USH730H - Hydroxy-terminated copolyformals of fluorodiols with nitrodiols - Google Patents

Hydroxy-terminated copolyformals of fluorodiols with nitrodiols Download PDF

Info

Publication number
USH730H
USH730H US07/389,211 US38921189A USH730H US H730 H USH730 H US H730H US 38921189 A US38921189 A US 38921189A US H730 H USH730 H US H730H
Authority
US
United States
Prior art keywords
hoch
diol
copolyformal
och
nitrodiol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US07/389,211
Inventor
Lori A. Nock
Horst G. Adolph
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Navy
Original Assignee
US Department of Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Navy filed Critical US Department of Navy
Priority to US07/389,211 priority Critical patent/USH730H/en
Assigned to UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE DEPARTMENT OF THE NAVY reassignment UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE DEPARTMENT OF THE NAVY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ADOLPH, HORST G., NOCK, LORI A.
Application granted granted Critical
Publication of USH730H publication Critical patent/USH730H/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G4/00Condensation polymers of aldehydes or ketones with polyalcohols; Addition polymers of heterocyclic oxygen compounds containing in the ring at least once the grouping —O—C—O—

Definitions

  • This invention relates to polymers and more particularly to energetic polymers containing fluoro and nitro groups.
  • an object of this invention is to provide new energetic polymers for use in explosive and propellant binders.
  • Another object of this invention is to provide energetic polymers having low glass transition temperatures.
  • a further object of this invention is to provide new difunctional hydroxy-terminated energetic polymers for use in the synthesis of block copolymers.
  • Yet another object of this invention is to provide high energy dihydroxy-terminated polymers having well-defined end group composition and functionality.
  • fluorodiol comprises about 10 to about 90 mole percent of the diol comonomer mixture with the nitrodiol being the remainder.
  • the terminal functional groups are exclusively hydroxy groups.
  • the polymers of the present invention are prepared by the polycondensation of fluorodiols and nitrodiols with formaldehyde in sulfolane/boron trifluoride etherate solvent.
  • the resulting fluoro and nitro monomeric units will be more or less randomly distributed in the polymeric chain with formal (--OCH 2 O--) linkages between monomeric units.
  • the copolyformals described here are nearly 100 percent difunctional and exclusively terminated by hydroxy groups. This characteristic is useful because it results in reproducible curing in cast-curable compositions, and because it permits the synthesis of well-defined block copolymers.
  • the fluorodiols which may be used in this invention include:
  • the 2,2,3,3,4,4-hexafluoropentane-1,5-diol is the least preferred because it is expensive.
  • nitrodiols which may be used in this invention include:
  • the comonomer mixture of the fluorodiol and the nitrodiol is composed of from about 10 to about 90 mole percent of the fluorodiol with the remainder of the diol comonomer mixture being the nitrodiol.
  • the combination of fluorodiol and nitrodiol monomers provides polymers with much lower glass transition temperatures (T G ) than can be obtained with nitrodiol homopolyformals, and at the same time provides polymers with a significant energy content.
  • T G glass transition temperatures
  • a copolyformal of 85 mole percent of that nitrodiol with 15 mole percent of 2,2,3,3,4,4,5,5-octafluorohexane-1,6-diol is a liquid resin at room temperature with a T G of -12° C. and is readily soluble in ordinary organic solvents. Higher fluorodiol contents produce even lower T G 's.
  • 3,5,5,7-tetranitro-3,7-diazanonane-1,9-diol polyformal has a melting point of 80° C.
  • a 50:50 molar ratio copolyformal of 3,5,5,7-tetranitro-3,7 -ozanonane-1,9-diol and 2,2,3,3,4,4,5,5-octafluorohexane-1,6-diol is a liquid resin at room temperature.
  • 2,2,8,8-tetranitro-4,6-dioxanonane-1,9-diol polyformal has a melting point of 50°-60° C.
  • a 40:60 molar ratio copolyformal of 2,2,8,8-tetranitro-4,6-dioxanonane-1,9-diol and 2,2,3,3,4,4,5,5-octofluorohexane-1,6-diol is a viscous liquid resin at room temperature.
  • Examples 1 through 4 illustrate the conditions for preparing the copolyformals of this invention.
  • the polycondensation of mixtures of the fluorodiols and nitrodiols with formaldehyde is accomplished at room temperature in sulfolane/boron trifluoride etherate solvent.
  • the boron trifluoride etherate is added slowly to a mixture of the fluorodiol, nitrodiol, formaldehyde, and sulfolane to prevent overheating.
  • the copolyformal is treated with H 2 O 2 to convert terminal hemiformal groups (--CH 2 OCH 2 OH) into hydroxy groups --CH 2 OH.
  • the copolyformal is then isolated as described in the examples.
  • the copolyformals of this invention preferably have a number average molecular weight of from about 1000 to about 6000 and more preferably from 2000 to 4000.
  • the average molecular weight may be adjusted by varying the stoichiometry (ratio of formaldehyde to diols) and reaction conditions (amount of BF 3 etherate and solvent, temperature).
  • the mixture was stirred overnight at room temperature, diluted with 80 mL of dichloromethane, and stirred with 100 mL of water and 4 mL of 30% aqueous H 2 O 2 for 2 hours.
  • the organic layer was then stirred with 100 mL 1% aqueous KOH and 2 mL 30% H 2 O 2 , separated, washed with 60 mL of brine, and evaporated at 60° C/20 Torr.
  • the remaining liquid was digested at 70° C with 65 mL portions of water until no sulfolane could be detected in the 1 H-NMR spectrum (Varian 390).
  • the copolymer was dissolved in 100 mL of dichloromethane, stirred overnight with 1 5 g silica gel (Kieselgel 60), filtered, and evaporated to give 10.77 g (89%) of a yellow/orange resin.
  • the solution was stirred overnight at room temperature, diluted with 15 mL of dichloromethane, stirred with 20 mL of water and 0.8 mL of 30% aqueous H 2 O 2 for 3 hours, separated and stirred with 20 mL 1% aqueous KOH +0.4 mL 30% H 2 O 2 for 3 hours.
  • the organic layer was washed with 15 mL of brine, evaporated at 60° C/20 Torr, and the remaining liquid was triturated at 80° C with 25 mL portions of water until no sulfolane could be detected by 1 H-NMR (Varian 390).
  • M n of these polymers were estimated by GPC to be 2400 ⁇ 200; yields were 70-90%; the 10/90 and 20/80 polymers were solids, the others were resins.
  • the reaction mixture was diluted with 15 mL of dichloromethane, and stirred with 20 mL of water and 0.8 ml of 30% aqueous H 2 O 2 for 3 hours.
  • the organic layer was stirred with 20 mL 1% aqueous KOH +0.4 mL 30% H 2 O 2 for 3 hours and was washed with 15 mL of brine.
  • M n of these polymers were 2300 ⁇ 100 (by GPC); yields were 70-85%; the 10/90 polymer was a solid, the others were resins.
  • the solution was stirred overnight at room temperature, diluted with 45 mL of dichloromethane and stirred with 50 mL of water and 2 mL of 30% aqueous H 2 O 2 for 3 hours.
  • the organic layer was then stirred with 50 mL 1% aqueous KOH +1 mL 30% H 2 O 2 , separated, washed with 45 mL of brine and evaporated at 60° C./20 Torr.
  • the remaining liquid was digested with three 30 mL portions of water and with 30 mL 50/50 MeOH/H 2 , with heating up to 70 ° C.
  • the resulting copolymer was dissolved in 50 mL dichloromethane, stirred with 0.8 g of silica gel (Kieselgel 60) overnight, filtered, and evaporated at 60° C./20 Torr. Obtained was 5.51 g (89%) of a viscous resin.
  • the M n of this polymer, which contained some low-molecular weight impurities, is estimated to be about 2500.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyethers (AREA)

Abstract

Energetic dihydroxy-terminated copolyformals which are formed from formalyde and fluorodiol and nitrodiol comonomers where the fluorodiol is HOCH2 CF2 CF2 CF2 CF2 CH2 OH, HOCH2 CF2 CF2 CF2 CH2 OH, HOCH2 CF(CF3)OCF2 CF2 CF2 CH2 OH, HOCH2 CF2 OCF2 CF2 OCF2 CH2 OH, HOCH2 CH2 (CF2)2 CH2 CH2 OH, HOCH2 CH2 (CF2)4 CH2 CH2 OH, HOCH2 CH2 (CF2)6 CH2 CH2 OH, HOCH2 CH2 (CF2)8 CH2 CH2 OH, HOCH2 CH2 (CF2)10 CH2 CH2 OH, or mixtures thereof, and the nitro diol is HOCH2 CH2 N(NO2)CH2 CH2 N(NO2)CH2 CH2 OH, HOCH2 CH2 N(NO2)CH2 C(NO2)2 CH2 N(NO2)CH2 CH2 OH, HOCH2 C(NO2)2 CH2 OCH2 OCH2 C(NO2)2 CH2 OH, HOCH2 CH2 N(NO2)CH2 C(NO2)2 CH2 OCH2 OCH2 OCH2 C(NO2)2 CH2 N(NO2)CH2 CH2 OH, or mixtures thereof.

Description

BACKGROUND OF THE INVENTION
This invention relates to polymers and more particularly to energetic polymers containing fluoro and nitro groups.
For cast-curable polymers, high energy contents and low glass transition temperatures are desirable. Previously, several energetic polymers have been synthesized for use in cast-curable energetic compositions. Examples are poly(glycidylazide), poly(azido/nitratooxetanes), and nitropolyorthocarbonates. All of these polymers have various disadvantages resulting from limited chemical or thermal stability, high cost, and most importantly, ill-defined end group composition and functionality. Varying functionality makes it difficult to obtain reproducible mechanical properties and cure behavior of the energetic compositions in which such polymers are used as binders. Functionality differing significantly from 2 precludes the use of such polymers for the synthesis of block copolymers with thermoplastic elastomer properties, which are desired as binders for extrudable energetic compositions.
SUMMARY OF THE INVENTION
Accordingly an object of this invention is to provide new energetic polymers for use in explosive and propellant binders.
Another object of this invention is to provide energetic polymers having low glass transition temperatures.
A further object of this invention is to provide new difunctional hydroxy-terminated energetic polymers for use in the synthesis of block copolymers.
Yet another object of this invention is to provide high energy dihydroxy-terminated polymers having well-defined end group composition and functionality.
These and other objectives of this invention are accomplished by providing:
A dihydroxy-terminated copolyformal formed from
A. formaldelhyde and
B. a comonomer mixture of
(1) a fluorodiol which is
HOCH2 CF2 CF2 CF2 CH2 OH,
HOCH2 CF2 CF2 CF2 CF2 CH2 OH,
HOCH2 CF(CF3)OCF2 CF2 CF2 CH2 OH,
HOCH2 CF2 OCF2 CF2 OCF2 CH2 OH,
HOCH2 CH2 (CF2)2 CH2 CH2 OH,
HOCH2 CH2 (CF2)4 CH2 CH2 OH,
HOCH2 CH2 (CF2)6 CH2 CH2 OH,
HOCH2 CH2 (CF2)8 CH2 CH2 OH,
HOCH2 CH2 (CF2)10 CH2 CH2 OH,
or mixtures thereof and
(2) a nitrodiol which is
HOCH2 CH2 N(NO2)CH2 CH2 N(NO2)CH2 CH2 OH,
HOCH2 CH2 N(NO2)CH2 C(NO2)2 CH2 N(NO2)CH2 CH2 OH,
HOCH2 C(NO2)2 CH2 OCH2 OCH2 C(NO2)2 CH2 OH,
HOCH2 CH2 N(NO2)CH2 C(NO2)2 CH2 OCH2 OCH2 C(NO2)2 CH2 N(NO2)CH2 CH2 OH,
or mixtures thereof,
wherein the fluorodiol comprises about 10 to about 90 mole percent of the diol comonomer mixture with the nitrodiol being the remainder. The terminal functional groups are exclusively hydroxy groups.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
The polymers of the present invention are prepared by the polycondensation of fluorodiols and nitrodiols with formaldehyde in sulfolane/boron trifluoride etherate solvent. The resulting fluoro and nitro monomeric units will be more or less randomly distributed in the polymeric chain with formal (--OCH2 O--) linkages between monomeric units. Due to the absence of side reactions in the propagation and termination steps of the polymerization reaction, the copolyformals described here are nearly 100 percent difunctional and exclusively terminated by hydroxy groups. This characteristic is useful because it results in reproducible curing in cast-curable compositions, and because it permits the synthesis of well-defined block copolymers.
The fluorodiols which may be used in this invention include:
(1) 2,2,3,3,4,4-hexafluoropentane-1,5-diol,
HOCH2 CF2 CF2 CF2 CH2 OH;
(2) 2,2,3,3,4,4,5,5-octafluorohexane-1,6-diol,
HOCH2 CF2 CF2 CF2 CF2 CH2 OH; and
(3) 2,4,4,5,5,6,6-hepafluoro-2-trifluoromethyl-3-oxaheptane-1,7-diol,
HOCH2 CF(CF3)OCF2 CF2 CF2 CH2 OH;
(4) 2,2,4,4,5,5,7,7-octafluoro-3,6-dioxaoctane-1,8-diol,
HOCH2 CF2 OCF2 CF2 OCF2 CH2 OH;
(5) 3,3,4,4-tetrafluorohexane-1,6-diol,
HOCH2 CH2 (CF2)2 CH2 CH2 OH;
(6) 3,3,4,4,5,5,6,6-octafluorooctane-1,8-diol,
HOCH2 CH2 (CF2)4 CH2 CH2 OH;
(7) 3,3,4,4,5,5,6,6,7,7,8,8-dodecafluorodecane-1,10-diol,
HOCH2 CH2 (CF2)6 CH2 CH2 OH;
(8) 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-hexadecafluorododecane-1,12-diol,
HOCH2 CH2 (CF2)8 CH2 CH2 OH;
(9) 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12-eicosafluorotetradecane-1,14-diol,
HOCH2 CH2 (CF2)1O CH2 CH2 OH;
or mixtures thereof.
The 2,2,3,3,4,4-hexafluoropentane-1,5-diol is the least preferred because it is expensive.
The nitrodiols which may be used in this invention include:
(1) 3,6-dinitro-3,6-diazaoctane-1,8-diol,
HOCH2 CH2 N(NO2)CH2 CH2 N(NO2)CH2 CH2 OH;
(2) 3,5,5,7-tetranitro-3,7-diazanonane-1,9-diol,
HOCH2 CH2 N(NO2)CH2 C(NO2)2 CH2 N(NO2)CH2 CH2 OH;
