-in counter, when, in fact, this is not the case. To account for this latter contingency, the read-in counter has an overllow trigger TOF which is turned On when the counter begins to recycle. The output from the overflow trigger is fed directly to the OR circuit in the comparing unit. When the read-out counter is completely cycled, the overtiow trigger TOF is turned Off. The overtlow trigger, therefore, serves to indicate that the read-in counter is greater than the read-out counter in the case where the read-in counter has cycled but the read-out counter has not.
The read-in counters and the read-out counters are made up of a pair of rings which characteristically are coupled in cascade such that only one position of the counter will be On at any given time. When an advance pulse comes into this type of counter, the first trigger position being On, it will turn the second trigger On. This type of advance continues through the ring operation. It can he seen, therefore, that immediately after the advance pulse, two triggers will be 0n. The reset puise will come along and leave only the newly set trigger On. The logic of the trigger is such that output may be taken from either the On side or from the Off side. or from both sides. When the trigger is On, the On side will produce a positive indication and the Off side will produce a negative indication. When one side of the trigger is Ofi its other side is conducting, or On, thus, the outputs are available in complement form.
Reference to FIGS. 3 and 4 will clarify the operation of the counters. When an advance pulse appears on the advance line of any one of the associated AND circuits, the present status of the counter triggers will determine which trigger of the counter will be turned On next. Since the triggers of the counter are turned On serially, the condition of the trigger immediately preceding the trigger which is to be turned On, i.e., the trigger presently On will, in addition to the advance pulse, be a condition for the turning On of the next trigger under the inuence of the advance pulse. Furthermore, to prevent an ad- Vance pulse from turning On all of the triggers in the ring, the condition of the trigger preceding the trigger which is On at the time the advance pulse arrives. is sampled and is also an input to the AND circuit associated with the trigger to be turned On. The reset pulse, as may be seen in FIG. 4, is also transmitted through AND circuits whose other input is the output of the next following trigger, i.e., the trigger which has just been turned On.
While the fundamentally novel features of the invention have been illustrated and described in connection with a specific embodiment of the invention. it is believed that this embodiment will enable others skilled in the art to apply the principles of the invention in forms departing from the exemplary embodiment herein, and such departures are contemplated by the claims.
What is claimed is:
l. [In a system for reading a magnetic tape having the bits constituting the characters recorded thereon in a multiplicity of parallel tracks. a reading channel for each tape track,] In a system for reading bits constituting characters from a multiplicity of parallel channels, a multiposition storage register for [the reading channel for each tape track,] cach channel, a read-in counter operative with cach register, means for entering [tape] channel originated pulses into successive positions of said registers under control of [a] the read-in counter individual to each register, a read-out counter, [means for comparing the setting of each of said read-in counters with the setting of said read-out counten] means for determining when the setting of each of said read-in counters is greater than the setting of said read-out counter, and means under control of said last named means for simultaneously reading from said registers the bits of a single character when said determining means indicates that the setting of each of said read-in counters is greater than the setting of said read-out counter.
2. [ln a system for reading a magnetic tape having the hits constituting the characters recorded thereon in a multiplicity of parallel tracks. a reading channel for cach tape track,] In r1 system for reading bits constituting the characters from n multiplicity of parallel channels, a multi-position storage register for [the reading channel for each tape track,] each channel, a read-in counter for each register, means for entering [tape] channel originated pulses into successive positions of said registers under control of [a] the read-in counter individual to each register, a read-out counter, [means for comparing the setting of each of said read-in counters with the setting of said read-out counter.] means for determining when the setting of each of said read-in counters is greater than the setting of said read-out counter, means under control of said last named means for simultaneously reading from said registers the bits of a single character when said determining means indicates that the setting of cach of said read-in counters is greater than the setting of said read-out counter, and means for advancing said read-out counter after each character read-out operation.
3. In a system for reading a magnetic tape having the bits constituting the characters recorded thereon in a multiplicity of parallel tracks, a reading channel for each tape track, a multi-position storage register for the reading channel for each tape track, at least one read-in counter, means for entering tape originated pulses into successive positions of said registers under control of [a] the read-in counter individual to each register, a read-out counter, means for comparing the setting of each of said read-in counters with the setting of said read-out counter, a coincidence circuit for determining when the setting of each of said read-in counters is greater than the setting of said read-out counter, inputs from each of said comparing means to said coincidence circuit, and means under control of an output from said coincidence circuit for simultaneously reading from said registers the bits of a single character when said determining means indicates that the setting of each of said read-in counters is greater than the setting of said read-out counter.
4. In a system for reading a magnetic tape having the bits constituting the characters recorded thereon in a multiplicity of parallel tracks and having synchronizing bits recorded at regular intervals in the tracks thereof, a reading channel for each tape track, multi-position storage register for the reading channel for each tape track, means individual to each reading channel controlled by synchronizing pulses from a tape being read for generating pulses defining bit entry periods, a read-in counter adapted to control entry of tape originated pulses on said channels into their respective register positions, a connection hclll Ween said synchronizing pulse controlled means and its related counter whereby said counters are advanced at each bit entry period, a read-out counter, means for comparing the setting 0i each of said read-in counters with the setting of said read-out counter, means for determining when the setting of each of said read-in counters is greater than the setting of said read-out counter, and means under control of said last named means for simultaneously reading from said registers the bits of a single character when said determining means indicates that the setting of each of said read-in counters is greater than the setting of said read-out counter.
5. [In a system for reading a magnetic tape having the hits constituting the characters recorded thereon in a multiplicity of parallel tracks, a reading channel for each tape track,] In a system for reading bits constituting the characters from a multiplicity of parallel channels, a multi-position storage register for [the reading channel for each tape tracto] cach cha/mel, a phtrcrtity of read-in counters, means for entering [tape] channel originated pulses directly into succesive positions of said registers under control oi a] thtI read-in counter individual to each register, a read-out counter, [means for comparing the setting of each of said read-in counters with the setting oi said read-out countcrl means for determining when the setting of each of said read-in counters is greater than the setting of said read-out counter, means under control of said last named means for simultaneously reading from said registers the bits of a single character when said determining means indicates that the setting of each of said read-in counters is greater than the setting of said read-out counter, and means under control of said last named means for resetting the register positions from which the bits ol a character have been read.
