USH469H - Clear plastic container with good gas and water vapor barrier properties - Google Patents
Clear plastic container with good gas and water vapor barrier properties Download PDFInfo
- Publication number
- USH469H USH469H US06/926,948 US92694886A USH469H US H469 H USH469 H US H469H US 92694886 A US92694886 A US 92694886A US H469 H USH469 H US H469H
- Authority
- US
- United States
- Prior art keywords
- container according
- isophthalic
- layer
- terephthalic acids
- layers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000004888 barrier function Effects 0.000 title description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title description 3
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 24
- 229920006020 amorphous polyamide Polymers 0.000 claims abstract description 23
- 239000010410 layer Substances 0.000 claims description 46
- 239000004743 Polypropylene Substances 0.000 claims description 18
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 claims description 18
- 150000002531 isophthalic acids Chemical class 0.000 claims description 15
- 150000003504 terephthalic acids Chemical class 0.000 claims description 14
- 229920001577 copolymer Polymers 0.000 claims description 12
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 11
- -1 polypropylene Polymers 0.000 claims description 11
- 229920001155 polypropylene Polymers 0.000 claims description 9
- 239000004840 adhesive resin Substances 0.000 claims description 8
- 229920006223 adhesive resin Polymers 0.000 claims description 8
- 229920005989 resin Polymers 0.000 claims description 7
- 239000011347 resin Substances 0.000 claims description 7
- 239000012792 core layer Substances 0.000 claims description 5
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 3
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 description 9
- 239000004952 Polyamide Substances 0.000 description 8
- 229920002647 polyamide Polymers 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 238000010791 quenching Methods 0.000 description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 150000001336 alkenes Chemical class 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229920001778 nylon Polymers 0.000 description 5
- 239000004677 Nylon Substances 0.000 description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical group OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 3
- 238000000071 blow moulding Methods 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 238000003856 thermoforming Methods 0.000 description 3
- 229920001169 thermoplastic Polymers 0.000 description 3
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical group NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- CNPURSDMOWDNOQ-UHFFFAOYSA-N 4-methoxy-7h-pyrrolo[2,3-d]pyrimidin-2-amine Chemical compound COC1=NC(N)=NC2=C1C=CN2 CNPURSDMOWDNOQ-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 2
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical class OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- VHRGRCVQAFMJIZ-UHFFFAOYSA-N cadaverine Chemical compound NCCCCCN VHRGRCVQAFMJIZ-UHFFFAOYSA-N 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 229920000554 ionomer Polymers 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920005629 polypropylene homopolymer Polymers 0.000 description 2
- 239000005033 polyvinylidene chloride Substances 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical class OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical group NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- JCUZDQXWVYNXHD-UHFFFAOYSA-N 2,2,4-trimethylhexane-1,6-diamine Chemical compound NCCC(C)CC(C)(C)CN JCUZDQXWVYNXHD-UHFFFAOYSA-N 0.000 description 1
- DPQHRXRAZHNGRU-UHFFFAOYSA-N 2,4,4-trimethylhexane-1,6-diamine Chemical compound NCC(C)CC(C)(C)CCN DPQHRXRAZHNGRU-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- FZZMTSNZRBFGGU-UHFFFAOYSA-N 2-chloro-7-fluoroquinazolin-4-amine Chemical compound FC1=CC=C2C(N)=NC(Cl)=NC2=C1 FZZMTSNZRBFGGU-UHFFFAOYSA-N 0.000 description 1
- JZUHIOJYCPIVLQ-UHFFFAOYSA-N 2-methylpentane-1,5-diamine Chemical compound NCC(C)CCCN JZUHIOJYCPIVLQ-UHFFFAOYSA-N 0.000 description 1
- AYKYXWQEBUNJCN-UHFFFAOYSA-N 3-methylfuran-2,5-dione Chemical compound CC1=CC(=O)OC1=O AYKYXWQEBUNJCN-UHFFFAOYSA-N 0.000 description 1
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 1
- AHCBPEXSQCYFTH-UHFFFAOYSA-N 3-methylpentane-2,2-diamine Chemical compound CCC(C)C(C)(N)N AHCBPEXSQCYFTH-UHFFFAOYSA-N 0.000 description 1
- DZIHTWJGPDVSGE-UHFFFAOYSA-N 4-[(4-aminocyclohexyl)methyl]cyclohexan-1-amine Chemical compound C1CC(N)CCC1CC1CCC(N)CC1 DZIHTWJGPDVSGE-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- GVNWZKBFMFUVNX-UHFFFAOYSA-N Adipamide Chemical compound NC(=O)CCCCC(N)=O GVNWZKBFMFUVNX-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- IEPRKVQEAMIZSS-UHFFFAOYSA-N Di-Et ester-Fumaric acid Natural products CCOC(=O)C=CC(=O)OCC IEPRKVQEAMIZSS-UHFFFAOYSA-N 0.000 description 1
- IEPRKVQEAMIZSS-WAYWQWQTSA-N Diethyl maleate Chemical compound CCOC(=O)\C=C/C(=O)OCC IEPRKVQEAMIZSS-WAYWQWQTSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 239000005700 Putrescine Substances 0.000 description 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
- 229920003182 Surlyn® Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical group NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002998 adhesive polymer Substances 0.000 description 1