(3) 2,2,8,8-tetranitro-4,6-dioxanonane-1,9-diol,
HOCH2 C(NO2)2 CH2 OCH2 OCH2 C(NO2)2 CH2 OH; and
(4) 3,5,5,11,11,13-hexanitro-3,13-diaza-7,9-dioxapentadecane-1,15-diol,
HOCH2 CH2 N(NO2)CH2 C(NO2)2 CH2 OCH2 OCH2 C(NO2)2 CH2 N(NO2)CH2 CH2 OH.
Mixtures of these nitrodiole may be used.
The comonomer mixture of the fluorodiol and the nitrodiol is composed of from about 10 to about 90 mole percent of the fluorodiol with the remainder of the diol comonomer mixture being the nitrodiol. The combination of fluorodiol and nitrodiol monomers provides polymers with much lower glass transition temperatures (TG) than can be obtained with nitrodiol homopolyformals, and at the same time provides polymers with a significant energy content. The TG decreases with increasing mole percent of the fluorodiol. For example, while the homopolyformal of 3,6-dinitro-3,6-diazaoctane-1,8-diol melts above 100° C., a copolyformal of 85 mole percent of that nitrodiol with 15 mole percent of 2,2,3,3,4,4,5,5-octafluorohexane-1,6-diol is a liquid resin at room temperature with a TG of -12° C. and is readily soluble in ordinary organic solvents. Higher fluorodiol contents produce even lower TG 's. Similarly, while 3,5,5,7-tetranitro-3,7-diazanonane-1,9-diol polyformal has a melting point of 80° C., a 50:50 molar ratio copolyformal of 3,5,5,7-tetranitro-3,7 -ozanonane-1,9-diol and 2,2,3,3,4,4,5,5-octafluorohexane-1,6-diol is a liquid resin at room temperature. Likewise, while 2,2,8,8-tetranitro-4,6-dioxanonane-1,9-diol polyformal has a melting point of 50°-60° C., a 40:60 molar ratio copolyformal of 2,2,8,8-tetranitro-4,6-dioxanonane-1,9-diol and 2,2,3,3,4,4,5,5-octofluorohexane-1,6-diol is a viscous liquid resin at room temperature.
Examples 1 through 4 illustrate the conditions for preparing the copolyformals of this invention. The polycondensation of mixtures of the fluorodiols and nitrodiols with formaldehyde is accomplished at room temperature in sulfolane/boron trifluoride etherate solvent. The boron trifluoride etherate is added slowly to a mixture of the fluorodiol, nitrodiol, formaldehyde, and sulfolane to prevent overheating. After completion of the reaction, the copolyformal is treated with H2 O2 to convert terminal hemiformal groups (--CH2 OCH2 OH) into hydroxy groups --CH2 OH. The copolyformal is then isolated as described in the examples.
Proof that true copolymers are formed, rather than mixtures of homopolymers, is based on the following observations: The differential scanning calorimetry (DSC) curves show a single glass transition temperature rather than two expected for a mixture of hompolymers; the gel permeation (GP) chromatogram shows the presence of a homogeneous UV active polymer whose UV and RI detector traces correspond very closely; the 1 H-NMR spectrum shows a statistical ratio of the three possible formal linkages with the ratio varying with the feed ratio as expected.
The copolyformals of this invention preferably have a number average molecular weight of from about 1000 to about 6000 and more preferably from 2000 to 4000. The average molecular weight may be adjusted by varying the stoichiometry (ratio of formaldehyde to diols) and reaction conditions (amount of BF3 etherate and solvent, temperature).
The general nature of the invention having been set forth, the following examples are presented as specific illustrations thereof. It will be understood that the invention is not limited to these specific examples but is susceptible to various modifications that will be recognized by one of ordinary skill in the art.
EXAMPLE 1
Poly(2,2,3,3,4,4,5,5-octafluorohexane-1,6-diol formal-co-3,6-dinitro-3,6-diazaoctane-1,8-diol formal). General Procedure, Described for 50:50 Composition.
BF3 etherate, 6.3 mL, was added dropwise under a N2 blanket to a stirred solution (prepared by several hours of mixing) of 6.01 g (0.0299 mol) of 2,2,3,3,4,4,5,5-octafluorohexane-1,6-diol, 5.46 g (0.0229 mol) of 3,6-dinitro-3,6-diazaoctane-1,8-diol, and 1.38 g of trioxane (formaldehyde) in 12 mL of dry (4A sieves) sulfolane. The mixture was stirred overnight at room temperature, diluted with 80 mL of dichloromethane, and stirred with 100 mL of water and 4 mL of 30% aqueous H2 O2 for 2 hours. The organic layer was then stirred with 100 mL 1% aqueous KOH and 2 mL 30% H2 O2, separated, washed with 60 mL of brine, and evaporated at 60° C/20 Torr. The remaining liquid was digested at 70° C with 65 mL portions of water until no sulfolane could be detected in the 1 H-NMR spectrum (Varian 390). The copolymer was dissolved in 100 mL of dichloromethane, stirred overnight with 1 5 g silica gel (Kieselgel 60), filtered, and evaporated to give 10.77 g (89%) of a yellow/orange resin. Mn =2080, Mw =3300 (GPC); OH equ. wt. =1113 (19 F-NMR), 1070 (isocyanate method).
