USRE23444E - Supercharged internal-combustion - Google Patents

Supercharged internal-combustion Download PDF

Info

Publication number
USRE23444E
USRE23444E US22000451A USRE23444E US RE23444 E USRE23444 E US RE23444E US 22000451 A US22000451 A US 22000451A US RE23444 E USRE23444 E US RE23444E
Authority
US
United States
Prior art keywords
engine
motor
dynamo
blower
starting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US1899548 external-priority patent/US2503289A/en
Application filed filed Critical
Priority to US22000451 priority Critical patent/USRE23444E/en
Application granted granted Critical
Publication of USRE23444E publication Critical patent/USRE23444E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • F02B37/11Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump driven by other drive at starting only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • F02B37/10Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump at least one pump being alternatively or simultaneously driven by exhaust and other drive, e.g. by pressurised fluid from a reservoir or an engine-driven pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • F02B37/164Control of the pumps by bypassing charging air the bypassed air being used in an auxiliary apparatus, e.g. in an air turbine
    • F02B37/166Control of the pumps by bypassing charging air the bypassed air being used in an auxiliary apparatus, e.g. in an air turbine the auxiliary apparatus being a combustion chamber, e.g. upstream of turbine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This invention relates to supercharged internal combustion engines. More particularly, the invention pertains to the construction and operation of power plants comprising supercharged internal combustion engines employing exhaust gas driven charging blowers mechanically independent of the charged engines.
  • This invention also can be applied to fourstroke cycle engines, in which case the scavenging can be materially improved 'at partial loads and speeds. Since this invention makes the degree of supercharge independent of the load and/0r speed condition of any type of engine, it is possible to superimpose on the engine any desired speed-torque characteristic.
  • said second conduit means regulatable branch conduit means connecting said first conduit means to said combustion chamber for enabling the combustion chamber and the gasturbine driven air blower set to operate as an independent gas turbine plant prior to starting the engine, motordynamo means coupled to said set, motor-dynamo of the engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Description