- 239000001361 adipic acid Chemical class 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- JAWQFSAXQNAIJO-UHFFFAOYSA-N benzene-1,3-dicarboxamide;hexane-1,6-diamine Chemical compound NCCCCCCN.NC(=O)C1=CC=CC(C(N)=O)=C1 JAWQFSAXQNAIJO-UHFFFAOYSA-N 0.000 description 1
- MEYFRYUMNDPAFY-UHFFFAOYSA-N benzene-1,4-dicarboxamide;2,4,4-trimethylhexane-1,6-diamine Chemical compound NCC(C)CC(C)(C)CCN.NC(=O)C1=CC=C(C(N)=O)C=C1 MEYFRYUMNDPAFY-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000004651 carbonic acid esters Chemical class 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 150000001734 carboxylic acid salts Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- AVKNGPAMCBSNSO-UHFFFAOYSA-N cyclohexylmethanamine Chemical compound NCC1CCCCC1 AVKNGPAMCBSNSO-UHFFFAOYSA-N 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- UFRKOOWSQGXVKV-UHFFFAOYSA-N ethene;ethenol Chemical compound C=C.OC=C UFRKOOWSQGXVKV-UHFFFAOYSA-N 0.000 description 1
- 229920006228 ethylene acrylate copolymer Polymers 0.000 description 1
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229920001179 medium density polyethylene Polymers 0.000 description 1
- 239000004701 medium-density polyethylene Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 101150035983 str1 gene Proteins 0.000 description 1
- MHSKRLJMQQNJNC-UHFFFAOYSA-N terephthalamide Chemical compound NC(=O)C1=CC=C(C(N)=O)C=C1 MHSKRLJMQQNJNC-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000003017 thermal stabilizer Substances 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/34—Layered products comprising a layer of synthetic resin comprising polyamides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2323/00—Polyalkenes
- B32B2323/04—Polyethylene
- B32B2323/043—HDPE, i.e. high density polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2323/00—Polyalkenes
- B32B2323/04—Polyethylene
- B32B2323/046—LDPE, i.e. low density polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2323/00—Polyalkenes
- B32B2323/10—Polypropylene
Definitions
- This invention relates to multilayer containers having at least one layer of an amorphous polyamide polymer and at least one other layer of an orienting thermoplastic resin.
- Containers with good gas barrier properties are needed for the packaging of perishable foods, drinks, for pharmaceuticals, cosmetics and other chemicals containing volatile substances. It is a clear advantage if that packaging is transparent, with low haze, so that the content of the package is clearly visible.
- Many of the barrier materials currently in use aluminum foil, ethylene vinyl alcohol copolymers, polyvinylidenechloride and acrylonitrile copolymers are all either opaque or can be quite hazy when formed by extrusion or coextrusion.
- This invention relates to a container having a multi-layer structure which comprises a plurality of thermoplastic resins, wherein at least one layer of the container is composed of one or more amorphous, glassy, non-crystalline polyamides and at least one of the remaining layers comprises an orienting thermoplastic resin.
- These containers have excellent gas and water-vapor barrier properties and outstanding optical qualities, such as low haze.
- the multi-layer structure of the container of this invention also incorporates at least one layer interposed between the amorphous nylon layer and the orienting thermoplastic resin, said layer being composed of a resin having an adhesion to both the amorphous nylon and the orienting thermoplastic resin.
- amorphous polyamides useful in this invention are those which are lacking in crystallinity as shown by the lack of an endotherm crystalline melting peak in a Differential Scanning Calorimeter test (ASTM D3417) and whose glass transition temperatures are above the about 50 degrees C.
- diamines which can be used to prepare the amorphous polyamides are: hexamethylenediamine, 2,2,4-trimethyl hexamethylene diamine, 2,4,4-trimethyl hexamethylenediamine, 2-methyl pentamethylene diamine, bis-(4-aminocyclohexyl)-methane, 2,2- bis(4-aminocyclohexyl)-isopropylidene, 1,4-(1,3)-diamino cyclohexane, m-xylylene diamine, 1,5-diaminopentane, 1,4-diaminobutane, 1,3-diaminopropane, 2-ethyl diaminobutane, 1,4-aminomethyl cyclohexane, p-xylylene diamine, meta- and para-phenylene diamine, and alkyl substituted m,p-phenylenediamine.
- dicarboxylic acids which can be used to prepare the amorphous polyamides are: isophthalic acid, terephthalic acid, alkyl substituted iso- or terephthalic acid, adipic acid, sebacic acid, and succinic dicarboxylic acid.
- Small amounts (0 to 5 mole % based on diamine) of 4,4-bis(aminocyclohexyl)methane may be incorporated in the polyamide.
- Other additives such as slip additives and thermal stabilizers may also be used.
- the orienting thermoplastic resin useful in this invention can be any known thermoplastic resin capable of being oriented by drawing.
- crystalline polypropylene is most preferred in view of the transparency and mechanical properties.
- Other preferred orienting resins include ethylenepropylene copolymer, high density polyethylene, poly-4-methylpentene-1, polybutene-1 and medium density polyethylene.
- ethylenepropylene copolymer a crystalline polymer comprising 0.5 to 15 mole % of ethylene and 85 to 95.5 mole % of propylene is especially valuable.
- Suitable orienting thermoplastic resins include polyvinyl chloride, polyethylene terephthalate and ionomers.
