USH904H - Safe secure survivable door locking assembly for an overpack container - Google Patents

Safe secure survivable door locking assembly for an overpack container Download PDF

Info

Publication number
USH904H
USH904H US07/441,782 US44178289A USH904H US H904 H USH904 H US H904H US 44178289 A US44178289 A US 44178289A US H904 H USH904 H US H904H
Authority
US
United States
Prior art keywords
assembly
members
overpack container
container assembly
peripherally
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US07/441,782
Inventor
Albertus E. Schmidlin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Army
Original Assignee
US Department of Army
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Army filed Critical US Department of Army
Priority to US07/441,782 priority Critical patent/USH904H/en
Application granted granted Critical
Publication of USH904H publication Critical patent/USH904H/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B65/00Locks or fastenings for special use
    • E05B65/0075Locks or fastenings for special use for safes, strongrooms, vaults, fire-resisting cabinets or the like

Definitions

  • This invention relates to a locking assembly, and more particularly to a safe secure survivable door locking assembly for an overpack container for storing projectiles.
  • a survivability overpack container is a ballistically-hardened container for shipping and storing up to three projectiles during peacetime, transition to war and wartime.
  • a SOC is specifically designed to provide protection against small arms and fragments from indirect fire weapons, chemical attack and nuclear effects.
  • the SOC by its security features has replaced the weapon security container (WSC) of the weapon access delay system (WADS).
  • WSC weapon security container
  • WADS weapon access delay system
  • the SOC provides increased safety as a result of design features which reduce the probability of damage in the event that weapons are exposed to high velocity impact, crush, impalement and/or fuel fire environments associated with fixed and rotary wing aircraft accidents, etc.
  • An object of the present invention is to provide an improved locking assembly for a survivability overpack container.
  • Another object of the present invention is to provide an improved locking assembly for a survivability overpack container meeting SOC security requirements.
  • a further object of the present invention is to provide an improved locking assembly for a survivability overpack container having a penetration assembly activating an internal safety lock.
  • a still further object of the present invention is to provide an improved locking assembly for a survivability overpack container having multilayer steel plates and gearing which will jam the mechanism under tampering situations.
  • an improved locking assembly mounted on each door assembly of a SOC and including a plurality of segmented linear bolts peripherally-disposed about the door assembly for engaging cooperating latches mounted on the container body and operatively connected to handle assemblies for latching and unlatching the locking assembly to permit opening and closing of the door assembly of a SOC and wherein each handle assembly is provided with a key operated combination lock.
  • FIG. 1 is a front elevational view of a survivable overpack container including a door locking assembly of the present invention
  • FIG. 2 is a partial front view of the survivable overpack container with the door assembly in an opened position
  • FIG. 3 is a sectional top view of the door assembly taken along the lines 3--3 of FIG. 2;
  • FIG. 4 is a sectional side view of the door assembly taken along the line 4--4 of FIG. 2;
  • FIG. 4A shows an end view of the structure shown in FIG. 2;
  • FIG. 5 is a partial sectional side view of the door assembly closed on the container assembly in an unlocked configuration of the locking assembly
  • FIG. 6 is a partial section side view of the door assembly closed on the container assembly in an engaged configuration of the locking assembly.
  • FIG. 7 is an alternative door assembly with different sleeve bearing locations in operation.
  • FIG. 7A shows and end view of the structure in FIG. 7, and
  • FIG. 8 shows a lengthwise side view of the structure in FIG. 7.
  • an overpack container assembly comprised of a container body 12 and a container door assembly, generally indicated as 14 hingeably mounted by hinge members 16 to the container body 12.
  • the container body is formed of ballistically hardened materials and of a construction known to one skilled in the art to increase safety, security and survivability during puncture, transition-to-war and wartime.
  • the door assembly 14 is likewise formed of such ballistically hardened materials.
  • the overpack container assembly 10 is specifically designed to provide protection against small arms and fragments from indirect fire weapons, chemical attack and nuclear effects.
  • the overpack container assembly 10 with its security features replaces a Weapons Security Container (WSC) of the Weapon Access Delay System (WADS).
  • WSC Weapons Security Container
  • WADS Weapon Access Delay System
  • the overpack container assembly 10 also provides increased safety since it reduces probability of damage in the event that the weapons are exposed to high velocity impact, crush, impalement and/or fuel fire environments associated with fixed and rotary wing aircraft accidents.
  • the container body 12 is formed by a top wall 18, a bottom wall 20, a rear wall 22, and side portions 24 defining a rectangularly-shaped opening 26. Peripherally-disposed about the opening 26 on an inner surface portion of the top wall 18, bottom wall 20 and side portions 24, there are provided rectangularly-shaped hollow bar members 28, 30, and 32, respectively, affixed to and extending peripherally-inwardly from the respective walls.
  • the bar member 28, 30, and 32 are discontinuously disposed about the periphery in a manner to provide opened areas at mid and corner portions thereof, as more fully hereinafter discussed.
  • the door assembly 14 referring particularly to FIGS. 2 and 3 is provided with a locking system comprised of a plurality of peripherally-disposed rod members 34, 36 and 38 including intermediate D-shaped portions disposed proximate a top portion 40, a bottom portion 42 and side wall portions 44 corresponding to the top wall 18, the bottom wall 20 and side portions 24, respectively, of the container body 12.
  • the rod members 34 and 36 are journalled for rotation in intermediate support member 46 and end support members 48 disposed proximate a juncture point between the top and bottom portions 40 and 42 with the side portions 44, it being understood that the left and right rod half members of 34 and of 36 are not connected at the intermediate support member 46. Terminal end portions of the rod members 34, 36 and 38 are provided with a miter gear 50. Intermediate the rod members 38 is disposed along the side portions 44 of the door assembly 14, there is provided a helical gear member 52.
  • each shaft 54 mounted for rotation in support members 56.
  • An end of each shaft 54 proximate the side portions 44 is provided with a helical gear member 58 in geared relationship with the helical gear member 52 disposed on the side rod member 38.
  • a miter gear 60 At the other end of the shaft 54 there is provided a miter gear 60.
  • a shaft member 62 Extending through the door assembly 14, approximately centrally disposed thereto, there are provided a shaft member 62 provided with a handle member 64 on an outer side thereof and a miter gear 66 on an inner portion thereof in geared relationship with the miter gear 60 on the shaft 54, as more fully hereinafter disclosed.
  • the rod members 34, 36 and 38 are covered with protective S-shaped plate members 68.
  • Each handle assembly including handle member 64 is provided with a key locking assembly, generally indicated as 70.
  • Rotation of the handle member 64, concomitantly rotating of the shaft 62 effects rotation of the shaft 54 via the miter gear 66 - miter gear 60 relationship, as more fully herein after disclosed.
  • a latch member 72 of the key locking assembly in a locked configuration thereof is cause to contact a flat surface of the shaft 54 thereby preventing rotation of the shaft 54 and unlatching of the door assembly 14 from the container body 12.
  • the locking system is provided with a disabling assembly, comprised of spring-loaded plunger assembly (two illustrated), generally indicated as 80, comprised of a cylinder 82 for a plunger 84 and including a spring 86.
  • the plunger 84 is in a spring-loaded configuration caused by the spring 86 held under compression by a line 88 connected to the plunger 84.
  • the lines 88 are caused to distend or part in a manner to permit the plunger 84 to move under the compression of the spring 86 and contact a surface portion of the D-shaped bar member 36 under condition to prevent rotation thereof as more fully hereinafter described.
  • the D-shaped bar members 34, 36 and 38 are positioned to permit unimpeded closing of the door assembly into the container body 12, such as illustrated in FIG. 5. Therein the D-shaped bar members 34, 36 and 38 are permitted to assume a position proximate the rectangularly-shaped latching member 28, 30 and 32, respectively. Rotation of the handle member 64 into an appropriate locking configuration effects a one quarter rotation of the D-shaped bar members 34, 36 and 38, referring to FIG.
  • the door locking system of the present invention is divided into two parts, the left and right sides.
  • Each side is comprised of D-shaped bar members along the top, side and bottom supported in individual bearings.
  • miter gears synchronize the bar members so that all flats are simultaneously in either the locked or unlocked position.
  • the D-shaped bar members are limited to the region between the bearings and not at the bearing location themselves.
  • the D-shaped bar members are driven by a drive shaft 62 and handle assembly with the operating handle 64 on the outside of the door assembly 14. Motion of the handle 64 rotates the shaft 54 via the miter gear assembly 66, there-by transmitting its motion from the handle to the horizontal shaft 54.
  • the horizontal shaft 54 is coupled to the vertical D-shaped bar members 38 via helical gears 58. Rotation of the handle causes the vertical D-shaped shaft to rotate back and forth, as illustrated in FIGS. 5 and 6.
  • the horizontal shaft also has a short D-shaped shaft segment for a so-called "last chance lock" and a radial slot which is used to hold the locking system in the unlocked position. The last chance lock is so-called because it keeps the door latched to a SOC even if the peripherally D-shaped bar members have been foiled by an adversary.
  • the latch 72 travels through a protecting tube 90 said tube also shrouds the shaft 54.
  • Such latch motion acts to lock the horizontal shaft 54 in either of two positions, locked with door locked or locked with door unlocked necessary to comply with operational requirements.
  • the primary latch engages the short D-shaped segment of shaft 54, preventing its motion toward the opening direction.
  • the D-shaped shaft 54 engages the last chance striker which is attached to a fixed vertical member in the center section of the door, remote from the perimeter.
  • the primary latch In the locked-with-door-unlocked position the primary latch is engaged in the radial slot mentioned earlier. The latter feature is desired in order to render the D-shaped shaft held open or inert during certain operational conditions.
  • FIGS. 7, 7A and 8 An alternative door locking system is shown on the drawing of FIGS. 7, 7A and 8.
  • the door locking system is divided into two parts, the left and right sides.
  • the drawing shows the left side in the unlocked position and the right side in the locked position.
  • Each side is comprised of three D-shaft segments along the top, side and bottom, respectfully. These segments are supported in individual sleeve bearings which are self aligning and are shown in FIG. 7 at D.
  • the D-shaft shape is limited to the region between the bearing and not at the bearing locations themselves. Therefore, the door frame is notched out in order to clear the bearing housings during the door opening and closing.
  • the bearing housings were attached to the outer door plate.
  • an inner plate called the backshield of non-metallic material which covers the full area of the door. This plate also supports the bearing housings, thereby separating the locking mechanisms from the outer door.
  • the D-shaft segments in this design are driven by a rack and pinion means which is stroked by a crank and handle assembly with the operating handle on the outside of the door as before. Motion of the handle rotates the crank EE thereby transmitting its motion via FF from the handle to the horizontal bar GG.
  • the two ends cf the horizontal bar are shown at HH and JJ.
  • the horizontal bar GG is made in two parts, a rectangular shape at HH and a toothed rack at JJ. These two sections are joined at KK.
  • the horizontal bar is coupled to the vertical D-shaft segments via rack and pinion gears as shown at LL. Rotation of the handle H in and out of the paper causes the vertical D-shaft to rotate back and forth.
  • the lock shown at S and T in FIG. 8 is a key operated, combination type lock, having a bolt size of approximately 5/16 inch by 1 inch shown at MM and a bolt travel of approximately 1/4 inches.
  • the bolt travels vertically and as shown is in the locked position.
  • This bolt motion acts to lock the horizontal bar GG in either of two positions, locked with door locked or locked with door unlocked.
  • These options are necessary to comply with operational requirements.
  • the primary bolt engages a tab on the bar as shown at NN, preventing its motion toward the opening direction.
  • the primary bolt engages the tab as shown at HH, preventing its motion toward the locked position.
  • the latter feature is desired in order to render the D-shaft held open or inert during certain operational conditions.
  • the entire backshield shown at 00 is made of a non-metallic composite such as Kevlar. This material resists the usual cutting devices used on metals such as torches and explosive charges.
  • the elements of the locking system such as the key operated lock, the horizontal bar, the gears and bearings for the D-shaft, are all mounted on the backshield. This assembly act as an inner door in the event the outer steel plate is penetrated by an adversary.
  • the locking system includes a relocker as before which is activated by a trip-wire system.
  • the trip-wire is shown in FIG. 8 at X in the plan view and in the Section A--A view. Any attempt at tampering by penetration of the front door plate in the vicinity of the horizontal bar GG will fracture the wire.
  • This action enables a re-locker latch shown at Y which locks up the D-shaft mechanism.
  • the latch is a simple spring-loaded plunger, held back the wire as shown at Z.
  • wire is routed horizontally across the door in the space between the horizontal bar and the front door plate.

Landscapes

  • Lock And Its Accessories (AREA)

Abstract

There is disclosed an improved locking assembly mounted on a door assemblyf a SOC and including a plurality of segmented linear bolts peripherally-disposed about the door assembly for engaging cooperating latches mounted on the container body and operatively connected to handle assemblies for latching and unlatching the locking assembly to permit opening and closing of the door assembly of a SOC and wherein each handle assembly is provided with a key operated combination lock.

Description

GOVERNMENT INTEREST
The invention described herein may be made, used, or licensed by or for the Government, for governmental purposes.
BACKGROUND OF THE INVENTION
(1) Field of the Invention
This invention relates to a locking assembly, and more particularly to a safe secure survivable door locking assembly for an overpack container for storing projectiles.
(2) Description of the Prior Art
A survivability overpack container (SOC) is a ballistically-hardened container for shipping and storing up to three projectiles during peacetime, transition to war and wartime. A SOC is specifically designed to provide protection against small arms and fragments from indirect fire weapons, chemical attack and nuclear effects. The SOC by its security features has replaced the weapon security container (WSC) of the weapon access delay system (WADS). The SOC provides increased safety as a result of design features which reduce the probability of damage in the event that weapons are exposed to high velocity impact, crush, impalement and/or fuel fire environments associated with fixed and rotary wing aircraft accidents, etc.
OBJECTS OF THE PRESENT INVENTION
An object of the present invention is to provide an improved locking assembly for a survivability overpack container.
Another object of the present invention is to provide an improved locking assembly for a survivability overpack container meeting SOC security requirements. A further object of the present invention is to provide an improved locking assembly for a survivability overpack container having a penetration assembly activating an internal safety lock.
A still further object of the present invention is to provide an improved locking assembly for a survivability overpack container having multilayer steel plates and gearing which will jam the mechanism under tampering situations.
SUMMARY OF THE INVENTION
These and other objects of the present invention are achieved by an improved locking assembly mounted on each door assembly of a SOC and including a plurality of segmented linear bolts peripherally-disposed about the door assembly for engaging cooperating latches mounted on the container body and operatively connected to handle assemblies for latching and unlatching the locking assembly to permit opening and closing of the door assembly of a SOC and wherein each handle assembly is provided with a key operated combination lock.
BRIEF DESCRIPTION OF THE DRAWINGS
Additional objects and advantages of the present invention will become apparent from the following detailed description when taken with the accompanying drawings wherein like numerals indicate like parts throughout, and wherein:
FIG. 1 is a front elevational view of a survivable overpack container including a door locking assembly of the present invention;
FIG. 2 is a partial front view of the survivable overpack container with the door assembly in an opened position;
FIG. 3 is a sectional top view of the door assembly taken along the lines 3--3 of FIG. 2; and
FIG. 4 is a sectional side view of the door assembly taken along the line 4--4 of FIG. 2; and
FIG. 4A shows an end view of the structure shown in FIG. 2; and
FIG. 5 is a partial sectional side view of the door assembly closed on the container assembly in an unlocked configuration of the locking assembly; and
FIG. 6 is a partial section side view of the door assembly closed on the container assembly in an engaged configuration of the locking assembly; and
FIG. 7 is an alternative door assembly with different sleeve bearing locations in operation; and
FIG. 7A shows and end view of the structure in FIG. 7, and
FIG. 8 shows a lengthwise side view of the structure in FIG. 7.
DETAILED DESCRIPTION OF THE INVENTION
Referring now to the drawings, and particularly FIGS. 1 and 2, there is illustrated an overpack container assembly, generally indicated as 10, comprised of a container body 12 and a container door assembly, generally indicated as 14 hingeably mounted by hinge members 16 to the container body 12. The container body is formed of ballistically hardened materials and of a construction known to one skilled in the art to increase safety, security and survivability during puncture, transition-to-war and wartime. The door assembly 14 is likewise formed of such ballistically hardened materials. The overpack container assembly 10 is specifically designed to provide protection against small arms and fragments from indirect fire weapons, chemical attack and nuclear effects. The overpack container assembly 10 with its security features replaces a Weapons Security Container (WSC) of the Weapon Access Delay System (WADS). The overpack container assembly 10 also provides increased safety since it reduces probability of damage in the event that the weapons are exposed to high velocity impact, crush, impalement and/or fuel fire environments associated with fixed and rotary wing aircraft accidents.
The container body 12 is formed by a top wall 18, a bottom wall 20, a rear wall 22, and side portions 24 defining a rectangularly-shaped opening 26. Peripherally-disposed about the opening 26 on an inner surface portion of the top wall 18, bottom wall 20 and side portions 24, there are provided rectangularly-shaped hollow bar members 28, 30, and 32, respectively, affixed to and extending peripherally-inwardly from the respective walls. The bar member 28, 30, and 32 are discontinuously disposed about the periphery in a manner to provide opened areas at mid and corner portions thereof, as more fully hereinafter discussed.
The door assembly 14, referring particularly to FIGS. 2 and 3 is provided with a locking system comprised of a plurality of peripherally-disposed rod members 34, 36 and 38 including intermediate D-shaped portions disposed proximate a top portion 40, a bottom portion 42 and side wall portions 44 corresponding to the top wall 18, the bottom wall 20 and side portions 24, respectively, of the container body 12.
The rod members 34 and 36 are journalled for rotation in intermediate support member 46 and end support members 48 disposed proximate a juncture point between the top and bottom portions 40 and 42 with the side portions 44, it being understood that the left and right rod half members of 34 and of 36 are not connected at the intermediate support member 46. Terminal end portions of the rod members 34, 36 and 38 are provided with a miter gear 50. Intermediate the rod members 38 is disposed along the side portions 44 of the door assembly 14, there is provided a helical gear member 52.
Extending parallel to and intermediate the top and bottom portions 40 and 42 of the door assembly 14, referring to FIG. 3, there is provided on either side thereof a shaft 54 mounted for rotation in support members 56. An end of each shaft 54 proximate the side portions 44 is provided with a helical gear member 58 in geared relationship with the helical gear member 52 disposed on the side rod member 38. At the other end of the shaft 54 there is provided a miter gear 60. Extending through the door assembly 14, approximately centrally disposed thereto, there are provided a shaft member 62 provided with a handle member 64 on an outer side thereof and a miter gear 66 on an inner portion thereof in geared relationship with the miter gear 60 on the shaft 54, as more fully hereinafter disclosed. The rod members 34, 36 and 38 are covered with protective S-shaped plate members 68.
Each handle assembly including handle member 64 is provided with a key locking assembly, generally indicated as 70. Rotation of the handle member 64, concomitantly rotating of the shaft 62 effects rotation of the shaft 54 via the miter gear 66 - miter gear 60 relationship, as more fully herein after disclosed. A latch member 72 of the key locking assembly in a locked configuration thereof is cause to contact a flat surface of the shaft 54 thereby preventing rotation of the shaft 54 and unlatching of the door assembly 14 from the container body 12.
The locking system is provided with a disabling assembly, comprised of spring-loaded plunger assembly (two illustrated), generally indicated as 80, comprised of a cylinder 82 for a plunger 84 and including a spring 86. The plunger 84 is in a spring-loaded configuration caused by the spring 86 held under compression by a line 88 connected to the plunger 84. Should the container assembly 10 be penetrated under conditions to fracture the armor glass or to gain access to the shaft 54, the lines 88 are caused to distend or part in a manner to permit the plunger 84 to move under the compression of the spring 86 and contact a surface portion of the D-shaped bar member 36 under condition to prevent rotation thereof as more fully hereinafter described.
In operation, assuming an opened condition of the door assembly 14 with respect to the container body 12 as illustrated in FIG. 2, the D- shaped bar members 34, 36 and 38 are positioned to permit unimpeded closing of the door assembly into the container body 12, such as illustrated in FIG. 5. Therein the D- shaped bar members 34, 36 and 38 are permitted to assume a position proximate the rectangularly- shaped latching member 28, 30 and 32, respectively. Rotation of the handle member 64 into an appropriate locking configuration effects a one quarter rotation of the D- shaped bar members 34, 36 and 38, referring to FIG. 6, to a latching position whereby the D- shaped bar members 34, 36 and 38 are caused to contact a surface of the latching members 28, 30 and 32, respectively under conditions to permit any further movement between the door assembly 14 with respect to the latching members thereby fixedly positioning the former to the latter. Subsequent positioning of the latch member 72 with respect to the shaft member 54 prevents inadvertent rotation of the handle member 64.
Thus, the door locking system of the present invention is divided into two parts, the left and right sides. Each side is comprised of D-shaped bar members along the top, side and bottom supported in individual bearings. At the corners, miter gears synchronize the bar members so that all flats are simultaneously in either the locked or unlocked position. It should be noted as stated earlier that the D-shaped bar members are limited to the region between the bearings and not at the bearing location themselves.
The D-shaped bar members are driven by a drive shaft 62 and handle assembly with the operating handle 64 on the outside of the door assembly 14. Motion of the handle 64 rotates the shaft 54 via the miter gear assembly 66, there-by transmitting its motion from the handle to the horizontal shaft 54. The horizontal shaft 54 is coupled to the vertical D-shaped bar members 38 via helical gears 58. Rotation of the handle causes the vertical D-shaped shaft to rotate back and forth, as illustrated in FIGS. 5 and 6. The horizontal shaft also has a short D-shaped shaft segment for a so-called "last chance lock" and a radial slot which is used to hold the locking system in the unlocked position. The last chance lock is so-called because it keeps the door latched to a SOC even if the peripherally D-shaped bar members have been foiled by an adversary.
The latch 72 travels through a protecting tube 90 said tube also shrouds the shaft 54. Such latch motion acts to lock the horizontal shaft 54 in either of two positions, locked with door locked or locked with door unlocked necessary to comply with operational requirements. In the door locked position, the primary latch engages the short D-shaped segment of shaft 54, preventing its motion toward the opening direction. At the same time, the D-shaped shaft 54 engages the last chance striker which is attached to a fixed vertical member in the center section of the door, remote from the perimeter. In the locked-with-door-unlocked position the primary latch is engaged in the radial slot mentioned earlier. The latter feature is desired in order to render the D-shaped shaft held open or inert during certain operational conditions.
An alternative door locking system is shown on the drawing of FIGS. 7, 7A and 8. As before, the door locking system is divided into two parts, the left and right sides. The drawing shows the left side in the unlocked position and the right side in the locked position. Each side is comprised of three D-shaft segments along the top, side and bottom, respectfully. These segments are supported in individual sleeve bearings which are self aligning and are shown in FIG. 7 at D. At the corners, nit=gears (at B) synchronize the segments so that all flats are in either the locked or unlocked position simultaneously. It should be noted as stated earlier that the D-shaft shape is limited to the region between the bearing and not at the bearing locations themselves. Therefore, the door frame is notched out in order to clear the bearing housings during the door opening and closing.
There is a different location of the sleeve bearings here. Previously the bearing housings were attached to the outer door plate. Here there is an inner plate called the backshield of non-metallic material which covers the full area of the door. This plate also supports the bearing housings, thereby separating the locking mechanisms from the outer door.
The D-shaft segments in this design are driven by a rack and pinion means which is stroked by a crank and handle assembly with the operating handle on the outside of the door as before. Motion of the handle rotates the crank EE thereby transmitting its motion via FF from the handle to the horizontal bar GG. The two ends cf the horizontal bar are shown at HH and JJ. The horizontal bar GG is made in two parts, a rectangular shape at HH and a toothed rack at JJ. These two sections are joined at KK.
The horizontal bar is coupled to the vertical D-shaft segments via rack and pinion gears as shown at LL. Rotation of the handle H in and out of the paper causes the vertical D-shaft to rotate back and forth.
The lock shown at S and T in FIG. 8 is a key operated, combination type lock, having a bolt size of approximately 5/16 inch by 1 inch shown at MM and a bolt travel of approximately 1/4 inches. The bolt travels vertically and as shown is in the locked position. This bolt motion acts to lock the horizontal bar GG in either of two positions, locked with door locked or locked with door unlocked. These options are necessary to comply with operational requirements. In the door locked position the primary bolt engages a tab on the bar as shown at NN, preventing its motion toward the opening direction. In the locked with door-unlocked position the primary bolt engages the tab as shown at HH, preventing its motion toward the locked position. The latter feature is desired in order to render the D-shaft held open or inert during certain operational conditions.
Anti-tampering features are provided to thwart any possible attack by an adversary. The entire backshield shown at 00 is made of a non-metallic composite such as Kevlar. This material resists the usual cutting devices used on metals such as torches and explosive charges. The elements of the locking system such as the key operated lock, the horizontal bar, the gears and bearings for the D-shaft, are all mounted on the backshield. This assembly act as an inner door in the event the outer steel plate is penetrated by an adversary.
For further protection the locking system includes a relocker as before which is activated by a trip-wire system. The trip-wire is shown in FIG. 8 at X in the plan view and in the Section A--A view. Any attempt at tampering by penetration of the front door plate in the vicinity of the horizontal bar GG will fracture the wire. This action enables a re-locker latch shown at Y which locks up the D-shaft mechanism. The latch is a simple spring-loaded plunger, held back the wire as shown at Z. As stated above this, wire is routed horizontally across the door in the space between the horizontal bar and the front door plate.
While the invention has been described in connection with an exemplary embodiment thereof, it will be understood that many modifications will be apparent to those of ordinary skill in the art; and that this application is intended therefore to cover any adaptations of variations thereof.

Claims (14)

What is claimed is:
1. An overpack container assembly, which comprises:
a container body defining a storage chamber provided with peripherally-disposed latching members; and
a door assembly having peripherally-disposed bar means for engaging said peripherally-disposed latching members.
2. The overpack container assembly as defined in claim 1 wherein said latching members are rectangularly-shaped channel members.
3. The overpack container assembly as defined in claim 1 wherein said bar means are D-shaped members mounted for rotation for engaging said latching members.
4. The overpack container assembly as defined in claim 3 wherein said peripherally mounted D-shaped members are interconnected at end portions thereof by miter gears.
5. The overpack container assembly as defined in claim 4 wherein said peripherally-disposed bar members are driven in geared relationship by a shaft member connected to a rotatable handle member.
6. The overpack container assembly as defined in claim 5 wherein said peripherally-disposed bar members are formed into a right and left set each driven by respective handle member.
7. The overpack container assembly as defined in claim 6 and further including a disabling means for preventing rotation of said D-shaped bar members upon tampering of said door assembly.
8. The overpack container assembly as defined in claim 7 wherein the disabling means is a spring-loaded plunger assembly including a plunger and a compressed spring member.
9. The overpack container assembly as defined in claim 2 dependent on wherein said bar means are D-shaped members mounted for rotation for engaging said latching members.
10. The overpack container assembly as defined in claim 9 wherein said peripherally mounted D-shaped members are interconnected at end portions thereof by miter gears.
11. The overpack container assembly as defined in claim 10 wherein said peripherally-disposed bar members are driven in geared relationship by a shaft member connected to rotatable handle member.
12. The overpack container assembly as defined in claim 11 wherein said peripherally-disposed bar members are formed into a right and left set each driven by respective handle member.
13. The overpack container assembly as defined in claim 12 and further including a disabling means for preventing rotation of said D-shaped bar members upon tampering of said door assembly.
14. The overpack container assembly as defined in claim 13 wherein the disabling means is a spring-loaded plunger assembly including a plunger and a compressed spring member.
US07/441,782 1989-11-27 1989-11-27 Safe secure survivable door locking assembly for an overpack container Abandoned USH904H (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/441,782 USH904H (en) 1989-11-27 1989-11-27 Safe secure survivable door locking assembly for an overpack container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/441,782 USH904H (en) 1989-11-27 1989-11-27 Safe secure survivable door locking assembly for an overpack container

Publications (1)

Publication Number Publication Date
USH904H true USH904H (en) 1991-04-02

Family

ID=23754261

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/441,782 Abandoned USH904H (en) 1989-11-27 1989-11-27 Safe secure survivable door locking assembly for an overpack container

Country Status (1)

Country Link
US (1) USH904H (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130298808A1 (en) * 2011-01-25 2013-11-14 Grg Banking Equipment Co., Ltd. Security safe and self-service terminal provided with same
CN106214219A (en) * 2015-05-27 2016-12-14 柯惠有限合伙公司 Including contributing to assembling and the parts manufactured and the operating theater instruments of feature structure
US11047665B2 (en) * 2017-02-03 2021-06-29 Kenneth G. Kingery Vehicle mounted storage systems
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11971244B1 (en) 2018-02-07 2024-04-30 Kenneth G. Kingery Vehicle mounted storage systems

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130298808A1 (en) * 2011-01-25 2013-11-14 Grg Banking Equipment Co., Ltd. Security safe and self-service terminal provided with same
US9359805B2 (en) * 2011-01-25 2016-06-07 Grg Banking Equipment Co., Ltd. Security safe and self-service terminal provided with same
CN106214219A (en) * 2015-05-27 2016-12-14 柯惠有限合伙公司 Including contributing to assembling and the parts manufactured and the operating theater instruments of feature structure
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11047665B2 (en) * 2017-02-03 2021-06-29 Kenneth G. Kingery Vehicle mounted storage systems
US11971244B1 (en) 2018-02-07 2024-04-30 Kenneth G. Kingery Vehicle mounted storage systems

Similar Documents

Publication Publication Date Title
US4338804A (en) Latch bolt operating device having improved shield construction to deter probe manipulation
US3768284A (en) Maximum security lock assemblies
US2996322A (en) Cabinet door bolt locking device
US3820360A (en) High security hasp lock
GB2280474A (en) Locking system for doors
EP2586951B1 (en) Security safe and self-service terminal provided with same
USH904H (en) Safe secure survivable door locking assembly for an overpack container
EP2320011A1 (en) Padlock
EP1427904A1 (en) Access apparatus
US20080314236A1 (en) Door seal assembly for armored vehicles
US10060181B1 (en) Hybrid hardened ballistic security door
US20030131639A1 (en) Emergency release system for door lock
US4671015A (en) Rapid dismount security door
IL145462A (en) Door opener
US3771339A (en) Protective apparatus for door locks employing latch-rods
GB2165295A (en) A lock assembly
RU2751901C1 (en) Security door lock
US4212489A (en) Electrically operated multiple security bolt door locking device
US20110074167A1 (en) Door latch
USH1766H (en) Integrated astragal
US4712393A (en) Method and device for permanently locking a movable member in a framework
DE102012011187A1 (en) Mobile protective space for accommodation of personnel and materials, has lining that is formed as stack of three different layers, where layers are respectively made of fiber composite material, aromatic polyamide and wooden material
CN210346506U (en) Lock structure of anti-explosion container
KR100250014B1 (en) Blast proof door
TR202022753Y (en) MINE LOCK MECHANISM

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE