USRE25124E - garmy - Google Patents

garmy Download PDF

Info

Publication number
USRE25124E
USRE25124E US25124DE USRE25124E US RE25124 E USRE25124 E US RE25124E US 25124D E US25124D E US 25124DE US RE25124 E USRE25124 E US RE25124E
Authority
US
United States
Prior art keywords
furnace
electrode
crucible
shell
hopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Publication date
Application granted granted Critical
Publication of USRE25124E publication Critical patent/USRE25124E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/005Casting ingots, e.g. from ferrous metals from non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1295Refining, melting, remelting, working up of titanium

Definitions

  • the present invention relates to methods and apparatus for forming ingots, particularly from metal in relativelysmall fragments, such as scrap, crystals or particles in the so-called sponge form. It especially relates to formation of ingots of metals such as titanium and zirconium which are reduced from their ores to small metal particles. 'Typically, these metals are obtained as metal sponge by reduction of their respective chlorides, with magnesium as the reducing agent.
  • the invention also relates to the formation of ingots from alloys of a metal of the type described with desirable ad ditives such as vanadium, aluminium, chromium, iron, etc.
  • titanium and zirconium are very active chemically and will unite with almost any other element with which they come in contact. 'Thcy are especially aptto be oxidized at such temperatures if there is any oxygen present. 3 It has been proposed toconstructof copper those parts of a melting furnace Whichcontact the titanium.- However, the melting point of copper (about 1800 F.) is substantially lower than that of titanium,
  • An object of the present invention is to provide improved methods and apparatus for producinghomogeneous ingots of metals such as titanium and zirconium.
  • I Another object is to provide an improved electric furnace.
  • Another object is to provide improved apparatus for maintaining an inert gas atmosphere in an electric furnace during its operation.
  • Another object is to provide improved apparatus for electrically stirring molten metal in an electric furnace.
  • Another object is to provide arc stability, especially in a furace employing a plurality of arcs.
  • Another object is to provide, in an electric furnace, improved apparatus for moving electrodes in the furnace during operation thereof.
  • Another object is to provide an an electric furnace/
  • a further object is to provide a crucible structure improved crucible for which may be separated into ,parts to facilitate removal' viewto improving the distribution of their heating efiects.
  • Another object of the invention is to provide animproved method of controlling the pressure of an inert gas in a furnace for melting a metal such as titanium or zirconium.
  • Another object is to provide an improved method of circulating an inert gas through a space in which a metal such as titanium 'or Z IQ niHm is being melted.
  • a further object is to provide an improved method for removing impurities from such a metal by condensing vapors from thecirculating inert gas.
  • the crucible is adapted to be placed underthe bottom of theshell and movedupwardly ag'ainst'it so that it is aligned with the opening. .On the upper endof the shellis rotatably iriountcd ahead 'struc'turejwhich slidably and rotatably receives a number of electrodestructures extending vertically through the shell with-their tips in the;
  • thehead On its upperside, thehead carries a vertcally aligned cage structure supporting a number of vertically movable carriages, one for each electrode.
  • Each carriage supports one electrode and a motor for oscillatin'g'that electrode on its own axis. There is associated with each carriage a motor; for driving it vertically, which motor-is controlled so as to maintain a constant arc length at the tip of the electrode.
  • the head and all g the structures mounted thereon are continuously oscillated angularly aboutthe vertical axis of thefurnace'by a motor mounted on the upper end of the shell and drivingly connected to the head.
  • Theparticles are fed into the crucible through a feed pipe passing through one side of the shell.
  • a hollow post projects downwardly from the center of the head and sup- 1 ports a hopper having an arcuate outer end which is under the inner end of the feed pipe. The lower end of the hopper communicates with the interior of the center post so 'that'the incoming particles are dropped vertically into.
  • the electrodes are spaced radially from the center and are continually moved horizontally with respect to the surface of the metal in the crucible.
  • the horizontal movement includes a repeated oscillation about the center of the crucible, and a movement toward and away from'the center which may be controlled as to travel, or stopped and started as circumstances may require.
  • the current flows through the arcs at the electrodes, and thence through the molten bath to the crucible;
  • an electric coil which induces a vertical magnetic field in the crucible, reacting with the fieldof the current in the molten metal to produce a stirring of the molten metal.
  • the furnace is provided withrnany improved details including improved water 'jacket and water circulating arrangements on the crucible and the shell, improved bearingand heat shield structures for the oscillating head,
  • the crucible is constructed so thatit' may be quickly separated from the furnace at the end of a run and taken apart for the removal of the ingot.
  • Apparatus for-circulating an inert gas, for example helium or argon or. mixture of both through the furnace while it is operating.
  • the inert gas leaving the furnace passes through a condenser Where it is cooled so that the vapors and impurities picked up to the furnace are deposited in the condenser.
  • the cooled gas is then returned to the furnace where it is used to cool vital parts and' displace contaminated gas.
  • FIG. 1 is an overall elevational view of anelectric furnace embodying the invention
  • FIGS. 2A, 2B and 2C together provide an elevational view ofjthe complete furnace similar to FIG. 1, on a'nenlarged scale, with with some parts omittedor brokenaway and others shown in section? i' 'FIG. 3 is" a cross-sectional view -tak en on the. line ofthe shelland'the oscillatinghead;
  • FIG. 4 is acentral verticaljsectional view'talten on, the line IV-IV of FIG'. 3, with'certain parts shown fiueleva t n and p r yb e a yi 5 'isf'a hQ'rizontalsectional. view taken on the line.
  • FIG. 7 is a1fragmentary'sectional'vrew't VII'VII"0f' FIG.;4; i
  • FIG. 8 is a view partly in elevation and pirfayai section I 'w on line the ⁇ center of. the framework 9.
  • the upper end of arbor of" one of the electrode supporting and'moving mechanisms of FIG. 2A, on'a'stillla'rger scale;
  • FIG. 9 is a sectional view taken on the. line FIG. 10 is, a vertical sectional. view showing the details of construction ofone of the electrodes; 7 s
  • FIG'L l1 is'a wiring diagram, of the circuits for ener gizing the motors for moving the electrodes angularly;
  • FIG. 11A is'awir'ing diagramof a simplifiedcircuit for 7o 1 zit-each "of its 'four corners, and rollers 20 journaled in me of the electrode. raising andlo wering-inotors;
  • FIG. 12 is a plan' view of the crucible base structure
  • FIG. 14 is a developed inside elevational view of the crucible water jacket, showing the water inlet and outlet openings and the associated shield structures;
  • FIG. 15 is an elevational view of the crucible structure and its supporting truck, viewed from the left as it appears in FIG. 2C;
  • FIG. 16 is a somewhat diagrammatic elevational view of the furnace shell structure and the gas circulatingapparatus associated with it;
  • FIG. 17 is a plan view of the apparatus shown in FIG. 16;
  • FIG. 18 is a view taken on the line XVIII--XVIII of FIG. 2C, illustrating the paths. of movement of the electrodes and the appearance of the inside of the furnace during operation;
  • FIG. 19 is a fragmentary cross-sectional view similar to a portion of FIG. 2B, showing a modified structural arrangement
  • FIG. 20 is a cross-sectional view taken on the line XXXX of FIG. 3, illustrating the sight glasswiping mechanism; and V FIG. 21 is a somewhat'diagrammatic view illustrating the apparatus for feeding metal particles to the furnace and the apparatus for regulating the pressure within the furnace.
  • FIG. 1 shows, on a small scale, an electric furnace embodying the structural features of the invention.
  • some of the auxiliary apparatus associated with the furnace has been omitted in order to simplify the drawing.
  • FIGS. 2A, 2B and FIG. 1 on an somewhat larger scale. Again, some of the auxiliary apparatus has been omitted in order to simplify the illustration.
  • the drawings illustrate an electric furnace including generally cylindrical shell 1 having its axis, vertical and provided with an annular base plate 2 resting on a floor 3.
  • the shell base plate 2 has a central openingza (see FIG. 2B) in which is inserted the upper end of a crucible- 4-
  • the crucible 4 is mounted on a truck generally indi cated at 5 which travels on rails 6 mounted on another floor 7 below the floor 3.
  • the floor 3 has an opening (not shown)" aligned with the opening 2a in the shell base plate, so that the upper end of the crucible may pass freelythrough it.
  • a head 8 On the upper end ofthe shell 1 is rotatably mounted a head 8, which supports an elongated vertical frame,- generally indicated at 9 and "including four masts .10
  • Electrode supporting andmoving apparatus The carriage structure is best, seen inFIG. 8, and.in-. 'cludes av composite rectangular body plate 18, including twos'teel plateslSa and 18b, separated by, a layer ofelectrical insulating material 18c, and held together by bolts 18d, which are threaded'in the plate 18a and insulated by suitablesleeves and washers, as shown, from the plate 18b;
  • the body plate 18 has projecting legs 19.
  • FIG. 2C illustrate the same apparatus in vertically extending electrode structure generally indicated by the reference numeral 22, and shown in detail in FIG. 10.
  • the body plate 18' also supports an electric motor 23 whose shaft is connected through a suitable coupling 24, a reduction gear 24a, and an electrically insulating coupling 24b, to the upper end of the electrode 22.
  • a transverse bridge structure 25 connected by a hook 26 and a cable 27 having an electrically insulating insert 27a to a counterbalance mechanism 28 (FIGS. 1 and 2A), which may be of any conventional type.
  • the counterbalances 28 are supported on the upper spreader 11 of the frame 9.
  • the insulating structures described separate the electrode 22 from the frame 9, which is generally at the same potential as the crucible 4.
  • a number of bolts 29 (FIG. 8) are attached to the upper legs 19, on the carriage. 17.
  • a lead screw 30 is journaled in bearings 31 mounted at' spaced points in the mast 10, and is driven through gears 32' and 33 by a motor 34 mounted on the back or outer side of the mast.
  • a traveling nut 35 runs along the lead screw 30 and is provided with a flange 35a, through which the bolts 29 loosely extend, having their heads located on the opposite side of the flange 35a from the legs 19.
  • Springs 36 encircle the bolts 29 and are held in compression between the flange 35a and the legs 19.-to take.
  • the cage on frame structure 9, as shown, includes four masts 10, each with its own carriage 17 and electrode 22.
  • Each carriage 17 and electrode 22 has its verticalposition determined by its associated motor 34.
  • Each electrode 22 may be continuously oscillated 'by its associated motor 23.
  • the entire cage. 9 is adapted for oscillation about the vertica-lyaxis of the shell 1 by means of a motor. 37 (FIGS. 1, 2B and 3) mounted on the .upper end of the shell 1 anddriving a pinion gear 38 journaled on the shell 1 andengaging a segment gear 39 fixed on the periphery of the head 8' (see FIG. 3.).
  • the driving connection between the motor 37 and pinion 38 includes a variable'ratio drive mechanism 40which .may'be of any conventionaltype, and an output gear 41, which engages thepinion 3,8.
  • the motor 37 is controlled by suitable circuits ineluding apair of limit switches-42 mounted on the shell 1 and engaged by the opposite ends ofthe segment-gear 39.- Each limit switch.. 42 is elfectivewhenactuated by.
  • furnaces of smaller diameter may have smaller numbers of electrodes,- while furnaces of greater diameter have greater numbers.
  • FIG. 10.Electrode structure This figure illustrates the details of the construction of one of the electrodes 22.
  • This electrode includes a terminal head 43 adapted to be rotatably mounted in a bearing 44 which may be supported in the bearing bracket 21 (FIG. 8).
  • the terminal head.43 is provided with a water inlet opening 43a and a water outlet open ing 43b, and is adapted for attachment to awa-ter cooled high capacity electric cable, which may be of a conventional type, such as that shown at 167 in'FIG. 1. Any other equivalent means for conveying water to inlet 43a and from outlet 43b, and 'for conducting electricity to the head 43, may be employed.
  • the lower end of the block 43 is recessed to receive two concentric tubes 45 and 46.
  • the inner tube 45 is in communication with the water inlet 43a, while the space betweenthe inner. and outer tubes is in communication with the water outlet 43b. Fluid communication betweenthe inlet and outlet is blocked by a suitable bushing 47.
  • the outer tube 46 is provided with a'thick wall and serves as the principal conductor of current to the electrode tip. It is some: times hereinafter referred to as the electrode shaft.
  • the lower end of the electrode shaft 46 is attached to a coupling 48 on which is mounted an angularly offset tip holder 49, The lower end of the tip holder 49 is recessed to threadedly receive an electrode tip 50 of suitable material, for example, graphite, tungsten, or the metal being melted.
  • each electrode itp 50 must be fixed with respectto its own axis of oscillation, and the angular position of all the electrode tips 50 must be coordinated. This angular position, and the coordination of the several positions are necessary to the proper functioning of the system for oscillating the electrodes on their own axes, which system is described in detail below.
  • the angular position of each electrode tip 50 is made adjustable with respect to a shaft 43c fixed on the terminal head 43. Shaft 43c is adapted to be connected in a fixed angular relationship with the coupling 24b (FIG. 8).
  • This angular adjustment is accomplished by providing a locking nut 46a on the electrode shaft 46, so that the shaft 46 can be set in any desired angular position with respect to theaxis of terminal head 43, and then locked by nut 46a.
  • J c n In order to provide a water seal between the electrode shaft 46 and the terminal head 43, a portion of the threads on shaft 46 are machined off near the endof head 43. A recess is provided in the head 43 toreceive an O-ring 46b, which is' squeezed to form a tight seal between the shaft 46 and the head 43 when the nut 46a is tightened.
  • the lower end of the inner tube 45 is received within the end of a tube 51 which extends throughthe hollow tip holder 49 and intothe coupling 48.
  • the lower vend of tube 51 is provided with apertures 51a through which water may flow outwardly fromgthe tube f5l into the space between that tube and thetip holder ,49.
  • theelectrode tips v are electrically negative with respeet'to the crucible 4 and the bath of m olten metal.
  • fElectricity enters the electrode at the tip andfl'ows .1ipwardlyjthrough the tip holder 49 coupling 48,. and, ,e'lectrod e;sha.ft 46 to the terminal head 43. Cooling water enters the inlet; 43a.
  • Cooling water- is "supplied to the several electrodes 22 from .an inlet mani-fold (FIG. 1) through flexible tubes 161-.
  • the manifold 160 is' fastened to a stationary frame member 162.
  • the flexible tub'es'161 extend downwardly from the manifold 160 and are connected to suitable couplings" 163 mounted on the terminal heads 43 of the various electrodes; .Each coupling 163 also provides a connection for a flexible outlet tube 164wl1ich extends upwardly to an outlet manifold 165, also attached to the frame member 162.
  • Electricity is supplied to the electrodes 22 from bus bars 166, mounted on the stationary frame member 162.
  • Two flexible electric cables167 ar'econnected between construction. I
  • the cables 167 may be'wat'er cooled, one cable being used for water flowing in one direction and the other for water flowing in the return direction,- with a cross connection (not shown) adjacent the terminal head 43. It has. beenfound desirable to keep the cooling water-system for the cables 167 separate from the cooling water system for the electrodes 22, in order to supply the electrodes 22 with water at a suitably low temperature.
  • the head 8 (FIG. 2B) is provided'with a water jacket structure, described in detail below,'supplied with cooling water through a manifold 168 (see- FIG. 3), which re-- ceives water through a flexible tube 169 (FIG. 1), shown as being connected to one of the tubes 161 through a T-connection, and to the manifold through an elbow fixed on the head 8.
  • An outlet 170 is provided for the water jacket on head 8.
  • the outlet 170 likewise is connected through an elbow to a flexible tube 171 (FIG. v1') and thence through a T-connectionto a water outlet tube 164 connected to one of the electrode water couplings 163.
  • T-connections shown for tubes 169 and 171 they may be connected directly to the respective manifolds 160 and 165.
  • All the flexible tubes and electric cables including the tubes 161, 164, 169 and 171, and cables 167, are provided with downwardly depending loop portions which permit the movement of the frame 9necessary to its oscillation on the shell 1, and also to-permit'the oscillation of the individual electrodes 22 on their own axes; It would be possible to construct the head *8 for rotation instead of oscillation, and also to construct the electrodes 22 for rotation instead of oscillation. However, such a construction would require the use of brushes rather than flexible cables for. the electricity and the use of'complex rotating seals for all the water. connections.
  • FIG. 11 illustrates circuits for energizing the electrode oscillating motors 23 (FIGS. 2A and 8).
  • the arrangement shown is a system of the well known Selsyn type, including a generator 175 supplying electricity to the four motors 23 and an indicator driving motor ⁇ 176, so that all the motors operate synchronously.
  • Each motor'23' drives one of the electrodes 22 through a reducing gear 24a.
  • the motor 176 drives, through a similar gear 24a;
  • the j can set the limits or angular travel'of the indicator 177, and hence of the electnodes 22. Furthermore, the op,-
  • phase displacements may be accomplished, for example, by shifting the respective electrodes angularly' on their terminal heads 43 by means of the lock nutsv 46a, described above.
  • FIG. llA Circuit for electrode raising and lowering motor
  • FIG. llA a typical circuit for controlling one of the motors 34. Circuits: of;this type are well known in the welding art. The circuit illustrated is shown ina somewhat diagrammatic manner by-way of example only, and is not, per se, a part of the present invention.
  • FIG. 11A There is shown in FIG. 11A a generator 181 for supplying electricity to an electrode 22 which cooperates with a mass of molten material 182 in a crucible 4. Also shown is a constantpotential generator 183 which. is connected in. series with the field 184 of av generator 185 which supplies the motor 34 with electricity.
  • the constant potential generator 1'83 is connected across the electrode 22 and crucible 4 iuparallel with the arc generator 181. As long as the potential drop across the are at electrode. 22 is equal to the potential generated by generator 183, then no current flows in the.
  • Each of the motors 34 has a separate control system, operated in response tothe potential drop across the arc atthe-particular electrode 22 whose elevation the motor controls.
  • the titanium sponge is fed to the furnaceina c011 tinuous stream, preferably from a vibratory feeder (FIG. 219 01.” any” suitable commercial type.
  • the feeder discharges through a feedpipe 52 (see- FIG. 4).
  • the feed pipe 52' extends'through a'shield pipe'53 which is mounted in the 's ide wall'of the furnace shell 1.
  • a flexible cou-" pling, generally indicated-M54 connects the feed pipe52 with the stationary shield pipe 53'.
  • This coupling includes a fl'a-nge 55 attached to the feed pipe 52, a flange 56 attached to the shield pipe 53, and a flexible coupling sleeve 57, havingflanges. at its opposite ends which are respectively bolted to the flanges 55 and 56.
  • Extending through and fixed in the center of the oscillating head; 8 is a, hollow postf58 whose open lower end projects downward inside the shell 1' and is provided at onefsideinear its lower end'withan opening 58a.
  • Sup- Ported on'tlieoutsid'e ores post 58. is a hopper 59 (see FIGS'. 4 and 5).
  • the hopper 59 is generally sector shaped 9. in its horizontal cross-section, as may be seen in FIG. 5. Its upper end extends radially out from the hollow post 58 far enough so that its periphery is below the inner end of the feed pipe 52.
  • the lower end of the hopper 59 communicates with the opening 58a in the post 58.
  • the titanium sponge entering through the feed pipe 52 falls from its inner end into the hopper 59 and thence passes through the opening 58a into the post 58, so that it drops vertically down into the center of the crucible 4 below.
  • one of the electrodes 22 extends vertically downward through the hopper 59.
  • the hopper 59 is made in right and left-hand sections, each with a recessed face 59a which together define a sleeve to permit free passage of the electrode 22.
  • a heat shield 60 (FIG. 4), generally conforming to the shape of the hopper and spaced from it by a short distance.
  • a nozzle 61 projects through the side of the shell 1 and terminates at a point directly opposite the opening between the hopper 59 and the upper end of the heat shield 60. As described more fully below, the nozzle 61 receives a continuous supply of cooled inert gas, for example, helium, which is directed into the space between the heat shield and the hopper and passes downwardly through that space and out the lower end thereof.
  • cooled inert gas for example, helium
  • collar 62 is mounted on the lower end of the hollow post 58 and is concentric with the post and spaced outwardly from it.
  • the upper end of the space between post 58 and collar 62- is directly opposite the lower end of the space between heat shield '60 andhopper 59 so that the flow of cool gas passing through that space tends to continue through the space around the lower end of the post 58.
  • the shield pipe '53 is provided at 63 (see FIG.5) with an inlet for cooled gas which flows through the space between feed pipe 52 and the shield pipe and out into the shell 1.
  • the shields are also effective in reducing radiated heat. This cooling action prevents the metal particles from becoming tacky and clogging the feed mechanism.
  • the apparatus for supplying the metal particles to the feed pipe 52 is illustrated somewhat diagrammatically in FIG. 21.
  • the feed pipe 52 is supplied from two gravimetric feeders, generally indicated at 186 and 187.
  • Two electrical vibratory feeders 188 are attached to the feed pipe 52 to ensure a continuous flow of material through it.
  • the feeder 186 comprises a hopper 189 for receiving the material to be fed.
  • the hopper 189 is supported on one end of a balance beam 190 provided with a counterweight 191 movable along the beam by a lead screw 192 which is rotated by means of a motor 193.
  • the balance beam 190 and associated parts are shown only diagrammatically in the drawing, since they represent well known commercial arrangements.
  • Motor 193 is a Selsyn motor energized by a generator 194 which is driven by a motor 195 through a variable ratio gear 196.
  • the motor 193 drives the counterweight 191 along the balance beam at a controlled rate which tends continuously to unbalance the beam 190.
  • the beam 190 is connected through suitable linkage 197 to a feeder control 198 which operates suitable mechanism at the bottom of the hopper 189 to feed the material out of the hopper at a rate which maintains the balance of the beam 190.
  • the arrangement shown is sometimes known as a gravimetric feeder of the loss-in-weight type.
  • the material falls from the hopper 189 through a flexible coupling 199 into a pipe 200 which leads through another flexible coupling 201 into the feed pipe 52.
  • the-material falling from the hopper 189 may be directed through a pipe 202 into a catch box 203.
  • the selective disposition of the material into pipes 200 and 202 is controlled by a damper 204.
  • the catch box 203 is used, for example, when the apparatus is being started up, in order to establish a steady state of operation before the material is deposited in the feed pipe 52.
  • a pressure balancing mechanism generally indicated at 205.
  • the pressure in the furnace shell 1 is communicated through the feed pipe 52 to the interior of the hopper 189. It acts upwardly on a substantially eifective area within the hopper. While apparatus is provided, as described below, for maintaining the pressure co'nstantin the shell 1, the pressure is subject to minor, rather rapid fluctuations. The exact cause of these fluctuations is not known, but it is considered to be due to the sudden vapon'zation of vaporizable impurities in the material being fed to the furnace. These sudden fluctuations of pres sure, if uncompensated, would disturb the balance of the beam 190 and produce inaccuracies in its control of the rate of feed.
  • a movable diaphragm 206 subject to thexpressure in the furnace and having an effective area substantially equal to the effective area in the hopper 189 which is subject to the same pressure.
  • the diaphragm 206 and the hopper 189 are attached to the opposite ends of a balance lever 207 which is mounted at its center on a fixed support 208.
  • any increase in pressure in the furnace acts upwardly on the hopper 189 directly and at the same time acts downwardly on hopper 189 through the diaphragm 206 and level 207. Consequently, the eflect of the pressure fluctuations on the hopper is balanced.
  • the diaphragm 206 is connected to the furnace pressure system through a pipe 209 substantially equal in length to the pipe 200 and joining that pipe at its lower end so that the pressure fluctuations are transmitted to the hopper 189 and to the diaphragm 206 with substantially equal velocity.
  • the feeder 187 operates in the same manner as feeder 186 and is similar in structure except that it is smaller in size.
  • the feeder 187 is driven by a motor 210, energized by generator 211, driven by the same motor which drives generator 194.
  • Another variable ratio gear mechanism 212 is connected between motor 195 and generator 211.
  • the two feeders 186 and 187 are driven at proportional rates of speed, depending upon the settings of the variable gear mechanisms 196 and 212.
  • These two feeders are intended to be used when the apparatus is forming an ingot from an alloy.
  • the principal constituent of the alloy is fed through the feeder 1-86 and the additive constituent through feeder 187.
  • By feeding both constituents continuously and proportionally throughout the process of forming the ingot it is ensured that the proportional re lationship of the constituents is maintained throughout the ingot.
  • This method of feeding the constituents si- 11 multaneously and continuously presents a substantial advantage over other methods of feeding, since it prevents any stratification of the constituents on'the ingot.
  • feeders 186 and 187 While only two feeders 186 and 187 are shown, it will be recognized that for alloys employing more than two constituents, additional feeders may be provided.
  • the feeding of the individual constituents through individual feeders also presents a substantial advantage in that it guards against the possibility of selective feeding of one constituent where the two constituents are mixed in the hopper of a single feeder. Where the different constituents are difierent particle sizes, then if both are mixed in ,a single feeder, the constituent having the finer particles will tend to flow out more readily and be fed in a higher proportion at the start of the run than at the end; The. use of the separate feeders for the separate constituents avoids this difficulty.
  • FIG. 21 also illustrates suitable apparatus for regulating the pressure in the furnace shell 1.
  • the pressure regulating apparatus includes a reservoir 213, which may represent a commercial cylinder of argon or helium gas, or a plurality of cylinders providing a mixture of the two gases.
  • the gas from the reservoir 213 flows through a constant pressure regulating ,valve 214 to one of the inlet pipes 147 described below in connection with FIGS. 16 and 17.
  • the pressure regulating valve 214 is controlled by the pressure in a static pressure line 215 connected to the interior of the furnace shell 1. The arrangement is such that gas is admitted from the reservoir 213 to the furnace shell 1 whenever the pressure in that shell drops below a predetermined value.
  • a controlled venting arrangement including a vent pipe 216 leading from the interior of the shell 1 to a trap 217.
  • a pipe 218 leads to a water bubbler pressure control mechanism 219.
  • the control mechanism 219 includes a container 220 mounted on a bracket 221 whose vertical position relative to the lower end of the pipe 218 may be adjusted by means of a suitable screw and slot arrangement.
  • the container 220 is provided with. an overflow port 220a which determines the level of the water in the container. Water is continuously trickled into the containerthrough apipe 222.
  • the mech anism 219 maintains a fixed back pressure on the pipe 218.
  • the water supply pipe 222 maintains the level in the container 220 even though some of the water therein may be sucked back through the pipe218 upon a sudden drop in pressure in the shell 1.
  • the trap 217 prevents any water which is sucked back in that manner from reaching the shell 1.
  • a pressure in the range between three and five ounces per square inch above atmospheric pressure is employed.
  • a pressure in this range is a safety precaution which eliminates all possibility of leakage of air into the furnace.
  • the-upper limit of this range is quite critical with regard to the quality of product. If a higher pressure is used, it has been found that gas occlusions occur .in the ingot, which result in metallurgical defects in the finished product, namely, scabs, slivers and laminations. 7
  • Head and'bearing structure (FIGS. 3 and 4) collar which extends vertically between the flange 8d and the radially inner surface of the end plate 65, and a horizontally extending flange, which lies between the peripheral portion of the under surface of the head 8 and the end plate 65.
  • the collar portion of bearing 67 serves as a radial bearing fo the head 8, while the flange on the bearing member 67 serves as a thrust bearing.
  • each bushing assembly 68 includes an inner bushing 69 of friction reducing material, a concentric outer electrical insulating sleeve 70, both inserted in a metal insert 71 which is welded to the upper and lower plates of the head 8.
  • Electrically insulating washers 72 are provided at the ends of the sleeve 70. The washers 72 and sleeve 70 cooperate to insulate bushing 69 from the insert 71.
  • a nut 73 threadedly engages the inner bushing 69 to hold the assembly tightly together.
  • the upper end of the inner bushing 69 is flanged to engage the upper washer 72, and is provided with a hexagonal'head, best seen in FIG. 3, for convenience in tightening the assembly.
  • a horizontally extending heat shield plate 153 is fixed on the lower end of the flange 8d and spaced downwardly a short distance therefrom.
  • the plate 153 is apertured to permit passage of the electrode shafts 4-6.
  • the plate 153 is annular in form, being assembled from four quadrants. At its center, each quadranthas welded to it a supporting pin 154 which is received in a recess in the center post 58.
  • the plate 153 protects the head 8 and its various associated bearing structures, at least to a certain extent, from radiant energy coming from the crucible 4.
  • the various parts which make up the head 8 are preferably welded together, and the parts which make up the shell 1 are also preferably Welded together, as shown in the drawings.
  • Each sight tube 74 is provided at its outer end with a suitable window 75 and a frame 76.
  • the inner end of each sight tube is provided with a cover plate 77, best seen in FIG. 7.
  • Back cover plate is attached at; one edge to a shaft 78 which extends out of the shell 1 through a bushing 79 and is provided on its outer end with a handle 80 by which the cover plate 77 may be rotated between a position shown in FIG. 4 in which it closes the end of its associated sight tube an'd a position substantially at right angles to the position just described, in which the sight tube is open.
  • the 'shaft 78 is frictionally loaded to maintain any angular position in which it is set.
  • a window 75 which is clamped between two frame members 74b and 74c.
  • the window is provided with a central aperture 75a in which is journaled a shaft75b
  • Eachvsight tube is-provided- I

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

Feb. 20, 1962 R. J. GARMY METHOD AND APPARATUS FOR FORMING INGOTS 14 Sheets-Sheet 1 Original Filed Nov. 12, 1953 mmvrom 3055?) J GAR/WV Arfae EV R. J. GARMY METHOD AND APPARATUS FOR FORMING INGOTS Feb. 20, 1962 14 Sheets-Sheet 2 Original Filed Nov. 12, 1953 INVENTOR. 05527 J 6/4/01 ATTOEA/f) Feb. 20, 1962 R. J. GARMY Re. 25,124
METHOD AND APPARATUS FOR FORMING INGOTS Original Filed Nov. 12, 1953 14 Sheets-Sheet 4 ZZZZZ ZEZZZ EC. 4,5 T?
1 I I ,1 1 III Ill/ll A/ "mu /M Feb. 20, 1962 R. J. GARMY 25,124
METHOD AND APPARATUS FOR FORMING INGOTS Original Filed Nov. 12, 1953 14 Sheets-Sheet 5 IN V EN TOR. 05567 J 6/42/14) MW 1M 14 Sheets-Sheet 6 INVENTOR. 05527 J /wmr M ,1 M
AriozA/zr Feb. 20, 1962 R. J. GARMY METHOD AND APPARATUS FOR FORMING INGOTS Original Filed Nov. 12, 1953 Feb. 20, 1962 R. J. GARMY Re.,25,124
METHOD AND APPARATUS FOR FORMING INGOTS 0r i gi1 1a1 Filed Nov. 12, 1953 14 Sheets-Sheet 7 II I 3 r 8 q fur: :m 64
I I i l I 1 1| III II A 1 g A \\\\M I! I IN V EN TOR. R055 J (me/W Feb. 20, 1962 R. J. GARMY METHOD AND APPARATUS FOR FORMING mco'rs l4 Sheets-Sheet 8 Original Filed Nov. 12, 1953 -uvl 1:111 1 H:- mII .1
" Z3 Kasaer 222%1 BY 'ATTGR/VEV Feb. 20, 1962 R. J. GARMY 25,124
METHOD AND APPARATUS FOR FORMING INGOTS Original Filed Nov. 12. 1953 14 Sheets-Sheet 9 a orillllllillllllllliu ,I
Feb. 20, 1962 J. GARMY llElI-IOD AND APPARATUS FOR FORMING mcows 14 Sheets-Sheet 10 Original Filed Nov. 12, 1953 Ficrll.
I'M/2% C INVENTOR. 19055 J 6418M) BY R. J. GARMY IIE'I'l-IOD AND APPARATUS FOR FORIIING INGOTS Feb.20 1962 14 Sheets-Sheet 11 Original Filed Nov. 12. 1953 INVHVTOR. 05527 1 642m Arman/a1 Feb. 20, 1962 R. J. GARMY METHOD AND APPARATUS FOR FORMING INGOTS 14 Sheets-Sheet 12 Original Filed Nov. 12. 1953 I I I n. .H .HH-
Feb. 20, 1962 R. J. GARMY METHOD AND APPARATUS FOR FORMING INGOTS 14 Sheets-Sheet 13 Original Filed Nov. 12. 1953 INVENTOR- Rosier JT GAR/WV /gM/J.
Feb. 20, 1962 R. J. GARMY Re. 25,124
METHOD AND APPARATUS FOR FORMING INGOTS Original Filed Nov. 12, 1953 14 Sheets-Sheet 14 IN VEN TOR.
AUTOKA/EV V Re. 25,124 Reissued Feb ZO, 1962 United States Patent Oifice 25,124 METHOD AND APPARATUS FOR FORMING INGOTS Robert James Garmy, Canton, Ohio, assignor to Republic Steel Corporation, Cleveland, Ohio, a corporation of New Jersey Original No. 2,800,519, dated July 23, 1957, Ser. No. 391,549, Nov. 12, 1953. Application for reissue July 15, 1959, Ser. No. 827,411
29 Claims. (Cl. 139) Matter enclosed in heavy brackets 1 appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
The present invention relates to methods and apparatus for forming ingots, particularly from metal in relativelysmall fragments, such as scrap, crystals or particles in the so-called sponge form. It especially relates to formation of ingots of metals such as titanium and zirconium which are reduced from their ores to small metal particles. 'Typically, these metals are obtained as metal sponge by reduction of their respective chlorides, with magnesium as the reducing agent. The invention also relates to the formation of ingots from alloys of a metal of the type described with desirable ad ditives such as vanadium, aluminium, chromium, iron, etc.
In order to provide metal in a form suitable for use in .conventional fabrication processes, such as rolling, it is necessary to form it into ingots having homogeneous characteristics, i.e., without flaws, air spaces, or other occluded impurities. The formation of such ingots from metals such as titanium and zirconium presents very difficult problems. The metal must, of course, be melted in order to form the ingot. The melting points of such metals ;arevery high, in the neighborhood of 3100- 3200" F. It is difiicult even to raisea substantial volume'of material to such a temperature. Furthermore, it is difficult to obtain such a temperature without running the risk of exceeding it, with consequent danger to personnel and risk of destruction of the apparatus used. At high temperatures, even considerably below their melting points, titanium and zirconium are very active chemically and will unite with almost any other element with which they come in contact. 'Thcy are especially aptto be oxidized at such temperatures if there is any oxygen present. 3 It has been proposed toconstructof copper those parts of a melting furnace Whichcontact the titanium.- However, the melting point of copper (about 1800 F.) is substantially lower than that of titanium,
'and the temperature at which copper loses its working strength is even lower. It is therefore necessary to cool the copper parts of the furnace, usually with water jackets or the like. -This cooling is necessarily, although not desirably, communicated to the titanium in the furnace, and results in a limitation. of the yolume of titanium. metal whichcan be maintained molten at a given time. This presents a furtther difficulty in securing the formation of a homogeneous ingot when only a very small proportion of its volume is molten at any given time.
7 Metals such as titanium or zirconium combine'rapidly v at high temperatures with any chemically active gas pres cut. For that reason, it has been the practice to melt such metals only in an atmosphere of completely inert gas. 7
Another source of trouble in the formation of such ingots is that the metalparticles conta n impurities which.
vaporize at the temperatures required, Forexample, titanium sponge contains small proportions of magnesif um and magnesium chloride. ties interfere with normal furnace operationand tend to These vaporized impuricondense on and foul the cooler surfaces in the furnace structure where the melting operation istaking place An object of the present invention is to provide improved methods and apparatus for producinghomogeneous ingots of metals such as titanium and zirconium.
I Another object is to provide an improved electric furnace.
Another object is to provide improved apparatus for maintaining an inert gas atmosphere in an electric furnace during its operation.
Another object is to provide improved apparatus for electrically stirring molten metal in an electric furnace.
Another object is to provide arc stability, especially in a furace employing a plurality of arcs.
Another object is to provide, in an electric furnace, improved apparatus for moving electrodes in the furnace during operation thereof.
Another object is to provide an an electric furnace/ A further object is to provide a crucible structure improved crucible for which may be separated into ,parts to facilitate removal' viewto improving the distribution of their heating efiects.
Another object of the invention is to provide animproved method of controlling the pressure of an inert gas in a furnace for melting a metal such as titanium or zirconium.
Another object is to provide an improved method of circulating an inert gas through a space in which a metal such as titanium 'or Z IQ niHm is being melted.
A further object is to provide an improved method for removing impurities from such a metal by condensing vapors from thecirculating inert gas. i V
The foregoing and. other objects of the invention 'are attained in the methods and apparatus described herein by providing an improved electric furnace including a F crucible, means for feeding metal sponge into the center.
their effect is felt indifferent parts of the crucible and so that Qalllocalities in the crucible are properly heatedand l fi means forjstirring the molten met l d stabilizing'thearcs at theelectrgd he .improyed'jfu U ace comprises a stationary shellof generally"cylindrical' form having its lower end open.
The crucible is adapted to be placed underthe bottom of theshell and movedupwardly ag'ainst'it so that it is aligned with the opening. .On the upper endof the shellis rotatably iriountcd ahead 'struc'turejwhich slidably and rotatably receives a number of electrodestructures extending vertically through the shell with-their tips in the;
crucible below. On its upperside, thehead carries a vertcally aligned cage structure supporting a number of vertically movable carriages, one for each electrode.
:- Each carriage supports one electrode and a motor for oscillatin'g'that electrode on its own axis. There is associated with each carriage a motor; for driving it vertically, which motor-is controlled so as to maintain a constant arc length at the tip of the electrode. The head and all g the structures mounted thereon are continuously oscillated angularly aboutthe vertical axis of thefurnace'by a motor mounted on the upper end of the shell and drivingly connected to the head. Theparticles are fed into the crucible through a feed pipe passing through one side of the shell. A hollow post projects downwardly from the center of the head and sup- 1 ports a hopper having an arcuate outer end which is under the inner end of the feed pipe. The lower end of the hopper communicates with the interior of the center post so 'that'the incoming particles are dropped vertically into.
the center of the crucible through the hollow post. The particles tend to distribute over the central portion of the crucible. The electrodes are spaced radially from the center and are continually moved horizontally with respect to the surface of the metal in the crucible. The horizontal movement includes a repeated oscillation about the center of the crucible, and a movement toward and away from'the center which may be controlled as to travel, or stopped and started as circumstances may require. The current flows through the arcs at the electrodes, and thence through the molten bath to the crucible; There is provided on the outside of the crucible an electric coil which induces a vertical magnetic field in the crucible, reacting with the fieldof the current in the molten metal to produce a stirring of the molten metal.
The furnace is provided withrnany improved details including improved water 'jacket and water circulating arrangements on the crucible and the shell, improved bearingand heat shield structures for the oscillating head,
improved'sight tubes, and an improved quick-opening door mechanism on the shell. The crucible is constructed so thatit' may be quickly separated from the furnace at the end of a run and taken apart for the removal of the ingot.
Apparatus is provided, for-circulating an inert gas, for example helium or argon or. mixture of both through the furnace while it is operating. The inert gas leaving the furnace passes through a condenser Where it is cooled so that the vapors and impurities picked up to the furnace are deposited in the condenser. The cooled gas is then returned to the furnace where it is used to cool vital parts and' displace contaminated gas. I, 7
Other objects and advantages of the invention will be come apparent from a consideration of the appended specification and claims, taken together with the accompanying drawings.
In the drawings: FIG. 1 is an overall elevational view of anelectric furnace embodying the invention;
FIGS. 2A, 2B and 2C together provide an elevational view ofjthe complete furnace similar to FIG. 1, on a'nenlarged scale, with with some parts omittedor brokenaway and others shown in section? i' 'FIG. 3 is" a cross-sectional view -tak en on the. line ofthe shelland'the oscillatinghead;
IlI-.-III of FIG. 2B andprovijding. a plan-view of the. top
FIG. 4 is acentral verticaljsectional view'talten on, the line IV-IV of FIG'. 3, with'certain parts shown fiueleva t n and p r yb e a yi 5 'isf'a hQ'rizontalsectional. view taken on the line. v v rFIGA; e FIGxej a fragmentary sectl n l' Y1;YI ofFIG; 2B; it FIG. 7 is a1fragmentary'sectional'vrew't VII'VII"0f' FIG.;4; i
FIG. 8 is a view partly in elevation and pirfayai section I 'w on line the} center of. the framework 9. The upper end of arbor of" one of the electrode supporting and'moving mechanisms of FIG. 2A, on'a'stillla'rger scale;
FIG. 9 is a sectional view taken on the. line FIG. 10 is, a vertical sectional. view showing the details of construction ofone of the electrodes; 7 s
FIG'L l1 is'a wiring diagram, of the circuits for ener gizing the motors for moving the electrodes angularly;
FIG. 11A is'awir'ing diagramof a simplifiedcircuit for 7o 1 zit-each "of its 'four corners, and rollers 20 journaled in me of the electrode. raising andlo wering-inotors;
FIG. 12 isa plan' view of the crucible base structure;
taken on the line XII XII 2C;
FIG. 14 is a developed inside elevational view of the crucible water jacket, showing the water inlet and outlet openings and the associated shield structures;
FIG. 15 is an elevational view of the crucible structure and its supporting truck, viewed from the left as it appears in FIG. 2C;
FIG. 16 is a somewhat diagrammatic elevational view of the furnace shell structure and the gas circulatingapparatus associated with it;
FIG. 17 is a plan view of the apparatus shown in FIG. 16;
FIG. 18 is a view taken on the line XVIII--XVIII of FIG. 2C, illustrating the paths. of movement of the electrodes and the appearance of the inside of the furnace during operation;
FIG. 19 is a fragmentary cross-sectional view similar to a portion of FIG. 2B, showing a modified structural arrangement;
FIG. 20 is a cross-sectional view taken on the line XXXX of FIG. 3, illustrating the sight glasswiping mechanism; and V FIG. 21 is a somewhat'diagrammatic view illustrating the apparatus for feeding metal particles to the furnace and the apparatus for regulating the pressure within the furnace.
, GENERAL DESCRIPTION FIG. 1 shows, on a small scale, an electric furnace embodying the structural features of the invention. In this figure, some of the auxiliary apparatus associated with the furnace has been omitted in order to simplify the drawing.
FIGS. 2A, 2B and FIG. 1 on an somewhat larger scale. Again, some of the auxiliary apparatus has been omitted in order to simplify the illustration.
The drawings illustrate an electric furnace including generally cylindrical shell 1 having its axis, vertical and provided with an annular base plate 2 resting on a floor 3. The shell base plate 2 has a central openingza (see FIG. 2B) in which is inserted the upper end of a crucible- 4- The crucible 4 is mounted on a truck generally indi cated at 5 which travels on rails 6 mounted on another floor 7 below the floor 3. The floor 3 has an opening (not shown)" aligned with the opening 2a in the shell base plate, so that the upper end of the crucible may pass freelythrough it.
On the upper end ofthe shell 1 is rotatably mounted a head 8, which supports an elongated vertical frame,- generally indicated at 9 and "including four masts .10
whose-upperends are held in proper spacial relationship by two spreaders'1'1and12. An arbor 13 is fixed in the'spreaders 11 and 12-'and projects upwardly from 13*is received in a'r'adi'al bearing 14 mounted on a stationary' support '15' which is fixed: with 'respect'to the floor 3. g g v 'Ea'chiof the masts 10 is of channel-shaped cross-section, andii's providedon the; inner faces offits flanges with a pair of rails, '16 (see FIG. 9). A carriage 17' (FIGS; 2A and 8)"is vertically movable alongeachofthe masts'lo, being guidedby the'rails 16.
" Electrode supporting andmoving apparatus The carriage structure is best, seen inFIG. 8, and.in-. 'cludes av composite rectangular body plate 18, including twos'teel plateslSa and 18b, separated by, a layer ofelectrical insulating material 18c, and held together by bolts 18d, which are threaded'in the plate 18a and insulated by suitablesleeves and washers, as shown, from the plate 18b; The body plate 18 has projecting legs 19.
the projecting legs. The rollers 20-ride in grooves formed extending bearing bracket. 21, in which is iournaled a:
2C illustrate the same apparatus in vertically extending electrode structure generally indicated by the reference numeral 22, and shown in detail in FIG. 10.
The body plate 18' also supports an electric motor 23 whose shaft is connected through a suitable coupling 24, a reduction gear 24a, and an electrically insulating coupling 24b, to the upper end of the electrode 22. On the upper end of the body plate 18 is mounted a transverse bridge structure 25 connected by a hook 26 and a cable 27 having an electrically insulating insert 27a to a counterbalance mechanism 28 (FIGS. 1 and 2A), which may be of any conventional type. The counterbalances 28 are supported on the upper spreader 11 of the frame 9.
The insulating structures described separate the electrode 22 from the frame 9, which is generally at the same potential as the crucible 4.
A number of bolts 29 (FIG. 8) are attached to the upper legs 19, on the carriage. 17. A lead screw 30 is journaled in bearings 31 mounted at' spaced points in the mast 10, and is driven through gears 32' and 33 by a motor 34 mounted on the back or outer side of the mast. A traveling nut 35 runs along the lead screw 30 and is provided with a flange 35a, through which the bolts 29 loosely extend, having their heads located on the opposite side of the flange 35a from the legs 19. Springs 36 encircle the bolts 29 and are held in compression between the flange 35a and the legs 19.-to take. up shock, which might result from a sudden contact .of the electrode tip with a solid body, such as a mass of accumulatedspon-ge in the crucible. The springs 36 are thereby effective to minimize damage to the electrode 'ps from such shocks, which damage might also add contamination to the bath in the crucible. Y
The cage on frame structure 9, as shown, includes four masts 10, each with its own carriage 17 and electrode 22. Each carriage 17 and electrode 22 has its verticalposition determined by its associated motor 34. Each electrode 22 may be continuously oscillated 'by its associated motor 23.
The entire cage. 9 is adapted for oscillation about the vertica-lyaxis of the shell 1 by means of a motor. 37 (FIGS. 1, 2B and 3) mounted on the .upper end of the shell 1 anddriving a pinion gear 38 journaled on the shell 1 andengaging a segment gear 39 fixed on the periphery of the head 8' (see FIG. 3.). The driving connection between the motor 37 and pinion 38 includes a variable'ratio drive mechanism 40which .may'be of any conventionaltype, and an output gear 41, which engages thepinion 3,8.
The motor 37 is controlled by suitable circuits ineluding apair of limit switches-42 mounted on the shell 1 and engaged by the opposite ends ofthe segment-gear 39.- Each limit switch.. 42 is elfectivewhenactuated by.
an end of thegear 39 to control circuits which reverse' the motor 37, so that the cage 9 is continuouslyoscillated between theftwo angular positions where the opposite ends of the segment gear39'actuate the two limit switches 42 .It;shou'ld be noted-that the spacing of switches 42 is such that the total angular movement} of the cage 9 is substantially equal to the angular spacing betweenthe masts 10. 4
While the furnace illustrated has four electrodes, it will readily be recognized that other numbers .ofelectrodes may be used- Generally speaking, furnaces of smaller diameter may have smaller numbers of electrodes,- while furnaces of greater diameter have greater numbers.
=FIG. 10.Electrode structure This figure illustrates the details of the construction of one of the electrodes 22. This electrode includes a terminal head 43 adapted to be rotatably mounted in a bearing 44 which may be supported in the bearing bracket 21 (FIG. 8). The terminal head.43 is provided with a water inlet opening 43a and a water outlet open ing 43b, and is adapted for attachment to awa-ter cooled high capacity electric cable, which may be of a conventional type, such as that shown at 167 in'FIG. 1. Any other equivalent means for conveying water to inlet 43a and from outlet 43b, and 'for conducting electricity to the head 43, may be employed. The lower end of the block 43 is recessed to receive two concentric tubes 45 and 46. The inner tube 45 is in communication with the water inlet 43a, while the space betweenthe inner. and outer tubes is in communication with the water outlet 43b. Fluid communication betweenthe inlet and outlet is blocked by a suitable bushing 47. The outer tube 46 is provided with a'thick wall and serves as the principal conductor of current to the electrode tip. It is some: times hereinafter referred to as the electrode shaft. The lower end of the electrode shaft 46 is attached to a coupling 48 on which is mounted an angularly offset tip holder 49, The lower end of the tip holder 49 is recessed to threadedly receive an electrode tip 50 of suitable material, for example, graphite, tungsten, or the metal being melted.
The angular position of each electrode itp 50 must be fixed with respectto its own axis of oscillation, and the angular position of all the electrode tips 50 must be coordinated. This angular position, and the coordination of the several positions are necessary to the proper functioning of the system for oscillating the electrodes on their own axes, which system is described in detail below. For these reasons, the angular position of each electrode tip 50 is made adjustable with respect to a shaft 43c fixed on the terminal head 43. Shaft 43c is adapted to be connected in a fixed angular relationship with the coupling 24b (FIG. 8).
, This angular adjustment is accomplished by providing a locking nut 46a on the electrode shaft 46, so that the shaft 46 can be set in any desired angular position with respect to theaxis of terminal head 43, and then locked by nut 46a. J c n In order to provide a water seal between the electrode shaft 46 and the terminal head 43,, a portion of the threads on shaft 46 are machined off near the endof head 43. A recess is provided in the head 43 toreceive an O-ring 46b, which is' squeezed to form a tight seal between the shaft 46 and the head 43 when the nut 46a is tightened.
The lower end of the inner tube 45 is received within the end of a tube 51 which extends throughthe hollow tip holder 49 and intothe coupling 48. The lower vend of tube 51 is provided with apertures 51a through which water may flow outwardly fromgthe tube f5l into the space between that tube and thetip holder ,49.
" In the operation of the-f mace; theelectrode tips v are electrically negative with respeet'to the crucible 4 and the bath of m olten metal. fElectricity enters the electrode at the tip andfl'ows .1ipwardlyjthrough the tip holder 49 coupling 48,. and, ,e'lectrod e;sha.ft 46 to the terminal head 43. Cooling water enters the inlet; 43a.
and flo sdownwardftlirough the finnertube'45, radially; 'outward through apertures 51a and thence baclc ,up
through the annular space; between the inner tube 51 and-45 on the one handfand the tip holder 49 and elec trodeshaft 46 on the other hand, and thence outthrough the 6mm 43b.
Cooling water-is "supplied to the several electrodes 22 from .an inlet mani-fold (FIG. 1) through flexible tubes 161-. The manifold 160is' fastened to a stationary frame member 162. The flexible tub'es'161 extend downwardly from the manifold 160 and are connected to suitable couplings" 163 mounted on the terminal heads 43 of the various electrodes; .Each coupling 163 also provides a connection for a flexible outlet tube 164wl1ich extends upwardly to an outlet manifold 165, also attached to the frame member 162.
Electricity is supplied to the electrodes 22 from bus bars 166, mounted on the stationary frame member 162. Two flexible electric cables167 ar'econnected between construction. I
each: terminal head 43 and'oneof the bus bars 166. The cables 167 may be'wat'er cooled, one cable being used for water flowing in one direction and the other for water flowing in the return direction,- with a cross connection (not shown) adjacent the terminal head 43. It has. beenfound desirable to keep the cooling water-system for the cables 167 separate from the cooling water system for the electrodes 22, in order to supply the electrodes 22 with water at a suitably low temperature.
. The head 8 (FIG. 2B) is provided'with a water jacket structure, described in detail below,'supplied with cooling water through a manifold 168 (see- FIG. 3), which re-- ceives water through a flexible tube 169 (FIG. 1), shown as being connected to one of the tubes 161 through a T-connection, and to the manifold through an elbow fixed on the head 8. An outlet 170 is provided for the water jacket on head 8. The outlet 170 likewise is connected through an elbow to a flexible tube 171 (FIG. v1') and thence through a T-connectionto a water outlet tube 164 connected to one of the electrode water couplings 163. Instead of the T-connections shown for tubes 169 and 171, they may be connected directly to the respective manifolds 160 and 165.
All the flexible tubes and electric cables, including the tubes 161, 164, 169 and 171, and cables 167, are provided with downwardly depending loop portions which permit the movement of the frame 9necessary to its oscillation on the shell 1, and also to-permit'the oscillation of the individual electrodes 22 on their own axes; It would be possible to construct the head *8 for rotation instead of oscillation, and also to construct the electrodes 22 for rotation instead of oscillation. However, such a construction would require the use of brushes rather than flexible cables for. the electricity and the use of'complex rotating seals for all the water. connections. Since the furnace requires a large quantity of electricity and a large quantity of water, the present arrangement simplifies the electricity and water connections gr t y, and therefore has substantial advantages over 'a rotating head or rotating electrode Circuits for electrode oscillating'inotors FIG. 11 illustrates circuits for energizing the electrode oscillating motors 23 (FIGS. 2A and 8). The arrangement shown is a system of the well known Selsyn type, including a generator 175 supplying electricity to the four motors 23 and an indicator driving motor \176, so that all the motors operate synchronously. Each motor'23' drives one of the electrodes 22 through a reducing gear 24a. The motor 176 drives, through a similar gear 24a;
j can set the limits or angular travel'of the indicator 177, and hence of the electnodes 22. Furthermore, the op,-
erator can stop the motor 179 and thereby establish the indicator 177 "and all the electrodes 22 in any desired fixed position. It will be recognized that the indicator 177 travels 'angularly with the electrodes 22, andindicate's their an-gular'positions at all times. Z v
7. Under. some conditions of furnace operation, it'is .desirable to have all the electrodes moving angularly in phase. That is to say, all of the four electrodes-- will move inwardlytogethcr toward the center of the furnace and all will move outwardly together. Under other conditions, itmay be desirable to shiftsome of the electrodes in phase relative to the others. For example, it may be desirable to have two of the electrodes moving inwardly whilethe other two are moving outwardly. There is illustrated in FIG. 11 arevcrsing switch l80 connected in two of the stator. lines of two'of the-,motors'23. When the reversing switch 180 operated; it will reverse the and indicatorl77 arejlocated so as jto rotatiomafv these two-motors 2?, with respect to the other two meters '23. Consequently, by bringing the electrodes to the middle position in their range of traveland then reversing the switch 180, a phase displacement of the type described above may be accomplished. 7
Other phase displacements may be accomplished, for example, by shifting the respective electrodes angularly' on their terminal heads 43 by means of the lock nutsv 46a, described above.
Circuit for electrode raising and lowering motor There is shown in FIG. llA a typical circuit for controlling one of the motors 34. Circuits: of;this type are well known in the welding art. The circuit illustrated is shown ina somewhat diagrammatic manner by-way of example only, and is not, per se, a part of the present invention.
There is shown in FIG. 11A a generator 181 for supplying electricity to an electrode 22 which cooperates with a mass of molten material 182 in a crucible 4. Also shown is a constantpotential generator 183 which. is connected in. series with the field 184 of av generator 185 which supplies the motor 34 with electricity.
The constant potential generator 1'83 is connected across the electrode 22 and crucible 4 iuparallel with the arc generator 181. As long as the potential drop across the are at electrode. 22 is equal to the potential generated by generator 183, then no current flows in the.
field winding 184 and the motor 34 remains stationary. If thepotential drop across the. are at electrode 22 increases above the potential generated by generator 183, then current flows through thefield winding 184 to the left as it appears in' FIG. 11A and causes operation of motor '34 in a direction to lower the electrode 22 so as to decrease the length of the arc and thereby the potential drop across it. Similarly, a decrease in the desired potential drop across the-arc results in operation of motor 34 in a direction to increase the length of the arc.
Each of the motors 34 has a separate control system, operated in response tothe potential drop across the arc atthe-particular electrode 22 whose elevation the motor controls.
Sponge feeding apparatus (FIGS. 4 and 5) I For-purposes of illustratiomthe furnace described herein will bedescribed as for the formation of a titanium ingotfirom titaniumsponge which has been reduced from titanium tetrachloride by'the use of magnesium as a reducing agent, and which contains minor proportions of magnesium and magnesiumchloride as impurities. In
using these speeific'mate'rials and specific impurities as illustrations-it is not intended to imply that the invention isn'ecessar'ily limited to such materials or-tosuch impurities. The structure sho'wn-and'described can treat, for example, zirconiumj ust as well as it can treat titanium. It may alsobe used to handle other materials, including alloys'of titaniumor zirconium. I 7
The titanium sponge is fed to the furnaceina c011 tinuous stream, preferably from a vibratory feeder (FIG. 219 01." any" suitable commercial type. The feeder discharges through a feedpipe 52 (see- FIG. 4). The feed pipe 52' extends'through a'shield pipe'53 which is mounted in the 's ide wall'of the furnace shell 1. A flexible cou-" pling, generally indicated-M54, connects the feed pipe52 with the stationary shield pipe 53'. This coupling includes a fl'a-nge 55 attached to the feed pipe 52, a flange 56 attached to the shield pipe 53, and a flexible coupling sleeve 57, havingflanges. at its opposite ends which are respectively bolted to the flanges 55 and 56. I
Extending through and fixed in the center of the oscillating head; 8 is a, hollow postf58 whose open lower end projects downward inside the shell 1' and is provided at onefsideinear its lower end'withan opening 58a. Sup- Ported on'tlieoutsid'e ores post 58. is a hopper 59 (see FIGS'. 4 and 5). The hopper 59 is generally sector shaped 9. in its horizontal cross-section, as may be seen in FIG. 5. Its upper end extends radially out from the hollow post 58 far enough so that its periphery is below the inner end of the feed pipe 52. The lower end of the hopper 59 communicates with the opening 58a in the post 58. The titanium sponge entering through the feed pipe 52 falls from its inner end into the hopper 59 and thence passes through the opening 58a into the post 58, so that it drops vertically down into the center of the crucible 4 below.
As shown in FIG. 5, one of the electrodes 22 extends vertically downward through the hopper 59. In order to permit this, the hopper 59 is made in right and left-hand sections, each with a recessed face 59a which together define a sleeve to permit free passage of the electrode 22.
Mounted on the outside of the hopper 59 is a heat shield 60 (FIG. 4), generally conforming to the shape of the hopper and spaced from it by a short distance. A nozzle 61 projects through the side of the shell 1 and terminates at a point directly opposite the opening between the hopper 59 and the upper end of the heat shield 60. As described more fully below, the nozzle 61 receives a continuous supply of cooled inert gas, for example, helium, which is directed into the space between the heat shield and the hopper and passes downwardly through that space and out the lower end thereof. A
collar 62 is mounted on the lower end of the hollow post 58 and is concentric with the post and spaced outwardly from it. The upper end of the space between post 58 and collar 62-is directly opposite the lower end of the space between heat shield '60 andhopper 59 so that the flow of cool gas passing through that space tends to continue through the space around the lower end of the post 58. The shield pipe '53 is provided at 63 (see FIG.5) with an inlet for cooled gas which flows through the space between feed pipe 52 and the shield pipe and out into the shell 1.
It may therefore be seen that all the parts through which the titanium sponge passes on its way to the center of the crucible are cooled by gas jackets and shields. These parts include the feed pipe 52 cooled by the gas flowing through shield pipe 53, the hopper 59 cooled by gas flowing through the shield 60 and the lower end of the post 58 cooled by gas flowing through the shield 62. v
The shields are also effective in reducing radiated heat. This cooling action prevents the metal particles from becoming tacky and clogging the feed mechanism.
By feeding the material through the side of the shell 1, interference with the oscillating frame 9 and all the other complex mechanism on and above the head is avoided.
Material supply apparatus (FIG. 21)
The apparatus for supplying the metal particles to the feed pipe 52 is illustrated somewhat diagrammatically in FIG. 21. As there shown, the feed pipe 52 is supplied from two gravimetric feeders, generally indicated at 186 and 187. Two electrical vibratory feeders 188, of any suitable commercial design, are attached to the feed pipe 52 to ensure a continuous flow of material through it.
7 Although only two gravimetric feeders 186 and 187 are shown, it will be apparent that any number of such feeders could be used depending upon the number of components to be fed simultaneously to the furnace. The two feeders 186 and 187 are generally similar, except for a difference in size, and only the feeder 186 will be described. Feeders of the type shown are commercially available except for an accessory pressure-balancing mechanism which is considered to be a feature of the present invention and is described below.
The feeder 186 comprises a hopper 189 for receiving the material to be fed. The hopper 189 is supported on one end of a balance beam 190 provided with a counterweight 191 movable along the beam by a lead screw 192 which is rotated by means of a motor 193. The balance beam 190 and associated parts are shown only diagrammatically in the drawing, since they represent well known commercial arrangements. Motor 193 is a Selsyn motor energized by a generator 194 which is driven by a motor 195 through a variable ratio gear 196. The motor 193 drives the counterweight 191 along the balance beam at a controlled rate which tends continuously to unbalance the beam 190. The beam 190 is connected through suitable linkage 197 to a feeder control 198 which operates suitable mechanism at the bottom of the hopper 189 to feed the material out of the hopper at a rate which maintains the balance of the beam 190. The arrangement shown is sometimes known as a gravimetric feeder of the loss-in-weight type. The material falls from the hopper 189 through a flexible coupling 199 into a pipe 200 which leads through another flexible coupling 201 into the feed pipe 52. Alternatively, the-material falling from the hopper 189 may be directed through a pipe 202 into a catch box 203. The selective disposition of the material into pipes 200 and 202 is controlled by a damper 204. The catch box 203 is used, for example, when the apparatus is being started up, in order to establish a steady state of operation before the material is deposited in the feed pipe 52.
There is provided, as an accessory to the feeder 186, a pressure balancing mechanism generally indicated at 205. The pressure in the furnace shell 1 is communicated through the feed pipe 52 to the interior of the hopper 189. It acts upwardly on a substantially eifective area within the hopper. While apparatus is provided, as described below, for maintaining the pressure co'nstantin the shell 1, the pressure is subject to minor, rather rapid fluctuations. The exact cause of these fluctuations is not known, but it is considered to be due to the sudden vapon'zation of vaporizable impurities in the material being fed to the furnace. These sudden fluctuations of pres sure, if uncompensated, would disturb the balance of the beam 190 and produce inaccuracies in its control of the rate of feed. In order to compensate for these pressure fluctuationsthere is provided a movable diaphragm 206, subject to thexpressure in the furnace and having an effective area substantially equal to the effective area in the hopper 189 which is subject to the same pressure. The diaphragm 206 and the hopper 189 are attached to the opposite ends of a balance lever 207 which is mounted at its center on a fixed support 208.
It may be seen that any increase in pressure in the furnace acts upwardly on the hopper 189 directly and at the same time acts downwardly on hopper 189 through the diaphragm 206 and level 207. Consequently, the eflect of the pressure fluctuations on the hopper is balanced. The diaphragm 206 is connected to the furnace pressure system through a pipe 209 substantially equal in length to the pipe 200 and joining that pipe at its lower end so that the pressure fluctuations are transmitted to the hopper 189 and to the diaphragm 206 with substantially equal velocity.
The feeder 187, as mentioned above, operates in the same manner as feeder 186 and is similar in structure except that it is smaller in size. The feeder 187 is driven by a motor 210, energized by generator 211, driven by the same motor which drives generator 194. Another variable ratio gear mechanism 212 is connected between motor 195 and generator 211.
It may be seen from the foregoing that the two feeders 186 and 187 are driven at proportional rates of speed, depending upon the settings of the variable gear mechanisms 196 and 212. These two feeders are intended to be used when the apparatus is forming an ingot from an alloy. The principal constituent of the alloy is fed through the feeder 1-86 and the additive constituent through feeder 187. By feeding both constituents continuously and proportionally throughout the process of forming the ingot, it is ensured that the proportional re lationship of the constituents is maintained throughout the ingot. This method of feeding the constituents si- 11 multaneously and continuously presents a substantial advantage over other methods of feeding, since it prevents any stratification of the constituents on'the ingot. While only two feeders 186 and 187 are shown, it will be recognized that for alloys employing more than two constituents, additional feeders may be provided. The feeding of the individual constituents through individual feeders also presents a substantial advantage in that it guards against the possibility of selective feeding of one constituent where the two constituents are mixed in the hopper of a single feeder. Where the different constituents are difierent particle sizes, then if both are mixed in ,a single feeder, the constituent having the finer particles will tend to flow out more readily and be fed in a higher proportion at the start of the run than at the end; The. use of the separate feeders for the separate constituents avoids this difficulty.
Pressure regulating apparatus (FIG. 21)
. FIG. 21 also illustrates suitable apparatus for regulating the pressure in the furnace shell 1. As there shown, the pressure regulating apparatus includesa reservoir 213, which may represent a commercial cylinder of argon or helium gas, or a plurality of cylinders providing a mixture of the two gases. The gas from the reservoir 213 flows through a constant pressure regulating ,valve 214 to one of the inlet pipes 147 described below in connection with FIGS. 16 and 17. The pressure regulating valve 214 is controlled by the pressure in a static pressure line 215 connected to the interior of the furnace shell 1. The arrangement is such that gas is admitted from the reservoir 213 to the furnace shell 1 whenever the pressure in that shell drops below a predetermined value.
Excessive pressures in shell 1 are prevented by a controlled venting arrangement, including a vent pipe 216 leading from the interior of the shell 1 to a trap 217. From the trap 217 a pipe 218 leads to a water bubbler pressure control mechanism 219. The control mechanism 219 includes a container 220 mounted on a bracket 221 whose vertical position relative to the lower end of the pipe 218 may be adjusted by means of a suitable screw and slot arrangement. The container 220 is provided with. an overflow port 220a which determines the level of the water in the container. Water is continuously trickled into the containerthrough apipe 222. The mech anism 219 maintains a fixed back pressure on the pipe 218. The water supply pipe 222 maintains the level in the container 220 even though some of the water therein may be sucked back through the pipe218 upon a sudden drop in pressure in the shell 1. The trap 217 prevents any water which is sucked back in that manner from reaching the shell 1.
A pressure in the range between three and five ounces per square inch above atmospheric pressure is employed. A pressure in this range is a safety precaution which eliminates all possibility of leakage of air into the furnace. Furthermore, the-upper limit of this range is quite critical with regard to the quality of product. If a higher pressure is used, it has been found that gas occlusions occur .in the ingot, which result in metallurgical defects in the finished product, namely, scabs, slivers and laminations. 7
The equipment is adaptable with slight modifications,
namely the addition of a vacuum pum and elimination ofthe bubbler venting arrangement, to operation at pressures less than atmospheric, for purposes of reducing ingot hydrogen, for example.
Head and'bearing structure (FIGS. 3 and 4) collar which extends vertically between the flange 8d and the radially inner surface of the end plate 65, and a horizontally extending flange, which lies between the peripheral portion of the under surface of the head 8 and the end plate 65. The collar portion of bearing 67 serves as a radial bearing fo the head 8, while the flange on the bearing member 67 serves as a thrust bearing.
Four bushing assemblies, each generally indicated by the reference numeral 68, are fixed in the head 8 and each encircles an electrode shaft 46. Each bushing assembly 68 includes an inner bushing 69 of friction reducing material, a concentric outer electrical insulating sleeve 70, both inserted in a metal insert 71 which is welded to the upper and lower plates of the head 8. Electrically insulating washers 72 are provided at the ends of the sleeve 70. The washers 72 and sleeve 70 cooperate to insulate bushing 69 from the insert 71. A nut 73 threadedly engages the inner bushing 69 to hold the assembly tightly together. The upper end of the inner bushing 69 is flanged to engage the upper washer 72, and is provided with a hexagonal'head, best seen in FIG. 3, for convenience in tightening the assembly. I
A horizontally extending heat shield plate 153 is fixed on the lower end of the flange 8d and spaced downwardly a short distance therefrom. The plate 153 is apertured to permit passage of the electrode shafts 4-6. The plate 153 is annular in form, being assembled from four quadrants. At its center, each quadranthas welded to it a supporting pin 154 which is received in a recess in the center post 58. The plate 153 protects the head 8 and its various associated bearing structures, at least to a certain extent, from radiant energy coming from the crucible 4.
The various parts which make up the head 8 are preferably welded together, and the parts which make up the shell 1 are also preferably Welded together, as shown in the drawings.
Sight tubes (FIGS. 3, 4, 7 and 20) Three sight tubes 74 are mounted in and extend through the upper end plate of the shell 1. Each sight tube 74 is provided at its outer end with a suitable window 75 and a frame 76. The inner end of each sight tube is provided with a cover plate 77, best seen in FIG. 7. Back cover plate is attached at; one edge to a shaft 78 which extends out of the shell 1 through a bushing 79 and is provided on its outer end with a handle 80 by which the cover plate 77 may be rotated between a position shown in FIG. 4 in which it closes the end of its associated sight tube an'd a position substantially at right angles to the position just described, in which the sight tube is open.
1 The 'shaft 78 is frictionally loaded to maintain any angular position in which it is set.
side a window 75, which is clamped between two frame members 74b and 74c. The window is provided with a central aperture 75a in which is journaled a shaft75b Eachvsight tube is-provided- I
US25124D garmy Expired USRE25124E (en)

Publications (1)

Publication Number Publication Date
USRE25124E true USRE25124E (en) 1962-02-20

Family

ID=2093755

Family Applications (1)

Application Number Title Priority Date Filing Date
US25124D Expired USRE25124E (en) garmy

Country Status (1)

Country Link
US (1) USRE25124E (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3409726A (en) * 1965-03-23 1968-11-05 Tohoku Special Steel Works Ltd Device for stirring molten metal in an electric furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3409726A (en) * 1965-03-23 1968-11-05 Tohoku Special Steel Works Ltd Device for stirring molten metal in an electric furnace

Similar Documents

Publication Publication Date Title
US2800519A (en) Method and apparatus for forming ingots
US3894573A (en) Installation and method for plasma arc remelting of metal
US2644070A (en) Inert gas blanketed welding rod feed
US4018973A (en) Furnace construction for plasma arc remelting of metal
US3829538A (en) Control method and apparatus for the production of powder metal
US3296412A (en) Vertical welding of aluminum
US3627293A (en) Apparatus for purifying metals by pouring through slag
US2768278A (en) Gas shielded metal arc welding
US3980802A (en) Method of arc control in plasma arc furnace torches
US3849584A (en) Plasma arc torch
USRE25124E (en) garmy
US2406147A (en) Apparatus for producing metal
JPS60121042A (en) Intermediate treater for liquefied metal or alloy flow
US2310635A (en) Metal fusing apparatus
US2191481A (en) Method for manufacturing composite metal articles
US2907866A (en) Electric arc welding of steel
US2763903A (en) Apparatus for melting and casting refractory material
US3920062A (en) Control method for continuously casting liquid metal produced from consumable electrodes
US4036568A (en) Machines for manufacture of powders
US3651238A (en) Arc furnace electrode wheel mounting system
US3420939A (en) Arc furnace electrode structure
GB1508568A (en) Electro-slag remelting
US2952723A (en) Apparatus for controlling the atmosphere in an electric furnace
US5160533A (en) Method for grain refining of metals
US3480716A (en) Multiple electrode vacuum arc furnace and method of remelt purification