Dec. 18, 1951 NETTEL Re. 23,444
SUPERCHARGED INTERNAL-COMBUSTION ENGINE WITH STARTING MEANS AND METHOD FOR STARTING SAME Original Filed April 5, 1948 INVENTOR'.
Reiuued Dec. 18, 1951 SUPERCHARGED INTERNAL-COMBUSTION ENGINE WITH STARTING MEANS AND METHOD FOR STARTING SAME Frederick Nettel, Manhasset, N. Y.
Original No. 2,503,289, dated April 11, 1950, Serial No. 18,995, April 5, 1948. Application for reissue April 9, 1951, Serial No. 220,004
Matter enclosed in heavy brackets I: appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
27 Claims.
This invention relates to supercharged internal combustion engines. More particularly, the invention pertains to the construction and operation of power plants comprising supercharged internal combustion engines employing exhaust gas driven charging blowers mechanically independent of the charged engines.
For efllcient supercharging of internal combustion engines, it is desirable in four-stroke cycle engines, and necessary in two-stroke cycle engines, to maintain a positive pressure differential between the charging air and the exhaust gases leaving the engine cylinders.
Present day constant pressure turbochargers will achieve such a pressure differential only when the gas temperature at the turbine inlet is above the so-called bootstrap" temperature, i. e. under conditions when the turbocharger can function as a self-power-supporting unit with an auxiliary combustion chamber between the blower and the turbine section of the turbocharger.
It is well known that a conventional turbocharger set by itself cannot be used in conjunction with a two-stroke cycle engine, principally because engines of this type need a positive pressure diflerential over their entire working ranges. Without such a differential, operation is impossible because no new air charge can enter the cylinders, and exhaust gas temperatures become too low at low engine loads to maintain such positive differential.
T oil'set this diillculty it has been proposed mechanically to couple the blower to the engine shaft. For centrifugal or axial flow blowers this mode of operation requires gear trains of large ratios, and for positive displacement blowers, gear trains of lower ratios. With piston blowers, an extra linkage is needed. For special purposes it also has been proposed to use variable gear ratio transmissions, hydraulic or electric transmissions between the engine shaft and the blower.
All of these coupling means regardless of their type, were used heretofore solely to transmit power from the engine shaft to the blower, and for this single purpose represented disproportionate complications which added considerably to thesize, weight and complexity of operation and maintenance of the plant. While starting of engines embodying such coupling means of fixed ratio, such as have been employed most frequently. can be effected, albeit with difllculty inthe case of highly supercharged engines, special provision must be made for cranking the engine and blower.
It is an object of this invention to use the shown various possible embodiments of the invention.
Fig. 1 shows an engine with an independent turbocharger set and an auxiliary combustion chamber which may be used for operating the turbocharger independently of the engine as a power self -supporting gas turbine plant. The turbocharger set is provided with a dynamo which can produce energy which may be transmitted electrically to the engine cranking motor. Means is provided to reverse the energy flow in this electric transmission in such manner that the cranking motor, working as a dynamo, and driven by the engine, can supply energy to the dynamo coupled with the turbocharger, in which case the latter dynam functions as a motor.
Fig. 2 illustrates an engine plant in which the engine and the turbocharger may be startedfrom a storage battery, while during engine operation the engine cranking motor, operating as dynamo, assists in driving the charging blower.
Fig. 3 indicates diagrammatically a modification of the plant shown in Fig. l, but with a conventional electric starter motor and a separate dynamo coupled to the engine to feed energy back to the charging blower.
Referring now in detail to Fig. 1, the reference numeral III denotes an engine of the twostroke or four-stroke cycle type having" an air intake manifold II, an exhaust gas manifold I2,
and a flywheel with a double spur gear rim Ila, lib. A turbocharger set I4 is provided, consisting of a scavenging or charging blower I5 with an air intake I6, and an exhaust gas turbine I! with a gas outlet It. The air discharge pipe I9 of the blower is connected to the intake manifold II. The exhaust manifold I2 is connected to an auxiliary combustion chamber 2] and thence by a pipe 21 to the turbine I1. A branch pipe 20 connects the pipe I9 with the combustion chamber II, the flow of branched air being governed by a flap valve 22. A fuel pipe 23 with a valve 24 operable by a handlever 25 furnishes a regulateble flow of fuel to the auxiliary combustion chamber. A od 26 links the flap valve 22 and fuel valve 24.
A motor-dynamo 29 with a shuntfield regulator 33 is coupled to the engine shaft via a selective two-speed gear set 30, either by the large gear rim |3a of the flywheel l3 meshing with the pinion 38a (high ratio) or by the smaller gear' rim l3b meshing with the gear wheel 38b (low ratio).
The gear set 30 is operated by a shift lever 3|. Another motor-dynamo 28 with a shuntfield regulator 34 is connected electrically to the motordynamo 28 by cables 32 and a switch 40. This second motor-dynamo is connected physically to the turbocharger shaft. An auxiliary battery 4| is connected electricall by wires 42 and a switch 43 to the cables 42 on the side of the switch 48 connected to the second motor-dynamo 28.
A pair of elastic bellows 38, 38 are provided, one of the bellows, e. g. the bellows 35 being connected by a tube 31 to an inlet opening 31 in the exhaust manifold l2. The other bellows 38 is connected by a tube 39 to an inlet opening 39 in the engine air intake manifold II. The two bellows are pivotally connected to opposite ends of a floating rod 44 in such fashion that they act in opposite directions, as shown in Fig. 1. A rod 45 is pivotally attached at one end to the rod 44 intermediate the points of connection of the bellows. The other end of the rod 45 is pivotally attached to the operating arm 46 of the regulator 33. Said arm pivots at a fulcrum point 41 which is rotatably secured to the short arm of a bell crank lever 48 whereby movement of the other manually operable arm of the lever 48 will effect regulation of the motor-dynamo 29. Said latter arm frictionally slides on a fixed member 35 so as to retain the bell crank lever in any adjusted position thereof.
The plant is started and operated as follows;
Switch 40 is opened and switch 43 closed. Regulator 34 is operated to energize the motordynamo 28 as motor, thereby speeding up the turbocharger set M until a slight air flow is created through the combustion chamber 2|. Now the hand lever 25 is moved to the right, as viewed in Fig. 1, opening fia-p 22 towards the branch pipe 28 and opening the fuel valve 24, thus admitting fuel which is ignited. The turbine I1 begins to develop power and takes over the drive of the blower l from motor-dynamo 28 which may be switched off by opening switch 43. The turbocharger set thereupon operates as an independent gas turbine plant, its speed, the pressure developed by blower I5, and the power produced depending only on the fuel quantity fed into the combustion chamber.
Next, lever 3| is moved upwards into cranking position (see Fig. 1 shown by the upper dotted position), thus causing the gear rim [3a to mesh with the pinion 30a. Now the motor-dynamo 29 is regulated to operate as a motor, while the motor-dynamo 28, which is running, is regulated to operate as, a generator. Thereupon switch 48 is losed, enabling the motor-dynamo 28 to.
transmit energy produced by the operating turbocharger set to the motor-dynamo 29 for cranking. After starting the engine, shift lever 3| is moved down to its operating position, when gear wheel 38b meshes with rim I3b.
With the engine running, its exhaust gases reach the turbine l1 and furnish the power to drive the blower I5 either partially or completely, so that the fuel to the combustion chamber either can be reduced or cut oif by moving lever 4 25 to the left. If desired, the bellows I8 and II can be made inoperative during starting of the engine by closing the cooks 31", 38" provided in the tubes 31 and 38.
If we assume the engine II to be of the twostroke cycle type, the turbocharger will continue to run, but will, as experiments have shown, un-- der partial load conditions of the engine, not be capable of pumping sufficient air through the cylinders, due to the pressure produced by the blower not being sufficiently higher than the pressure prevailing in the exhaust manifold. Therefore, the engine may stop for lack of air. This invention prevents such stoppage by use of the low ratio gear train in the gear set 38, which causes the motor-dynamo 28, now regulated to operate as a generator, to be driven by the running engine, and be capable of transmitting energy provided by the engine to the motor-dynamo 28, regulated to operate as a motor.
According to this invention, the energy flow between the motor- dynamos 28, 29 may be controlled automatically in twoor four-stroke cycle engines by the bellows and 38 acting via rods 44 and 45 on the regulator 33 in such fashion that sufficient power is produced by the motor-dynamo 28 to speed up the turbocharger set until the pressure in the intake manifold is, by a predetermined value, higher than the pressure in the exhaust manifold l2.
The hand lever 48 serves to regulate the supercharged condition of the engine irrespective of its speed, load or the temperature of the engine exhaust. If a higher supercharge is required, the lever 48 is moved to the right thereby lifting the right hand end of the arm 46 which turns round the point at which the rod 45 is connected to it. The active resistance of the regulator 33 thereby is reduced and the voltage across the terminals of the motor-dynamo 28, now working as generator, is increased. This inturn causes more energy to flow to the motor-dynamo 28, now operating as motor, increasing its speed and that of the blower which furnishes a higher supercharge pressure. By moving the lever 48 to the left, the opposite effect is achieved.
It is immaterial what particular designs are used for the motor-dynamos and their regulators, it being essential only for the purposes of this invention, that the energy flow through the connections between the two motor-dynamos is in the direction from the turbocharger to the cranking pinion 30a during starting of the engine, and in the opposite direction during the operation of the engine. Since the necessary energy flow can be maintained over the whole speed and/or load range of the engine, the scavenging air supply is assured, and satisfactory operation of two-stroke cycle engines is achieved.
This invention also can be applied to fourstroke cycle engines, in which case the scavenging can be materially improved 'at partial loads and speeds. Since this invention makes the degree of supercharge independent of the load and/0r speed condition of any type of engine, it is possible to superimpose on the engine any desired speed-torque characteristic.
Fig. 2 illustrates a modification of my invention generally similar to that shown in Fig. 1 and differing therefrom principally in that no auxiliary combustion chamber is provided. In addition there is no automatic regulation shown. The arm'46of the regulator 33 is used as hand lever in this case. Furthermore an extra switch 48' is included in the cables 32 between the motordynamo 28 and the point of connection 01' the cables 42 leading from the battery 4|. All parts the same as those in Fig. 1 are denoted in Fig. 2 and Fig. 3 by the same numerals.
Starting and operation or a four-stroke cycle engine for example is as follows: First the engine I is cranked and started from the battery ll with switches 40 and 43 closed, switch ll) open, and motor-dynamo 29 operating as a motor. The turbocharger set begins to operate by itself as soon as the engine is running. Then switch 43 is opened and the gear set 30 operated to drive the motor-dynamo 29 via the low gear train from the engine as a generator. When switch 40' is closed, the motor-dynamo 29 can drive the motordynamo 28, working as a motor, thus helping the turbine I! to drive the blower It. The regulator 33 can be operated by moving its arm 46 by hand, or automatically as shown in Fig. 1.
It is also within the scope of this invention to use the motor-dynamo 29 of both arrangements shown in Figs. 1 and 2, working as a generator, for quickly stopping the engine. In such case the inertia of the slowing engine is transmitted via motor-dynamofl to motor-dynamo 28, the latter working as motor, with the result that the speed of the turbocharger set will increase correspondingly. This is desirable for maneuvering in reversing drives, where the turbocharger set is used immediately after stopping the engine for cranking it in reverse.
It is finally within the scope of this invention to use instead of one motor-dynamo coupled via a two-ratio shift gear to the engine, two dynamo-V.
electric machines, both mechanically coupled to the engine through suitable gears, or directly to the shaft. It is only essential for the purposes of this invention that during cranking of the engine, one or both these machines working as motor receive energy from the dynamo-electric machine driven by the blower set working as powerable tothe machine 28 and to the battery ll via two switches 40 and 40a. Starting and operation is in principle the same as described for Fig. 1 except that 29 is a conventional starting motor which is switched off by switch 40 and pinion 30' unmeshed automatically after the engine III has started firing; dynamo 29' with regulator 33' is disconnected during starting from the cables 32 by keeping the switch 40a open. During operation of the engine switch 40a is closed and the dynamo 28' used to drive the motor-dynamo 28 as motor.
It is immaterial for the purpose of this invention whether the engine employed works on the compression-ignition or spark-ignition principle, or what type of fuel is used in the engine or in the combustion chamber, e. g. liquid or gaseous.
I claim:
1. A method of starting and operating a power plant comprising an internal combustion engine having an exhaust gas turbine driven blower set for supplying combustion air to said engine, said 6 set being mechanically independent of the engine shaft, motor-dynamo means mechanically coupled to said set, second motor-dynamo means mechanically coupled to the engine shaft, disconnectable electrical conduit means between said motor-dynamo means, a fuel burning combustion chamber disposed in the exhaust gas conduit to said turbine, and a regulatable branch conduit connecting the pressure side of said blower to said combustion chamber: said method comprising the steps of operating said turbine driven blower set by means of said combustion chamber as an independent gas turbine plant prior to starting the engine, producing by said gas turbine plant electrical energy in said first motor-dynamo means, transmitting it to the engine shaft by means of said second motor-dyname means for cranking said engine for starting, continuing operation of said blower set as a turbocharger set for the engine, and reversing the energy flow between said two motor-dynamo means so that said second motor-dynamo means. operating as a generator, supplies energy to saidfirst motor-dynamo means for driving it as a motor to assist said turbine in driving said blower.
2. In a method as set forth in claim 1, the step of regulating said reversed energy flow in such manner that the air pressure at the blower outlet is kept higher than the exhaust gas pressure in front of said turbine, irrespective of the operating condition of the engine.
3. In a method of starting and operating a power plant as set forth in claim. 1, having a variable resistance regulator for the second motor-dynamo means, the step of actuating said regulator with said second motor-dynamo means operating as generator, for controlling the degree of supercharge of the engine independent of the speed and the exhaust gas temperature of the engine.
4. In a method of starting andoperating a power plant as set forth in claim 1, employing a two-speed shift gear between the second motordynamo means and the engine shaft, the step of using the high gear ratio position during operation of said second motor-dynamo means as motor, and the low gear ratio position during its operation as a generator.
5. A method of starting and operating a power plant comprising an internal combustion engine of the four-stroke cycle type having an exhaust gas turbine driven blower set for supplying combustion air to said engine, said set being mechanically independent of the engine shaft, motor-dynamo means mechanically coupled to said set, motor-dynamo means mechanically coupled with the engine shaft, electrical conduit means between said motor-dynamo means, and a disconnectable external electric power source for starting purposes: said method comprising the steps of connecting said second motor-dynamo means, operating as motor, to said external power source and thereby cranking the engine, admitpower plant comprising as set forth in claim 5,
the step of regulating the power supply from the saw second motor-dynamo means operating as a generator for the first motor-dynamo means.
'7. In a method of starting and operating a power plant as set forth in claim 5, having a variable resistance regulator for the secondmotordynamo means, the step of actuating said regulator with said second motor-dynamo means operating as generator, for controlling the degree of supercharge independent of the speed and the exhaust gas temperature of the engine.
8. In a method of starting and operating a power plant as set forth in claim 5, employing a two-speed shift gear between the second motordynamo means and the engine shaft, the step of using the high gear ratio position during operation of said motor-dynamo means as motor, and the low gear ratio position during its operation as a generator. I
9. A method of startingand operating a power plant comprising an internal combustion engine [of the two-stroke cycle type] having an exhaust gas turbine driven blower set for supplying combustion air to said engine, said set being mechanically independent of the engine, an electric motor mechanically coupled to said set, a motor-dynamo mechanically coupled with the engine shaft, electrical conduit means between said electric machines, and a disconnectable external electric power source for starting purposes: said method comprising the steps of connecting said motor to said external power source for starting the turbocharger set, thereafter energizing said motor-dynamo operating as a motor from said power source and thereby cranking the engine, admitting fuel to the engine for starting it, disconnecting said power source from both the motor and the motor-dynamo, operating the latter as generator driven by the engine, and connecting it to said motor for supplying power to assist gas turbine in driving. said blower for supercharging of the engine.
10. In a method, as set forth in claim 9, of starting and operating a power plant including an internal combustion engine [of the two-stroke cycle type], the step of regulating the power supply from the motor-dynamo operating as a generator to the motor.
11. In a method of starting and operating a power plant as set forth in claim 9, employing a.
two-speed shift gear between the motor-dynamo means and the engine shaft, the step of using the high gear ratio position during operation of said motor-dynamo means as motor, and the low gear ratio position during its operation as a gen erator.
12. In a method of starting and operating a power plant comprising an internal combustion engine having an exhaust gas turbine driven blower set for supplying combustion air to said tor driven by said engine, for supplying power to dynamo means and the engine shaft, the step of using the high ratio gear train during operation of said second motor-dynamo means as a motor, and the low ratio gear train during its operation as a generator.
14. A power plant comprising an internal combustion engine, an exhaust gas turbine driven 'air blower set, conduit means connecting the blower exhaust to the engine air intake, conduit means connecting the engine exhaust to the turbine intake, a dynamo-electric machine coupled to said set, a motor-dynamo mechanically coupled to the engine shaft, electric conduit mean interconnecting said two electric machines, an auxiliary source of electric energy, disconnectable electric conduit means connecting said auxiliary source to said first electric conduit means, and regulatable means for operating said motor-dynamo as a motor during starting of the engine, and as a generator during operation of the engine for transmitting energy produced by the engine via said two electric machines to said blower set.
15. A power plant comprising an internal combustion engine, an exhaust gas turbine driven air blower set, conduit means connecting the blower exhaust to the engine intake conduit means connecting the engine exhaust to the turbine intake, dynamo-electric machine means coupled to said set, dynamo-electric machine means coupled to the engine shaft,.. electric conduit means between said machine means, an auxiliary source of electric energy, disconnectable electric conduit means connecting said auxiliary source to said first dynamo-electric machine means, and regulatable means for operating said second dynamo-electric means as a motor during starting of the engine, and as a generator during operation of the engine for transmitting energy produced by the engine via said two dynamo-electric machine means to said blower set.
16. A power plant as set forth in claim 15, wherein means isv provided for regulating the energy flow during operating of the engine from the second dynamo-electric machine means working as a generator to the first dynamo-electric machine means working as a motor, irrespective of the operating condition of the engine.
17. A power plant as set forth in claim 15, wherein means is provided for regulating the energy flow between the second dynamo-electric machine means working as a generator during operation of the engine and the first dynamoelectric machine means working as a motor, in such manner that the air pressure at the blower outlet is kept higher than the exhaust gas pressure in front of said turbine, irrespective of the operating condition of the engine.
18. A power plant comprising an internal combustion engine, an exhaust gas turbine driven air blower set, conduit means connecting the blower exhaust to the engine air intake, conduit means connecting the engine exhaust to the turbine intake, a fuel burning combustion chamber disposed in said second conduit means, regulatable branch conduit means connecting said first conduit means to said combustion chamber, dynamo-electric machine means coupled to said blower set, dynamoelectric machine means coupled to the engine shaft, electrical conduit means between said dynamo-electric machine means, an auxiliary source of electric energy, disconnectable electrical conduit means connecting said auxiliary source to said first electrical conduit means, means for operating said first dynamo-electric machine means as a motor for starting said blower set from said means as a motor, during starting of the engine,
- receiving energy from said first dynamo-electric machine means while driven from said set, and for reversing the energy flow between said two dynamo-electric machine means, while the engine is operating. for transmitting energy produced by the engine via said two dynamo-electric machine means to said blower set.
19. A power plant as set forth in claim 18, wherein variable resistance regulating means is provided for the second dynamo-electric machine means for controlling the degree of supercharge of the engine independent of the operating condition of the engine.
20. A power plant as set forth in claim -18, wherein means is provided for regulating the re-- versed energy flow between the two dynamo-electric machine means, while the engine is operating, in such manner that the air pressure at the blower outlet is kept higher than the exhaust gas pressure in front of said turbine, irrespective of the operating condition of the engine.
21. In a method of starting and operating a power plant comprising an internal combustion engine having an exhaust gas turbine driven blower set for supplying combustion air to said engine, said set being mechanically independent of the engine shaft, motor-dynamo means mechanically coupled to said set, motor-dynamo means mechanically coupled to the engine shaft,
disconnectable electric conduit means between said motor-dynamo means, a fuel burning combustion chamber disposed in the exhaust gas conduit to said turbine, anda regulatable branch conduit connecting the pressure side of said blower to said combustion chamber: those steps comprising operating the combustion chamber and the gas turbine driven blower set as an independent gas turbine plant prior to starting the engine, operating said second motor-dynamo means as motor for cranking and starting said engine and, thereafter, operating it as a generator driven by said engine, for supplying power to said first motor-dynamo means for assisting said gas turbine in driving said blower for supercharging of the engine.
22. In a method of starting and operating a power plant comprising an internal combustion engine having an exhaust gas turbine driven blower set for supplying combustion air to said engine, said set being mechanically independent of the engine shaft, motor-dynamo means mechanically coupled to said set, motor-dynamo means mechanically coupled to the engine shaft, disconnectable electric conduit means between said motor-dynamo means, a fuel burning combustion chamber disposed in the exhaust gas 23. Ina method of starting and operating a power plant comprising an internal combustion engine having an exhaust gas turbine driven blower set for supplying combustion air to. said engine, said set being mechanically independent of the engine shaft, motor-dynamo means mechanically coupled to said set, motor-dynamo means mechanically coupled to the, engine shaft,
' disconnectable electric conduit means between said motor-dynamo means, a fuel burning combustion chamber disposed in the exhaust gas conduit to said turbine, and a regulatable branch conduit connecting the pressure side of said blower to said combustion chamber: those steps comprising energizing the first motor-dynamo means to start the gas turbine driven blower set, operating the combustion chamber and the gas turbine driven blower set as an independent gas turbine plant prior to starting the engine, cranking and starting said engine and, thereafter, operating said. second motor-dynamo means as a generator driven by said engine, for supplying power to said first motor-dynamo means for assisting said gas turbine in driving said blower for supercharging of the engine.
24. A power plant comprising an internal combustion engine, an exhaust gas turbine driven air blower set, conduit means connecting the blower exhaust to the engine intake, conduit means connecting the engine exhaust to the turbine intake, a fuel burning combustion chamber disposed in said second conduit means, regulatable branch conduit means connecting said first conduit means to said combustion chamber for enabling the combustion chamber and the gas turbine driven air blower set to operate as an independent gas turbine plant prior to starting the engine, dynamo-electric machine means coupled to said set, dynamo-electric machine means coupled to the engine shaft, electric conduit means between said machine means, an auxiliary source of electric energy, disconnectable electric conduit means connecting said auxiliary source to said first dynamo-electric machine means, for starting the set prior to starting the engine, and regulatable means for operating said second dynamo-electric means as a motor during starting of the engine, and as a generator during operation of the engine for transmitting energy produced by the engine via said two dynamo-electric machine means to said blower set.
25. A power plant comprising an internal combustion engine, an exhaust gas turbine driven air blower set, conduit means connecting the blower exhaust to the engine intake, conduit means connecting the engine exhaust to the turbine intake,
, a fuel burning combustion chamber disposed in conduit to said turbine, and a regulatable branch conduit connecting the pressure side of said blower to said combustion chamber: those steps comprising operating the combustion chamber and the gas turbine driven blower set as an independent gas turbine plant prior to starting the engine, cranking and starting said engine, and, thereafter, operating said second motordimamo means as a generator driven by said engine, for supplying power to said first motordynamo means for assisting said gas turbine in driving said blower for super-charging of the engine.
said second conduit means, regulatable branch conduit means connecting said first conduit means to said combustion chamber for enabling the combustion chamber and the gasturbine driven air blower set to operate as an independent gas turbine plant prior to starting the engine, motordynamo means coupled to said set, motor-dynamo of the engine.
26. A power plant comprising. an internal combustion engine, an exhaust gas turbine driven air blower set, conduit means connecting the blower exhaust to the engine intake, conduit means connecting the engine exhaust to the turbine intake. a fuel burning combustion chamber disposed in said second conduit means, regulatable branch conduit means connecting said first conduit means to said combustion chamber for enabling the combustion chamber and the gas turbine driven air blower set to operate as an independent gas turbine plant prior to starting the engine, motor-dynamo means coupled to said set, motordgnamo means coupled to the engine shaft, disconnectable electric conduit means between said motor-dynamo means for enabling the second motor-dynamo means operating as a generator driven by said engine to supply power to said first motor-dynamo means for assisting said gas turbine in driving said blower for super-charging of the engine, and means to crank said engine for starting. I
27. A power plant comprising an internal combustion engine, an exhaust gas turbine driven air blower set, conduit means connecting the blower exhaust to the engine intake, conduit means connecting the engine exhaust to the turbine intake, a fuel burning combustion chamber disposed in said second conduit means, regulatable branch conduit means connecting said first conduit means to said combustion chamber for enabling the combustion chamber and the gas turbine driven air blower set to operate as an independent gas turbine plant prior to starting the engine, dynamo-electric machine means coupled to said set, dynamo-electric machine means means to crank said coupled to the engine shaft, electric conduit means between said machine means, an auxiliary source of electric energy, disconnectable electric conduit means connecting said auxiliary source to said first dynamo-electric machine means, for starting the set prior to starting the engine and engine for starting.
FREDERICK NETTEL.
REFERENCES CITED The following references are of record in the tile 01 this patent or the original patent:
STATES PATENTS Number Name Date 1,102,455 Sundh July 7, 1914 1,117,378 Heany Nov. 7, 1914 1,339,258 Delano May 4, 1920 1,396,287 Rotter Nov. 8, 1921 1,409,736 Lea. Mar. 14, 1922 1,585,831 Bradford May 25, 1930 1,752,224 Apple Mar. 25, 1930 1,978,837 Forsling Oct. 30, 1934 2,070,615 Plante Feb. 16, 1937 2,263,705 Seippel Nov. 25, 1941 2,376,143 Edwards et a1. 7 May 15, 1945 2,412,970 Crary Dec. 24, 1946 2,443,648 Austin et a1 June 22, 1948 FOREIGN PATENTS Number Country Date 513,971 Great Britain Oct. 26, 1939 537,483
Great Britain June 24, 1941
US22000451 1948-04-05 1951-04-09 Supercharged internal-combustion Expired USRE23444E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US22000451 USRE23444E (en) 1948-04-05 1951-04-09 Supercharged internal-combustion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US1899548 US2503289A (en) 1948-04-05 1948-04-05 Supercharged internal-combustion
US22000451 USRE23444E (en) 1948-04-05 1951-04-09 Supercharged internal-combustion

Publications (1)

Publication Number Publication Date
USRE23444E true USRE23444E (en) 1951-12-18

Family

ID=26691713

Family Applications (1)

Application Number Title Priority Date Filing Date
US22000451 Expired USRE23444E (en) 1948-04-05 1951-04-09 Supercharged internal-combustion

Country Status (1)

Country Link
US (1) USRE23444E (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2655602A (en) * 1951-12-29 1953-10-13 Gen Motors Corp Electrical apparatus, including plural generators and loads
US2959918A (en) * 1954-04-26 1960-11-15 Rolls Royce Internal combustion engines

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2655602A (en) * 1951-12-29 1953-10-13 Gen Motors Corp Electrical apparatus, including plural generators and loads
US2959918A (en) * 1954-04-26 1960-11-15 Rolls Royce Internal combustion engines

Similar Documents

Publication Publication Date Title
US2503289A (en) Supercharged internal-combustion
US2585029A (en) Self-powered turbosupercharger starter system for internalcombustion engines
US2620621A (en) Diesel engine having controllable auxiliary burner means to supplement exhaust gas fed to turbocharger
US2654991A (en) Control for engine turbosupercharger systems
US3795231A (en) Cold starting devices for diesel engines with compensated supercharging
US3007302A (en) Compound turbine-diesel power plant
CN203756329U (en) Double-ratio transmission assembly for variable-speed hybrid electric supercharger assembly
US2968914A (en) Turbocharging of internal combustion engines
US4145888A (en) Combined turbocharger and accessory drive
US9797300B2 (en) Supercharging system and method for operating a supercharging system
GB1334818A (en) Control of auxiliary energy input to the turbocharger of an internal combustion engine
JPS6212373B2 (en)
US3990242A (en) Motor vehicle drive system
CN102549248A (en) Improving fuel efficiency for a piston engine using a super-turbocharger
GB206845A (en) Improvements in an internal combustion engine in combination with a gas-turbine driven by the exhaust gases of the engine and driving a compressor
US3048005A (en) Starting system for engines
US4843816A (en) Gas turbine plant for automotive operation
US2525460A (en) Marine propulsion plant
US2570101A (en) Gearing arrangement for supercharged power plant
SE441081B (en) ENGINE DRIVE DEVICE INCLUDING A PISTON ENGINE AND A LONELY OPERABLE GAS TURBIN
CN108223107B (en) Flexible supercharged engine of electromechanical complex
SE443189B (en) KIT FOR OPERATION OF A GAS TURBIN INSTALLATION WITH AIR CUMULATOR AND DEVICE FOR IMPLEMENTATION OF THE KIT
USRE23444E (en) Supercharged internal-combustion
US2769302A (en) Means for supplying combustion air to internal combustion engines
US2949902A (en) Engine transmission unit involving variable supercharging