- an adhesive resin having adhesion to both the amorphous polyamide and the orienting thermoplastic resin layer be interposed between those two layers.
- thermoplastic polymers having carbonyl groups derived from functional groups of free carboxylic acids, carboxylic acid salts, carboxylic acid esters, carboxylic acid amides, carboxylic anhydrides, carbonic acid esters, urethanes, ureas or the like.
- the carbonyl group concentration may be changed in a broad range, but in general, it is preferred to use a thermoplastic polymer containing carbonyl groups at a concentration of 10 to 1400 millimoles per 100 g of the of the polymer, especially 30 to 1200 millimoles per 100 g of the polymer.
- Suitable adhesive resins include polyolefins modified with at least one ethylenically unsaturated monomer selected from unsaturated carboxylic acids and anhydrides, esters and amides thereof, especially polypropylene, high density polyethylene, low density polyethylene and ethylene-vinyl acetate copolymers modified with at least one member selected from acrylic acid, methacrylic acid, crotonic acid, fumaric acid, itaconic acid, maleic anhydride, itaconic anhydride, citraconic anhydride, ethyl acrylate, methyl methacrylate, ethyl maleate, 2-ethylhexyl acrylate, acrylamide, methacrylamide, fatty acid amides and imides of the acids described above.
- U.S. Pat. No. 4,230,830 discloses resins particularly suitable for use with nylons.
- the adhesive resin there can be used ethylene-acrylate copolymers, ionomers (such as Surlyn(R) manufactured by E. I. du Pont de Nemours and Company, Wilmington, Del.), polyalkylene oxide-polyester block copolymers, carboxylmethyl cellulose derivatives, and blends of these polymers with polyolefins.
- the containers of this invention have a minimum of two layers, one being the amorphous polyamide and one being the orienting thermoplastic resin.
- the containers Preferably, have a third layer consisting of the above-mentioned adhesive resin.
- the containers may also have five or more layers, two outer layers of the orienting thermoplastic resin, an inner layer of the amorphous polyamide, and two or more layers of adhesive resin, and other inner thermoplastic resin layers as desired.
- the containers of this invention may be made by processes well known in the art which are capable of orienting the layer of orienting thermoplastic resin. Such known processes include thermoforming by solid phase forming, forging, coextrusion blow-molding and stretch blow-molding, coinjection blow-molding, tube coextrusion followed by stretching for container bodies, and tube or pipe coextrusion for stretch blow-mold preforms.
- the containers are useful for packaging of foods, drinks, pharmaceuticals, cosmetics and other perishable or volatile materials.
- a five-layer sheet was coextruded, using three extruders, a combining adapter, and a 35 cm-wide single-manifold sheeting die. Both surface layers, 0.55 mm-thick each, were polypropylene homopolymers with a melt flow index of 4 (measured by ASTM 1238, standard condition L).
- the core layer 0.15 mm thick, was an amorphous polyamide: a condensation polymer of 1,6 diamino hexane with a 70/30 mixture of isophthalic and terephthalic acids, with 3.5 mole % of 4,4-bis(aminocyclohexyl)methane.
- 0.05 mm-thick adhesive layers which consisted of a blend of maleic anhydride grafted ethylene-polypropylene copolymer in an ethylene vinyl acetate copolymer matrix.
- the polypropylene homopolymer was extruded with a 38 mm diameter single-screw extruder, running at 80 rpm, with a melt temperature of 240 deg. C.
- the amorphous nylon was extruded from a 25 mm-diameter single-screw extruder, equipped with a grooved feed barrel, running at 25 rpm, and with a melt temperature of 235 deg C.
- the adhesive layers were extruded with 32 mm-diameter single-screw extruder, running at 14 rpm and a melt temperature of 230 deg C.
- the extruded sheet was cooled on a chill-roll stack of three rolls, the first roll 6-inch diameter, second and third rolls 12-inch diameter. These rolls were cooled with hot water having a temperature of about 65 deg C. (hereinafter referred to as the "quench temperature").
- the total thicknesses of the finished sheeting were in the 1.30 mm to 1.50 mm range.
- the sheet described above was thermoformed on an Illig RDM37/10 machine using ceramic sheet heaters (from both sides) operating at 320 to 380 deg C. temperature resulting in a sheet temperature of 154 to 164 deg C., air pressure of 600 kPa.; plug assist; and molding rates of 10 to 14 cycles/min.
- the shape and size of the mold and finished containers were a cylindrical can shape, 83 mm diameter, and 93 mm deep, with a 3.5 mm-wide flange.
- the mold was maintained at 15 deg C. temperature with cooling water.
- the haze of the multi-layer container wall with the amorphous polyamide core was determined to be 8.9%.
- Example 1 Using the equipment and process described in Example 1, several five-layer and mono-layer sheets were made for thermoforming.
- the amorphous polyamide used in Samples A and B was a condensation polymer of 1,6-diamino hexane with a mixture of isophthalic (I) and terephthalic (T) acids as indicated in Table 1.
- Layers of the adhesive resin used in Example 1 were interposed between the outer layers of polypropylene and the core layer of amorphous polyamide. Subsequently, all of these sheets were thermoformed, using the equipment and conditions described in Example 1, except that the mold, and consequently, the containers in Example 2 were can-shaped, having diameters of 67 mm and depths of 68 mm, with a flange outer diameter of 70 mm.
- the materials of these samples, the quench temperature used in extruding them into sheets, and the haze values of the sidewalls of the containers made from these materials are shown in Table 1.
Landscapes
- Laminated Bodies (AREA)
Abstract
A container having a multi-layer structure comprising a plurality of thermoplastic resins, wherein at least one layer of the container comprises one or more amorphous polyamides and at least one of the remaining layers comprises an oriented Thermoplastic resin.
Description
This invention relates to multilayer containers having at least one layer of an amorphous polyamide polymer and at least one other layer of an orienting thermoplastic resin.
Containers with good gas barrier properties are needed for the packaging of perishable foods, drinks, for pharmaceuticals, cosmetics and other chemicals containing volatile substances. It is a clear advantage if that packaging is transparent, with low haze, so that the content of the package is clearly visible. Many of the barrier materials currently in use, aluminum foil, ethylene vinyl alcohol copolymers, polyvinylidenechloride and acrylonitrile copolymers are all either opaque or can be quite hazy when formed by extrusion or coextrusion.
This invention relates to a container having a multi-layer structure which comprises a plurality of thermoplastic resins, wherein at least one layer of the container is composed of one or more amorphous, glassy, non-crystalline polyamides and at least one of the remaining layers comprises an orienting thermoplastic resin. These containers have excellent gas and water-vapor barrier properties and outstanding optical qualities, such as low haze. Preferably, the multi-layer structure of the container of this invention also incorporates at least one layer interposed between the amorphous nylon layer and the orienting thermoplastic resin, said layer being composed of a resin having an adhesion to both the amorphous nylon and the orienting thermoplastic resin.
The amorphous polyamides useful in this invention are those which are lacking in crystallinity as shown by the lack of an endotherm crystalline melting peak in a Differential Scanning Calorimeter test (ASTM D3417) and whose glass transition temperatures are above the about 50 degrees C. Examples of diamines which can be used to prepare the amorphous polyamides are: hexamethylenediamine, 2,2,4-trimethyl hexamethylene diamine, 2,4,4-trimethyl hexamethylenediamine, 2-methyl pentamethylene diamine, bis-(4-aminocyclohexyl)-methane, 2,2- bis(4-aminocyclohexyl)-isopropylidene, 1,4-(1,3)-diamino cyclohexane, m-xylylene diamine, 1,5-diaminopentane, 1,4-diaminobutane, 1,3-diaminopropane, 2-ethyl diaminobutane, 1,4-aminomethyl cyclohexane, p-xylylene diamine, meta- and para-phenylene diamine, and alkyl substituted m,p-phenylenediamine. Examples of dicarboxylic acids which can be used to prepare the amorphous polyamides are: isophthalic acid, terephthalic acid, alkyl substituted iso- or terephthalic acid, adipic acid, sebacic acid, and succinic dicarboxylic acid.
Specific examples of polyamides which can be used in the containers of this invention include: hexamethylenediamine isophthalamide, hexamethylenediamine iso/terephthalamide, m-xylylenediamine adipamide, and mixtures of 2,2,4- and 2,4,4-trimethyl hexamethylenediamine terephthalamide, copolymers of hexamethylene diamine with iso- and tere-phthalic acids. Preferred are the hexamethylenediamine iso/terephthalamides with ratios of iso- to tere- in the range of about 60/40 to 100/0. Most preferred are such polymers with ratios of isoto tere- of about 70/30. Small amounts (0 to 5 mole % based on diamine) of 4,4-bis(aminocyclohexyl)methane may be incorporated in the polyamide. Other additives such as slip additives and thermal stabilizers may also be used.
The orienting thermoplastic resin useful in this invention can be any known thermoplastic resin capable of being oriented by drawing. For example, homopolymers of olefins represented by the formula: ##STR1## where R stands for a hydrogen atom or an alkyl group having up to 4 carbon atoms, such as ethylene, propylene, butene-1, pentene-1 and 4-methylpentene-1, copolymers of these olefins, copolymers of these olefins with a small amount, generally 0.05 to 10% by weight based on the olefin, of other ethylenically unsaturated monomer such as vinyl acetate, an acrylic acid ester or the like, and blends of two or more of the foregoing polymers can be used in this invention, so far as they are crystalline. As the olefin homopolymer or copolymer, crystalline polypropylene is most preferred in view of the transparency and mechanical properties. Other preferred orienting resins include ethylenepropylene copolymer, high density polyethylene, poly-4-methylpentene-1, polybutene-1 and medium density polyethylene. As the ethylenepropylene copolymer, a crystalline polymer comprising 0.5 to 15 mole % of ethylene and 85 to 95.5 mole % of propylene is especially valuable.
Other examples of suitable orienting thermoplastic resins include polyvinyl chloride, polyethylene terephthalate and ionomers.
In this invention, in general, it is preferred that an adhesive resin having adhesion to both the amorphous polyamide and the orienting thermoplastic resin layer be interposed between those two layers.
Any of the known resins having an adhesion to the above-mentioned amorphous polyamide and the orienting thermoplastic resin can be used as the adhesive resin. In general, however, as the adhesive polymer there are employed thermoplastic polymers having carbonyl groups derived from functional groups of free carboxylic acids, carboxylic acid salts, carboxylic acid esters, carboxylic acid amides, carboxylic anhydrides, carbonic acid esters, urethanes, ureas or the like. In these thermoplastic polymers, the carbonyl group concentration may be changed in a broad range, but in general, it is preferred to use a thermoplastic polymer containing carbonyl groups at a concentration of 10 to 1400 millimoles per 100 g of the of the polymer, especially 30 to 1200 millimoles per 100 g of the polymer. Suitable adhesive resins include polyolefins modified with at least one ethylenically unsaturated monomer selected from unsaturated carboxylic acids and anhydrides, esters and amides thereof, especially polypropylene, high density polyethylene, low density polyethylene and ethylene-vinyl acetate copolymers modified with at least one member selected from acrylic acid, methacrylic acid, crotonic acid, fumaric acid, itaconic acid, maleic anhydride, itaconic anhydride, citraconic anhydride, ethyl acrylate, methyl methacrylate, ethyl maleate, 2-ethylhexyl acrylate, acrylamide, methacrylamide, fatty acid amides and imides of the acids described above. U.S. Pat. No. 4,230,830, the disclosure of which is hereby incorporated by reference, discloses resins particularly suitable for use with nylons. In addition, as the adhesive resin, there can be used ethylene-acrylate copolymers, ionomers (such as Surlyn(R) manufactured by E. I. du Pont de Nemours and Company, Wilmington, Del.), polyalkylene oxide-polyester block copolymers, carboxylmethyl cellulose derivatives, and blends of these polymers with polyolefins.
The containers of this invention have a minimum of two layers, one being the amorphous polyamide and one being the orienting thermoplastic resin. Preferably, the containers have a third layer consisting of the above-mentioned adhesive resin. The containers may also have five or more layers, two outer layers of the orienting thermoplastic resin, an inner layer of the amorphous polyamide, and two or more layers of adhesive resin, and other inner thermoplastic resin layers as desired.
The containers of this invention may be made by processes well known in the art which are capable of orienting the layer of orienting thermoplastic resin. Such known processes include thermoforming by solid phase forming, forging, coextrusion blow-molding and stretch blow-molding, coinjection blow-molding, tube coextrusion followed by stretching for container bodies, and tube or pipe coextrusion for stretch blow-mold preforms. The containers are useful for packaging of foods, drinks, pharmaceuticals, cosmetics and other perishable or volatile materials.
The invention is illustrated by the following examples.
A five-layer sheet was coextruded, using three extruders, a combining adapter, and a 35 cm-wide single-manifold sheeting die. Both surface layers, 0.55 mm-thick each, were polypropylene homopolymers with a melt flow index of 4 (measured by ASTM 1238, standard condition L). The core layer, 0.15 mm thick, was an amorphous polyamide: a condensation polymer of 1,6 diamino hexane with a 70/30 mixture of isophthalic and terephthalic acids, with 3.5 mole % of 4,4-bis(aminocyclohexyl)methane. Between the core layer and the surface layers, there were 0.05 mm-thick adhesive layers, which consisted of a blend of maleic anhydride grafted ethylene-polypropylene copolymer in an ethylene vinyl acetate copolymer matrix. The polypropylene homopolymer was extruded with a 38 mm diameter single-screw extruder, running at 80 rpm, with a melt temperature of 240 deg. C. The amorphous nylon was extruded from a 25 mm-diameter single-screw extruder, equipped with a grooved feed barrel, running at 25 rpm, and with a melt temperature of 235 deg C. The adhesive layers were extruded with 32 mm-diameter single-screw extruder, running at 14 rpm and a melt temperature of 230 deg C. The extruded sheet was cooled on a chill-roll stack of three rolls, the first roll 6-inch diameter, second and third rolls 12-inch diameter. These rolls were cooled with hot water having a temperature of about 65 deg C. (hereinafter referred to as the "quench temperature"). The total thicknesses of the finished sheeting were in the 1.30 mm to 1.50 mm range.
The sheet described above was thermoformed on an Illig RDM37/10 machine using ceramic sheet heaters (from both sides) operating at 320 to 380 deg C. temperature resulting in a sheet temperature of 154 to 164 deg C., air pressure of 600 kPa.; plug assist; and molding rates of 10 to 14 cycles/min. The shape and size of the mold and finished containers were a cylindrical can shape, 83 mm diameter, and 93 mm deep, with a 3.5 mm-wide flange. The mold was maintained at 15 deg C. temperature with cooling water.
Using the test method of ASTM D1003, the haze of the multi-layer container wall with the amorphous polyamide core was determined to be 8.9%.
Using the equipment and process described in Example 1, several five-layer and mono-layer sheets were made for thermoforming. The amorphous polyamide used in Samples A and B was a condensation polymer of 1,6-diamino hexane with a mixture of isophthalic (I) and terephthalic (T) acids as indicated in Table 1. Layers of the adhesive resin used in Example 1 were interposed between the outer layers of polypropylene and the core layer of amorphous polyamide. Subsequently, all of these sheets were thermoformed, using the equipment and conditions described in Example 1, except that the mold, and consequently, the containers in Example 2 were can-shaped, having diameters of 67 mm and depths of 68 mm, with a flange outer diameter of 70 mm. The materials of these samples, the quench temperature used in extruding them into sheets, and the haze values of the sidewalls of the containers made from these materials (measured as described in Example 1) are shown in Table 1.
TABLE 1
______________________________________
No. of Core Surface
Quench
Sample
Layers Layer Layer Temp.* Haze %
______________________________________
A 5 Polyamide.sup.1
PP.sup.2
88 9.6
B 1 -- " 90 14.1
C 5 Polyamide.sup.3
PP.sup.4
90 16.0
D 1 -- " 94 17.0
E 1 -- PP.sup.5
94 78.9
______________________________________
.sup.1 6I/6T 70/30
.sup.2 Himont PF101 polypropylene (Hercules, Inc., Wilmington, Delaware)
.sup.3 6I/6T 70/30 + 3.5% 4,4bis(aminocyclohexyl)methane
.sup.4 Shell 5524 polypropylene (Shell Chemical Company)
.sup.5 Himont PD064 polypropylene (Hercules, Inc.)
*Degrees C
Using the same equipment and process described in Example 1, 5- and 3-layer sheets were made. The polyamides used were identical to those described above in Table 1, and the adhesive materials used were identical to those used in Example 1. These sheets were thermoformed along with some commercially made sheets, using a mold to make can-shaped containers, 67 mm diameter, 102 mm deep, with a flange diameter of 70 mm. The materials of these samples, the quench temperatures used in the extrusion process and the haze values of the sidewalls of the containers made from the materials are given in Table 2. These data indicate that the quenching temperature can have an important effect on the optical qualities of containers made from coextruding and thermoforming samples of polypropylene/amorphous nylon. A quench temperature of about 65 to 70 degrees C. appears to be optimal.
TABLE 2
______________________________________
No. of Core Surface
Quench
Sample
Layers Layer Layer Temp.* Haze %
______________________________________
F 5 Polyamide.sup.1
PP.sup.4
65 11.0
G 1 -- PP.sup.4
70 7.7
H 3** Polyamide.sup.3
PP.sup.5
94 9.2
I 1 -- PP.sup.5
90 57.5
J 5 EVOH PP.sup.5
95 53.2
K 5 PVDC PP.sup.6
-- 34.2
______________________________________
Subscripts 1-5 same as Table 1
.sup.6 Unknown polypropylene
*Degrees C
**The polyamide is the outside surface layer
Claims (19)
1. A container having a multi-layer structure comprising a plurality of thermoplastic resins, wherein at least one layer of the container comprises one or more amorphous polyamides and at least one of the remaining layers comprises an oriented thermoplastic resin.
2. A container according to claim 1 where a layer of resin having an adhesion to both the amorphous polyamide and the orienting thermoplastic resin is interposed between said layers of amorphous polyamide and oriented thermoplastic resin.
3. A container according to claim 2 which has three layers, a first layer of oriented thermoplastic resin, a second layer of amorphous polyamide and, interposed therebetween, a third layer of resin having an adhesion to both of said first and second layers.
4. A container according to claim 2 which has five layers, two outer layers of oriented thermoplastic resin, a core layer of amorphous polyamide and, interposed between said core layer and each of said outer layers, layers of resin having an adhesion to both of said core and outer layers.
5. A container according to claim 1 where the oriented thermoplastic resin is polypropyene.
6. A container according to claim 2 where the oriented thermoplastic resin is polypropylene.
7. A container according to claim 1 where the amorphous polyamide is a copolymer of hexamethylene diamine and either isophthalic acid or a mixture of isophthalic and terephthalic acids.
8. A container according to claim 7 where the isophthalic and terephthalic acids are present in a molar ratio of between about 60:40 to 100:0.
9. A container according to claim 8 where the isophthalic and terephthalic acids are present in a molar ratio of about 70:30.
10. A container according to claim 2 where the amorphous polyamide is a copolymer of hexamethylene diamine and either isophthalic acid or a mixture of isophthalic and terephthalic acids.
11. A container according to claim 10 where the isophthalic and terephthalic acids are present in a molar ratio of between about 60:40 to 1100:0.
12. A container according to claim 11 where the isophthalic and terephthalic acids are present in a molar ratio of about 70:30.
13. A container according to claim 5 where the amorphous polyamide is a copolymer of hexamethylene diamine and either isophthalic acid or a mixture of isophthalic and terephthalic acids.
14. A container according to claim 13 where the isophthalic and terephthalic acids are present in a molar ratio of between about 60:40 to 100:0.
15. A container according to claim 14 where the isophthalic and terephthalic acids are present in a molar ratio of about 70:30.
16. A container according to claim 6 where the amorphous polyamide is a copolymer of hexamethylene diamine and either isophthalic acid or a mixture of isophthalic and terephthalic acids.
17. A container according to claim 16 where the isophthalic and terephthalic acids are present in a molar ratio of between about 60:40 to 100:0.
18. A container according to claim 17 where the isophthalic and terephthalic acids are present in a molar ratio of about 70:30.
19. A container according to claim 2 where the adhesive resin is a blend of maleic anhydride-grafted ethylene-propylene copolymer in an ethylene vinyl acetate copolymer.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US06/926,948 USH469H (en) | 1986-11-04 | 1986-11-04 | Clear plastic container with good gas and water vapor barrier properties |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US06/926,948 USH469H (en) | 1986-11-04 | 1986-11-04 | Clear plastic container with good gas and water vapor barrier properties |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| USH469H true USH469H (en) | 1988-05-03 |
Family
ID=25453939
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US06/926,948 Abandoned USH469H (en) | 1986-11-04 | 1986-11-04 | Clear plastic container with good gas and water vapor barrier properties |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | USH469H (en) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0378856A1 (en) * | 1989-01-18 | 1990-07-25 | General Electric Company | Polycarbonate container having internal layers of amorphous polyamide |
| US4989738A (en) * | 1989-10-13 | 1991-02-05 | General Electric Company | Plastic bottle with reinforced concave bottom |
| US5126402A (en) * | 1990-07-12 | 1992-06-30 | E. I. Du Pont De Nemours And Company | Blends and structures based on ethylene vinyl alcohol copolymer and selected amorphous polyamides |
| US6068933A (en) * | 1996-02-15 | 2000-05-30 | American National Can Company | Thermoformable multilayer polymeric film |
| US6083450A (en) * | 1997-02-28 | 2000-07-04 | Owens-Brockway Plastic Products Inc. | Multilayer container package |
| US6500559B2 (en) | 1998-05-04 | 2002-12-31 | Cryovac, Inc. | Multiple layer film with amorphous polyamide layer |
| US20030064181A1 (en) * | 2001-09-07 | 2003-04-03 | Brian Ingraham | Peelable film and packaging made therefrom |
| US20030162923A1 (en) * | 2002-02-22 | 2003-08-28 | Asahi Glass Company, Limited | Fluorocopolymer |
| US6670007B1 (en) | 1999-04-07 | 2003-12-30 | Owens-Brockway Plastic Products Inc. | Multilayer container |
| US20070026179A1 (en) * | 2005-07-26 | 2007-02-01 | Jan De Boer | PVC tube provided with a friction-reducing layer and method for the production thereof |
| US20070292646A1 (en) * | 1999-04-07 | 2007-12-20 | Graham Packaging Company L.P. | Multilayer container |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2208778A1 (en) | 1972-12-05 | 1974-06-28 | Ici Ltd | Polyamide and polyolefin composite article prodn. - by successive injection into mould, using grafted polypropylene as adhesion aid |
| CA996018A (en) | 1972-12-27 | 1976-08-31 | James C. Wang | Reprocessable thermoplastic laminates and articles |
| US4058647A (en) | 1975-02-27 | 1977-11-15 | Mitsubishi Petrochemical Co., Ltd. | Process for preparing laminated resin product |
| US4104404A (en) | 1975-03-10 | 1978-08-01 | W. R. Grace & Co. | Cross-linked amide/olefin polymeric tubular film coextruded laminates |
| US4182457A (en) | 1976-08-10 | 1980-01-08 | Toyo Seikan Kaisha Limited | Multilayer container |
| US4217161A (en) | 1976-08-10 | 1980-08-12 | Toyo Seikan Kaisha Limited | Process for making a container |
| US4431705A (en) | 1981-04-14 | 1984-02-14 | Unitika Ltd. | Shrinkable polyamide film and process for its production |
| US4486507A (en) | 1981-05-14 | 1984-12-04 | Feldmuhle Aktiengesellschaft | Transparent, shrinkable film, consisting of one or several layers |
| US4617240A (en) | 1981-02-20 | 1986-10-14 | American Can Company | Coextruded film of polypropylene, polypropylene blend, and nylon |
| US4654240A (en) | 1984-09-28 | 1987-03-31 | Baxter Travenol Laboratories, Inc. | Laminate film for flexible containers |
| US4668571A (en) | 1986-05-02 | 1987-05-26 | The Dow Chemical Company | Coextrustion tie layer and process for producing such tie layer |
-
1986
- 1986-11-04 US US06/926,948 patent/USH469H/en not_active Abandoned
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2208778A1 (en) | 1972-12-05 | 1974-06-28 | Ici Ltd | Polyamide and polyolefin composite article prodn. - by successive injection into mould, using grafted polypropylene as adhesion aid |
| CA996018A (en) | 1972-12-27 | 1976-08-31 | James C. Wang | Reprocessable thermoplastic laminates and articles |
| US4058647A (en) | 1975-02-27 | 1977-11-15 | Mitsubishi Petrochemical Co., Ltd. | Process for preparing laminated resin product |
| US4104404A (en) | 1975-03-10 | 1978-08-01 | W. R. Grace & Co. | Cross-linked amide/olefin polymeric tubular film coextruded laminates |
| US4182457A (en) | 1976-08-10 | 1980-01-08 | Toyo Seikan Kaisha Limited | Multilayer container |
| US4217161A (en) | 1976-08-10 | 1980-08-12 | Toyo Seikan Kaisha Limited | Process for making a container |
| US4617240A (en) | 1981-02-20 | 1986-10-14 | American Can Company | Coextruded film of polypropylene, polypropylene blend, and nylon |
| US4431705A (en) | 1981-04-14 | 1984-02-14 | Unitika Ltd. | Shrinkable polyamide film and process for its production |
| US4486507A (en) | 1981-05-14 | 1984-12-04 | Feldmuhle Aktiengesellschaft | Transparent, shrinkable film, consisting of one or several layers |
| US4654240A (en) | 1984-09-28 | 1987-03-31 | Baxter Travenol Laboratories, Inc. | Laminate film for flexible containers |
| US4668571A (en) | 1986-05-02 | 1987-05-26 | The Dow Chemical Company | Coextrustion tie layer and process for producing such tie layer |
Cited By (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0378856A1 (en) * | 1989-01-18 | 1990-07-25 | General Electric Company | Polycarbonate container having internal layers of amorphous polyamide |
| US4989738A (en) * | 1989-10-13 | 1991-02-05 | General Electric Company | Plastic bottle with reinforced concave bottom |
| US5126402A (en) * | 1990-07-12 | 1992-06-30 | E. I. Du Pont De Nemours And Company | Blends and structures based on ethylene vinyl alcohol copolymer and selected amorphous polyamides |
| US6562476B2 (en) | 1996-02-15 | 2003-05-13 | Pechiney Emballage Flexible Europe | Thermoformable multilayer polymeric film |
| US6068933A (en) * | 1996-02-15 | 2000-05-30 | American National Can Company | Thermoformable multilayer polymeric film |
| US6083450A (en) * | 1997-02-28 | 2000-07-04 | Owens-Brockway Plastic Products Inc. | Multilayer container package |
| US6238201B1 (en) | 1997-02-28 | 2001-05-29 | Owens-Brockway Plastic Products Inc. | Multilayer container package molding apparatus |
| US20050230419A1 (en) * | 1997-02-28 | 2005-10-20 | Safian John W | Multilayer container package |
| US6500559B2 (en) | 1998-05-04 | 2002-12-31 | Cryovac, Inc. | Multiple layer film with amorphous polyamide layer |
| US20030148123A1 (en) * | 1998-05-04 | 2003-08-07 | Musco Carlo E. | Multiple layer film with amorphous polyamide layer |
| US6858313B2 (en) | 1998-05-04 | 2005-02-22 | Cryovac, Inc. | Multiple layer film with amorphous polyamide layer |
| US20070292646A1 (en) * | 1999-04-07 | 2007-12-20 | Graham Packaging Company L.P. | Multilayer container |
| US6670007B1 (en) | 1999-04-07 | 2003-12-30 | Owens-Brockway Plastic Products Inc. | Multilayer container |
| US6893672B2 (en) | 2001-09-07 | 2005-05-17 | Pechiney Emballage Flexible Europe | Peelable film and packaging made therefrom |
| US20030064181A1 (en) * | 2001-09-07 | 2003-04-03 | Brian Ingraham | Peelable film and packaging made therefrom |
| US20040142134A1 (en) * | 2002-02-22 | 2004-07-22 | Asahi Glass Company, Limited | Fluorocopolymer |
| US6703465B2 (en) * | 2002-02-22 | 2004-03-09 | Asahi Glass Company, Limited | Fluorocopolymer |
| US20030162923A1 (en) * | 2002-02-22 | 2003-08-28 | Asahi Glass Company, Limited | Fluorocopolymer |
| US7273645B2 (en) | 2002-02-22 | 2007-09-25 | Asahi Glass Company, Limited | Fluorocopolymer |
| US20070026179A1 (en) * | 2005-07-26 | 2007-02-01 | Jan De Boer | PVC tube provided with a friction-reducing layer and method for the production thereof |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4990562A (en) | Blends of ethylene vinyl alcohol copolymer and amorphous polyamide, and multilayer containers made therefrom | |
| US4800129A (en) | Multi-layer plastic container | |
| US5360670A (en) | Multilayered structure containing an ethylene-vinyl alcohol layer | |
| US5126401A (en) | Blends of ethylene vinyl alcohol copolymer and polyamides, and multilayer containers made therefrom | |
| US5064716A (en) | Blends of ethylene vinyl alcohol copolymer and amorphous polyamide, and multilayer containers made therefrom | |
| JPS58129035A (en) | Resin composition having excellent drawability | |
| USH469H (en) | Clear plastic container with good gas and water vapor barrier properties | |
| US5286575A (en) | Blends of ethylene vinyl alcohol copolymer and polyamides, and multilayer containers made therefrom | |
| CA1324312C (en) | Multilayered structure using ethylene vinyl-alcohol copolymer | |
| EP0305146B1 (en) | Blends of ethylene vinyl alcohol copolymer and amorphous polyamide and multilayer containers made therefrom | |
| EP0008891B1 (en) | Polyamide laminates | |
| JP2000044756A (en) | Method for producing saponified ethylene-vinyl acetate copolymer composition | |
| JPS6076325A (en) | Biaxially oriented formed product of thermoplastic polyester composition | |
| EP0699125B1 (en) | Process for thermoforming evoh barrier sheets and products relating thereto | |
| JPH0473695B2 (en) | ||
| AU704731B2 (en) | Resin composition and shaped article having a layer comprising the same | |
| JP4017275B2 (en) | Resin composition and use thereof | |
| JPH1158490A (en) | Manufacture of multilayer oriented polyamide film | |
| CN118632778A (en) | Uniaxially stretched multilayer structure and method for producing the same | |
| JP2025155516A (en) | Polyamide resin film, packaging material | |
| JPH02113940A (en) | Multilayer container | |
| JP2025058723A (en) | Biaxially oriented multilayer structure and method for producing same | |
| JP3506568B2 (en) | Polyalcohol thermoformed container | |
| WO2024228366A1 (en) | Multilayer structure, molded body, container, food container, and method for producing multilayer structure | |
| JP2001047571A (en) | Multilayer container |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: E.I. DU PONT DE NEMOURS AND COMPANY, WILMINGTON, D Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:DEAK, GEDEON I.;REEL/FRAME:004677/0866 Effective date: 19861104 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |