USRE19274E - Process of treating heavy - Google Patents

Process of treating heavy Download PDF

Info

Publication number
USRE19274E
USRE19274E US19274DE USRE19274E US RE19274 E USRE19274 E US RE19274E US 19274D E US19274D E US 19274DE US RE19274 E USRE19274 E US RE19274E
Authority
US
United States
Prior art keywords
hydrocarbons
oils
zone
conversion
polymerized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Publication date
Application granted granted Critical
Publication of USRE19274E publication Critical patent/USRE19274E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/16Preventing or removing incrustation

Definitions

  • a primary object of our invention is the prevention of the formation of. deleterious elementary carbon during the process of conversion. Many cracking processes haverecognized the great danger incident to the deposition of carbon on tubes, pipes, or shell of still or conversion ap paratus; clogging of circulation,excessive applimedium before saturation occurs.
  • a further object of our invention is to effect precipitation of the polymerized hydrocarbons by continuously cooling a portion of the reacting
  • a still further object of our invention is to effect the precipitation of the above mentioned polymerized bodies by the cooling action of the fresh oil pumped to the system through an exchanger in counter current course.
  • the fresh oil during its passage is itself heated and while the heat absorbed will depend on precipitation temperature, itself a function of the pressure and reaction temperature best suited for the particular base involved; it is obvious a desirable heat interchange is always effected.
  • An object of the invention is to effect an interchange of heat between the freshly charged oil and saturated partially converted base, while causing precipitation of the polymerized hydrocarbons.
  • Another object of our invention is an increase in total yield of desirable low molecular weight hydrocarbons over that obtained by a single distillation, by subjecting the fresh material and the stock that has undergone treatment separately to the respective temperatures and pressures best suited to obtain the desired objectives. It is an object of this invention to apply different temperatures and pressures to the fresh material and the treated stock respectively.
  • An additional object of our invention is a still further increase in total yield of desirable low molecular weight hydrocarbons obtained by uniting the separately heated raw material and partially converted base immediately prior to saturation of the former with polymerized bodies; de-
  • Still another object of our invention is the prevention of carbon formation in the last cracking stage by controlling the interval of contact between the combined reacting liquid and the steel conversion plates.
  • a further object of our invention is the elimination in part of deleterious sulphur compounds by precipitation. Polymerization of these bodies occurs simultaneously with the hydrocarbons, and they may be precipitated by the same means as are employed to remove the latter. It is an object of the invention to eliminate highly polymerized sulphur compounds by precipitation, preventing thereby pyrogenous decomposition and entering of sulphur into combination with the metal of the heating coils or shell of still.
  • a further object of our invention is to convert the velocity of the raw liquid, produced by passage through constricted orifices to an eductor effect, utilizing the suction formed to circulate the partially converted base, uniting the liquids as previously described. It is an object of ,the'invention to efiect circulation of one portion, of the liquid reacting medium by the high velocity discharge of another portion of the liquid, producing such velocity by forcing the second liquid through narrow orifices by pump pressure aided by the expansive action of external heat.
  • the drawing represents in part a vertical section and in part a vertical elevation of one form of apparatus, essentially diagrammatic in na- It is entirely probable, however, that ture, for carrying out the conversion of hydroemploy two sets of heating coils 1 and 2, provided with as many tubes 3 as may be convenient, expanded into the headers 4, equipped with key caps 5; also one vertical still 6. It is not however the purpose of the invention to limit the process to this arrangement, multiple effects being installed when desirable.
  • Each heating coil, 1 and 2 is set in a typical down draft furnace 7, lined with fire brick 8, and equipped with grate 9, fire door 10,'ash pit door 11, combustion chamber 12,'heating chamber 13, and down flue 14, which is connected with a common stack 15. Damper controls are maintained at 16.
  • the heating coil 1 is supplied with raw oil by the three stage centrifugal pump 17, discharging through the cooling coil 18, and thence to the heating coil proper by the feeder pipe 19, control being effected by the valve 20.
  • the partially converted oil leaves the primary heating coil 1 through the pipe 21, and controlled by the valve 22, passes through a series of eductors' '23, into the header 24. From thence the united stream passes through pipe 25 to the vertical still 6, wheredephlegmation of the gaseous prod- 80. Where interference to rotation would occur,-
  • the shafts 28 are provided with sprockets 29,, and connecting chain the sprockets are set outside of the shell proper, and are enclosed in the offset receptacle 31.
  • the bottom shaft of the conversion plates which may be of any convenient number, is attached to an elongated shaft passing through the stufiing box 32, and provided with a crank 33 for turning the plates at any desired angle.
  • the latter may be turned in a horizontal plane so as to completely close the cross section of the still except for the peri'orations in the plates previously mentioned, or they may be set at an angle as shown in the drawing as desired; thus, affording the maximum obstruction to flow of gases or liquid, or only 50 per cent impedance as may be desired.
  • the outlet pipe 34 which is preferably of large size, connecting the counter current jacket 35, surrounding the cooling coil 18.
  • the cooled liquid descends to the precipitation chamber 36 through the funnel shaped cone 37, the complex polymerized semi-solid asphaltic tars being drawn ofi through the waste line 38, controlled by the valve. 39.
  • the de-saturated, cooled and partially converted liquid to be' re-cycled passes through the return pipe 40 to the second heating coil 2, whence it is educted and united with the stream from the primary coil 1 and discharged through the pipe 25 to the vertical still'6, thus completing the cycle of operations.
  • the various heating elements are provided with standard pressure gauges 41, and recording thermometers 42.
  • the vertical still proper is equipped with a pop safety valve 43 and vapor outlet line 44,- controlled by the valve 45, from which the line passes to any standard form of condenser not shown in the illustration.v