6. E1n a system for reading a magnetic tape having the bits constituting the characters recorded thereon in a multiplicity of parallel tracks, a reading channel for cach tape track,] In a system for reading bits constituting the characters from a multiplicity of parallel c/mltrcls, a multi-position storage register for [the reading channel for each tape track] cach channel a plurality of renti-in counters, means for entering [tape] channel originated pulses into successive positions of said registers under control of [a] the read-in counter individual to each register, a read-out counter, [means for comparing the setting of each of said read-in counters with the setting of said read-out eounter,] means for determining when the setting of each of said read-in counters is greater than the setting of said read-out counter, means under control of said last named means for simultaneously reading from said registers the bits of. a single character when said determining means indicates that the setting of each of said read-in counters is greater than the setting of said read-out counter, and means under control of said last named means for advancing said read-out counter.
7. In a system for reading a magnetic tape having the hits constituting the characters recorded thereon in a multiplicity of parallel tracks, a reading channel for each tape track, a multi-position storage register composed of bistable electronic elements for the reading channel for each tape track, means for entering tape originated pulses into successive positions of said registers under control of a read-in counter individual to each register, a read-out counter, means consisting of a plurality of coincidence circuits for comparing the setting of each of said read-in counters with the setting of said read-out counter, an additional coincidence circuit for receiving the output oi said comparing means, and means under control of said additional coincidence circuit for simul taneously reading from said registers the bits of a Single character when said additional coincidence circuit emits an output to indicate that the setting of each of said readin counters is greater than the setting of said read-out counter.
S. In a system for reading a magnetic tape having the bits constituting the characters recorded thereon in a multiplicity of parallel tracks, a reading channel for each tape track, a multi-position storage register composed of bistable electronic elements for the reading channel for each tape track, means for entering tape originated pulses into successive positions of said registers under control of a read-in counter individual to each register, a read-out counter, means consisting of a plurality of coincidence circuits for comparing the setting of each of said read-in counters with the setting of said read-out counter, an additional coincidence circuit for receiving the output of said comparing means, means under control of said additional coincidence circuit for simultaneously reading from said registers the bits of a single character when said additional coincidence circuit emits an output to indicate that the setting of each of said readin counters is greater than the setting of said read-out counter, and means for advancing said read-out counter after each character read-out operation.
9. In a system for reading a magnetic tape having the bits constituting the characters recorded thereon in a multiplicity of parallel tracks, a reading7 channel for each tape track, a multi-position storage register composed of bistable electronic elements for the reading channel for each tape track, means for entering tape originated pulses into successive positions of said registers under control of a read-in counter individual to each register, a read-out counter, means consisting of a plurality of coincidence circuits for comparing the setting of each of said read-in counters with the setting of said read-out counter, an additional coincidence circuit for receiving the output of said comparing means, means under control of said additional coincidence circuit for simultaneously reading from said registers the bits of a single character when said additional coincidence circuit emits an output to indicate that the setting of each of said readin counters is greater than the setting of said read-out counter, and means also under control of said last named means for resetting the register positions from which the bits of a character have been read.
l0. In a system for reading a magnetic tape having the bits constituting the characters recorded thereon in a multiplicity of parallel tracks, a reading channel for each tape track, a multi-position storage register composed of bistable electronic elements for the reading channel for each tape track, means for entering tape originated pulses into successive positions of said registers under control of a read-in counter individual to each register, a read-out counter, means consisting of a plurality of coincidence circuits for comparing the setting of each of said read-in counters with the setting of said read-out counter, an additional coincidence circuit for receiving the output of said comparing means, means under control of said additional coincidence circuit for simultaneously reading from said registers the bits of a single character when said additional coincidence circuit emits an output to indicate that the setting of each of said readin counters is greater than the setting of said read-out counter, and means also under control of said last named means for advancing said read-out counter.
Il. In a system for obtaining parallel alignment of each group of bits predetermined to be in parallel and received from a multiplicity of parallel channels, a multiposition storage register for each channel, means for entering channel originated pulses resulting from said bits into predetermined positions of their associated registers, a rend-out counter common to all of said storage registers and having n setting associated with each storage register position, and means under control of said rend-out counter for enabling read-out of individual groups of predetermined parallel pulses before all positions of any storage register have been lled.
l2. ln o system for obtaining parallel alignment for each group of parallel-recorded bits received from a multiplicity of parallel channels, a multi-position storage register for each channel, means for entering channel originated bits into successive positions of their associated registers', n rend-out counter common to all of said storage registers and having a setting corresponding with cach storage register position, means under control of said read-out Counter for .separately controlling7 a readout of euch parallel-recorded channel originated pulses immediately after erich group has filled all similar positions in the storage registers, means for resetting only the register positions for cach rend-out group without resetting other register positions, ond means operative when the slorogc registers are read out for changing the setting of the read-out counter.
I3. In o system for obtaining parallel alignment of bits received from a multiplicity of parallel channels, a multiposition storage register for euch channel, a read-in counter associated with each channel, means for entering channel originated pulses into positions of the storage register for the associated channel under control of its associated read-in counter, a read-ont counter common to all of said storage registers and having a setting associated with cach storage register position, and means under control of said read-ont counter and operative when the channel originated pulses have filled a single equivalent position of the storage register in cach channel for simultaneously reading out the single position of the storage register for the associated setting of the readout counter.
I4. In a system for obtaining parallel alignment of bits received from a multiplicity of parallel channels, a multiposition storage register for each channel, a read-in counter having o setting associated with each storage register position for each channel, read-in means for entering channel originoted pulses into positions of the storage register for the associated setting of the read-in counter for each channel, means operative when a storage register reads in for changing the setting of the associated read-in courtier, a read-out counter common to all of said storage registers and having a setting associa!4 cd with erich storage register position, and means under control of said read-out counter and operative to read out the channel originated pulses filling a similar position in each of the storage registers of said parallel channel.
References Cited in the tile of this patent or the original patent UNITED STATES PATENTS 2,991.452 Welsh July 4, 1961
US25527D Gates Expired USRE25527E (en)

