USH658H - High effectiveness all metal heat exchanger - Google Patents

High effectiveness all metal heat exchanger Download PDF

Info

Publication number
USH658H
USH658H US07/209,770 US20977088A USH658H US H658 H USH658 H US H658H US 20977088 A US20977088 A US 20977088A US H658 H USH658 H US H658H
Authority
US
United States
Prior art keywords
heat exchanger
plates
spacer rings
shell
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US07/209,770
Inventor
Robert W. Breckenridge
Thomas P. Hosmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Air Force
Original Assignee
US Air Force
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Air Force filed Critical US Air Force
Priority to US07/209,770 priority Critical patent/USH658H/en
Assigned to UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE AIR FORCE reassignment UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE AIR FORCE ASSIGNMENT OF ASSIGNORS INTEREST. SUBJECT TO LICENSE RECITED Assignors: ARTHUR D. LITTLE, INCOPRORATED, BRECKENRIDGE, ROBERT W., HOSMER, THOMAS P.
Application granted granted Critical
Publication of USH658H publication Critical patent/USH658H/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/086Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning having one or more openings therein forming tubular heat-exchange passages

Definitions

  • This invention relates to heat transfer apparatus and more particularly to counterflow type heat exchangers for use in systems which provide extremely low temperatures for cryogenic devices and the like.
  • a perforated plate heat exchanger of high effectiveness it is essential to make the plates of a material that has high thermal conductivity, and the spacers between the plates of a material that has low thermal conductivity.
  • a simple configuration for a perforated plate heat exchanger is a cylindrical stack of plates having a central axial passage separated from an annular passage by spacer rings between the plates. Such a heat exchanger is disclosed, for example, in U.S. Pat. No. 3,228,460, which is incorporated herein by reference.
  • the plates are made of copper and the spacer rings are cut from sheet plastic.
  • the spacer rings are often bonded to the plates by an epoxy adhesive. It has been found, however, that if the heat exchanger is used in a closed-cycle cryogenic system, the presence of organic substances such as plastic presents a problem, because over time, the working fluid will become contaminated by gases evolved from the plastic. These gases will freeze out on the coldest parts of the system and degrade performance. Therefore, a heat exchanger best suited for use in cryogenic systems will contain no organic materials.
  • the principle object of the present invention is to eliminate the aforementioned fluid contamination problem encountered with prior art heat exchangers and provide an efficient and reliable heat exchanger for use in closed-cycle cryogenic systems.
  • the plastic spacer rings generally used in prior art devices are eliminated and replaced by metallic spacer rings made of a thin metal, and having a cross-section in the form of the letter "E", similar to a metal bellows having convolutions.
  • the length of the thermal path across the spacer ring is greater than the height of the spacer ring, and the thickness of the material is less than it could practically be if the spacer ring were of a simple tubular shape, with the result that the thermal conduction across the spacer ring is fairly low. Because the height of the "E-shaped" spacer ring is relatively small, it is possible to build a high effectiveness all-metal heat exchanger of moderate length.
  • FIG. 1 is a partially cutaway perspective drawing of a perforated plate-spacer ring type of counterflow heat exchanger known in the art.
  • FIG. 2 is a cross-sectional view of a pair of adjacent perforated plates joined by the E-shaped ring used in the heat exchanger of the present invention.
  • FIG. 1 of the drawings there is depicted a counterflow heat exchanger whose basic design is presently known in the art. Portions of the heat exchanger have been cut away in FIG. 1 in order to better disclose its various internal features and describe the operation thereof.
  • This type of counterflow heat exchanger consists of perforated metal plates 20, which are separated by spacer rings 22, and are enclosed in a tubular stainless steel shell 26.
  • Spacer rings 22, which are formed of plastic material, are adhesive-bonded to the plates 20, provide thermal isolation between adjacent plates 20, and define the gas flow passages.
  • a header 30 is bonded to the first perforated plate 20.
  • a typical high-effectiveness heat exchanger may have on the order of two hundred such perforated plates 20 and spacer rings 22.
  • the use of plastic for the spacer rings 22 results in a design which has very low end-to-end heat leakage, but which also has the potential to outgas absorbed moisture and/or organic materials that can freeze out in expansion engines.
  • FIG. 2 depicts a cross-sectional view of a portion of a pair of perforated plates 20 joined by one of the convoluted and substantially E-shaped spacer rings 50 used in the present invention.
  • the free ends 54 and 56 of spacer ring 50 are preferably located at the inner diameter of ring 50, although the reversed arrangement would also provide satisfactory performance of the heat exchanger.
  • Such an E-shaped spacer ring called an "E-seal", is manufactured and sold by Pressure Science, Inc., of Beltsville, MD. and a customized version thereof is made of 0.006 inch thick stainless steel.
  • spacer ring 50 results in a relatively long conduction path for a given axial length, so that good thermal isolation between plates 20 (and hence low end-to-end heat leakage) is obtained at reasonable lengths.
  • the pattern of holes 22 in plate 20 is arranged so that there are no holes 22 in the region where plates 20 contact spacer rings 50.
  • the method of sealing spacer rings 50 to the plates 20 depends upon the requirement for leak-tightness between flowpaths.
  • a reasonably leak-tight test assembly has been made using indium-plated spacer rings 50 and clamping the stack together in a fixture.
  • Another test assembly has been made by plating the plates 20 and the spacer rings 50 with soft solder, assembling the stack, and heating the assembly to bond the parts together.
  • the unperforated sealing areas of plates 20 may be plated with tin or indium, if necessary, to enhance sealing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A perforated plate-spacer ring type of crossflow heat exchanger adapted for improved cryogenic operation. Plastic spacer rings have been eliminated and replaced by metallic spacer rings whose convoluted cross section provides good thermal isolation between adjacent perforated plates.

