USRE21759E - Electric valve circuit - Google Patents

Electric valve circuit Download PDF

Info

Publication number
USRE21759E
USRE21759E US21759DE USRE21759E US RE21759 E USRE21759 E US RE21759E US 21759D E US21759D E US 21759DE US RE21759 E USRE21759 E US RE21759E
Authority
US
United States
Prior art keywords
circuit
voltage
alternating current
current circuit
voltages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Other languages
English (en)
Publication date
Application granted granted Critical
Publication of USRE21759E publication Critical patent/USRE21759E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/02Circuits specially adapted for the generation of grid-control or igniter-control voltages for discharge tubes incorporated in static converters
    • H02M1/04Circuits specially adapted for the generation of grid-control or igniter-control voltages for discharge tubes incorporated in static converters for tubes with grid control
    • H02M1/042Circuits specially adapted for the generation of grid-control or igniter-control voltages for discharge tubes incorporated in static converters for tubes with grid control wherein the phase of the control voltage is adjustable with reference to the AC voltage

Definitions

  • An object of my invention is to provide a new and improved control system for electric valve translating apparatus.
  • Another object of my invention is to provide a new and, improved control system for electric valve apparatus by means of which the electric valve apparatus may be controlled in different predetermined manners within different predetermined ranges of an electrical condition or quantity of an associated electric circuit.
  • a further object of my invention is to provide a new and improved control circuit for electric valve means having control members in which the phase of the potential impressed on the control members is varied in different predetermined manners within different predetermined ranges of the voltage of an associated alternating current circuit.
  • I provide an electric control system which is susceptible of varied and. modified application where it is desired to provide constant or varying output characteristics of elec tric valve apparatus under varying electrical conditions of associated circuits.
  • I provide-an electric valve translating circuit which may be employed in systems for transmitting energy between alternating and direct current circuits or between alternating current circuits of the same or different frequencies.
  • an excitation or control circuit for the electric valve which comprises a circuit of the non-linear rest).
  • nant. type as hereinafter described, I provide apparatus for controlling the conductivity of the valve, or valves, to obtain the desired output or operating characteristic.
  • a non-linear resonant circuit energized from the supply circuit is employed to provide a control potential which is the resultant of a voltage component derived from the capacitance of the resonant circuit and a voltage component which varies in accordance with the supply circuit voltage to control the conductivity of the valvesv in accordance with an electrical condition, such as the, voltage, of the supply circuit.
  • the periodic resultant potential is impressed on the control members of the electric valve means.
  • the periodic resultant potential may be made to vary in phase in different predetermined manners within different predetermined ranges of the supply voltage to efiect a desired control in an operating characteristic of the electric valve means.
  • Fig. 1 represents diagrammatically an embodiment of my invention as applied to an electric valve circuit for energizing the field circuit of a dynamo-electric machine; while Fig. 2 represents certain operating characteristics of apparatus embodying my invention. Diagrams I to V of Fig. 3 also represent certain operating characteristics of the apparatus diagrammatically shown in Fig. l.
  • Fig. 1 of the drawings my invention is diagrammatically shown as applied to an electric valve circuit l for supplying direct current to a field winding 3 of a dynamo-electric machine 2, having a three-phase stator winding 4.
  • the electric valve circuit I and the stator winding ⁇ are energized from a three-phase a1- ternating current circuit 5.
  • the electric valve translating circuit I may comprise any suitable valve aggregate for transmitting energy to the field circuit 3 and I have shown by way of example a pair of electric valves 6 and 1, preferably of the vapor electric type. having anodes 8, cathodes 9 and control electrodes II).
  • a transformer H having a secondary winding I2 and an electrical mid-tap I2, is energized from the alternating current circuit 5 through conductors I3, and is employed to connect the valves 6 and I for full wavenrectiflcation,
  • Thefleld Winding 3 of machine 2 is connected to the electric valve circuit I by means of conductors I4.
  • I provide an excitation circuit I 5 which responds to an electrical condition of the alternating current circuit 5, to control the voltage impressed upon the respective control electrodes I of valves and
  • the excitation circuit l5 may be arranged to control the electric valve circuit I in a manner to provide a predetermined operating characteris-; tic over a certain range of voltage of the circuit 5 and to provide a different operating characteristic over a difierent range of voltages.
  • the excitation circuit I5 comprises a non-linear resonant circuit of the series type employing a. ca-
  • Conductors are employed to connect the non-linear series circuit to one phase of the alternating current circuit 5.
  • having a primary winding 22 and a secondary winding 23 and energized from the alternating current circuit 5 by conductors 24 is employed to furnish a sinusoidal voltage with which an electrical quantity of the non-linear circuit is combined to control the conductivity of valves 6 and I.
  • is impressed upon primary winding 26 of transformer by means of conductors 28 and 29.
  • the terminals of the secondary winding 21 are connected to the control electrodes III of electric valves 6 and 'I through conductors 30 and self-biasing circuits each comprising a current limiting resistance 3
  • a mid-point 21' of secondary winding 21 is connected to the cathodes 9 of eleccircuits generally. That feature of the arrangement shown in Fig. 1 relating to the control of dynamo-electric machines is disclosed and broadly claimed in my copending patent application Serial No. 89,598, filed July 8, 1936, and assigned to the assignee of the present application.
  • Th operation of the embodiment of my in vention diagrammatically shown in Fig. 1 may be best explained by considering the arrangement when unidirectional current is being supplied to the field winding 3 of the dynamo-electric machine 2 from alternating current circuit 5 by means of electric valves 6 and l and the associated transformer I l. If it be assumed that the voltage of circuit 5 is less than the voltage at which the nonlinear circuit resonates, the arnangement will function as a bi-phase rectifier, and there will be substantial phase coincidence between the voltages impressed on the control electrodes III and the voltages impressed on valves 6 and I.
  • the electric valve circuit I is arranged so that upon decrease in the voltage of the alternating cur-rent circuit 5, the voltage of the direct current circuit M may be maintained constant or may be increased or decreased. If it is desired to obtain an increase in the voltage of the direct current circuit I4 upon decrease in the voltage of alternating current circuit 5, the excitation circuit I5 is arranged so that during a normal range of voltage of the alternating current circuit 5 the voltages impress-ed upon the control electrodes III of electric valves 6 and 'I lag the voltages impressed between the respective anodes and the cathodes by an appreciable angle or phase displacement.
  • This phase relationship is accomplished by selecting the constants of the non-linear circuit so that for operation above a predetermined range of voltages of the alternating current circuit 5 the excitation circuit I5 eif-eots a retardation in the phase of the voltages impressed on the control electrodes III.
  • the critical resonance voltage of the non-linear circuit is chosen relative to the voltage of circuit 5 so that as the voltage of circuit 5 decreases, the phase of the potentials impressed upon the control members- I0 is advanced to increase the average current conducted by the valves, eff-ecting thereby a net increase in the voltag of direct current circuit I4.
  • the operation of the excitation circuit I'5 may be best explained by considering the diagrams of Fig. 3 of the drawings.
  • the curve a represents the anode-cathode voltage impressed upon one of the electric valves, for example, electric valve 5. This voltage is considerably less than the critical resonance voltage of the non-linear circuit of excitation circuit I5.
  • the curve 12 represents the voltage appearing across the secondary winding 23 of transformer 2
  • Diagram II represents certain voltages in the excitation circuit as the voltage of the alternating current 5 approaches the resonance voltage.
  • Curve 1 of Diagram 11 represents the voltage now appearing across the secondary winding 23 of transformer 2
  • transformer 25 is retarded in phase relative to the voltage of the alternating current circuit 5, and hence effects a retardation in phase of the voltage impressed upon the control electrodes III of electric valves 6 and 1 relative to the anode-cathode potentials of. these valves.
  • the output voltage will be maximum for a certain impressed voltage.
  • the curves of Diagram IV represent the circuit voltages appearing in the excitationcircuit I and the phase displacement obtainable by using difierent constants for the elements I5, I? and I8 to obtain a greater phase displacement than that shown in Diagram II. It will be understood that by a proper choice of constants for the non-linear circuit comprising capacitance I6, self-saturating inductance II and resistance I8, it is possible to control the range of phase displacement obtainable between the voltages impressed upon the control electrodes III of electric valves 6 and I and the voltages impressed between the anodes 8 and the cathodes 9 of these valves, and hence to obtain a considerable variation in the control of the voltage of direct current circuit I 4.
  • Diagram V represents the voltages appearing in the excitation circuit I5 when the voltage of circuit 5 is increased beyond the critical resonance voltage region where the resistance I8 has a suitable value; curve 1 represents the voltage appearing across the secondary winding 23 of transformer 2
  • m, w and o representthe: relation betweenv T5 voltage of direct current circuit I4 and the voltage of alternating current circuit 5 for different values for the resistance I8, of increasing value in the order named, while curve p is merely a reference line.
  • values for resistance I8 relative to. the voltage of the alternating current supply circuit 5 and the values of capacitance I6 andinductance II, it is possible to obtain a variety of operating characteristics for the apparatus employed. For example, with a relatively high value of resistance for the element I8, represented by curve 0 of Fig. 2, it is possible to obtain a substantially constant voltage in circuit. I4 for voltages in circuit 5 above a predetermined value.
  • the increase in the direct current voltage is effected by the increase in the voltage impressed upon the electric valves 6 and 1.
  • the circuit is operating below the critical resonance voltage region and as a result thereof there is substantial phase coincidence between the potentials impressed upon the control electrodes III and the potentials impressed between the anodes 8 and the cathodes. 9 of electric valves 6 and I.
  • the voltage of the alternating current circuit 5 approaches the critical resonance voltage region for the excitation circuit I5 and effects thereby a retardation in the phase of the voltage impressed upon the control electrodes IO.
  • the operating characteristic represented by curve m of Fig. 2 is of particular interest since it shows substantially linear increase in value of the direct current voltage for increases in the alternating current voltage between the points q and m.
  • the electric. valvecircuit I may be made to operate to control the energization of the field winding 3 of the dynamo-electric machine 2 to maintain a predetermined pull-out torque under varying voltage conditions of circuit 5. If the excitation circuit I is designed to operate in the region beyond n on curve n, the excitation circuit will effect an increase in the voltage impressed upon direct current circuit I4 as the voltage 01' alternating current circuit decreases. In this manner, as the voltage of the alternating current circuit is decreased, the energization of the field winding 3 will be increased to maintain a predetermined minimum pull-out torque.
  • the voltage of the alternating current circuit 5 must be in the region of the critical resonance voltage of the nonlinear circuit of excitation circuit IS.
  • the rates at which the energization of the field winding 3 is varied in response to variations in the voltage of the alternating current circuit 5 may be controlled by choosing various different values for the resistance I8.
  • an alternating current supply circuit a load circuit, electric valve means interconnecting said circuits, and means comprising a non-linear resonant circuit energized from said supply circuit and a source of alternating voltage for controlling the conductivity of said valve means in a predetermined manner for voltages of said supply circuit below a predetermined value and for controlling the conductivity of said valve means in a different manner for voltages above said predetermined value.
  • an alternating current supply circuit a direct current load circuit, electric valve means interconnecting said circuits, and means for controlling the conductivity of said valve means comprising a source of alternating voltage and a non-linear resonant circuit having a critical resonant voltage energized from said alternating current'circuit for obtaining a periodic electrical quantity having a substantially constant phase displacement relative to the voltage of said supply circuit for values of voltage of said supply circuit less than said critical value and having a different phase displacement for values of voltage in excess of said critical voltage.
  • valve means interconnecting said circuits, and means for controlling the conductivity oi!
  • said valve means comprising a source of alternating voltage and a non-linear resonant circuit energized from said alternating current circuit for ob taining a periodic voltage having a substantially constant phase displacement relative to the voltage of said supply circuit for voltages of said supply circuit within a predetermined range and having a progressive retardation in phase relative to the voltage of said supply circuit for voltages beyond said predetermined range.
  • an alternating current circuit a direct current load circuit, an electric valve having a control electrode and interconnecting said circuits, and means for controlling the conductivity of said electric valve comprising a source of alternating voltage of substantial phase coincidence with the voltage of said alternating current circuit and a non-linear resonant circuit for impressing upon said control electrode a periodic potential having a substantially constant phase displacement relative to the voltage of said alternating current circuit for voltages of said alternating current circuit within a predetermined range and having an increasing phase displacement for voltages above said predetermined range.
  • an alternating current supply circuit a direct current load circuit, an electric valve having a control electrode interconnecting said circuits, means for controlling the conductivity of said electric valve comprising a source of alternating voltage and a non-linear resonant circuit energized from said supply circuit for impressing upon said control electrode a voltage having an increasing phase displacement relative to the voltage of said alternating current circuit for voltages of said supply circuit within a predetermined range and having a. decreasing phase displacement for voltages above said predetermined range.
  • an alternating current circuit a direct current circuit, an electric valve having a control electrode interconnecting said circuits, an excitation circuit for controlling the conductivity of said electric valve comprising a source of alternating potential and a non-linear resonant circuit comprising a serially-connected resistance, a self-saturating inductance and a capacitance, and means responsive to the resultant of said alternating voltage and the voltage appearing across said capacitance for impressing upon said control electrode a periodic voltage having a substantially constant phase displacement relative to the voltage of said alternating current circuit for voltages of said alternating current circuit within a predetermined range and having a. predetermined variable relationship relative to the voltage of said alternating current circuit for voltages exceeding said predetermined range.
  • an alternating current circuit a direct current circuit, an electric valve interconnecting said circuits and having a control member, and means comprising a source of alternating potential and a non-linear resonant circuit for providing a periodic control voltage for energizing said control member to control the conductivity of said electric valve to maintain a substantially constant voltage in said direct current circuit when the voltage of said alternating current circuit exceeds a predetermined maximum value, said non-linear circuit being arranged to maintain substantial phase coincidence between said periodic voltage and the voltage of said alternating current circuit for voltages thereof below said predetermined maximum value and for retarding the phase of said periodic voltage for voltages above said maximum value.
  • an alternating current circuit a direct current circuit, electric valve means interconnecting said circuits and having a control member, and means for controlling the conductivity of said valve means comprising a source of alternating voltage and a non-linear resonant circuit energized from said alternating current circuit for impressing on said control member a periodic voltage having a predetermined phase cuit, a direct current circuit, electric valve means inter-connecting said circuits having a control member, and an excitation circuit comprising a source of alternating potential of substantial phase coincidence with the voltage of said'alternating current circuit and a non-linear resonant circuit energized from said alternating current circuit including a serially connected resistance, a saturable inductance and a capacitance and means responsive to the voltage of said source and the voltage appearing across said capacitance for impressing on said control member a resultant periodic potential having a substantially constant phase displacement relative to the voltage of said alternating current circuit within a predetermined range of voltages of said alternating current circuit and having a progressively
  • an alternating current circuit a direct current circuit
  • electric translating apparatus interconnecting said circuits including electric valve means having a control member, and means for controlling an electrical condition of said direct current circuit in accordance with an electrical condition of said alternating current circuit including a non-linear resonant circuit connected to said altemating current circuit and a source of alternating voltage of substantial phase coincidence with the voltage of said alternating current circuit for impressing on said control member a periodic potential having different predetermined phase relationships relative to the voltage of said alternating current circuit within different predetermined ranges of voltages of said alternating current circuit.
  • an alternating current circuit a direct current circuit
  • electric translating apparatus interconnecting said circuits including electric valve means having a control member, and means for controlling an electrical condition of said direct current circuit including a non-linear resonant circuit connected to said alternating current circuit and a source of alternating voltage of substantial phase coincidence with the voltage of said alternating current circuit for impressing on said control member a periodic potential having a predetermined phase relationship relative to the voltage of said alternating current circuit within a predetermined range of voltages of said alternating current circuit to control said electrical condition of said direct current circuit in a predetermined manner within said range and having a different predetermined phase relationship relative to the voltage of said alternating current circuit within a different predetermined range of voltages of said alternating current circuit for controlling said electrical condition in a different predetermined manner within said second mentioned range.
  • an alternating current circuit an alternating current circuit, electron discharge means connected with said circuit, a direct current circuit connected with said means, discharge controlling means for said means, means for impressing potential from one of said circuits on said discharge controlling means, and means variably resonant in dependence on themagnitude of the voltage of one of said circuits controlling the operation of the third said means.
  • an alternating current circuit an alternating current circuit, electron discharge means connected with said circuit, a direct current circuit connected with said means, discharge controlling means for said means, means for supplying current from said alternating current circuit to said discharge con trolling means, and means variably resonant in dependence on the magnitude of the voltage of one of said circuits for controlling the operation of the third said means.
  • an alternating current circuit an alternating current circuit, electron discharge means connected with said circuit, a direct current circuit connected with said means, discharge controlling means for said means, means for impressing potential from one of said circuits on said discharge controlling means, and means variably resonant in accordance with an electrical condition of one of said circuits to control the operation of the third said means.
  • an alternating current circuit an alternating current circuit, electron discharge means connected with said circuit, a second circuit connected with said means, discharge controllin means for said means, means for impressing potential from said alterhating current circuit on said discharge controlling means, and means variably resonant in dependence on the magnitude of the voltage of said alternating current circuit for controlling the operation of the third said means.
  • an alternating current circuit an alternating current circuit, electron discharge means, discharge controlling means for said discharge means, and means disproportionally variably resonant in dependence on the magnitude of the voltage of said alternating current circuit for controlling the second said means to regulate the flow of current through said system.
  • an alternating current circuit an alternating current circuit, elec tron discharge means connected with said circuit, a second circuit connected with said means, discharge controlling means for said means, means for supplying current from said alternating current circuit to said discharge controlling means, and means variably resonant in dependence on the magnitude of the voltage of said alternating current circuit for controlling the operation of the third said means.
  • a second circuit connected with said means, discharge controlling means for said means, means for impressing potential from said alternating current circuit on said discharge controlling means, and means variably resonant in dependence-on the magnitude of an electrical condition of said alternating current circuit for controlling the operation or the third said means.
  • an alternating current circuit electric valve means having an anode, a cathode and a control member for controlling the conductivity thereof, a second circuit connected with said electric valve means, means for impressing upon said control circuit a periodic voltage derived from said alternating current circuit, and
  • an alternating currentcircuit electric valve means having an anode, a cathode and a control member for controlling the conductivity thereof, a second circuit connected with said electric valve means, means for impressing upon said control member a periodic voltage derived from said alternating current circuit, and means comprising a nonlinear resonant circuit responsive to the magnitude of the voltage Q of said alternating current circuit for shifting the phase of the resultant voltage impressed on said control member in accordance with the deviation of the voltage of said alternating current circuit from a predetermined value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Valve Device For Special Equipments (AREA)
US21759D Electric valve circuit Expired USRE21759E (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US21759T

Publications (1)

Publication Number Publication Date
USRE21759E true USRE21759E (en) 1941-04-01

Family

ID=21699558

Family Applications (1)

Application Number Title Priority Date Filing Date
US21759D Expired USRE21759E (en) Electric valve circuit

Country Status (2)

Country Link
US (1) USRE21759E (en))
FR (1) FR48440E (en))

Also Published As

Publication number Publication date
FR48440E (en)) 1938-02-08

Similar Documents

Publication Publication Date Title
US2175017A (en) Electric control circuit
US2325092A (en) Electric motor control
US2235551A (en) Electric control system
US2278212A (en) Electric control system
US2364998A (en) Electric control circuit
US2413070A (en) Electronic motor control
US2084899A (en) System of electrical distribution
US2274365A (en) Voltage regulator
USRE21759E (en) Electric valve circuit
US2288295A (en) Electric valve control circuit
US2246179A (en) Electric control circuit
US1947197A (en) Regulating system
US2246181A (en) Electric valve control circuit
US2085596A (en) Electric control system
US2190775A (en) Electric valve circuit
US2304552A (en) Electric regulator
US2386040A (en) Electric control system
US2093329A (en) Electric valve circuit
US2362294A (en) Electric control circuit
US2137148A (en) Electric valve circuits
US2158871A (en) Regulating system
US1952062A (en) Electric valve converting system
US2195120A (en) Electric control system
US2209233A (en) Electric control circuit
US2267398A (en) Electric valve control circuits