USH1481H - Offset corrugated sandwich construction - Google Patents
Offset corrugated sandwich construction Download PDFInfo
- Publication number
- USH1481H USH1481H US08/082,069 US8206993A USH1481H US H1481 H USH1481 H US H1481H US 8206993 A US8206993 A US 8206993A US H1481 H USH1481 H US H1481H
- Authority
- US
- United States
- Prior art keywords
- sandwich construction
- offset
- troughs
- peaks
- corrugated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000010276 construction Methods 0.000 title claims abstract description 27
- 239000011162 core material Substances 0.000 description 15
- 239000000463 material Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 241000264877 Hippospongia communis Species 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000002984 plastic foam Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/26—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
- B32B3/28—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer comprising a deformed thin sheet, i.e. the layer having its entire thickness deformed out of the plane, e.g. corrugated, crumpled
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B31—MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
- B31D—MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER, NOT PROVIDED FOR IN SUBCLASSES B31B OR B31C
- B31D3/00—Making articles of cellular structure, e.g. insulating board
- B31D3/005—Making cellular structures from corrugated webs or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/40—Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
Definitions
- the present invention relates generally to sandwich constructions suitable for use in structural and non-structural members, and more particularly to sandwich constructions of low-density cores bonded between thin-gauge, high-strength face sheds for use in a wide range of military, industrial and commercial components.
- Sandwich constructions are finding broad application as structural and non-structural members in boats, aircraft, furniture, appliances, and other items requiring high strength, light-weight materials. They typically include face sheets bonded to either side of a low density core and can be made of such materials as metals, plastics or composite fiberglass laminates for rigidity and strength.
- core materials are rigid plastic foams, honeycombs, truss-core corrugations and an arrangement of adjacent, inclined rectangular-shaped facets connected by intermediate rows of adjoining parallelagram-shaped facets.
- an object of the present invention is to provide a sandwich construction having a high strength-to-weight efficiency suitable for a broad variety of military, industrial and commercial applications.
- Another object is to provide a low-density core sandwich construction in which corrosion and degradation of structural integrity due to retention of moisture is substantially eliminated.
- Another object is to provide a sandwich construction in which unbonding of face sheets from the core is substantially reduced or eliminated when heat, pressure or vacuum is applied for purposes of repair.
- Still another object is to provide a sandwich construction having a flexible core with structural discontinuities for improved tolerance for damage.
- a sandwich construction comprising strips of corrugations arranged adjacent one another and alternately offset so that a series of peaks is next to a series of troughs, and vice versa, and contained between upper and lower face sheets.
- FIG. 1 shows a partially cutaway, perspective view of a prior art corrugated sandwich construction
- FIG. 2 shows a similar view of the instant invention, showing offset corrugationns that provide moisture pathways and also showing a series of shape-mandrels, extended from inside the corrugations, that can be used to form the offset pattern;
- FIG. 3 shows a front elevation of the offset corrugation construction
- FIG. 4 shows a top view, with the upper face sheet partially cut away of the offset corrugations
- FIG. 5 shows a cross-sectional view of the offset corrugations, taken along lines V-V of FIG. 3.
- FIG. 1 a typical prior art corrugated sandwich construction 20 having open cells 23a,b and c alternately adjacent open cells 24a,b, contained between face sheets 21a and b.
- the only difference between the cells being that cells 23a,b and c have a flat roof section 26 adjacent face sheet 21a and cells 24a,b have a flat roof section 27 adjacent face sheet 21b.
- Cells 23 and 24 are formed by corrugations, consisting of peaks and troughs, in a core material, which can be various metals, plastics, composites or non-composites, and face sheets 21a and b are bonded to appropriate roof sections 26 and 27, respectively.
- the face sheets may crack or separate from the cells, permitting moisture to accumulate therein, and with time, cause the core material to increase in weight and corrode.
- the usual procedure for repair entails cleaning out any damage and resealing the face sheets by applying heat and pressure (or vacuum) thereto. This is unreliable and sometimes causes further problems with the face sheets.
- FIGS. 2 through 5 there is shown a sandwich construction 35 comprising corrugated strips 41 and 43, each having peaks 45 and troughs 47, offset, or out of phase by a predetermined amount, contained between upper and lower face sheets 51a and b, respectively.
- This offset corrugated construction provides hexagonally shaped cells 55 surrounded on either side by individual triangular cells 58.
- the material used for a particular core is separated into strips 41, of approximately one-half inch in width and wrapped around a set of mandrels 60,61, as shown in FIG. 2.
- Strips 41 can be of any suitable size and can depend on the overall size and strength of the sandwich construction.
- Mandrels 60,61 maintain the desired shape and spacing during attachment of face sheets 51a and b, but are then removed after the cocuring operation. This design allows pathways for any moisture that may find its way into the core. Mandrels 60,61 can be any solid type material, such as TFE or other similar materials, to facilitate removal after curing.
Landscapes
- Laminated Bodies (AREA)
Abstract
A sandwich construction is disclosed that provides alternating offset and jacent corrugated strips secured between upper and lower face sheets. The peaks of one strip are adjacent the troughs of an adjacent strip. The peaks and troughs can have flattened portions and the face sheets can be secured to said portions.
Description
The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.
The present invention relates generally to sandwich constructions suitable for use in structural and non-structural members, and more particularly to sandwich constructions of low-density cores bonded between thin-gauge, high-strength face sheds for use in a wide range of military, industrial and commercial components.
Sandwich constructions are finding broad application as structural and non-structural members in boats, aircraft, furniture, appliances, and other items requiring high strength, light-weight materials. They typically include face sheets bonded to either side of a low density core and can be made of such materials as metals, plastics or composite fiberglass laminates for rigidity and strength. Among the various core materials are rigid plastic foams, honeycombs, truss-core corrugations and an arrangement of adjacent, inclined rectangular-shaped facets connected by intermediate rows of adjoining parallelagram-shaped facets.
In aircraft design the need for weight efficiency and aerodynamically smooth surfaces under high stress levels has stimulated use of sandwich construction as a possible substitute for the conventional sheet-stringer construction. Notwithstanding the superior weight-efficiency of the sandwich constructions, their general acceptance for critical applications has lagged behind theoretical development primarily because of maintenance problems experienced in service. Honeycomb core sandwich constructions, for instance, are considered to be among the most weight-efficient but, due to their tendency to retain moisture which may become entrapped due to ineffective edge seals or unbonding of face sheets from the core. This may degrade the structural integrity and lead to extensive corrosion and premature failure of components. Experience has shown a significant frequency of repairs on replacements which are very time-consuming and expensive.
Accordingly, an object of the present invention is to provide a sandwich construction having a high strength-to-weight efficiency suitable for a broad variety of military, industrial and commercial applications.
Another object is to provide a low-density core sandwich construction in which corrosion and degradation of structural integrity due to retention of moisture is substantially eliminated.
Another object is to provide a sandwich construction in which unbonding of face sheets from the core is substantially reduced or eliminated when heat, pressure or vacuum is applied for purposes of repair.
Still another object is to provide a sandwich construction having a flexible core with structural discontinuities for improved tolerance for damage.
These and other objects of the invention are achieved in a sandwich construction comprising strips of corrugations arranged adjacent one another and alternately offset so that a series of peaks is next to a series of troughs, and vice versa, and contained between upper and lower face sheets. By arranging the strips in this alternating fashion, a plurality of passage-ways from cell to cell is provided. The outer face sheets and the strips are cocured in one operation without any secondary bonding.
The novel features which are believed to be characteristics of the invention, both as to its organization and methods of operation, together with further objects and advantages thereof, will be better understood from the following descriptions in connection with the accompanying drawings in which the presently preferred embodiments of the invention are illlustrated by way of examples. It is to be expressly understood, however, that the drawings are for purposes of illustration and description only and are not intended as a definition of the limits of the invention.
FIG. 1 shows a partially cutaway, perspective view of a prior art corrugated sandwich construction;
FIG. 2 shows a similar view of the instant invention, showing offset corrugationns that provide moisture pathways and also showing a series of shape-mandrels, extended from inside the corrugations, that can be used to form the offset pattern;
FIG. 3 shows a front elevation of the offset corrugation construction;
FIG. 4 shows a top view, with the upper face sheet partially cut away of the offset corrugations; and
FIG. 5 shows a cross-sectional view of the offset corrugations, taken along lines V-V of FIG. 3.
Referring now to the drawings wherein like referenced characters designate like or corresponding components throughout the several views, there is shown in FIG. 1 a typical prior art corrugated sandwich construction 20 having open cells 23a,b and c alternately adjacent open cells 24a,b, contained between face sheets 21a and b. The only difference between the cells being that cells 23a,b and c have a flat roof section 26 adjacent face sheet 21a and cells 24a,b have a flat roof section 27 adjacent face sheet 21b. Cells 23 and 24 are formed by corrugations, consisting of peaks and troughs, in a core material, which can be various metals, plastics, composites or non-composites, and face sheets 21a and b are bonded to appropriate roof sections 26 and 27, respectively. Under stress, the face sheets may crack or separate from the cells, permitting moisture to accumulate therein, and with time, cause the core material to increase in weight and corrode. The usual procedure for repair entails cleaning out any damage and resealing the face sheets by applying heat and pressure (or vacuum) thereto. This is unreliable and sometimes causes further problems with the face sheets.
Referring now to the inventive embodiment of FIGS. 2 through 5, there is shown a sandwich construction 35 comprising corrugated strips 41 and 43, each having peaks 45 and troughs 47, offset, or out of phase by a predetermined amount, contained between upper and lower face sheets 51a and b, respectively. This offset corrugated construction provides hexagonally shaped cells 55 surrounded on either side by individual triangular cells 58. The material used for a particular core is separated into strips 41, of approximately one-half inch in width and wrapped around a set of mandrels 60,61, as shown in FIG. 2. Strips 41 can be of any suitable size and can depend on the overall size and strength of the sandwich construction. Mandrels 60,61 maintain the desired shape and spacing during attachment of face sheets 51a and b, but are then removed after the cocuring operation. This design allows pathways for any moisture that may find its way into the core. Mandrels 60,61 can be any solid type material, such as TFE or other similar materials, to facilitate removal after curing.
Experimental work with a test sample constructed with this offset corrugated core, as compared to a sample constructed using a prior art design, shows a 56% increase in transverse shear stiffness in the weaker direction (in the direction of corrugation). A comparison of bending stiffness shows no measurable difference between the two.
Finally, while the offset corrugated core sandwich construction has been described with reference to a particular embodiment, it should be understood that the embodiment is merely illustrative as there are numerous variations and modifications which may be made by those skilled in the art. Thus, the invention is to be construed as being limited only by the spirit and scope of the appended claims.
Claims (6)
1. A sandwich construction comprising:
offset corrugated means having a plurality of substantially parallel cells, each cell being formed by alternating peaks and troughs and having moisture communication with each other adjacent cell; and
face sheet means secured to opposite sides thereof.
2. A sandwich construction as described in claim 1 wherein each said peak is substantially flat.
3. A sandwich construction as described in claim 2 wherein each said trough is substantially flat.
4. A sandwich construction as described in claim 3 wherein said face sheet means is attached to the offset corrugated means at the flat peaks and troughs.
5. A sandwich construction comprising:
adjacent corrugated strips arranged to have peaks of a first strip substantially next to troughs of a second strip to form an offset pattern; and
upper and lower face sheets secured thereto.
6. A sandwich construction as described in claim 5 wherein said corrugated strips are substantially one-half inch wide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/082,069 USH1481H (en) | 1993-06-23 | 1993-06-23 | Offset corrugated sandwich construction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/082,069 USH1481H (en) | 1993-06-23 | 1993-06-23 | Offset corrugated sandwich construction |
Publications (1)
Publication Number | Publication Date |
---|---|
USH1481H true USH1481H (en) | 1995-09-05 |
Family
ID=22168869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/082,069 Abandoned USH1481H (en) | 1993-06-23 | 1993-06-23 | Offset corrugated sandwich construction |
Country Status (1)
Country | Link |
---|---|
US (1) | USH1481H (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5598930A (en) * | 1995-07-20 | 1997-02-04 | Advanced Wirecloth, Inc. | Shale shaker screen |
US5971159A (en) * | 1993-04-30 | 1999-10-26 | Tuboscope I/P, Inc. | Screen assembly for a vibratory separator |
US6029824A (en) * | 1994-03-30 | 2000-02-29 | Tuboscope I/P, Inc. | Screen for vibrating separator |
USD425531S (en) * | 1999-03-29 | 2000-05-23 | Tuboscope I/P, Inc. | Screen |
US6152307A (en) * | 1993-04-30 | 2000-11-28 | Tuboscope I/P, Inc. | Vibratory separator screens |
US6267247B1 (en) | 1993-04-30 | 2001-07-31 | Tuboscope I/P, Inc. | Vibratory separator screen |
US6269953B1 (en) | 1993-04-30 | 2001-08-07 | Tuboscope I/P, Inc. | Vibratory separator screen assemblies |
US6283302B1 (en) | 1993-08-12 | 2001-09-04 | Tuboscope I/P, Inc. | Unibody screen structure |
US6290068B1 (en) * | 1993-04-30 | 2001-09-18 | Tuboscope I/P, Inc. | Shaker screens and methods of use |
US6325216B1 (en) | 1993-04-30 | 2001-12-04 | Tuboscope I/P, Inc. | Screen apparatus for vibratory separator |
US6371302B1 (en) | 1993-04-30 | 2002-04-16 | Tuboscope I/P, Inc. | Vibratory separator screens |
US6401934B1 (en) | 1993-04-30 | 2002-06-11 | Tuboscope I/P, Inc. | Ramped screen & vibratory separator system |
US6443310B1 (en) | 1993-04-30 | 2002-09-03 | Varco I/P, Inc. | Seal screen structure |
US6450345B1 (en) | 1993-04-30 | 2002-09-17 | Varco I/P, Inc. | Glue pattern screens and methods of production |
US6454099B1 (en) | 1993-04-30 | 2002-09-24 | Varco I/P, Inc | Vibrator separator screens |
US6565698B1 (en) | 1993-04-30 | 2003-05-20 | Varco I/P, Inc. | Method for making vibratory separator screens |
US6607080B2 (en) | 1993-04-30 | 2003-08-19 | Varco I/P, Inc. | Screen assembly for vibratory separators |
US6629610B1 (en) | 1993-04-30 | 2003-10-07 | Tuboscope I/P, Inc. | Screen with ramps for vibratory separator system |
US6669985B2 (en) | 1998-10-30 | 2003-12-30 | Varco I/P, Inc. | Methods for making glued shale shaker screens |
US6736270B2 (en) | 1998-10-30 | 2004-05-18 | Varco I/P, Inc. | Glued screens for shale shakers |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3542636A (en) * | 1965-07-28 | 1970-11-24 | Kurt Wandel | Corrugated board |
US3574103A (en) * | 1968-09-06 | 1971-04-06 | Atomic Energy Commission | Laminated cellular material form |
US4472473A (en) * | 1983-07-01 | 1984-09-18 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Curved cap corrugated sheet |
US4769968A (en) * | 1987-03-05 | 1988-09-13 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Truss-core corrugation for compressive loads |
US5028474A (en) * | 1989-07-25 | 1991-07-02 | Czaplicki Ronald M | Cellular core structure providing gridlike bearing surfaces on opposing parallel planes of the formed core |
US5162143A (en) * | 1990-03-30 | 1992-11-10 | The United States Of America As Represented By The Administrator, National Aeronautics And Space Administration | Core design for use with precision composite reflectors |
-
1993
- 1993-06-23 US US08/082,069 patent/USH1481H/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3542636A (en) * | 1965-07-28 | 1970-11-24 | Kurt Wandel | Corrugated board |
US3574103A (en) * | 1968-09-06 | 1971-04-06 | Atomic Energy Commission | Laminated cellular material form |
US4472473A (en) * | 1983-07-01 | 1984-09-18 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Curved cap corrugated sheet |
US4769968A (en) * | 1987-03-05 | 1988-09-13 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Truss-core corrugation for compressive loads |
US5028474A (en) * | 1989-07-25 | 1991-07-02 | Czaplicki Ronald M | Cellular core structure providing gridlike bearing surfaces on opposing parallel planes of the formed core |
US5162143A (en) * | 1990-03-30 | 1992-11-10 | The United States Of America As Represented By The Administrator, National Aeronautics And Space Administration | Core design for use with precision composite reflectors |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6325216B1 (en) | 1993-04-30 | 2001-12-04 | Tuboscope I/P, Inc. | Screen apparatus for vibratory separator |
US6629610B1 (en) | 1993-04-30 | 2003-10-07 | Tuboscope I/P, Inc. | Screen with ramps for vibratory separator system |
US6290068B1 (en) * | 1993-04-30 | 2001-09-18 | Tuboscope I/P, Inc. | Shaker screens and methods of use |
US6302276B1 (en) | 1993-04-30 | 2001-10-16 | Tuboscope I/P, Inc. | Screen support strip for use in vibratory screening apparatus |
US6032806A (en) * | 1993-04-30 | 2000-03-07 | Tuboscope I/P, Inc. | Screen apparatus for vibratory separator |
US6607080B2 (en) | 1993-04-30 | 2003-08-19 | Varco I/P, Inc. | Screen assembly for vibratory separators |
US6152307A (en) * | 1993-04-30 | 2000-11-28 | Tuboscope I/P, Inc. | Vibratory separator screens |
US6267247B1 (en) | 1993-04-30 | 2001-07-31 | Tuboscope I/P, Inc. | Vibratory separator screen |
US6269953B1 (en) | 1993-04-30 | 2001-08-07 | Tuboscope I/P, Inc. | Vibratory separator screen assemblies |
US6565698B1 (en) | 1993-04-30 | 2003-05-20 | Varco I/P, Inc. | Method for making vibratory separator screens |
US6530483B2 (en) | 1993-04-30 | 2003-03-11 | Varco I/P, Inc. | Unibody structure for screen assembly |
US5971159A (en) * | 1993-04-30 | 1999-10-26 | Tuboscope I/P, Inc. | Screen assembly for a vibratory separator |
US6401934B1 (en) | 1993-04-30 | 2002-06-11 | Tuboscope I/P, Inc. | Ramped screen & vibratory separator system |
US6371302B1 (en) | 1993-04-30 | 2002-04-16 | Tuboscope I/P, Inc. | Vibratory separator screens |
US6454099B1 (en) | 1993-04-30 | 2002-09-24 | Varco I/P, Inc | Vibrator separator screens |
US6443310B1 (en) | 1993-04-30 | 2002-09-03 | Varco I/P, Inc. | Seal screen structure |
US6450345B1 (en) | 1993-04-30 | 2002-09-17 | Varco I/P, Inc. | Glue pattern screens and methods of production |
US6283302B1 (en) | 1993-08-12 | 2001-09-04 | Tuboscope I/P, Inc. | Unibody screen structure |
US6029824A (en) * | 1994-03-30 | 2000-02-29 | Tuboscope I/P, Inc. | Screen for vibrating separator |
US5598930A (en) * | 1995-07-20 | 1997-02-04 | Advanced Wirecloth, Inc. | Shale shaker screen |
US5988397A (en) * | 1996-02-12 | 1999-11-23 | Tuboscope I/P, Inc. | Screen for vibratory separator |
US6736270B2 (en) | 1998-10-30 | 2004-05-18 | Varco I/P, Inc. | Glued screens for shale shakers |
US6669985B2 (en) | 1998-10-30 | 2003-12-30 | Varco I/P, Inc. | Methods for making glued shale shaker screens |
USD425531S (en) * | 1999-03-29 | 2000-05-23 | Tuboscope I/P, Inc. | Screen |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5543204A (en) | Bi-directionally corrugated sandwich construction | |
USH1481H (en) | Offset corrugated sandwich construction | |
US5424113A (en) | Lattice core sandwich construction | |
US5348601A (en) | Method of making an offset corrugated sandwich construction | |
US20070015000A1 (en) | Flexible construction element with large bonding surface area and method of manufacture | |
US4198018A (en) | Blended wing-fuselage frame made of fiber reinforced resin composites | |
US4472473A (en) | Curved cap corrugated sheet | |
US7857258B2 (en) | Assembly of panels of an airplane fuselage | |
US5006391A (en) | Honeycomb structure and method of making same | |
US4223053A (en) | Truss core panels | |
US5297937A (en) | Hollow fan moving blade | |
KR102154875B1 (en) | Folded core panel | |
EP0206562A2 (en) | Hollow core sandwich structures | |
US3995081A (en) | Composite structural beams and method | |
US3995080A (en) | Filament reinforced structural shapes | |
US6080495A (en) | Structural panels with metal faces and corrugated plastic core | |
US6110567A (en) | Composite structural panel having a face sheet reinforced with a channel stiffener grid | |
US4522860A (en) | Material for reinforcing core in a structure | |
EP2830042A1 (en) | Sandwich type load bearing panel | |
US7147741B2 (en) | Method of making a laminated structural member | |
JPH09104081A (en) | Welded plastic panel and its preparation | |
US20150004371A1 (en) | Composite structural panels and components | |
US3642566A (en) | Quasi-isotropic sandwich core | |
US3461632A (en) | Lightweight cellular structural material | |
JPH0455864B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNITED STATES OF AMERICA, THE, AS REPRESENTED BY T Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RAY, HEMEN;REEL/FRAME:006603/0951 Effective date: 19930622 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |