USH540H - Explosive shock attenuator for high fragment velocity warheads - Google Patents

Explosive shock attenuator for high fragment velocity warheads Download PDF

Info

Publication number
USH540H
USH540H US07/087,856 US8785687A USH540H US H540 H USH540 H US H540H US 8785687 A US8785687 A US 8785687A US H540 H USH540 H US H540H
Authority
US
United States
Prior art keywords
fragments
warhead
charge
high energy
disc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US07/087,856
Inventor
Elso R. Caponi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Army
Original Assignee
US Department of Army
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Army filed Critical US Department of Army
Priority to US07/087,856 priority Critical patent/USH540H/en
Assigned to UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE ARMY reassignment UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE ARMY ASSIGNMENT OF ASSIGNORS INTEREST. SUBJECT TO LICENSE RECITED Assignors: CAPONI, ELSO R.
Application granted granted Critical
Publication of USH540H publication Critical patent/USH540H/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/20Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type
    • F42B12/22Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type with fragmentation-hull construction
    • F42B12/32Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type with fragmentation-hull construction the hull or case comprising a plurality of discrete bodies, e.g. steel balls, embedded therein or disposed around the explosive charge

Definitions

  • Another object of this invention is to provide a warhead in which shock attenuator means are provided between a multiplicity of fragments of a warhead and the high explosive used in propelling the multiplicity of fragments toward a target.
  • Still another object of this invention is to provide shock attenuator means for a multi-fragment warhead in which the shock attenuator means includes an aluminum sheet between the high explosive and the multiplicity of fragments.
  • Still another object of this invention is to provide a warhead that utilizes in conjunction with an aluminum sheet a layer of plastic material between the aluminum sheet and the multi-fragment warhead.
  • a still further object of this invention is to utilize a multi-fragment warhead in which the multi-fragments are mounted on a base plate of a material such as low carbon steel.
  • a multi-fragment warhead in which shock attenuating means is provided between multi-fragments of the warhead and a high explosive charge that is used to propel the multi-fragments toward a target to attenuate shock from the high explosive charge to prevent fragment break-up of the individual fragments of the multi-fragment warhead.
  • FIG. 1 is a sectional view of a warhead in accordance with this invention
  • FIG. 2 is an enlarged sectional view of the warhead with portions cut-away and illustrating the structure of the shock attenuator and
  • FIG. 3 is a front view partially cut-away and illustrating the shape of the multiple fragments of the warhead.
  • warhead 10 includes a housing with a tapered section 12 and a cylindrical section 14, a high explosive charge 16 of conventional structure is mounted inside housing sections 12 and 14 and a detonation charge 18 for setting off high explosive charge 16 is mounted in structure 20 that is secured to tapered section 12 at one end by conventional securing means 22 as illustrated.
  • Sections 12, 14, and 20 are preferably made of low carbon steel.
  • Cylindrical section 14 has a step bore 24 at one end and an aluminum disc 26 is mounted in bore 24 and against end surface 28 defined at the end of bore 24. With cylindrical section 14 having a diameter of about 16 inches, disc 26 should be about 0.100 inches thick.
  • a second disc layer 30 of polycarbonate material such as for example an epoxy material of Epon 828 is mounted in bore 24 and contiguous one surface of disc 26.
  • a multiplicity of fragment warheads 32 are mounted in bore 24 by the fragments being secured together in a conventional manner and being secured by weld 34 at the cylindircal peripheral.
  • metal fragments 32 are made of steel and are copper brazed to low carbon steel base plate 36 with the outer periphery of the cluster of fragments being welded as illustrated at 34. That is, fragments 32 can include a base plate 36 as illustrated in FIG. 2 or fragments 32 can be secured together without base plate 36.
  • Fragments 32 are preferrably made of a material such as steel to deliver the desired blow to a target.
  • detonator charge 18 is set off in a conventional manner to set off main warhead high explosive charge 16 which produces shock from explosive detonation to propel fragments 32 toward a target.
  • the shock from explosive charge 16 is impeded at each surface interface of members 26, 30 and 36 of the attenuator assembly to thus reduce the shock that reaches fragments 32.
  • Low carbon steel mounting plate 36 for fragments 32 is an optional third layer in the acoustic impedance assembly and attenduates shock transmission, although the primary purpose of steel disc 36 is as an adjunc to the fragment pack assembly.
  • the waves produced by explosive charge 16 are reflected in part at each material interface of members 26, 30 and 36 where impedance changes.
  • the reflected wave or waves is a compression wave thereby countering the tension waves, thus reducing/attenuating tensile strength of the on-coming shock.
  • fragments 32 are prevented from breakup under high explosive projection.
  • the attenuator assembly also delays venting of detonation products of explosive warhead 16 to thus increase energy transfer from the explosive to the fragments which improves warhead performance and reduces over-all weight. This is true, since discs 26, 30 and 36 tend to contain the explosive until they exit the end of bore 24.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

A warhead has a high energy explosive charge mounted therein for launching multiplicity of clustered metal fragments for killing a target with shock attenuator means mounted between the cluster of fragments and the high explosive charge to attenuate shock and prevent breakup of individual fragments.

Description

DEDICATORY CLAUSE
The invention described herein was made in the course of or under a contract or subcontract thereunder with the Government and may be manufactured, used, and licensed by or for the Government for governmental purposes without the payment to me of any royalties thereon.
BACKGROUND OF THE INVENTION
In the past, warheads which have used a multiplicity of fragments to be projected at a target by high explosive projection has resulted in the fragments being broken up upon detonation of the high explosive that is used to project the fragments to the target. This breakup of the individual fragments is not desirable since the fragments are designed to produce a particular kill based on the overall structure of each individual fragment. Therefore, there is a need for a structure that will enable the fragments to be propelled at a target at velocities desired and still maintain the integrity of the fragments as originally fabricated.
Therefore, it is an object of this invention to provide a structure that enables a warhead of a multiplicity of fragments to have the fragments propelled at high velocity toward a target without fragment breakup of each individual fragment of the warhead.
Another object of this invention is to provide a warhead in which shock attenuator means are provided between a multiplicity of fragments of a warhead and the high explosive used in propelling the multiplicity of fragments toward a target.
Still another object of this invention is to provide shock attenuator means for a multi-fragment warhead in which the shock attenuator means includes an aluminum sheet between the high explosive and the multiplicity of fragments.
Still another object of this invention is to provide a warhead that utilizes in conjunction with an aluminum sheet a layer of plastic material between the aluminum sheet and the multi-fragment warhead.
A still further object of this invention is to utilize a multi-fragment warhead in which the multi-fragments are mounted on a base plate of a material such as low carbon steel.
Other objects and advantages of this invention will be obvious to those skilled in this art.
SUMMARY OF THE INVENTION
In accordance with this invention, a multi-fragment warhead is provided in which shock attenuating means is provided between multi-fragments of the warhead and a high explosive charge that is used to propel the multi-fragments toward a target to attenuate shock from the high explosive charge to prevent fragment break-up of the individual fragments of the multi-fragment warhead.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a sectional view of a warhead in accordance with this invention,
FIG. 2 is an enlarged sectional view of the warhead with portions cut-away and illustrating the structure of the shock attenuator and
FIG. 3 is a front view partially cut-away and illustrating the shape of the multiple fragments of the warhead.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring now to the drawing, warhead 10 includes a housing with a tapered section 12 and a cylindrical section 14, a high explosive charge 16 of conventional structure is mounted inside housing sections 12 and 14 and a detonation charge 18 for setting off high explosive charge 16 is mounted in structure 20 that is secured to tapered section 12 at one end by conventional securing means 22 as illustrated. Sections 12, 14, and 20 are preferably made of low carbon steel. Cylindrical section 14 has a step bore 24 at one end and an aluminum disc 26 is mounted in bore 24 and against end surface 28 defined at the end of bore 24. With cylindrical section 14 having a diameter of about 16 inches, disc 26 should be about 0.100 inches thick. A second disc layer 30 of polycarbonate material such as for example an epoxy material of Epon 828 is mounted in bore 24 and contiguous one surface of disc 26. A multiplicity of fragment warheads 32 are mounted in bore 24 by the fragments being secured together in a conventional manner and being secured by weld 34 at the cylindircal peripheral. In a preferred embodiment, metal fragments 32 are made of steel and are copper brazed to low carbon steel base plate 36 with the outer periphery of the cluster of fragments being welded as illustrated at 34. That is, fragments 32 can include a base plate 36 as illustrated in FIG. 2 or fragments 32 can be secured together without base plate 36. Fragments 32 are preferrably made of a material such as steel to deliver the desired blow to a target.
In operation, when it is desired to ignite warhead 10, detonator charge 18 is set off in a conventional manner to set off main warhead high explosive charge 16 which produces shock from explosive detonation to propel fragments 32 toward a target. The shock from explosive charge 16 is impeded at each surface interface of members 26, 30 and 36 of the attenuator assembly to thus reduce the shock that reaches fragments 32. This results in fragments 32 being accelerated to very high velocity without breakup. Low carbon steel mounting plate 36 for fragments 32 is an optional third layer in the acoustic impedance assembly and attenduates shock transmission, although the primary purpose of steel disc 36 is as an adjunc to the fragment pack assembly. The waves produced by explosive charge 16 are reflected in part at each material interface of members 26, 30 and 36 where impedance changes. The reflected wave or waves is a compression wave thereby countering the tension waves, thus reducing/attenuating tensile strength of the on-coming shock. As a result of the shock attenuation, fragments 32 are prevented from breakup under high explosive projection. It is further noted, that the attenuator assembly also delays venting of detonation products of explosive warhead 16 to thus increase energy transfer from the explosive to the fragments which improves warhead performance and reduces over-all weight. This is true, since discs 26, 30 and 36 tend to contain the explosive until they exit the end of bore 24.

Claims (6)

I claim:
1. A warhead comprising a housing having a high energy main warhead charge with a booster charge at one end thereof for setting off the main warhead charge, a multiplicity of predetermined shaped metal fragments for being propelled for killing a target and said fragments being secured together in a cluster at an opposite end of said housing from said booster charge, and shock attenuator means mounted between an end surface of said clustered fragments and said high energy main warhead charge to attenuate shock transfer from said high energy main warhead charge to said fragments to prevent fragment breakup upon detonation of said high energy main warhead charge.
2. A warhead as set forth in claim 1, wherein said shock attenuator means includes a first disc shaped member of aluminum and being contiguous said high energy main warhead charge and a second disc of polycarbonate material and being positioned between said aluminum disc and said fragments.
3. An explosive charge warhead as set forth in claim 2, wherein said fragments are clustered and secured to a base plate which is contiguous said polycarbonate disc.
4. A warhead as set forth in claim 3, wherein said polycarbonate disc is made of epoxy.
5. A warhead as set forth in claim 3, wherein said fragments are made of steel and said fragments are copper brazed to said base plate which is made of steel and said fragments being secured to said housing by being welded thereto at the periphery of said fragment cluster.
6. A warhead as set forth in claim 3, wherein said clustered fragments and said shock attenuator means are telescoped into a bore at said opposite end of said housing.
US07/087,856 1987-08-20 1987-08-20 Explosive shock attenuator for high fragment velocity warheads Abandoned USH540H (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/087,856 USH540H (en) 1987-08-20 1987-08-20 Explosive shock attenuator for high fragment velocity warheads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/087,856 USH540H (en) 1987-08-20 1987-08-20 Explosive shock attenuator for high fragment velocity warheads

Publications (1)

Publication Number Publication Date
USH540H true USH540H (en) 1988-11-01

Family

ID=22207656

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/087,856 Abandoned USH540H (en) 1987-08-20 1987-08-20 Explosive shock attenuator for high fragment velocity warheads

Country Status (1)

Country Link
US (1) USH540H (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2652892A1 (en) * 1989-10-11 1991-04-12 Dynamit Nobel Ag MILITARY HEAD WITH ENHANCED RADIANCE EFFECT.
US6186070B1 (en) * 1998-11-27 2001-02-13 The United States Of America As Represented By The Secretary Of The Army Combined effects warheads
US20040020397A1 (en) * 2002-03-28 2004-02-05 Nielson Daniel B. Low temperature, extrudable, high density reactive materials
US20050087088A1 (en) * 2003-09-30 2005-04-28 Lacy E. W. Ordnance device for launching failure prone fragments
US20070272112A1 (en) * 2000-02-23 2007-11-29 Alliant Techsystems Inc. Reactive material compositions, shot shells including reactive materials, and a method of producing same
US20080035007A1 (en) * 2005-10-04 2008-02-14 Nielson Daniel B Reactive material enhanced projectiles and related methods
US20080229963A1 (en) * 2004-03-15 2008-09-25 Alliant Techsystems Inc. Reactive material enhanced munition compositions and projectiles containing same
WO2009142789A2 (en) * 2008-05-19 2009-11-26 Raytheon Company High-lethality low collateral damage forward firing fragmentation warhead
US20110146523A1 (en) * 2008-05-19 2011-06-23 Raytheon Company High-lethality low collateral damage fragmentation warhead
US20110179966A1 (en) * 2008-11-17 2011-07-28 Raytheon Company Dual-mass forward and side firing fragmentation warhead
US8075715B2 (en) 2004-03-15 2011-12-13 Alliant Techsystems Inc. Reactive compositions including metal
USRE45899E1 (en) 2000-02-23 2016-02-23 Orbital Atk, Inc. Low temperature, extrudable, high density reactive materials
US9964385B1 (en) 2016-09-30 2018-05-08 The United States Of America As Represented By The Secretary Of The Navy Shock mitigation body

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2652892A1 (en) * 1989-10-11 1991-04-12 Dynamit Nobel Ag MILITARY HEAD WITH ENHANCED RADIANCE EFFECT.
US6186070B1 (en) * 1998-11-27 2001-02-13 The United States Of America As Represented By The Secretary Of The Army Combined effects warheads
US9103641B2 (en) 2000-02-23 2015-08-11 Orbital Atk, Inc. Reactive material enhanced projectiles and related methods
US20070272112A1 (en) * 2000-02-23 2007-11-29 Alliant Techsystems Inc. Reactive material compositions, shot shells including reactive materials, and a method of producing same
US9982981B2 (en) 2000-02-23 2018-05-29 Orbital Atk, Inc. Articles of ordnance including reactive material enhanced projectiles, and related methods
USRE45899E1 (en) 2000-02-23 2016-02-23 Orbital Atk, Inc. Low temperature, extrudable, high density reactive materials
US7977420B2 (en) 2000-02-23 2011-07-12 Alliant Techsystems Inc. Reactive material compositions, shot shells including reactive materials, and a method of producing same
US6962634B2 (en) 2002-03-28 2005-11-08 Alliant Techsystems Inc. Low temperature, extrudable, high density reactive materials
US20040020397A1 (en) * 2002-03-28 2004-02-05 Nielson Daniel B. Low temperature, extrudable, high density reactive materials
US20050087088A1 (en) * 2003-09-30 2005-04-28 Lacy E. W. Ordnance device for launching failure prone fragments
US20080229963A1 (en) * 2004-03-15 2008-09-25 Alliant Techsystems Inc. Reactive material enhanced munition compositions and projectiles containing same
US8568541B2 (en) 2004-03-15 2013-10-29 Alliant Techsystems Inc. Reactive material compositions and projectiles containing same
US8361258B2 (en) 2004-03-15 2013-01-29 Alliant Techsystems Inc. Reactive compositions including metal
US8075715B2 (en) 2004-03-15 2011-12-13 Alliant Techsystems Inc. Reactive compositions including metal
US8122833B2 (en) 2005-10-04 2012-02-28 Alliant Techsystems Inc. Reactive material enhanced projectiles and related methods
US20080035007A1 (en) * 2005-10-04 2008-02-14 Nielson Daniel B Reactive material enhanced projectiles and related methods
US7971535B1 (en) 2008-05-19 2011-07-05 Raytheon Company High-lethality low collateral damage fragmentation warhead
US20110146523A1 (en) * 2008-05-19 2011-06-23 Raytheon Company High-lethality low collateral damage fragmentation warhead
US20110094408A1 (en) * 2008-05-19 2011-04-28 Raythenn Company Forward firing fragmentation warhead
US7930978B1 (en) 2008-05-19 2011-04-26 Raytheon Company Forward firing fragmentation warhead
WO2009142789A3 (en) * 2008-05-19 2010-01-14 Raytheon Company High-lethality low collateral damage forward firing fragmentation warhead
WO2009142789A2 (en) * 2008-05-19 2009-11-26 Raytheon Company High-lethality low collateral damage forward firing fragmentation warhead
US20110179966A1 (en) * 2008-11-17 2011-07-28 Raytheon Company Dual-mass forward and side firing fragmentation warhead
US8006623B2 (en) 2008-11-17 2011-08-30 Raytheon Company Dual-mass forward and side firing fragmentation warhead
US9964385B1 (en) 2016-09-30 2018-05-08 The United States Of America As Represented By The Secretary Of The Navy Shock mitigation body

Similar Documents

Publication Publication Date Title
USH540H (en) Explosive shock attenuator for high fragment velocity warheads
US3853059A (en) Configured blast fragmentation warhead
US3978796A (en) Focused blast-fragment warhead
US5509357A (en) Dual operating mode warhead
US4848239A (en) Antiballistic missile fuze
US4106410A (en) Layered fragmentation device
US3224368A (en) Dual liner shaped charge
US4648324A (en) Projectile with enhanced target penetrating power
US3960085A (en) Variable geometry warhead
JP5559187B2 (en) Dual-mass forward and side-fire crush warhead
US4183302A (en) Sequential burst system
US6622632B1 (en) Polar ejection angle control for fragmenting warheads
US4823701A (en) Multi-point warhead initiation system
US6510797B1 (en) Segmented kinetic energy explosively formed penetrator assembly
US6308634B1 (en) Precursor-follow through explosively formed penetrator assembly
US3677183A (en) Pre-shaped fragmentation device
US3802342A (en) Armor piercing fragment and launcher
US4649829A (en) Plastic armor piercing projectile
US3714897A (en) Directed warhead
US3970005A (en) Mass focus explosive layered bomblet
US4466353A (en) High velocity jet shaped charge
US4004518A (en) Self-forging fragmentation device
US5394804A (en) Explosive device with a hollow charge, designed for penetrating armor protected by active primary armor
US2972950A (en) Rod type explosive warhead
US3675577A (en) Rod warhead

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNITED STATES OF AMERICA, THE, AS REPRESENTED BY T

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. SUBJECT TO LICENSE RECITED;ASSIGNOR:CAPONI, ELSO R.;REEL/FRAME:004939/0168

Effective date: 19880115

STCF Information on status: patent grant

Free format text: PATENTED CASE