Publications (1)

Publication Number Publication Date
USRE25527E true USRE25527E (en) 1964-03-03

Family

ID=2094456

Family Applications (1)

Application Number Title Priority Date Filing Date
US25527D Expired USRE25527E (en) Gates

Country Status (1)

Country Link
US (1) USRE25527E (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3456237A (en) * 1965-08-26 1969-07-15 Sperry Rand Corp Deskewing system
US3569941A (en) * 1967-07-28 1971-03-09 English Electric Computers Ltd Digital data storage apparatus
FR2514542A1 (en) * 1981-10-13 1983-04-15 Victor Company Of Japan DATA REPRODUCING APPARATUS FOR REPRODUCING DIGITAL DATA RECORDED ON MULTI TRACKS

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3456237A (en) * 1965-08-26 1969-07-15 Sperry Rand Corp Deskewing system
US3569941A (en) * 1967-07-28 1971-03-09 English Electric Computers Ltd Digital data storage apparatus
FR2514542A1 (en) * 1981-10-13 1983-04-15 Victor Company Of Japan DATA REPRODUCING APPARATUS FOR REPRODUCING DIGITAL DATA RECORDED ON MULTI TRACKS

Similar Documents

Publication Publication Date Title
US2813259A (en) Magnetic tape recording systems
US2885659A (en) Electronic library system
US2961535A (en) Automatic delay compensation
US3209330A (en) Data processing apparatus including an alpha-numeric shift register
US2921296A (en) Deskewing system
US3471686A (en) Error detection system for synchronized duplicate data processing units
US2937366A (en) Pulse group synchronizer
US3984815A (en) Time of event recorder
GB850322A (en) Improvements in buffer devices for data processing systems
US3103000A (en) Skew correction system
US3851335A (en) Buffer systems
USRE25527E (en) Gates
US3311891A (en) Recirculating memory device with gated inputs
US3281804A (en) Redundant digital data storage system
US3154762A (en) Skew indicator
US3267435A (en) Multiple shift registers
US3181123A (en) Data processing systems
US3235849A (en) Large capacity sequential buffer
US3375356A (en) Calculator decimal point alignment apparatus
US3286243A (en) Shift register deskewing system
GB945552A (en) Small gap data tape communication system
USRE25405E (en) T register
US3462739A (en) Variable rate system for handling security price information
US3328566A (en) Input-output system for a digital computer
US3126523A (en) File search data selector