USH1643H - Ductile metal ligament fiber coatings for ceramic composites - Google Patents

Ductile metal ligament fiber coatings for ceramic composites Download PDF

Info

Publication number
USH1643H
USH1643H US08/637,338 US63733896A USH1643H US H1643 H USH1643 H US H1643H US 63733896 A US63733896 A US 63733896A US H1643 H USH1643 H US H1643H
Authority
US
United States
Prior art keywords
fiber
matrix
metal
composite
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US08/637,338
Inventor
Randall S. Hay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Air Force
Original Assignee
US Air Force
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Air Force filed Critical US Air Force
Priority to US08/637,338 priority Critical patent/USH1643H/en
Assigned to AIR FORCE, UNITED STATES reassignment AIR FORCE, UNITED STATES ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAY, RANDALL S.
Application granted granted Critical
Publication of USH1643H publication Critical patent/USH1643H/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62876Coating fibres with metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62897Coatings characterised by their thickness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3

Definitions

  • This invention relates to a ceramic composite material composed of a refractory fiber reinforcement and a ceramic matrix.
  • ceramics have superior high-temperature strength and modulus, lower density, and lower thermal conductivity than metallic materials.
  • the principal disadvantages of ceramics as structural materials are their relatively low failure strain, low fracture toughness and catastrophic brittle failure characteristics. Because of these intrinsic limitations, monolithic ceramics lack the properties of reliability and durability that are necessary for structural design acceptance.
  • high strength/high toughness composites can be obtained.
  • Successfully tailored ceramic-matrix composites exhibit highly non-linear stress-strain behavior with ultimate strengths, failure strains and fracture toughnesses substantially greater than that of the unreinforced matrix.
  • fiber coatings must be oxidation resistant, stable with the fiber and matrix, and function over a wide temperature range.
  • oxidation-resistant fiber coatings have been proposed as alternatives to carbon and boron nitride.
  • Fugitive coatings involving application of graphite or a refractory metal that forms a volatile oxide, such as molybdenum or tungsten, are one such proposal.
  • the composites are densified in a reducing atmosphere and then heat-treated in an oxidizing atmosphere, leaving void space where there once was coating.
  • Ductile coatings of a refractory noble metal have been proposed.
  • Cleavable coatings of a refractory oxide such as beta-alumina are under consideration. Residual thermal stress and stress developed by reactions are also considerations.
  • a reinforcing fiber suitable for high temperature use must also be creep resistant.
  • anisotropic, single crystal alumina is currently the most creep resistant oxide fiber commercially available. Ceramic composites made with these single crystal fibers and yttrium-aluminum garnet (Y 3 Al 5 O 12 , YAG) matrices have been shown to be chemically stable. The CTE mismatch between these phases is small, but the anisotropy of thermal expansion in alumina causes residual stress of about 150 MPa (compressive) and about 60 MPa (tensile) to develop in the radial and axial directions, respectively, for c-axis alumina fibers in a YAG matrix.
  • an improved method for fabricating ceramic composites particularly single crystal alumina fiber and yttrium-aluminum garnet (YAG) matrix composites.
  • the method of this invention comprises the steps of (a) coating the fiber with a metal which is stable under oxidizing conditions, (b) coating the metal-coated fiber with a fugitive phase, (c) incorporating the coated fiber into a matrix material and (d) densifying the fiber-matrix into a composite.
  • the ceramic reinforcing fibers employed herein may be single crystal alumina fiber (sapphire), polycrystalline alumina fiber, yttrium-aluminum garnet (YAG) fiber, polycrystalline YAG or directionally solidified YAG/alumina eutectic fibers.
  • the ceramic matrix comprises material selected from the group consisting of Al 2 O 3 , beta-aluminas, magnetoplumbites, yttrium-aluminum garnet (Y 3 Al 5 O 12 , YAG), MgAl 2 O 4 , Ca/ZrO 2 , GdAlO 3 and Gd 3 Al 5 O 12 .
  • Metals suitable for use in the present invention include palladium, platinum, rhodium or any other metal which is stable under oxidizing conditions from room temperature or below to the maximum use temperature of the densified composite, i.e., up to about 1800° C.
  • the metal can be used alone or alloyed with other metals, such as nickel, aluminum, chromium, iron or the like, so long as oxidation resistance is not severely compromised.
  • the fugitive phase can be any such fugitive phase known in the art, such as carbon or molybdenum.
  • the fiber/matrix composite can be fabricated using techniques known in the art.
  • a composite preform can be prepared by alternately layering a plurality of layers of fiber and matrix powder.
  • the preform can then be pressureless-sintered at about 1700° C., and then hot-isostatically pressed at about 1700° C. with about 200 MPa applied pressure.
  • the fiber, coated with the metal and the fugitive phase be incorporated with a suitable matrix into a composite under conditions that preserve the fugitive phase, such as reducing or inert gas conditions.
  • the fugitive phase is removed by heat treatment in an atmosphere that causes the fugitive phase to volatilize, usually by forming a volatile oxide.
  • Ligaments of the metal occupy the void space remaining.
  • the ligaments should have a thickness ( ⁇ ), volume-percent metal, and metal composition such that the ductility of the metal ligaments relieves any compressive residual stress, and such that the toughness and strain to failure of the composite is optimized by promotion of crack deflection and fiber pullout along the metal ligament interface.
  • Crack deflection and fiber pullout are usually associated with an interface that is weaker than the fiber or matrix by a factor of at least four.
  • palladium is the most ductile, platinum intermediate, and rhodium has very little ductility at room temperature.
  • a desired ductility over a given temperature range can be achieved by forming alloys of these metals, and other metals, such as nickel, aluminum, chromium and iron, so long as oxidation resistance is not severely compromised.
  • the ligament volume percent and thickness can be controlled to further optimize the mechanical properties of the fiber-matrix interface.
  • Fiber coating solutions were prepared by dissolving PdCl 2 in distilled water (90 g/l) and Mo powder in aqua regia (75 g/l). These solutions were mixed to provide a Pd:Mo mole ratio of 40:60. The mixed solutions was applied to Saphikon® continuous single crystal alumina fiber using a vertical continuous fiber coater, such as that disclosed by Hay et al, U.S. Pat. No. 5,217,533.
  • the fibers were coated five times with the 40:60 mixture in air at 1100° C. at 10 cm/s.
  • the coated fibers were laid up into tapes and vacuum hot pressed with 1 ⁇ m Ceralox® YAG powder in a 11/4-inch square graphite die at 1600°-1700° C. and 25 MPa.
  • the fiber volume fraction was about 5 volume percent. Higher densities were achieved when the composite was cold pressed at 20 MPa and held at that pressure to about 1000° C. No pressure was applied during rapid heat up (5 min) between 1000° and 1500° C. 25 MPa pressure was re-applied at 1500° C. up to final temperature.
  • the fiber-matrix interface in the hot pressed composites was observed by SEM and analytical TEM. Separate Mo and Pd grains were found in a continuous interlayer 0.5-2.0 ⁇ m thick along the fiber-matrix interface. No evidence of alloying was found.
  • the samples were heat-treated in air between 1400° and 1600° C. for up to 100 hours, then characterized by optical microscopy, SEM and analytical TEM. In all cases, the Mo had been oxidized away, leaving isolated Pd grains and void space behind.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

An improved method for fabricating ceramic composites, particularly single crystal alumina fiber and yttrium-aluminum garnet (YAG) matrix composites. The method of this invention comprises the steps of (a) coating the fiber with a metal which is stable under oxidizing conditions, such as Pd, (b) coating the metal-coated fiber with a fugitive phase, such as Mo, (c) incorporating the coated fiber into a matrix material, (d) densifying the fiber-matrix into a composite and (e) heat treating the composite under oxidizing conditions to remove the fugitive phase.

Description

RIGHTS OF THE GOVERNMENT
The invention described herein may be manufactured and used by or for the Government of the United States for all governmental purposes without the payment of any royalty.
This invention relates to a ceramic composite material composed of a refractory fiber reinforcement and a ceramic matrix.
In general, ceramics have superior high-temperature strength and modulus, lower density, and lower thermal conductivity than metallic materials. The principal disadvantages of ceramics as structural materials are their relatively low failure strain, low fracture toughness and catastrophic brittle failure characteristics. Because of these intrinsic limitations, monolithic ceramics lack the properties of reliability and durability that are necessary for structural design acceptance. However, by incorporating high strength, relatively high modulus fibers into brittle ceramic matrices, high strength/high toughness composites can be obtained. Successfully tailored ceramic-matrix composites exhibit highly non-linear stress-strain behavior with ultimate strengths, failure strains and fracture toughnesses substantially greater than that of the unreinforced matrix.
It is well known that in order to exploit the benefits of fiber-reinforced ceramic-matrix composites, a relatively weak fiber/matrix interfacial bond strength is necessary to prevent catastrophic failure from propagating matrix cracks. The interface must provide sufficient fiber/matrix bonding for effective load transfer, but must be weak enough to debond and slip in the wake of matrix cracking while leaving the fibers to bridge the cracks and support the far-field applied load. Currently available fiber coatings such as carbon and boron nitride have demonstrated the desired mechanical characteristics necessary to enhance the composite strength and toughness, however the utility of these composites are severely limited by their susceptibility to oxidation embrittlement and strength degradation when stressed at or beyond the matrix cracking stress point and subsequently exposed to high-temperature oxidation. This fundamental limitation is due to the accelerated environmental degradation of the fiber coating at elevated temperatures in air following the onset of matrix cracking.
For air-breathing engines, fiber coatings must be oxidation resistant, stable with the fiber and matrix, and function over a wide temperature range. Several oxidation-resistant fiber coatings have been proposed as alternatives to carbon and boron nitride. Fugitive coatings involving application of graphite or a refractory metal that forms a volatile oxide, such as molybdenum or tungsten, are one such proposal. The composites are densified in a reducing atmosphere and then heat-treated in an oxidizing atmosphere, leaving void space where there once was coating. Ductile coatings of a refractory noble metal have been proposed. Cleavable coatings of a refractory oxide such as beta-alumina are under consideration. Residual thermal stress and stress developed by reactions are also considerations.
A reinforcing fiber suitable for high temperature use must also be creep resistant. Although anisotropic, single crystal alumina is currently the most creep resistant oxide fiber commercially available. Ceramic composites made with these single crystal fibers and yttrium-aluminum garnet (Y3 Al5 O12, YAG) matrices have been shown to be chemically stable. The CTE mismatch between these phases is small, but the anisotropy of thermal expansion in alumina causes residual stress of about 150 MPa (compressive) and about 60 MPa (tensile) to develop in the radial and axial directions, respectively, for c-axis alumina fibers in a YAG matrix.
I have found that single crystal alumina fiber and yttrium-aluminum garnet (YAG) matrix composites are improved by coating the fiber with a metal and a fugitive phase, prior to incorporating the fiber in the matrix.
Accordingly, it is an object of the present invention to provide an improved method for fabricating ceramic composites.
Other objects and advantages of the present invention will be apparent to those skilled in the art.
SUMMARY OF THE INVENTION
In accordance with the present invention there is provided an improved method for fabricating ceramic composites, particularly single crystal alumina fiber and yttrium-aluminum garnet (YAG) matrix composites. The method of this invention comprises the steps of (a) coating the fiber with a metal which is stable under oxidizing conditions, (b) coating the metal-coated fiber with a fugitive phase, (c) incorporating the coated fiber into a matrix material and (d) densifying the fiber-matrix into a composite.
DETAILED DESCRIPTION OF THE INVENTION
The ceramic reinforcing fibers employed herein may be single crystal alumina fiber (sapphire), polycrystalline alumina fiber, yttrium-aluminum garnet (YAG) fiber, polycrystalline YAG or directionally solidified YAG/alumina eutectic fibers.
The ceramic matrix comprises material selected from the group consisting of Al2 O3, beta-aluminas, magnetoplumbites, yttrium-aluminum garnet (Y3 Al5 O12, YAG), MgAl2 O4, Ca/ZrO2, GdAlO3 and Gd3 Al5 O12.
Metals suitable for use in the present invention include palladium, platinum, rhodium or any other metal which is stable under oxidizing conditions from room temperature or below to the maximum use temperature of the densified composite, i.e., up to about 1800° C. The metal can be used alone or alloyed with other metals, such as nickel, aluminum, chromium, iron or the like, so long as oxidation resistance is not severely compromised.
The fugitive phase can be any such fugitive phase known in the art, such as carbon or molybdenum.
The fiber/matrix composite can be fabricated using techniques known in the art. For example, a composite preform can be prepared by alternately layering a plurality of layers of fiber and matrix powder. The preform can then be pressureless-sintered at about 1700° C., and then hot-isostatically pressed at about 1700° C. with about 200 MPa applied pressure.
It is necessary that the fiber, coated with the metal and the fugitive phase, be incorporated with a suitable matrix into a composite under conditions that preserve the fugitive phase, such as reducing or inert gas conditions. After the composite is densified, the fugitive phase is removed by heat treatment in an atmosphere that causes the fugitive phase to volatilize, usually by forming a volatile oxide. Ligaments of the metal occupy the void space remaining. The ligaments should have a thickness (δ), volume-percent metal, and metal composition such that the ductility of the metal ligaments relieves any compressive residual stress, and such that the toughness and strain to failure of the composite is optimized by promotion of crack deflection and fiber pullout along the metal ligament interface. Crack deflection and fiber pullout are usually associated with an interface that is weaker than the fiber or matrix by a factor of at least four. For example, of the refractory noble metals, palladium is the most ductile, platinum intermediate, and rhodium has very little ductility at room temperature. A desired ductility over a given temperature range can be achieved by forming alloys of these metals, and other metals, such as nickel, aluminum, chromium and iron, so long as oxidation resistance is not severely compromised. For a given metal composition, the ligament volume percent and thickness can be controlled to further optimize the mechanical properties of the fiber-matrix interface.
The following example illustrates the invention:
EXAMPLE
Fiber coating solutions were prepared by dissolving PdCl2 in distilled water (90 g/l) and Mo powder in aqua regia (75 g/l). These solutions were mixed to provide a Pd:Mo mole ratio of 40:60. The mixed solutions was applied to Saphikon® continuous single crystal alumina fiber using a vertical continuous fiber coater, such as that disclosed by Hay et al, U.S. Pat. No. 5,217,533.
The fibers were coated five times with the 40:60 mixture in air at 1100° C. at 10 cm/s. The coated fibers were laid up into tapes and vacuum hot pressed with 1 μm Ceralox® YAG powder in a 11/4-inch square graphite die at 1600°-1700° C. and 25 MPa. The fiber volume fraction was about 5 volume percent. Higher densities were achieved when the composite was cold pressed at 20 MPa and held at that pressure to about 1000° C. No pressure was applied during rapid heat up (5 min) between 1000° and 1500° C. 25 MPa pressure was re-applied at 1500° C. up to final temperature.
The fiber-matrix interface in the hot pressed composites was observed by SEM and analytical TEM. Separate Mo and Pd grains were found in a continuous interlayer 0.5-2.0 μm thick along the fiber-matrix interface. No evidence of alloying was found. The samples were heat-treated in air between 1400° and 1600° C. for up to 100 hours, then characterized by optical microscopy, SEM and analytical TEM. In all cases, the Mo had been oxidized away, leaving isolated Pd grains and void space behind.
Various modifications may be made in the instant invention without departing from the spirit and scope of the appended claims.

Claims (5)

I claim:
1. An improved method for fabricating ceramic composites of ceramic reinforcing fiber and ceramic matrix, which comprises the steps of (a) coating the fiber with a metal which is stable under oxidizing conditions from about room temperature to about 1800° C., (b) coating the metal-coated fiber with a fugitive phase, (c) incorporating the coated fiber into a matrix material, (d) densifying the fiber-matrix into a composite and (e) heat treating the composite under oxidizing conditions to remove the fugitive phase.
2. The method of claim 1 wherein said metal is selected from the group consisting of palladium, platinum and rhodium.
3. The method of claim 1 wherein said fugitive phase is carbon or molybdenum.
4. The method of claim 1 wherein said fiber is continuous single crystal alumina fiber.
5. The method of claim 1 wherein said matrix is yttrium-aluminum garnet.
US08/637,338 1996-04-10 1996-04-10 Ductile metal ligament fiber coatings for ceramic composites Abandoned USH1643H (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/637,338 USH1643H (en) 1996-04-10 1996-04-10 Ductile metal ligament fiber coatings for ceramic composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/637,338 USH1643H (en) 1996-04-10 1996-04-10 Ductile metal ligament fiber coatings for ceramic composites

Publications (1)

Publication Number Publication Date
USH1643H true USH1643H (en) 1997-04-01

Family

ID=24555505

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/637,338 Abandoned USH1643H (en) 1996-04-10 1996-04-10 Ductile metal ligament fiber coatings for ceramic composites

Country Status (1)

Country Link
US (1) USH1643H (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8298286B2 (en) 2006-12-19 2012-10-30 Warsaw Orthopedic, Inc. Non-linear vertebral mesh
CN105350080A (en) * 2015-11-23 2016-02-24 东莞华晶粉末冶金有限公司 Silicon carbide composite whisker and preparation method thereof, and composite material
CN105418165A (en) * 2015-11-09 2016-03-23 东莞华晶粉末冶金有限公司 Alumina composite whisker and preparation method and composite thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8298286B2 (en) 2006-12-19 2012-10-30 Warsaw Orthopedic, Inc. Non-linear vertebral mesh
CN105418165A (en) * 2015-11-09 2016-03-23 东莞华晶粉末冶金有限公司 Alumina composite whisker and preparation method and composite thereof
CN105418165B (en) * 2015-11-09 2018-08-31 东莞华晶粉末冶金有限公司 A kind of alumina composite whisker and preparation method thereof, composite material
CN105350080A (en) * 2015-11-23 2016-02-24 东莞华晶粉末冶金有限公司 Silicon carbide composite whisker and preparation method thereof, and composite material
CN105350080B (en) * 2015-11-23 2017-10-13 东莞华晶粉末冶金有限公司 A kind of silicon carbide compound whisker and preparation method thereof, composite

Similar Documents

Publication Publication Date Title
Raj Fundamental research in structural ceramics for service near 2000 C
Donald et al. Ceramic-matrix composites
US5876659A (en) Process for producing fiber reinforced composite
Rendtel et al. Silicon nitride/silicon carbide nanocomposite materials: II, hot strength, creep, and oxidation resistance
JP3343150B2 (en) Protective coating with reactive interlayer on reinforcement in silicon carbide composite
US5480707A (en) Toughened ceramic composite materials comprising coated refractory fibers in a ceramic matrix wherein the fibers are coated with carbon and an additional coating of ceramic material and carbon mixture
Yang et al. Interface and mechanical behavior of MoSi2-based composites
Guo Fiber size effects on mechanical behaviours of SiC fibres-reinforced Ti3AlC2 matrix composites
Barron‐Antolin et al. Properties of Fiber‐Reinforced Alumina Matrix Composites
EP0188129A2 (en) High toughness ceramics and process for the preparation thereof
US5705280A (en) Composite materials and methods of manufacture and use
USH1643H (en) Ductile metal ligament fiber coatings for ceramic composites
Baskaran et al. Fibrous monolithic ceramics: IV, mechanical properties and oxidation behavior of the alumina/nickel systein
Kim et al. Nicalon-fibre-reinforced silicon-carbide composites via polymer solution infiltration and chemical vapour infiltration
US7427428B1 (en) Interphase for ceramic matrix composites reinforced by non-oxide ceramic fibers
Bansal Mechanical behavior of silicon carbide fiber-reinforced strontium aluminosilicate glass–ceramic composites
Mehan et al. Nickel Alloys Reinforced with a-A1203 Filaments
Hay et al. Molybdenum‐Palladium Fiber‐Matrix Interlayers for Ceramic Composites
EP0639165A1 (en) A CERAMIC COMPOSITE, PARTICULARLY FOR USE AT TEMPERATURES ABOVE 1400 oC.
Vasilos et al. Strength properties of fiber-reinforced composites
Hebsur et al. Strong, tough, and pest resistant MoSi2-base hybrid composite for structural applications
Chiu et al. A study of fiber coating in Al2O3 fiber-reinforced NiAlFe matrix composites
Hay Fiber‐Matrix Interfaces for Alumina Fiber‐Yag Matrix Composites
Ochiai et al. Influence of interfacial reaction on tensile strength of SiC fiber embedded in a γ-titanium-aluminide alloy
Bhatt Properties of silicon carbide fiber-reinforced silicon nitride matrix composites

Legal Events

Date Code Title Description
AS Assignment

Owner name: AIR FORCE, UNITED STATES, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAY, RANDALL S.;REEL/FRAME:007937/0502

Effective date: 19960405

STCF Information on status: patent grant

Free format text: PATENTED CASE