Similarly prepared were the following copolyformals using different molar ratios of 2,2,3,3,4,4,5,5-octafluorohexane-1,6-diol to 3,6-dinitro-3,6-diazaoctane-1,8-diol:
______________________________________                                    
Feed ratio                                                                
        Yield     OH Equiv. Wt. (by .sup.19 F-NMR: values                 
(mol/mol)                                                                 
        (%)       in brackets by Isocyanate Method)                       
______________________________________                                    
70/30   85        1025 [1028]                                             
30/70   85        1192                                                    
15/85   73        1182                                                    
______________________________________                                    
Some of the physical properties of the polymers produced in Example 1 are listed in Table 1.
                                  TABLE 1                                 
__________________________________________________________________________
THERMAL PROPERTIES AND VISCOSITIES OF                                     
 ##STR1##                                                                 
                                       VISCOSITY AT                       
POLYMER.sup.1 T.sub.G                                                     
                     TMA ONSET  TGA.sup.2                                 
                                       10 RAD/SEC(POISE)                  
MOLAR RATIO                                                               
          M.sub.n                                                         
              (°C.; DSC)                                           
                     OF SOFTENING                                         
                                T10% (°C.)                         
                                       50° C.                      
                                            75° C.                 
                                                 100° C.           
__________________________________________________________________________
15:85     1981                                                            
              -12.0  -4.5       276    2825 185.5                         
                                                 37.5                     
30:70     2096                                                            
              -14.0  -8.5       277    1686 149.2                         
                                                 27.6                     
50:50     2075                                                            
              -23.3  -16.5      276    584.8                              
                                            74.9 13.1                     
70:30     2139                                                            
              -34.5  -26.0      281    253.3                              
                                            34.3 8.3                      
__________________________________________________________________________
 .sup.1 molar ratio of 2,2,3,3,4,4,5,5octafluorohexane-1,6-diol to        
 3,5dinitro-3,5-diazaheptane-1,7-diol.                                    
 .sup.2 Temperature of 10% weight loss at heating rate of 2°/min.  
EXAMPLE 2
Poly(2,2,3,3,4,4,5,5-octafluorohexane-1,6-diol formal-co-3,5,5,7-tetranitro-3,7-diazanonane-1,9-diol formal). General Procedure, Described for 50:50 Composition
BF3 etherate, 1.4 mL, was added dropwise, under a N2 blanket, to a solution of 1.007 g (0.0038 mol) of 2,2,3,3,4,4,5,5-octafluorohexane-1,6-diol, 1.300 g (0.0038 mol) of 3,5,5,7-tetranitro-3-7-diazanonane-1,9-diol and 0.230g of trioxane (formaldehyde) in 2 mL of dry (4A sieves) sulfolane. The solution was stirred overnight at room temperature, diluted with 15 mL of dichloromethane, stirred with 20 mL of water and 0.8 mL of 30% aqueous H2 O2 for 3 hours, separated and stirred with 20 mL 1% aqueous KOH +0.4 mL 30% H2 O2 for 3 hours. The organic layer was washed with 15 mL of brine, evaporated at 60° C/20 Torr, and the remaining liquid was triturated at 80° C with 25 mL portions of water until no sulfolane could be detected by 1 H-NMR (Varian 390). The resulting copolymer was dissolved in 30 mL of dichloromethane, the solution was stirred with 0.5g of silica gel (Kieselgel 60) overnight, filtered, and freed of solvent in vacuo (20 to .01 Torr) at 90° C for 8 hours. obtained was 2.2 g (9 %) of a resin, Mn 2410, Mw =5120 (GPC), OH equ. wt. 2000 (by 1 H-NMR), 1258 (by isocyanate method).
Other compositions were prepared similarly with the following modifications:
(a) for 80:20 and 90:10 molar ratios of 2,2,3,3,4,4,5,5-octafluorohexane-1,6-diol to 3,5,5,7-tetranitro-3,7-diazanonane-1,9-diol, 1.8 mL of BF3 etherate was used;
(b) for a 20:80 molar ratio, 0.079 g of the fluorodiol, 0.898 g of the nitrodiol, 0.080 g of trioxane, 0.3 mL of BF3 etherate was used; after stirring overnight, 10 dichloromethane was added and the mixture was poured into 30 mL of water containing 0.4 g NaHCO3 and 0.4 mL of 30% H2 O2. The reaction flask was rinsed with 10 mL of 1:1 dichloromethane/methyl acetate which was added to the above. The mixture was stirred vigorously for 3 hours until the organic solvents had evaporated, the residue was triturated with icewater and small amounts of dichloromethane. The resulting white solid was isolated by filtration.
Mn of these polymers were estimated by GPC to be 2400±200; yields were 70-90%; the 10/90 and 20/80 polymers were solids, the others were resins.
EXAMPLE 3
Poly(2,4,4,5,5,6,6-heptafluoro-2-trifluoromethyl-3-oxaheptane1,7-diol formal-co-3,5,5,7-tetranitro-3,7-diazanonane-1,9-diol formal), General Procedure, Described for 50:50 Composition.
To a stirred solution of 1.258 g (0.0038 mol) of 2,4,4,5,5,6,6-heptafluoro-2-trifluoromethyl-3-oxaheptane-1,7-diol, 1.308 g (0.0038 mol) of 3,5,5,7-tetranitro-3,7-diazanonane-1,9-diol and 0.230 g of trioxane (formaldehyde) in 2 mL of dry (4A sieves) sulfolane under a N2 blanket was added dropwise 1.4 mL of BF3 etherate and the solution was then stirred overnight at room temperature. The reaction mixture was diluted with 15 mL of dichloromethane, and stirred with 20 mL of water and 0.8 ml of 30% aqueous H2 O2 for 3 hours. The organic layer was stirred with 20 mL 1% aqueous KOH +0.4 mL 30% H2 O2 for 3 hours and was washed with 15 mL of brine. The solvent was evaporated and the remaining liquid was digested at 80° C with 25 mL portions of water until no sulfolane could be detected in the 1 H-NMR spectrum (Varian 390) The resulting copolymer was dissolved in 30 mL of dichloromethane and the solution was stirred with 0.5 g of silica gel (Kieselgel 60) overnight, filtered, and freed of solvent at 90° C/20 Torr for 8 hours. Obtained was 2.4g (≃90%) of polymer, Mn 2470, Mw =5310 (GPC); OH equ. wt.=1600 (19 F-NMR), 1335 (isocyanate method).
Other compositions were prepared similarly with the following modifications:
(a) for 80:20 and 90:10 molar ratios of
2,4,4,5,5,6,6-heptafluoro-2-trifluoromethyl-3-oxaheptane-1,7-diol to 3,5,5,7-tetranitro-3,7-diazanonane-1,9-diol, 1.8 mL of BF3 etherate was used;
(b) for a 10:90 molar ratio 0.096 g of the fluorodiol, 0.898 g of the nitrodiol, 0.082 g of trioxane, and 0.3 mL of BF3 etherate were used following the modification described above for the 20:80 composition of Example 2.
Mn of these polymers were 2300±100 (by GPC); yields were 70-85%; the 10/90 polymer was a solid, the others were resins.
EXAMPLE 4
Poly(2,2,3,3,4,4,5,5-octafluorohexane-1,6-diol formal-co-2,2,8,8-tetranitro4,6-dioxanonane-1,9-diol formal), (60:40).
To a stirred solution of 3.600 g (0.0137 mol) of 2,2,3,3,4,4,5,5-octafluorohexane-1,6-diol, 2.317 g (0.0092 mol) of 2,2,8,8-tetranitro-4,6-dioxanonane-1,9-diol, and 0.588 g of trioxane (formaldehyde) in 3 mL of dry (4A sieves) sulfolane under a N2 blanket was added dropwise 5.4 mL of BF3 etherate. The solution was stirred overnight at room temperature, diluted with 45 mL of dichloromethane and stirred with 50 mL of water and 2 mL of 30% aqueous H2 O2 for 3 hours. The organic layer was then stirred with 50 mL 1% aqueous KOH +1 mL 30% H2 O2, separated, washed with 45 mL of brine and evaporated at 60° C./20 Torr. The remaining liquid was digested with three 30 mL portions of water and with 30 mL 50/50 MeOH/H2, with heating up to 70 ° C. The resulting copolymer was dissolved in 50 mL dichloromethane, stirred with 0.8 g of silica gel (Kieselgel 60) overnight, filtered, and evaporated at 60° C./20 Torr. Obtained was 5.51 g (89%) of a viscous resin. The Mn of this polymer, which contained some low-molecular weight impurities, is estimated to be about 2500.
Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described herein.