  • the rate of delivery from the three stage centrifugal pump may be regulated so as to produce in combination with the heat applied to the primary coil a pressure say of three" hundred pounds to the square inch prior to entrance of eductors; a temperature of 850 F. being previously determined by experiment as the best cracking temperature for the particular base to be converted, it being understood that these values are typical and not absolute.
  • the orifices in the eductors may be designed, for example, so that the oil traveling at the velocity incident to the 300 lbs. initial pressure will in its suction efiect be reduced to 100 lbs. pressure.
  • the secondary heating coil and the vertical still would therefore be maintained at approximately this pressure by the proper manipulation of control valves, maintaining, say, a temperature of 700 F. in the secondary coil, and a somewhat higher figurein the combined issuing stream, dueto the influence of the super heated raw products.
  • the process of converting heavy hydrocarbon oils into low molecular weight hydrocarbons without formation of carbon which consists in the continuous cyclic conversion of the heavy hydrocarbon oils by the application of external heat while under pressure partly into light gaseous hydrocarbons of low molecular weight and partly into semi-liquid highly polymerized complex, hydrocarbons soluble in the partially converted stock, continuously eliminating saidlight hyprocarbons, continuously precipitating a suflicient quantity of said polymerized complex hydrocarbons to prevent saturation, of said stock by continuously cooling said stock after exposure to said heat and pressure to a temperature suited for the particular base and pressure employed and then reheating the treated stock and adding it to the heated fresh stock.
  • a process for the conversion of hydrocarbon oils into gasoline and other oils which includes the steps of flowing a stream of hydrocarbon oils through a cracking zone of relatively high temperature and pressure, flowing a separate stream of hydrocarbon oils through a second cracking zone of relatively low temperature. and pressure, intimately intermixing the stream of cracking oils flowing from said zone of relatively low temperature and pressure with the stream ins 110 stock, effecting such cracking by passage of of cracking oils flowing from said zone of relatively high temperature and pressure, discharging the mixture of oils thus formed into a reaction zone, effecting a separation in said reaction zone of vaporized oils from unvaporized oils, releasing vapor-ized oils from said reaction zone, separately cooling said unvaporized oils by heat interchange with a stream of fresh hydrocarbon oils, introducing the freshhydrocarbon oils so heated into said cracking zone of relatively high. temperature and pressure, introducing unvaporized oils thus cooled into said second cracking zone of relatively'low temperature and pressure; and re-' moving residual oils from said reaction zone.
  • a process for the conversion of heavy hy-, drocarbon oils into motor fuel and other oils of low molecular weight which includes the steps of flowing hydrocarbon oils through a zone of high pressure at such speed and heating the oils flowing therethrough to such temperature as to cause a conversion of theoils in said zone to an extent closely approaching the formation of free carbon, immediately discharging the conversion vproducts into a zone of lower pressure wherein separation of vapors from said products is effected, withdrawing vapors from said zone of lower pressure, and introducing heavy hydrocarbon oils into direct physical contact with the conversion products discharged into said zone of lower pressure substantially at the place where pressure is released on said products to maintain the unvaporized portion of said products ina fluid condition and prevent formation of free carbon on separation of vapors from said products in said zone of lower pressure, and removing residual oils in a fluid condition from said zone of lower pressure to prevent saturation of said mixture of oils with residual conversion products and precipitation of free carbon therefrom.
  • a process for the conversion of heavy hydrocarbon oils into motor fuel and other oils of low molecular weight which includes the steps of flowing hydrocarbon oils through a zone of high pressure at such speed and heating the oils flowing therethrough to such temperature as to cause a conversion of the oils in said zone to an extent closely approaching the formation of free tiaily as said conversion products enter said zone of lower pressure to maintain the unvaporized portion of said products in a fluid condition and prevent formation of free carbon on separation of vapors from said products in said zone of lower pressure.
  • a process for the conversion of heavy hydrocarbon oils into motor fuel and other oils of low molecular weight which includes the steps of flowing hydrocarbon oils through a zone ofhigh pressure at such speed and heating the oils flowing therethrough to such temperature as to cause a conversion of the oils in saidzone to an extent such that upon separation of vapors from the conversion products formation of free carbon would ordinarily be efiected, immediately discharging the conversion products into a zone of lower pressure wherein separation of vapors from said products is efiected, withdrawing vapors from said zone of lower pressure, introducing heavy hydrocarbon oils into direct physical contact with the conversion products discharged into said zone of lower pressure immediately prior to separation of vapors from said products to maintain the unvaporized portion of said products in a fluid condition and prevent formation of free carbon on separation ofvapors from said products in said zone of lower pressure, and removing residual oils in a fluid condition from said zone of lower pressure.
  • a process for the conversion of heavy hydrocarbon oils into motor fuel and other oils of low molecularweight which includes the steps of flowing hydrocarbon oils through a zone of high pressure at such speed and heating the oils flowing therethrough to such temperature as to cause a conversion of the oils in said zone to an extent such that upon separation of vapors from the conversion products formation of free carbon would ordinarily be effected, immediately discharging the conversion products into a zone of lower pressure wherein separation of vapors from said products is eifected, withdrawing vapors from said zone of lower pressure, introducing heavy hydrocarbon oils into direct physical contact with the conversion products discharged into said zone of lower pressure immediately prior to separation of vapors from said products to maintain the unvaporized portion of said products in a fluid condition and prevent' formation of free carbon on separation of vapors from said products in said zone of lower pressure, the by drocarbon .oils so introduced being at such temperature as to establish a further conversion of the mixture of oils thus formed, and removing residual oils in a fluid conditions from said zone of lower pressure to prevent
  • ARTHUR 1 SMITH. JOHN PERL;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

1934- Y A. D..SMITH ET AL Re.'19,274
I PROCESS OF TREATING HEAVY HYDROCARBONS Original Filed Jan. 28-. 192 2 i' l l l J Reissued Aug.- 14, 1934 UNITED j STATES" PATENT OFFICE PROCESS OF TREATING HEAVY HYDROCARBONS Original No. 1,640,223, dated August 23, 1927,
Serial No. 532,455, January 28, 1922. Application for reissue August 17, 1929, Serial-,No.
14 Claims. (0]. 196-59) Our invention relates broadly to the production of low molecular weight hydrocarbons of commercial value from those of complex composition by the application of continuous recurrent cyclic distillation processes supplemented by intermediate continuous cyclic cooling and precipitation methods. v
A primary object of our invention is the prevention of the formation of. deleterious elementary carbon during the process of conversion. Many cracking processes haverecognized the great danger incident to the deposition of carbon on tubes, pipes, or shell of still or conversion ap paratus; clogging of circulation,excessive applimedium before saturation occurs.
' highly polymerized bodies.
cation of heat, and cessation of continuity of process being the inevitable results where physical deterrents are not employed. To eliminate the effects noted various methods have been suggested such as maintaining carbon in suspension by rapid circulation, prevention of deposition by .mechanical scraping. devices, the use of deposit trays, etc. In our process such methods are unnecessary in that the formation of carbon is practically entirely avoided by the continuous precipitation and removal of the yet soluble'high- 1y polymerized hydrocarbons from the reaction zone before their subsequent decomposition into free carbon or insoluble higher polymerized products. It is an object of this invention to precipitate and remove a sufiicient portion of highly polymerized hydrocarbons to prevent saturation, precipitating at temperatures and pressures best suited for the particular complex undergoing conversion.
I A further object of our invention is to effect precipitation of the polymerized hydrocarbons by continuously cooling a portion of the reacting It is a wellknown fact that the pyrogenous distillation of complex petroleum distillates or residuals of high molecular weight produces under pressure a' variety of products, from simple methanegas down through desirable low molecular weight hydrocarbons of commercial value as motor fuels, to The latter shortly undergo decomposition upon further application of heat into free carbon and gaseous products causing the operating difficulties previously men- 'tioned. It is an object of this invention to provide a method for cooling a portion of the reacting medium continuously and produce a purely physicalprecipitation of the yet soluble polymerized bodies before saturation occurs with its immediately following pyrogenous precipitation and decomposition into free carbon and insoluble complexes.
A still further object of our invention is to effect the precipitation of the above mentioned polymerized bodies by the cooling action of the fresh oil pumped to the system through an exchanger in counter current course. The fresh oil during its passage is itself heated and while the heat absorbed will depend on precipitation temperature, itself a function of the pressure and reaction temperature best suited for the particular base involved; it is obvious a desirable heat interchange is always effected. An object of the invention is to effect an interchange of heat between the freshly charged oil and saturated partially converted base, while causing precipitation of the polymerized hydrocarbons.
Another object of our invention is an increase in total yield of desirable low molecular weight hydrocarbons over that obtained by a single distillation, by subjecting the fresh material and the stock that has undergone treatment separately to the respective temperatures and pressures best suited to obtain the desired objectives. It is an object of this invention to apply different temperatures and pressures to the fresh material and the treated stock respectively.
An additional object of our invention is a still further increase in total yield of desirable low molecular weight hydrocarbons obtained by uniting the separately heated raw material and partially converted base immediately prior to saturation of the former with polymerized bodies; de-
phlegmating the desirable gaseous low molecular weight hydrocarbons, and further cracking the residual liquid, passing same'in thin films over conversion plates. An increased quantity of desirable low molecular weight hydrocarbons is thus obtained together with an additional amount of complex polymerized bodies; carbon formation being prevented during the lowering of temperature incident to cracking and evaporation, by the counteracting solvent action towards the complexes of the previously treated stock. It is an object of this invention to provide a method for allowing continuous cyclic admixture of fresh material and partially converted base at such a temperature as is best suited for the pressure and particular base product employed, with the objective of a maximum yield of desirable light hydrocarbons without formation of a saturated liquid medium..
Still another object of our invention is the prevention of carbon formation in the last cracking stage by controlling the interval of contact between the combined reacting liquid and the steel conversion plates.
A further object of our invention is the elimination in part of deleterious sulphur compounds by precipitation. Polymerization of these bodies occurs simultaneously with the hydrocarbons, and they may be precipitated by the same means as are employed to remove the latter. It is an object of the invention to eliminate highly polymerized sulphur compounds by precipitation, preventing thereby pyrogenous decomposition and entering of sulphur into combination with the metal of the heating coils or shell of still. I
A further object of our invention is to convert the velocity of the raw liquid, produced by passage through constricted orifices to an eductor effect, utilizing the suction formed to circulate the partially converted base, uniting the liquids as previously described. It is an object of ,the'invention to efiect circulation of one portion, of the liquid reacting medium by the high velocity discharge of another portion of the liquid, producing such velocity by forcing the second liquid through narrow orifices by pump pressure aided by the expansive action of external heat.
Prior to a detailed description of the process we wish to discuss the theory of certain reactions so that those familiar with the art of cracking" may the more readily comprehend our application.
' In this connection we wish it distinctly understood that the absolute scientific accuracy of our theory is not so important as the resultant phenomena, the former being merely advanced as an explanation and not asabsolute facts.
in any cracking process it would appear there is always a balance peculiar to the base, pressure, and temperature employed. If this balance be destroyed by removal of the low molecular weight hydrocarbons in the gaseous phase, and heat continued to be applied, a disturbance in balance of the liquid phase immediately results, additional molecules being converted into gaseous products and polymerized complexes. The latter bodies in their higher polymerized condition appear to be only moderately soluble in the reacting medium, a reduction in temperature causing a copious precipitation from a saturated solution. Analysis shows such precipitate to be slightly soluble in gasoline, but freely soluble in benzol, carbon bisulphide, and carbon' tetrachloride; thus proving the existance of true hydrocarbons, which are of higher'sulphur content than the original liquid and thus show the effect of polymerization.
If instead of precipitating the complex poly-,
merized hydrocarbons from saturated solution, the application of heat be continued, the reacting medium then becomes supersaturated and pyrogenous precipitation of carbon occurs on the tubes, shell, or other heated surface of the apparatus, unless prevented by the more or less faulty mechanical means previously discussed. From the foregoing it is evident that the solubility of the various polymerized bodiesis up to the saturation point, a function of temperature, and by cooling such reacting medium,precipitation can be'efiected in such parts of the apparatus as are desired apart from all heated surfaces.
Thecooled residual liquid, dephlegmated from low boiling point hydrocarbons, contains in addition to unchanged heavy ends a large quantity of soluble complex hydrocarbons of progressive degrees of polymerizaton so that it isonly natural to expect that the recycling of this product will re uire less heat and pressure than the origina raw material. It is likewise reasonable to expect less saturation in the medium which has undergone a process of precipitation than in the raw material in ,equal cycles of conversion time, and if this assumption is correct a plates towards the reacting liquid with the attendant danger of forming a super-saturated solution can be modified by controlling the contact interval. the actual reactions involved are far more complex than the explanation cited. We therefore do not limit ourselves to any one theory, nor do we attempt a full explanation of the apparently involved phenomena, neither do we limit our process to the separate handling of two liquids on y, substituting multiple distillations and coolings where advisable.
Other advantages and objects of our invention will appear hereinafter.
'In order to more clearly present our invention, reference is made to the accompanying drawing in which:-
The drawing represents in part a vertical section and in part a vertical elevation of one form of apparatus, essentially diagrammatic in na- It is entirely probable, however, that ture, for carrying out the conversion of hydroemploy two sets of heating coils 1 and 2, provided with as many tubes 3 as may be convenient, expanded into the headers 4, equipped with key caps 5; also one vertical still 6. It is not however the purpose of the invention to limit the process to this arrangement, multiple effects being installed when desirable. Each heating coil, 1 and 2, is set in a typical down draft furnace 7, lined with fire brick 8, and equipped with grate 9, fire door 10,'ash pit door 11, combustion chamber 12,'heating chamber 13, and down flue 14, which is connected with a common stack 15. Damper controls are maintained at 16.
The heating coil 1 is supplied with raw oil by the three stage centrifugal pump 17, discharging through the cooling coil 18, and thence to the heating coil proper by the feeder pipe 19, control being effected by the valve 20. The partially converted oil leaves the primary heating coil 1 through the pipe 21, and controlled by the valve 22, passes through a series of eductors' '23, into the header 24. From thence the united stream passes through pipe 25 to the vertical still 6, wheredephlegmation of the gaseous prod- 80. Where interference to rotation would occur,-
19,274 .one above the other. The shafts 28 are provided with sprockets 29,, and connecting chain the sprockets are set outside of the shell proper, and are enclosed in the offset receptacle 31. The bottom shaft of the conversion plates, which may be of any convenient number, is attached to an elongated shaft passing through the stufiing box 32, and provided with a crank 33 for turning the plates at any desired angle. It will be noted in this connection that the latter may be turned in a horizontal plane so as to completely close the cross section of the still except for the peri'orations in the plates previously mentioned, or they may be set at an angle as shown in the drawing as desired; thus, affording the maximum obstruction to flow of gases or liquid, or only 50 per cent impedance as may be desired. In the latter instance it will be noted however that on account of the hemi-spherical type of construction, that, whatever the angle, one side of the At the base of the vertical still 6 is the outlet pipe 34, which is preferably of large size, connecting the counter current jacket 35, surrounding the cooling coil 18. The cooled liquid descends to the precipitation chamber 36 through the funnel shaped cone 37, the complex polymerized semi-solid asphaltic tars being drawn ofi through the waste line 38, controlled by the valve. 39. The de-saturated, cooled and partially converted liquid to be' re-cycled passes through the return pipe 40 to the second heating coil 2, whence it is educted and united with the stream from the primary coil 1 and discharged through the pipe 25 to the vertical still'6, thus completing the cycle of operations.
The various heating elements are provided with standard pressure gauges 41, and recording thermometers 42. The vertical still proper is equipped with a pop safety valve 43 and vapor outlet line 44,- controlled by the valve 45, from which the line passes to any standard form of condenser not shown in the illustration.v
In the actual operation of the process, the rate of delivery from the three stage centrifugal pump may be regulated so as to produce in combination with the heat applied to the primary coil a pressure say of three" hundred pounds to the square inch prior to entrance of eductors; a temperature of 850 F. being previously determined by experiment as the best cracking temperature for the particular base to be converted, it being understood that these values are typical and not absolute.
The orifices in the eductors may be designed, for example, so that the oil traveling at the velocity incident to the 300 lbs. initial pressure will in its suction efiect be reduced to 100 lbs. pressure. The secondary heating coil and the vertical still would therefore be maintained at approximately this pressure by the proper manipulation of control valves, maintaining, say, a temperature of 700 F. in the secondary coil, and a somewhat higher figurein the combined issuing stream, dueto the influence of the super heated raw products.
The maximum yield of desirable molecular weight hydrocarbons will be obviously proportional to the extent of cracking, this being evidently the highest with the longest contact of the reacting phases in thin films during passage over the hemi-spherical conversion plates when set to expose the greatest obstruction to flow (maximum surface). By testing from time to time the precipitate produced by the action of the cooling oil, any approach to saturation and pyrogenous decomposition can be detected by solubility in benzol, carbon tetrachloride or other proper solvent; the conversion plates being then adjusted to decrease the contact interval and thus overcome such tendency. When such manipulation does not sumce it is evident cracking is proceeding too rapidly in the heating coils, and the speed of flow must be increased or the intensity of firing reduced as occasion demands.
In precipitating the polymerized complexes, a maximum cooling effect is desirable to the extent of possibly requiring an additional amount of cooling oil over that that can be processed in one set of primary and secondary heating coils. Such a difliculty is overcome in practice by manifolding the cooling lines of several conversion sets, so that an extra amount'of cooling oil may be diverted when necessary. Other modifications of arrangement suggest themselves such as further economy in fuel obtained by passing the raw product, partially heated to the reaction temperature when cooling the saturated partially converted base, through an additional set of coils located in the current of waste heat gases prior to entrance to stack. In short while the apparatus mentioned is highlysuitable for carrying out the process as described, we do not limit ourselves to such form, our, process claims being equally applicable to any apparatus effecting the same results in the manner described. I
What we claim is:
1. The process of converting heavy hydrocarbon oils into-low molecular weight hydrocarbons which consists in cracking the heavy hydrocarbons partly into light gaseous hydrocarbons and partly 'into semi-liquid polymerized hydrocarbons soluble in the partially converted stock, eliminating said gaseous products and then precipitaiting and eliminating a portion of such polymerized hydrocarbons, said operations being effected while the stock is continuously circulated through a zone of heat and pressure suflicient .for said cracking operation and thence through a zone of sufficiently low temperature to precipitate such portion of said polymerized hydrocarbons, and thence back to a second zone of heat, fresh stock being added to the treated portion from which said polymerized hydrocarbons have been precipitated after such portion reaches said second zone of heat.
2. The process of converting heavy hydrocarbon oils into low molecular weight hydrocarbons which consists in cracking the heavy hydrocarbons partly into light gaseous hydrocarbons of low molecular weight and low sulphur content, and partly into semi-liquid. polymerized hydrocarbons of high sulphur content soluble in the partially converted stock, eliminating said gaseous products and then precipitating and eliminating a portion of such polymerized hydrocarbons, said operations being eifected while the stock is continuously circulated'through a zone of heat and pressure sufficient for said cracking opera- 3. The process of converting heavy hydrocarbon oils into low molecular weight hydrocarbons without formation of carbon, which consists in the continuous cyclic conversion of the heavy hydrocarbon oils by the application of external heat while under pressure partly into light gaseous hydrocarbons of low molecular weight and partly into semi-liquid highly polymerized complex, hydrocarbons soluble in the partially converted stock, continuously eliminating saidlight hyprocarbons, continuously precipitating a suflicient quantity of said polymerized complex hydrocarbons to prevent saturation, of said stock by continuously cooling said stock after exposure to said heat and pressure to a temperature suited for the particular base and pressure employed and then reheating the treated stock and adding it to the heated fresh stock.
4. The process of converting heavy hydrocarbon oils into low molecular weight hydrocarbons which consists in the continuous cyclic conversion of the heavy hydrocarbon oils by the application of external heat while under pressure, partly into light gaseous hydrocarbons of low' molecular weight and low sulphur content, and partly into semi-liquid highly polymerized complex hydrocarbons of high sulphur contentsoluble in the partially converted stock, continuously eliminating said light hydrocarbons, continuously precipitating a-suflicient quantity of said polymerized complex hydrocarbons of high sulphur content to prevent saturationbf said stock, by continuously cooling said stock after exposure to saidheat and pressure to a temperature suited for the particular base and pressure employed and then reheating the treated stock and adding it to the heated fresh stock.
5. The process of converting heavy hydrocarbon oils into low molecular weight hydrocarbons without formation of carbon which consists in i the continuous cyclic conversion of the heavy hydrocarbon oils by the application of external heat while under pressure, partly into light gaseous hydrocarbons of low molecular weight and partly into semi-liquid highly polymerized complex hydrocarbons soluble in the partially converted oils, cooling and precipitating said polymerized complex hydrocarbons, effecting such cooling with partial interchange of heat by continuously passing fresh raw oil through said partially converted oils in a suitable form of exchanger, and reheating the partially converted oils minus the gaseous and precipitated matter and adding such reheated oils to the heated fresh oil.
6. The process of converting heavy hydrocarbon oils into low molecular weight hydrocarbons without formation of carbon, which consists in the continuous cyclic conversion of the heavy hydrocarbon oils divided into portions, by the application of selective heats and pressures suited for the portions employed, converting said portions partly into light gaseous hydrocarbons of low molecular weight and partly into semi-liquid highly polymerized complex hydrocarbons soluble in the partially converted oils, uniting said portions prior to saturation with the said polymerized hydrocarbons, eliminating saidlight hydrocarbons and then continuously precipitating a quantity of said polymerized hydrocarbons from said partially converted oils and then returning the latter for the action of heat and pressure.
7 The process of converting heavy hydrocarbon oils into low molecular weight hydrocarbons without formation of carbon, which consists in the continuous cyclic conversion of the heavy hydrocarbon oils divided into raw base and par tially converted liquid stock, by the application of selective heats and pressures suited for the divisions employed, converting said raw base and said partially converted stock partly into light gaseous hydrocarbons of low molecular weight and partly into semi-liquid highly polymerized complex hydrocarbons soluble in the resultant further convertd stock, uniting said heated raw base and partially converted stock prior to saturation with said polymerized complexes, eliminatingthe light hydrocarbons, continuously precipitating from such united stocks a sufficient quantity of said polymerized complexes to prevent saturation of said united stocks and returning such stocks into the circulation for repetition of the action.
8. The process of converting heavy hydrocarbon oils into low molecular weight hydrocarbons without formation of carbon, which consists in the continuous cyclic conversion of the heavy hydrocarbon oils divided into raw stock and treated stock, converting said raw stock and said treated stock into light gaseous hydrocarbons and semi-liquid polymerized complex hydrocarbons, uniting said stocks prior to saturation with said polymerized hydrocarbons, dephlegmating said light gaseous hydrocarbons produced, furthe: cracking the residual stocks into additional quantities of light gaseous low molecular weight hydrocarbons and semi-liquid highly polymerized complex hydrocarbons soluble in the resultant the reacting stock in thin films'over conversion plates of adjustable contact surface, and continuously precipitating and eliminating from. such treated stock a quantity of said polymerized hydrocarbons prior to the return of such treated stock for repetition of the action.
9. The process of converting heavy hydrocarbon oils into lowmolecular weight hydrocarbons without formation of carbon, which consists 'in the continuous cyclic conversion of the heavy .in eductor effect, uniting said parts prior to saturation with the said polymerized complexes, dephlegmating the low molecular weight gaseous hydrocarbons produced, further cracking the residual medium, precipitating therefrom a sufficient quantity of polymerized complexes to prevent saturation with attendant pyrogenous precipitation of carbon, and returning the medium to the process in continuous cyclic course.
10. A process for the conversion of hydrocarbon oils into gasoline and other oils which includes the steps of flowing a stream of hydrocarbon oils through a cracking zone of relatively high temperature and pressure, flowing a separate stream of hydrocarbon oils through a second cracking zone of relatively low temperature. and pressure, intimately intermixing the stream of cracking oils flowing from said zone of relatively low temperature and pressure with the stream ins 110 stock, effecting such cracking by passage of of cracking oils flowing from said zone of relatively high temperature and pressure, discharging the mixture of oils thus formed into a reaction zone, effecting a separation in said reaction zone of vaporized oils from unvaporized oils, releasing vapor-ized oils from said reaction zone, separately cooling said unvaporized oils by heat interchange with a stream of fresh hydrocarbon oils, introducing the freshhydrocarbon oils so heated into said cracking zone of relatively high. temperature and pressure, introducing unvaporized oils thus cooled into said second cracking zone of relatively'low temperature and pressure; and re-' moving residual oils from said reaction zone.
11. A process for the conversion of heavy hy-, drocarbon oils into motor fuel and other oils of low molecular weight which includes the steps of flowing hydrocarbon oils through a zone of high pressure at such speed and heating the oils flowing therethrough to such temperature as to cause a conversion of theoils in said zone to an extent closely approaching the formation of free carbon, immediately discharging the conversion vproducts into a zone of lower pressure wherein separation of vapors from said products is effected, withdrawing vapors from said zone of lower pressure, and introducing heavy hydrocarbon oils into direct physical contact with the conversion products discharged into said zone of lower pressure substantially at the place where pressure is released on said products to maintain the unvaporized portion of said products ina fluid condition and prevent formation of free carbon on separation of vapors from said products in said zone of lower pressure, and removing residual oils in a fluid condition from said zone of lower pressure to prevent saturation of said mixture of oils with residual conversion products and precipitation of free carbon therefrom.
12. A process for the conversion of heavy hydrocarbon oils into motor fuel and other oils of low molecular weight which includes the steps of flowing hydrocarbon oils through a zone of high pressure at such speed and heating the oils flowing therethrough to such temperature as to cause a conversion of the oils in said zone to an extent closely approaching the formation of free tiaily as said conversion products enter said zone of lower pressure to maintain the unvaporized portion of said products in a fluid condition and prevent formation of free carbon on separation of vapors from said products in said zone of lower pressure.
13. A process for the conversion of heavy hydrocarbon oils into motor fuel and other oils of low molecular weight which includes the steps of flowing hydrocarbon oils through a zone ofhigh pressure at such speed and heating the oils flowing therethrough to such temperature as to cause a conversion of the oils in saidzone to an extent such that upon separation of vapors from the conversion products formation of free carbon would ordinarily be efiected, immediately discharging the conversion products into a zone of lower pressure wherein separation of vapors from said products is efiected, withdrawing vapors from said zone of lower pressure, introducing heavy hydrocarbon oils into direct physical contact with the conversion products discharged into said zone of lower pressure immediately prior to separation of vapors from said products to maintain the unvaporized portion of said products in a fluid condition and prevent formation of free carbon on separation ofvapors from said products in said zone of lower pressure, and removing residual oils in a fluid condition from said zone of lower pressure.
14. A process for the conversion of heavy hydrocarbon oils into motor fuel and other oils of low molecularweight which includes the steps of flowing hydrocarbon oils through a zone of high pressure at such speed and heating the oils flowing therethrough to such temperature as to cause a conversion of the oils in said zone to an extent such that upon separation of vapors from the conversion products formation of free carbon would ordinarily be effected, immediately discharging the conversion products into a zone of lower pressure wherein separation of vapors from said products is eifected, withdrawing vapors from said zone of lower pressure, introducing heavy hydrocarbon oils into direct physical contact with the conversion products discharged into said zone of lower pressure immediately prior to separation of vapors from said products to maintain the unvaporized portion of said products in a fluid condition and prevent' formation of free carbon on separation of vapors from said products in said zone of lower pressure, the by drocarbon .oils so introduced being at such temperature as to establish a further conversion of the mixture of oils thus formed, and removing residual oils in a fluid conditions from said zone of lower pressure to prevent saturation of said mixture of oils with residual conversion products and precipitation of free carbon therefrom.
ARTHUR 1:. SMITH. JOHN PERL;
US19274D Process of treating heavy Expired USRE19274E (en)

Publications (1)

Publication Number Publication Date
USRE19274E true USRE19274E (en) 1934-08-14

Family

ID=2083260

Family Applications (1)

Application Number Title Priority Date Filing Date
US19274D Expired USRE19274E (en) Process of treating heavy

Country Status (1)

Country Link
US (1) USRE19274E (en)

Similar Documents

Publication Publication Date Title
US2893941A (en) Removing and preventing coke formation in tubular heaters by use of potassium carbonate
US1892534A (en) Process for distillation and conversion of mineral oils
US2525276A (en) Method of cracking hydrocarbons
USRE19274E (en) Process of treating heavy
US2093588A (en) Process of cracking heavy hydrocarbon oils
US1640223A (en) Process of treating heavy hydrocarbons
US1763609A (en) Process of treating hydrocarbon oils
US2216471A (en) Process for converting mineral oils
US2105526A (en) Process of hydrocarbon oil conversion
US2147399A (en) Process for cracking hydrocarbons
US1819729A (en) Apparatus for decomposition and processing of petroleum hydrocarbons
US1908106A (en) Apparatus for treating hydrocarbons
US2345558A (en) Cracking hydrocarbon oils
US1912882A (en) Process for treating hydrocarbon oils
US1935148A (en) Hydrocarbon oil conversion
US1675575A (en) Method for cracking oils
US2008550A (en) Process of cracking petroleum oils
US1938836A (en) Method for hydrocarbon oil treatment
US2144488A (en) Process of cracking heavy hydrocarbon oils
US2154746A (en) Manufacture of asphalt
US1449227A (en) Process of cracking hydrocarbon oils under pressure
US1585496A (en) Process for making gasoline
US1740691A (en) Apparatus and process of treating hydrocarbon oils
US2121026A (en) Process for refining and converting oils
US1880717A (en) Method of cracking and processing petroleum