Description

STATEMENT OF GOVERNMENT INTEREST
The invention described herein may be manufactured and used by or for the Government for governmental purposes without the payment of any royalty thereon.
BACKGROUND OF THE INVENTION
This invention relates to heat transfer apparatus and more particularly to counterflow type heat exchangers for use in systems which provide extremely low temperatures for cryogenic devices and the like.
In the construction of a perforated plate heat exchanger of high effectiveness, it is essential to make the plates of a material that has high thermal conductivity, and the spacers between the plates of a material that has low thermal conductivity. A simple configuration for a perforated plate heat exchanger is a cylindrical stack of plates having a central axial passage separated from an annular passage by spacer rings between the plates. Such a heat exchanger is disclosed, for example, in U.S. Pat. No. 3,228,460, which is incorporated herein by reference.
In a typical embodiment, the plates are made of copper and the spacer rings are cut from sheet plastic. The spacer rings are often bonded to the plates by an epoxy adhesive. It has been found, however, that if the heat exchanger is used in a closed-cycle cryogenic system, the presence of organic substances such as plastic presents a problem, because over time, the working fluid will become contaminated by gases evolved from the plastic. These gases will freeze out on the coldest parts of the system and degrade performance. Therefore, a heat exchanger best suited for use in cryogenic systems will contain no organic materials.
OBJECTS OF THE INVENTION
The principle object of the present invention is to eliminate the aforementioned fluid contamination problem encountered with prior art heat exchangers and provide an efficient and reliable heat exchanger for use in closed-cycle cryogenic systems.
It is a further object of the present invention to provide a heat exchanger which can be economically manufactured with the assurance that each unit has substantially identical response characteristics permitting the substitution or replacement of one unit by another in any system without making compensating adjustments.
SUMMARY OF THE INVENTION
In the present invention, the plastic spacer rings generally used in prior art devices are eliminated and replaced by metallic spacer rings made of a thin metal, and having a cross-section in the form of the letter "E", similar to a metal bellows having convolutions. Thus the length of the thermal path across the spacer ring is greater than the height of the spacer ring, and the thickness of the material is less than it could practically be if the spacer ring were of a simple tubular shape, with the result that the thermal conduction across the spacer ring is fairly low. Because the height of the "E-shaped" spacer ring is relatively small, it is possible to build a high effectiveness all-metal heat exchanger of moderate length.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a partially cutaway perspective drawing of a perforated plate-spacer ring type of counterflow heat exchanger known in the art.
FIG. 2 is a cross-sectional view of a pair of adjacent perforated plates joined by the E-shaped ring used in the heat exchanger of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
Referring now to FIG. 1 of the drawings, there is depicted a counterflow heat exchanger whose basic design is presently known in the art. Portions of the heat exchanger have been cut away in FIG. 1 in order to better disclose its various internal features and describe the operation thereof.
This type of counterflow heat exchanger consists of perforated metal plates 20, which are separated by spacer rings 22, and are enclosed in a tubular stainless steel shell 26. Spacer rings 22, which are formed of plastic material, are adhesive-bonded to the plates 20, provide thermal isolation between adjacent plates 20, and define the gas flow passages. A header 30 is bonded to the first perforated plate 20.
In operation, heat flows from one fluid stream, whose location and direction are depicted by the arrow 34, to the plates 20, with most of the heat transfer taking place in the periphery of holes 38 in plates 20. This heat then flows laterally in the plates 20, across the seal zone, and into the counterflowing fluid stream whose location and direction are depicted herein by the arrows 42.
A typical high-effectiveness heat exchanger may have on the order of two hundred such perforated plates 20 and spacer rings 22. The use of plastic for the spacer rings 22 results in a design which has very low end-to-end heat leakage, but which also has the potential to outgas absorbed moisture and/or organic materials that can freeze out in expansion engines.
FIG. 2 depicts a cross-sectional view of a portion of a pair of perforated plates 20 joined by one of the convoluted and substantially E-shaped spacer rings 50 used in the present invention. The free ends 54 and 56 of spacer ring 50 are preferably located at the inner diameter of ring 50, although the reversed arrangement would also provide satisfactory performance of the heat exchanger. Such an E-shaped spacer ring, called an "E-seal", is manufactured and sold by Pressure Science, Inc., of Beltsville, MD. and a customized version thereof is made of 0.006 inch thick stainless steel. This convoluted construction of spacer ring 50 results in a relatively long conduction path for a given axial length, so that good thermal isolation between plates 20 (and hence low end-to-end heat leakage) is obtained at reasonable lengths. The pattern of holes 22 in plate 20 is arranged so that there are no holes 22 in the region where plates 20 contact spacer rings 50.
The method of sealing spacer rings 50 to the plates 20 depends upon the requirement for leak-tightness between flowpaths. A reasonably leak-tight test assembly has been made using indium-plated spacer rings 50 and clamping the stack together in a fixture. Another test assembly has been made by plating the plates 20 and the spacer rings 50 with soft solder, assembling the stack, and heating the assembly to bond the parts together. The unperforated sealing areas of plates 20 may be plated with tin or indium, if necessary, to enhance sealing.
Although the invention has been described with reference to a particular embodiment thereof, it will be understood to those skilled in the art that the invention is capable of a variety of alternative embodiments within the spirit and scope of the appended claim.

Claims (1)

What is claimed is:
1. A counterflow type heat exchanger adapted for improved cryogenic operation comprising:
a cylindrical metallic shell;
a plurality of flat circular plates each having perforations therethrough;
a plurality of metallic spacer rings;
each of said plurality of circular plates having their flat surfaces arranged in parallel along the length of said shell and having their circular edges abutting the inner wall of said cylindrical shell;
adjacent ones of said plurality of circular plates being separated by one of said plurality of spacer rings disposed concentrically therebetween to form isolated axial and annular flow paths for fluids through said shell;
each of said plurality of metallic spacer rings having a convoluted and E-shaped cross section for providing increased thermal isolation between adjacent ones of said plurality of cylindrical plates.
US07/209,770 1988-06-22 1988-06-22 High effectiveness all metal heat exchanger Abandoned USH658H (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/209,770 USH658H (en) 1988-06-22 1988-06-22 High effectiveness all metal heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/209,770 USH658H (en) 1988-06-22 1988-06-22 High effectiveness all metal heat exchanger

Publications (1)

Publication Number Publication Date
USH658H true USH658H (en) 1989-08-01

Family

ID=22780201

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/209,770 Abandoned USH658H (en) 1988-06-22 1988-06-22 High effectiveness all metal heat exchanger

Country Status (1)

Country Link
US (1) USH658H (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8006511B2 (en) 2007-06-07 2011-08-30 Deka Products Limited Partnership Water vapor distillation apparatus, method and system
US8069676B2 (en) 2002-11-13 2011-12-06 Deka Products Limited Partnership Water vapor distillation apparatus, method and system
US8282790B2 (en) 2002-11-13 2012-10-09 Deka Products Limited Partnership Liquid pumps with hermetically sealed motor rotors
US8359877B2 (en) 2008-08-15 2013-01-29 Deka Products Limited Partnership Water vending apparatus
US8511105B2 (en) 2002-11-13 2013-08-20 Deka Products Limited Partnership Water vending apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8069676B2 (en) 2002-11-13 2011-12-06 Deka Products Limited Partnership Water vapor distillation apparatus, method and system
US8282790B2 (en) 2002-11-13 2012-10-09 Deka Products Limited Partnership Liquid pumps with hermetically sealed motor rotors
US8511105B2 (en) 2002-11-13 2013-08-20 Deka Products Limited Partnership Water vending apparatus
US8006511B2 (en) 2007-06-07 2011-08-30 Deka Products Limited Partnership Water vapor distillation apparatus, method and system
US8359877B2 (en) 2008-08-15 2013-01-29 Deka Products Limited Partnership Water vending apparatus
US11285399B2 (en) 2008-08-15 2022-03-29 Deka Products Limited Partnership Water vending apparatus

Similar Documents

Publication Publication Date Title
US2821369A (en) Heat exchangers
US3882934A (en) Heat exchanger
US4096910A (en) Concentric-tube stacked plate heat exchanger
US4596285A (en) Heat exchanger with resilient corner seals
US8028410B2 (en) Gas turbine regenerator apparatus and method of manufacture
US3228460A (en) Heat exchange device
US4259844A (en) Stacked disc heat exchanger for refrigerator cold finger
JP2667922B2 (en) Heat exchanger
USH658H (en) High effectiveness all metal heat exchanger
EP0530181A1 (en) Circular heat exchanger.
US5178213A (en) Automotive ram air system
US4373580A (en) Tube sealing in tube bundle heat exchangers
EP0530183B1 (en) A sealing system for a circular heat exchanger
GB1590897A (en) Heat exchanger
GB2291940A (en) Mechanical tube sealing system
US4120352A (en) Device for connecting exchanger tubes to perforated plates
US4432485A (en) Corrutherm expansion fixture
US5690169A (en) Heat transmitting apparatus
US3735810A (en) Plate heat exchanger
US3969907A (en) Cold cylinder assembly for cryogenic refrigerator
US4317483A (en) Heat exchanger
US6672377B2 (en) Oil cooler
GB2129538A (en) Heat exchanger
US3180402A (en) Temperature-compensated regenerator seal
US3244226A (en) Thermal block for heat exchanger tube sheet

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNITED STATES OF AMERICA, THE, AS REPRESENTED BY T

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. SUBJECT TO LICENSE RECITED;ASSIGNORS:ARTHUR D. LITTLE, INCOPRORATED;BRECKENRIDGE, ROBERT W.;HOSMER, THOMAS P.;REEL/FRAME:004974/0028

Effective date: 19880613

STCF Information on status: patent grant

Free format text: PATENTED CASE