USRE25186E - figure - Google Patents

figure Download PDF

Info

Publication number
USRE25186E
USRE25186E US25186DE USRE25186E US RE25186 E USRE25186 E US RE25186E US 25186D E US25186D E US 25186DE US RE25186 E USRE25186 E US RE25186E
Authority
US
United States
Prior art keywords
phase
mixing
separating
tube
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Publication date
Application granted granted Critical
Publication of USRE25186E publication Critical patent/USRE25186E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/42Flow patterns using counter-current

Definitions

  • This invention relates generally to chemical apparatus, and more particularly to an improved device for mixing immiscible or partially immiscible fluids, and subsequently separating and transferring them, as well as to a method for mixing, separating and transferring immiscible liquids.
  • the unit process comprising mixing immiscible or partly immiscible liquids and subsequently separating one or more of them, and transferring them, is known in the art as an extraction, and is frequently required in scientiiic experiments and technical applications.
  • substances dissolved in one of the phases which are readily soluble in the other of the liquids are transferred from a solution in the first liquid to the second.
  • the immiscible liquids separate, so that one of the liquids may be transferred from contact with the other. That part of the liquid, which is transferred, may be called the effluent phase, and the remaining liquid, or liquids, the residual phase.
  • every eflluent phase must be successively mixed with and subsequently separated from the first residual phase of a linear series of residual phases, and then transferred to the succeeding phase of the series, and so until each effluent phase has been extracted with every residual phase in the series.
  • the number of separate operations required in such a schedule becomes very large when many residual and effluent phases are used. For example, if one hundred residual and one hundred eilluent phases are combined according to the schedule described, the extractions must be repeated ten thousand times.
  • the effluent phase is the lighter or less dense liquid and the residual phase is the heavier or more dense liquid, although in other types of extraction apparatus the reverse may be true.
  • Another object of the present invention herein lies in Reissued June 19, 1 962 the provision of a device of the class described in which the cost of manufacture may be of a reasonably low order, thereby permitting relatively wide sale, distribution and use,
  • a further object of the invention lies in the provision of an apparatus for effecting extraction in which substantially all possibility of loss or contamination of the liquid phases has been eliminated.
  • a further object of the invention lies in the provision of an apparatus of the class described in which a plurality of extractions may be simultaneously effected, thereby shortening the time required to perform a series of mutiple extractions.
  • a feature of the invention lies in tions are effected without loss of vapor from any of phases.
  • Another feature of the invention lies in the fact that the apparatus requires a minimum of space in effecting the extractions, thereby permitting use of the apparatus in laboratories of modest size.
  • FIGURE 1 is a view in perspective of an embodiment of the invention.
  • FIGURE 2 is an enlarged view in perspective, showing a plurality of mixing and separating elements, which comprise parts of the embodiment.
  • FIGURE 3 is a fragmentary side elevational view of a single mixing and separating element during a first stage of mixing of the eflluent and residual phases
  • FIGURE 4 is a fragmentary side elevational view of the mixing and separating element during a separating stage, in which the eflluent phase rises to become disposed above the residual phase.
  • FIGURE 5 is a fragmentary elevational view of a single mixing and separating element showing a third stage of operation in which the efilueut phase is drained therefrom leaving the residual phase intact.
  • FIGURE 6 is an enlarged fragmentary vertical sectional view as seen from the plane 6'-6 on FIGURE 3.
  • FIGURES 7a and 7e are schematic illustrations of the various manipulative operations. involved in mixing and separating the effluent phase from the residual phase.
  • FIGURE 8 is a schematic illustration of the manner of interconnection of the individual mixing and separating elements.
  • the device comprises broadly: a fixed support element 11, rotating means 12, a rotary frame element 13, and a plurality of mixing and separating elements 14.
  • the fixed support element 11 includes a horizontally disposed base member 17 and a vertically disposed frame member 18 having bearing means 19 disposed thereon, whereby the element 13 is partially supported for rotation about a substantially horizontally disposed axis.
  • the rotating means 12 includes a casing element 23 from which project a plurality of controls 24.
  • Countermeans 25 records the number of complete revolutions executed by the element 13, and disposed within the casing element 23 is a prime mover and suitable gearing for obtaining rotational movement of the element 13, the details of which form no part of the present disclosure.
  • the rotary frame element 13 includes an axle member 27 adapted to cooperate with the bearing means 19, and
  • a pair of elongated supporting members 30 are positioned substantially at each of the corners of the plate members 28 and 2% in such manner that the mixing and separating.
  • elements 14 may be slidably inserted therebetween to be supported thereby. If desired, foam rubber or other cushioning means may be inserted between the members 30, and the elements 14 to protect the latter from damage.
  • each of the elements 14 includes a first or phase mixing tube 34, and a second or phase separating tube 35 interconnected at one end by a bifurcated juncture member 36.
  • the tubes 34 and 35 are of elongated eonfiguration, and are disposed with the principal axes thereof in parallel relationship. Where desired, the tubes 34 and 35 may be formed as a continuous spiral (not shown).
  • the phase mixing tube 34 includes a closed end 37 forming a mixing reservoir, which may be provided with a threaded cap member 38 for draining purposes.
  • An effluent phase entrance tube 39 connects to the lumen of the tube 34, and as may be seen on FIGURE 2, the tube 39 is adapted to receive the efliuent phase of an adjacent element 14, when the elements are disposed in vertical position.
  • the main body portion 41] of the tube 34 is preferably rectilinear, the open end portion 41 sloping slightly upward, as seen on FIGURE 3, to lead to the juncture member 36.
  • the member 36 may also be provided with a second cap member 42 to facilitate draining of the element 14, or the cap 38 may be employed for all draining operations.
  • the phase separating tube 35 is generally shorter in over-all length than the mixing tube 34, and is provided with an open end portion 46, a main body portion 47, and a closed end portion 48 forming a residual phase retaining reservoir 49.
  • the reservoir 49 is defined by a septum 50 disposed at right angles to the principal axis of the tube 35, a downspout member 51 being connected within an opening 52 in the septum leading to a drain tube 53, which in turn connects with the effluent phase entrance tube 39 of an adjacent mixing and separating element 14.
  • the inlet opening 53 of the downspout member 52 is disposed concentrically with respect to the principal axis of the tube 35.
  • the downspout member 52 need not be coaxially positioned, as the location of the opening 53 with respect to the principal axis of the tube 35 is the determinative factor.
  • the downspout member 52 is of any desired length, but must be less than substantially one-half of the effective length at the tube 35 in order that only the effluent phase be irained.
  • a flexible tube 59 may be :mploy'ed for this purpose.
  • An operating cycle of the device consists of the steps rf filling each of the mixing and separating elements 14 vith a predetermined amount of the residual phase, the 'olume of which is equal to that volume which will be rapped between the downspout element 51, the septum 0, and the inner surfaces of the tube 35, and which may e referred to as the critical volume; following which a uantity of the effluent phase is intrdouced though the lbe; following which the phases are mixed and allowed separate, whereby the effluent stage may be drained om the elements 14.
  • the elements 14 are preferably loaded while in the positions shown on FIGURES 2 and 3, wherein the residual phase reservoir 49 is disposed upwardly. A volume of the residual phase equal to the critical volume is then introduced by removing the cap 33 or 42, and allowing the liquid to pass through the openings disposed therebeneath.
  • a large quantity of the residual phase may be introduced in the first of the elements 14, and the elements rotated about an axis perpendicular to the principal axis thereof for as many times as there are elements 14 in interconnected series. As will become more clearly apparent, this action will result in depositing the critical amount of the residual phase within each of the elements 14, while draining the excess thereof from the last element 14.
  • the effluent phase is then introduced into the tubes, in any desired quantity, limited by the capacity of the mixing tube 34, in a similar manner.
  • the separate effluent phases added travel simultaneously and in sequence through the series of elements 14, the number of efilu-ent phases which may be simultaneously extracted being limited only by the number of elements in the series.
  • FIGURE 1 it is possible to mount several series of elements 14 upon the rotary frame element, so that several series of operations may be conducted at the same time, or the series may be interconnected to allow a greater number of elements 14 in a single series.
  • the extraction cycle commences with the individual elements 14 disposed with the residual reservoir 49 positioned above the mixing tube 34.
  • the element 14 is then gently rocked about the axis of rotation so as to thoroughly mix the effluent and residual phases.
  • the frame element 13 is next rotated through substantially 180 degrees to bring the mixing and separating elements 14 to the position shown on FIGURE 4 wherein the contents consisting of intermixed efi luent and residual phases are allowed to flow to the separating tube 35. In this position, the volume of the intermixed phases is spread over a relatively large area, and rapid separation follows.
  • FIGURES 7a through 7e further show the manipulative steps described above in a schematic manner.
  • FIGURES 7a through 7d show the steps of first mixing and separating in an element 14 containing an effluent phase 61 and a residual phase 62
  • FIGURE 7e shows the outline of a second mixing and separating element 14.
  • FIGURE 7a illustrates the mixing operation in which mixing of the two phases is effected by oscillation about the axis 27 as indicated by the arrow. This corresponds to the position of FIGURE 3.
  • the drain tube 53 of the first element 14 is connected to the efiluent phase entrance tube 39 of the second element 14, the efiiuent phase 61 will flow into the mixing tube 34 of the second element as shown by arrows 71 and 72, FIGURES 7e and 7d. Further rotation to the position illustrated in FIG. 7e will cause the residual phase of the second element 14 to flow into the mixing tube 34 of the second element as shown by arrow 70. The elements are then oscillated as before to mix the efiluent phase 61 with the new residual phase of the second element 14.
  • FIGURE 8 shows clearly how each drain tube 53 is connected to the entrance tube 39 of the following element 14 of the series as described above.
  • the efiluent phase from the last element 14 of the series may be transferred to the first element of the series through -a flexible hose 59, or other suitable means so that each of the effluent phases may be passed through each of the residual phases in the element 14 of the series.
  • the elements 14 When the series of extractions has been completed, the elements 14 may be left in a vertical position and the caps 38 removed to permit the draining of the eifiuent phases. Upon the completion of this operation, the elements 14 may be rotated through substantially 360 degrees in a reverse direction to remove the residual phases in a similar manner.
  • a mixing and separating element comprising: means for mixing efiluent and residual phase of immiscible liquids in predetermined quantities, a phase separating tube separate from said mixing means, the phase separating tube having at least one closed end and a phase entrance opening positioned away from the closed end, means for introducing the mixed fluids from the mixing means into the phase entrance opening of the phase separating tube, a draining downspout extending through the closed end of the phase separating tube and extending longitudinally into the phase separating tube an effective distance substantially less than one half the distance from the closed end of the tube to the phase entrance opening therein, the downspout inlet having a small opening positioned coaxially within the phase mixing tube, the cubic volume defined between the phase separating tube and downspout between the closed end of the phase separating tube and the inlet end of the downspout being substantially equal to the cubic volume of the residual phase of the liquid, whereby when the mixed liquids are passed into the phase separating tube they may be allowed to separate while the phase separating tube is substantially horizontal
  • An apparatus for mixing and separating including a plurality of mixing and separating elements as defined in claim 1 and further comprising means positioning said elements side by side in parallel relationship, and a plurality of tubular members, each tubular member connecting an outlet opening of the downspout of one element with the means for mixing efiluent and residual phase of immiscible liquids of another element, so that the effluent which drains from the downspout of one element may be passed into another element for mixing with another residual phase for another operation of separating.
  • a mixing and separating element comprising; a phase mixing tube having one closed end for mixing effluent and residual phases of immiscible liquids, a phase separating tube having one closed end, a juncture member rigidly connecting said tubes and forming a means of liquid communication between an open end of the phase mixing tube and an open end of the phase separating tube, a downspout having a small inlet opening coaxially positioned within the phase separating tube, the downspout extending through the closed end of the phase separating tube and having an effective length extending into the phase separating tube of substantially less than one half the length of the phase separating tube from the closed end thereof to the end connected to the juncture member,
  • the cubic volume defined by the space between the phase separating tube and downspout and between the closed end of the phase separating tube and the inlet end of the downspout being substantially equal to the cubic volume of the residual phase of the mixed liquids, so that when the mixed liquids are passed into the phase [mixing] separating tube and allowed to separate while the phase [mixing] separating tube is substantially horizontal, the effluent phase will drain out through the downspout when the phase [mixing] separating tube is positioned substantially vertical with the inlet end of the downspout extending substantially vertically upward.
  • juncture member comprises a hollow reservoir having a bifurcated shape with a non-bifurcated tubular portion directed away from the juncture of said tube and the juncture member.
  • An apparatus for mixing and separating including a plurality of mixing and separating elements as defined in claim 3 and further comprising means portioning said elements side by side in parallel relationship, and a tubular member connecting an outlet opening of the downspout of one element with the phase mixing tube of another element, so that the efiiuent which drains from the downspout of one element may be passed into another elemcnt for mixing with another residual phase for another operation of separating.
  • An apparatus for mixing and separating including a plurality of mixing and separating elements as defined in claim 4 and further comprising means positioning said elem nts side by side in parallel relationship, and a tubular member connecting an outlet opening of the downspout of one element with the phase mixing tube of another element, so that the eflluent which drains from the downspout of one element may be passed into 7 another element for mixing with another residual phase for another operation of separating.
  • a machine for mixing and separating effluent and residual phases of immiscible liquids including an apparatus as defined in claim 2 and further comprising, a frame for rigidly supporting all the elements of the apparatus, a rotatable member operatively connected to said frame to rotate the same such that the parallel mixing and separating elements of the apparatus will always be at substantially right angles to the axis of rotation of the rotatable member, a stationary support base for supporting the rotatable member, and means for imparting controlled rotation to the rotatable member about the axis thereof.
  • a machine for mixing and separating effluent and residual phases of immiscible liquids including an apparatus as defined in claim 5 and further com.- prising, a frame for rigid-1y supporting all the elements of the apparatus, a rotatable member operatively connected to said frame to rotate the same such that the parallel mixing and separating elements of the apparatus will always be at substantially right angles to the axis of rotation of therotatable member, a stationary support base for supporting the rotatable member, and means for imparting controlled rotation to the rotatable member about the axis thereof.
  • a machine for mixing and separating effluent and residual phases of immiscible liquids including an apparatus as defined in claim 6 and further comprising, a frame for rigidly supporting all the elements of the apparatus, a rotatable member operatively connected to said frame to rotate the same such that the parallel mixing and separating elements of the apparatus will always be at substantially right angles to the axis of rotation of the rotatable member, a stationary support base for supporting the rotatable member, and means for imparting controlled rotation to the rotatable member about the axis thereof.

Description

3. RAYMOND APPARATUS FOR EFFECTING EXTRACTION June 19, 1962 3 Sheets-Sheet 1 Original Filed Dec. 13 1955 June 19, 1962 s. RAYMOND R 25,186
APPARATUS FOR EFFECTING EXTRACTION Original Filed Dec. 15, 1955 5 Sheets-Sheet 2 613L111 l/I/IIl/l/Ill/l/l [fl/ll A IN V EN TOR.
June 19, 1962 s. RAYMOND APPARATUS FOR EFFECTING EXTRACTION 5 Sheets-Sheet 3 Original Filed Dec.
A, cflqf nifl 1 w 2 U W) a P Q. U H6 h A 3 Mg ww 3 INVENTOR.
United States Patent 01 25,186 APPARATUS FOR EFFECTING EXTRACTION Samuel Raymond, Swarthmore, Pa.
Original No. 2,967,093, dated Jan. 3, 1961, Ser. No. 552,906, Dec. 13, 1955. Application for reissue Jan. 9, 1962., Ser. No. 165,996
9 Claims. (Cl. 23-'270.5)
Matter enclosed in heavy brackets appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
This invention relates generally to chemical apparatus, and more particularly to an improved device for mixing immiscible or partially immiscible fluids, and subsequently separating and transferring them, as well as to a method for mixing, separating and transferring immiscible liquids.
The unit process comprising mixing immiscible or partly immiscible liquids and subsequently separating one or more of them, and transferring them, is known in the art as an extraction, and is frequently required in scientiiic experiments and technical applications. During the process of mixing, substances dissolved in one of the phases which are readily soluble in the other of the liquids, are transferred from a solution in the first liquid to the second. Upon standing, or centrifuging, the immiscible liquids separate, so that one of the liquids may be transferred from contact with the other. That part of the liquid, which is transferred, may be called the effluent phase, and the remaining liquid, or liquids, the residual phase. Various forms of apparatus are known in the art for effecting this unit process, of which the best known is probably the separatory funnel, In the separatory funnel, the effluent and residual phases are mixed by shaking, and are separated by allowing the mixture to stand at rest under the influence of gravity, wherein the phases separate into layers according to their respective densities, so that they may be transferred by drawing off the lowermost layer, successively, through a valve or stopcock. Other types of apparatus used to accomplish the same purpose include mechanically stirred vessels and centrifugal separators. In many applications, as for example, countercurrent distribution, multiple extractions are combined in a systematic schedule so that an effluent phase from one extraction is mixed with the residual phase of another extraction. Although various schedules for combining the effluent and residual phases are used, in a typical schedule every eflluent phase must be successively mixed with and subsequently separated from the first residual phase of a linear series of residual phases, and then transferred to the succeeding phase of the series, and so until each effluent phase has been extracted with every residual phase in the series. The number of separate operations required in such a schedule becomes very large when many residual and effluent phases are used. For example, if one hundred residual and one hundred eilluent phases are combined according to the schedule described, the extractions must be repeated ten thousand times.
It will become evident from the descripiton of applicants invention as shown herein that in applicant invention the effluent phase is the lighter or less dense liquid and the residual phase is the heavier or more dense liquid, although in other types of extraction apparatus the reverse may be true.
It is therefore an object of the present invention to provide a simple apparatus in which mixing, separating, and transferring of effluent and residual phases may be conveniently effected without the use of stopcocks or similar elements requiring separate manual manipulation.
Another object of the present invention herein lies in Reissued June 19, 1 962 the provision of a device of the class described in which the cost of manufacture may be of a reasonably low order, thereby permitting relatively wide sale, distribution and use,
A further object of the invention lies in the provision of an apparatus for effecting extraction in which substantially all possibility of loss or contamination of the liquid phases has been eliminated.
A further object of the invention lies in the provision of an apparatus of the class described in which a plurality of extractions may be simultaneously effected, thereby shortening the time required to perform a series of mutiple extractions.
A feature of the invention lies in tions are effected without loss of vapor from any of phases.
Another feature of the invention lies in the fact that the apparatus requires a minimum of space in effecting the extractions, thereby permitting use of the apparatus in laboratories of modest size.
These objects and features, as well as other incidental ends and advantages, will become more clearly apparent during the course of the following disclosure, and be pointed out in the appended claims.
On the drawing, to which reference will be made in the specification, similar reference characters have been employed to designate corresponding parts throughout the several views.
FIGURE 1 is a view in perspective of an embodiment of the invention.
the fact that extracthe FIGURE 2 is an enlarged view in perspective, showing a plurality of mixing and separating elements, which comprise parts of the embodiment.
FIGURE 3 is a fragmentary side elevational view of a single mixing and separating element during a first stage of mixing of the eflluent and residual phases,
FIGURE 4 is a fragmentary side elevational view of the mixing and separating element during a separating stage, in which the eflluent phase rises to become disposed above the residual phase.
FIGURE 5 is a fragmentary elevational view of a single mixing and separating element showing a third stage of operation in which the efilueut phase is drained therefrom leaving the residual phase intact.
FIGURE 6 is an enlarged fragmentary vertical sectional view as seen from the plane 6'-6 on FIGURE 3.
FIGURES 7a and 7e are schematic illustrations of the various manipulative operations. involved in mixing and separating the effluent phase from the residual phase.
FIGURE 8 is a schematic illustration of the manner of interconnection of the individual mixing and separating elements.
In accordance with the invention, the device, generally indicated by reference character 10, comprises broadly: a fixed support element 11, rotating means 12, a rotary frame element 13, and a plurality of mixing and separating elements 14.
The fixed support element 11 includes a horizontally disposed base member 17 and a vertically disposed frame member 18 having bearing means 19 disposed thereon, whereby the element 13 is partially supported for rotation about a substantially horizontally disposed axis.
The rotating means 12 includes a casing element 23 from which project a plurality of controls 24. Countermeans 25 records the number of complete revolutions executed by the element 13, and disposed within the casing element 23 is a prime mover and suitable gearing for obtaining rotational movement of the element 13, the details of which form no part of the present disclosure.
The rotary frame element 13 includes an axle member 27 adapted to cooperate with the bearing means 19, and
sense a pair of rectangularlyshaped end plate members 28 and 29 mounted thereupon. A pair of elongated supporting members 30 are positioned substantially at each of the corners of the plate members 28 and 2% in such manner that the mixing and separating. elements 14 may be slidably inserted therebetween to be supported thereby. If desired, foam rubber or other cushioning means may be inserted between the members 30, and the elements 14 to protect the latter from damage.
The mixing and separating elements 14 are substantially similar, and accordingly, a detailed description of one of such elements will sufiice for all. Referring to FIGURES 2-6, inclusive, each of the elements 14 includes a first or phase mixing tube 34, and a second or phase separating tube 35 interconnected at one end by a bifurcated juncture member 36. In line with considerations of compactness and the desirability of adjacent positioning of a large number of mix ng and separating elements 14, the tubes 34 and 35 are of elongated eonfiguration, and are disposed with the principal axes thereof in parallel relationship. Where desired, the tubes 34 and 35 may be formed as a continuous spiral (not shown).
The phase mixing tube 34 includes a closed end 37 forming a mixing reservoir, which may be provided with a threaded cap member 38 for draining purposes. An effluent phase entrance tube 39 connects to the lumen of the tube 34, and as may be seen on FIGURE 2, the tube 39 is adapted to receive the efliuent phase of an adjacent element 14, when the elements are disposed in vertical position. The main body portion 41] of the tube 34 is preferably rectilinear, the open end portion 41 sloping slightly upward, as seen on FIGURE 3, to lead to the juncture member 36. The member 36 may also be provided with a second cap member 42 to facilitate draining of the element 14, or the cap 38 may be employed for all draining operations.
The phase separating tube 35 is generally shorter in over-all length than the mixing tube 34, and is provided with an open end portion 46, a main body portion 47, and a closed end portion 48 forming a residual phase retaining reservoir 49. The reservoir 49 is defined by a septum 50 disposed at right angles to the principal axis of the tube 35, a downspout member 51 being connected within an opening 52 in the septum leading to a drain tube 53, which in turn connects with the effluent phase entrance tube 39 of an adjacent mixing and separating element 14. As best seen on FIGURE 6, the inlet opening 53 of the downspout member 52 is disposed concentrically with respect to the principal axis of the tube 35. This positioning results in the retention of a constant volume of the residual phase irrespective of the angle of the tube 35 during the draining of the effluent phase. The downspout member 52 need not be coaxially positioned, as the location of the opening 53 with respect to the principal axis of the tube 35 is the determinative factor. The downspout member 52 is of any desired length, but must be less than substantially one-half of the effective length at the tube 35 in order that only the effluent phase be irained. Where the interconnected tube elements 14 are lisposed at some distance, a flexible tube 59 may be :mploy'ed for this purpose.
OPERATION An operating cycle of the device consists of the steps rf filling each of the mixing and separating elements 14 vith a predetermined amount of the residual phase, the 'olume of which is equal to that volume which will be rapped between the downspout element 51, the septum 0, and the inner surfaces of the tube 35, and which may e referred to as the critical volume; following which a uantity of the effluent phase is intrdouced though the lbe; following which the phases are mixed and allowed separate, whereby the effluent stage may be drained om the elements 14.
The elements 14 are preferably loaded while in the positions shown on FIGURES 2 and 3, wherein the residual phase reservoir 49 is disposed upwardly. A volume of the residual phase equal to the critical volume is then introduced by removing the cap 33 or 42, and allowing the liquid to pass through the openings disposed therebeneath. In the alternative, a large quantity of the residual phase may be introduced in the first of the elements 14, and the elements rotated about an axis perpendicular to the principal axis thereof for as many times as there are elements 14 in interconnected series. As will become more clearly apparent, this action will result in depositing the critical amount of the residual phase within each of the elements 14, while draining the excess thereof from the last element 14.
The effluent phase is then introduced into the tubes, in any desired quantity, limited by the capacity of the mixing tube 34, in a similar manner. In the operation of a series of mixing and separating elements, it is preferable to add to the first element at the end of each extraction cycle, another volume of effluent phase before beginning the next repetition of the extraction cycle. In this way, the separate effluent phases added, travel simultaneously and in sequence through the series of elements 14, the number of efilu-ent phases which may be simultaneously extracted being limited only by the number of elements in the series.
As may be seen on FIGURE 1, it is possible to mount several series of elements 14 upon the rotary frame element, so that several series of operations may be conducted at the same time, or the series may be interconnected to allow a greater number of elements 14 in a single series.
Referring to FIGURES 3, 4 and 5, the extraction cycle commences with the individual elements 14 disposed with the residual reservoir 49 positioned above the mixing tube 34. The element 14 is then gently rocked about the axis of rotation so as to thoroughly mix the effluent and residual phases. The frame element 13 is next rotated through substantially 180 degrees to bring the mixing and separating elements 14 to the position shown on FIGURE 4 wherein the contents consisting of intermixed efi luent and residual phases are allowed to flow to the separating tube 35. In this position, the volume of the intermixed phases is spread over a relatively large area, and rapid separation follows. As may be observed on FIGURE 4, a small quantity of the liquid may rise to enter the downspout member 51, but since this liquid consists substantially entirely of the efiiuent phase, none of the residual phase will eventually be drained. Following the separation of the phases, the frame element is again rotated through an additional degrees wherein the individual elements 14 are brought to a vertical position, as shown on FIGURE 5. In this position, the critical volume of the residual phase is trapped within the reservoir 49, and the separated effluent phase flows under the action of gravity through the downspout member 51 to the drain tube 53. As the drain tube 53 is connected to an efliuent phase entrance 39., the effluent phase is deposited within the adjacent element 14 so that on the next cycle the second extraction may be ipreformed] performed.
FIGURES 7a through 7e further show the manipulative steps described above in a schematic manner. FIGURES 7a through 7d show the steps of first mixing and separating in an element 14 containing an effluent phase 61 and a residual phase 62, while FIGURE 7e shows the outline of a second mixing and separating element 14. In these drawings only the bare outline is schematically shown for clarity but the various components are numbered to correspond with the components illustrated in FIGURES 3-5. FIGURE 7a illustrates the mixing operation in which mixing of the two phases is effected by oscillation about the axis 27 as indicated by the arrow. This corresponds to the position of FIGURE 3. After adequate mixing the element 14 is rotated in the direction shown in FIGURE 7b, and the two phases flow together through the juncture member 43 as illustrated in FIGURE 7b. When the position illustrated in FIGURE 7c is reached (corresponding to FIGURE 4), the rotation is stopped. In this position the efiluent phase 61 layers out above the residual phase 62 as ShOWn. When this layering has been effected, further rotation to the position of FIG. 7d (corresponding to FIGURE 5) brings about the discharge of the effluent phase 61 through the downspout 51 and the drain tube 53 while the residual phase 62 remains trapped in reservoir 49. Now, if the drain tube 53 of the first element 14 is connected to the efiluent phase entrance tube 39 of the second element 14, the efiiuent phase 61 will flow into the mixing tube 34 of the second element as shown by arrows 71 and 72, FIGURES 7e and 7d. Further rotation to the position illustrated in FIG. 7e will cause the residual phase of the second element 14 to flow into the mixing tube 34 of the second element as shown by arrow 70. The elements are then oscillated as before to mix the efiluent phase 61 with the new residual phase of the second element 14.
The manner of interconnecting the individual elements 14 is clearly evident from FIGURE 8, which is essentially the same as FIGURE 2 in a plan view. FIGURE 8 shows clearly how each drain tube 53 is connected to the entrance tube 39 of the following element 14 of the series as described above.
As may be seen on FIGURE 2, the efiluent phase from the last element 14 of the series may be transferred to the first element of the series through -a flexible hose 59, or other suitable means so that each of the effluent phases may be passed through each of the residual phases in the element 14 of the series.
When the series of extractions has been completed, the elements 14 may be left in a vertical position and the caps 38 removed to permit the draining of the eifiuent phases. Upon the completion of this operation, the elements 14 may be rotated through substantially 360 degrees in a reverse direction to remove the residual phases in a similar manner.
It may thus be seen that I have invented novel and highly useful improvements in an apparatus for etfecting extraction between immiscible or partially immiscible liquids in which provision is made for the making of a large number of extractions with a minimum of eifort upon the part of the operator. By coupling a number of individual mixing and separating elements, it is possible to deposit the efliuent phase of one extraction to be mixed with the residual phase of an adjacent mixing and separating element, so that an entire series of extractions results by merely rotating the separating elements as a group about a common axis of rotation. The device requires only the ordinary skill in the art to which the invention relates, and by providing automatic means for imparting orbital motion to the elements, the operation of the cycle is substantially automatic.
I wish it to be understood that I do not consider the invention limited to the exact details of structure shown and set forth in this specification, for obvious modifications will occur to those skilled in the art to which the present invention pertains.
I claim:
1. A mixing and separating element comprising: means for mixing efiluent and residual phase of immiscible liquids in predetermined quantities, a phase separating tube separate from said mixing means, the phase separating tube having at least one closed end and a phase entrance opening positioned away from the closed end, means for introducing the mixed fluids from the mixing means into the phase entrance opening of the phase separating tube, a draining downspout extending through the closed end of the phase separating tube and extending longitudinally into the phase separating tube an effective distance substantially less than one half the distance from the closed end of the tube to the phase entrance opening therein, the downspout inlet having a small opening positioned coaxially within the phase mixing tube, the cubic volume defined between the phase separating tube and downspout between the closed end of the phase separating tube and the inlet end of the downspout being substantially equal to the cubic volume of the residual phase of the liquid, whereby when the mixed liquids are passed into the phase separating tube they may be allowed to separate while the phase separating tube is substantially horizontal and upon moving the phase separating tube until the downspout is substantially vertical the efiluent phase is allowed to drain out through the downspout.
2. An apparatus for mixing and separating including a plurality of mixing and separating elements as defined in claim 1 and further comprising means positioning said elements side by side in parallel relationship, and a plurality of tubular members, each tubular member connecting an outlet opening of the downspout of one element with the means for mixing efiluent and residual phase of immiscible liquids of another element, so that the effluent which drains from the downspout of one element may be passed into another element for mixing with another residual phase for another operation of separating.
-3. A mixing and separating element comprising; a phase mixing tube having one closed end for mixing effluent and residual phases of immiscible liquids, a phase separating tube having one closed end, a juncture member rigidly connecting said tubes and forming a means of liquid communication between an open end of the phase mixing tube and an open end of the phase separating tube, a downspout having a small inlet opening coaxially positioned within the phase separating tube, the downspout extending through the closed end of the phase separating tube and having an effective length extending into the phase separating tube of substantially less than one half the length of the phase separating tube from the closed end thereof to the end connected to the juncture member,
the cubic volume defined by the space between the phase separating tube and downspout and between the closed end of the phase separating tube and the inlet end of the downspout being substantially equal to the cubic volume of the residual phase of the mixed liquids, so that when the mixed liquids are passed into the phase [mixing] separating tube and allowed to separate while the phase [mixing] separating tube is substantially horizontal, the effluent phase will drain out through the downspout when the phase [mixing] separating tube is positioned substantially vertical with the inlet end of the downspout extending substantially vertically upward.
4. A mixing and separating element as defined in claim 3 wherein the juncture member comprises a hollow reservoir having a bifurcated shape with a non-bifurcated tubular portion directed away from the juncture of said tube and the juncture member.
5. An apparatus for mixing and separating including a plurality of mixing and separating elements as defined in claim 3 and further comprising means portioning said elements side by side in parallel relationship, and a tubular member connecting an outlet opening of the downspout of one element with the phase mixing tube of another element, so that the efiiuent which drains from the downspout of one element may be passed into another elemcnt for mixing with another residual phase for another operation of separating.
6. An apparatus for mixing and separating including a plurality of mixing and separating elements as defined in claim 4 and further comprising means positioning said elem nts side by side in parallel relationship, and a tubular member connecting an outlet opening of the downspout of one element with the phase mixing tube of another element, so that the eflluent which drains from the downspout of one element may be passed into 7 another element for mixing with another residual phase for another operation of separating.
7. A machine for mixing and separating effluent and residual phases of immiscible liquids, the machine including an apparatus as defined in claim 2 and further comprising, a frame for rigidly supporting all the elements of the apparatus, a rotatable member operatively connected to said frame to rotate the same such that the parallel mixing and separating elements of the apparatus will always be at substantially right angles to the axis of rotation of the rotatable member, a stationary support base for supporting the rotatable member, and means for imparting controlled rotation to the rotatable member about the axis thereof.
8. A machine for mixing and separating effluent and residual phases of immiscible liquids, the machine including an apparatus as defined in claim 5 and further com.- prising, a frame for rigid-1y supporting all the elements of the apparatus, a rotatable member operatively connected to said frame to rotate the same such that the parallel mixing and separating elements of the apparatus will always be at substantially right angles to the axis of rotation of therotatable member, a stationary support base for supporting the rotatable member, and means for imparting controlled rotation to the rotatable member about the axis thereof.
9. A machine for mixing and separating effluent and residual phases of immiscible liquids, the machine including an apparatus as defined in claim 6 and further comprising, a frame for rigidly supporting all the elements of the apparatus, a rotatable member operatively connected to said frame to rotate the same such that the parallel mixing and separating elements of the apparatus will always be at substantially right angles to the axis of rotation of the rotatable member, a stationary support base for supporting the rotatable member, and means for imparting controlled rotation to the rotatable member about the axis thereof.
References Cited in the file of this patent or the original patent UNITED STATES PATENTS 230,960 Mott Aug. 10, 1880 1,973,755 Geyer Sept. 18, 1934 2,089,796 Hopf Aug. 10, 1937 2,580,010 Fenske et al Dec. 25, 1951 FOREIGN PATENTS 355,615 Great Britain Aug. 27, 1931 OTHER REFERENCES Wilhelm and Foos: A Countereurrent Liquid-Liquid Extractor, US. Atomic Energy Commission, Sept. 8, 1955, Iowa State- College, Report 458.
US25186D figure Expired USRE25186E (en)

Publications (1)

Publication Number Publication Date
USRE25186E true USRE25186E (en) 1962-06-19

Family

ID=2093860

Family Applications (1)

Application Number Title Priority Date Filing Date
US25186D Expired USRE25186E (en) figure

Country Status (1)

Country Link
US (1) USRE25186E (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3390963A (en) * 1963-08-07 1968-07-02 Inst Francais Du Petrole Countercurrent mass transfer between two phases at least one of which is a fluid
US3620681A (en) * 1969-10-06 1971-11-16 Eric S Wright Apparatus for extraction of drugs and toxic substances from blood, serum and other liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3390963A (en) * 1963-08-07 1968-07-02 Inst Francais Du Petrole Countercurrent mass transfer between two phases at least one of which is a fluid
US3620681A (en) * 1969-10-06 1971-11-16 Eric S Wright Apparatus for extraction of drugs and toxic substances from blood, serum and other liquid

Similar Documents

Publication Publication Date Title
US3032403A (en) Liquid-liquid contacting apparatus
DE3720397C2 (en) Extraction centrifuge
USRE25186E (en) figure
DE3118134A1 (en) DEVICE AND METHOD FOR EXTRACTION AND PARTICLE SEPARATION IN THE CONTINUOUS COUNTERFLOW
DE1617782B2 (en) CENTRIFUGE OF A DEVICE FOR WASHING BLOOD
US2967093A (en) Apparatus for effecting extraction
DE2805945C3 (en) Device for the continuous feeding and emptying of a device operating in a vacuum
DE2632149C2 (en) Device for the extraction and separation of substances by liquid-liquid exchange
US3709665A (en) Solvent extraction apparatus
US3549332A (en) Countercurrent liquid-liquid extraction device
US3488159A (en) Jet-pulsed liquid-liquid extraction column
DE10040755C2 (en) fuel tank
US3503877A (en) Dialyzer agitator
US3189414A (en) Countercurrent liquid-liquid extraction apparatus
US3297043A (en) Continuous flow counter-current liquid and solids contact apparatus
US2903342A (en) Device for fractionated extraction using more than two solvents
US2747973A (en) Method and apparatus for fractional precipitation of mixtures
US938378A (en) Apparatus for filtering and washing the filtered material.
US2895808A (en) Apparatus for the separation of solutes by partition
US4659476A (en) Method for the treatment of liquids on granular materials
US3460914A (en) Liquid-liquid extraction
DE11779C (en) Inserts for centrifugal machines
US2973250A (en) Apparatus for counter current distribution
DE2404595A1 (en) DOSING PLUG
US4200611A (en) Distribution device