Claims (10)

What is claimed is:
1. A dihydroxy-terminated copolyformal formed from
A. formaldehyde and
B. a diol comonomer mixture of
(1) a fluorodiol selected from the group consisting of
HOCH2 CF2 CF2 CF2 CH2 OH,
HOCH2 CF2 CF2 CF2 CF2 CH2 OH,
HOCH2 CF(CF3)OCF2 CF2 CF2 CH2 OH,
HOCH2 CF2 OCF2 CF2 OCF2 CH2 OH,
HOCH2 CH2 (CF2)2 CH2 CH2 OH,
HOCH2 CH2 (CF2)4 CH2 CH2 OH,
HOCH2 CH2 (CF2)6 CH2 CH2 OH,
HOCH2 CH2 (CF2)8 CH2 CH2 OH,
HOCH2 CH2 (CF2)10 CH2 CH2 OH,
and mixtures thereof, and
(2) a nitrodiol selected from the group consisting of
HOCH2 CH2 N(NO2)CH2 CH2 N(NO2)CH2 CH2 OH,
HOCH2 CH2 N(NO2)CH2 C(NO2)2 CH2 N(NO2)CH2 CH2 OH,
HOCH2 C(NO2)2 CH2 OCH2 OCH2 C(NO2)2 CH2 OH,
HOCH2 CH2 N(NO2 CH2 C(NO2)2 CH2 OCH2 OCH2 C(NO2)2 CH2 N(NO2)CH2 CH2 OH, and
mixtures thereof,
wherein the fluorodiol comprises from about 10 to about 90 mole percent of the diol comonomer mixture with the nitrodiol being the remainder, and
wherein the terminal functional groups of the copolyformal are hydroxy groups.
2. The copolyformal of claim 1 wherein the fluorodiol is HOCH2 CF2 CF2 CF2 CH2 OH.
3. The copolyformal of claim 1 wherein the fluorodiol is HOCH2 CF2 CF2 CF2 CF2 CH2 OH.
4. The copolyformal of claim 1 wherein the fluorodiol is HOCH2 CF(CF3)OCF2 CF2 CF2 CH2 OH
5. The copolyformal of claim 1 wherein the nitrodiol is HOCH2 CH2 N(NO2)CH2 CH2 N(NO2)CH2 CH2 OH.
6. The copolyformal of claim 1 wherein the nitrodiol is HOCH2 CH2 N(NO2)CH2 C(NO2)2 CH2 N(NO2)CH2 CH2 OH.
7. The copolyformal of claim 1 wherein the nitrodiol is HOCH2 C(NO2)2 CH2 OCH2 OCH2 C(NO2)2 CH2 OH.
8. The copolyformal of claim 1 wherein the nitrodiol is HOCH2 CH2 N(NO2)CH2 C(NO2)2 CH2 OCH2 OCH2 C(NO2)2 CH2 N(N2)CH2 CH2 OH.
9. The copolyformal of claim 1 wherein the number average molecular weight of the copolyformal is from about 1000 to about 6000.
10. The copolyformal of claim 9 wherein the number average molecular weight of the copolyformal is from 2000 to 4000.
US07/389,211 1989-08-02 1989-08-02 Hydroxy-terminated copolyformals of fluorodiols with nitrodiols Abandoned USH730H (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/389,211 USH730H (en) 1989-08-02 1989-08-02 Hydroxy-terminated copolyformals of fluorodiols with nitrodiols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/389,211 USH730H (en) 1989-08-02 1989-08-02 Hydroxy-terminated copolyformals of fluorodiols with nitrodiols

Publications (1)

Publication Number Publication Date
USH730H true USH730H (en) 1990-02-06

Family

ID=23537316

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/389,211 Abandoned USH730H (en) 1989-08-02 1989-08-02 Hydroxy-terminated copolyformals of fluorodiols with nitrodiols

Country Status (1)

Country Link
US (1) USH730H (en)

Similar Documents

Publication Publication Date Title
US3645917A (en) Polyethers containing azidomethyl side chains
EP0603716A1 (en) Fast-curing, high strength, two-part sealants using acetoacetate-amine cure chemistry
US20040059086A1 (en) Process for manufacture of a dendritic polyether
US8742065B2 (en) Oxymethylene polymers, process for the preparation thereof and use thereof
US5093421A (en) Copolymer polyamide resin
US5516854A (en) Method of producing thermoplastic elastomers having alternate crystalline structure such as polyoxetane ABA or star block copolymers by a block linking process
US3084140A (en) Polyhydroxyurethanes
US4507462A (en) Low molecular weight aromatic polymers with biphenylene end groups
Ahn et al. Thermal and mechanical properties of thermoplastic polyurethane elastomers from different polymerization methods
USH730H (en) Hydroxy-terminated copolyformals of fluorodiols with nitrodiols
US5134207A (en) Polyarylene ethers and polyarylene sulfides containing phosphine oxide group and modified by reaction with organoamine
US4916206A (en) Nitramine-containing homopolymers and co-polymers and a process for the preparation thereof
CN112920396A (en) Synthesis method of hydroxyl-terminated high-oxygen-content high-flexibility azide polymer
US5156913A (en) Glass reinforced acetal polymer products
US5214110A (en) Branched azido copolymers
US4882395A (en) Branched hydroxy-terminated aliphatic polyethers
US5463019A (en) Polymers and copolymers from 3-azidomethyl-3-nitratomethyloxetane
USH786H (en) Copolyformals of 1,2-bis(2-hydroxyethyl)-1,2-dicarbadodecaborane and polynitroalkyl diols
US3395125A (en) Linear polyglutaraldehyde
USH784H (en) Copolyformals of 1,2-bis(2-hydroxyethyl)-1,2-dicarbadodecaborane(12) and polyfluoroalkyl diols
US3817947A (en) Polysulfide polymers with increased resistance to solvents
Cohen et al. Polyspiroacetal resins. Part I. Initial preparation and characterization
US5008443A (en) Process for the preparation of nitramine-containing homopolymers and co-polymers
US3905941A (en) Polyquinoxalines and method of preparation
US3375225A (en) Modified polyphenylene ethers

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNITED STATES OF AMERICA, THE, AS REPRESENTED BY T

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:NOCK, LORI A.;ADOLPH, HORST G.;REEL/FRAME:005133/0991

Effective date: 19890628

STCF Information on status: patent grant

Free format text: PATENTED CASE