USH1402H - Styrene-isoprene-styrene block copolymer composition and adhesives made therefrom - Google Patents
Styrene-isoprene-styrene block copolymer composition and adhesives made therefrom Download PDFInfo
- Publication number
- USH1402H USH1402H US07/950,617 US95061792A USH1402H US H1402 H USH1402 H US H1402H US 95061792 A US95061792 A US 95061792A US H1402 H USH1402 H US H1402H
- Authority
- US
- United States
- Prior art keywords
- polystyrene
- molecular weight
- block copolymer
- polymer
- styrene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 41
- 229920000346 polystyrene-polyisoprene block-polystyrene Polymers 0.000 title claims abstract description 7
- 239000000853 adhesive Substances 0.000 title abstract description 40
- 230000001070 adhesive effect Effects 0.000 title abstract description 40
- 239000004793 Polystyrene Substances 0.000 claims abstract description 37
- 238000005859 coupling reaction Methods 0.000 claims abstract description 35
- 230000008878 coupling Effects 0.000 claims abstract description 33
- 238000010168 coupling process Methods 0.000 claims abstract description 33
- 229920002223 polystyrene Polymers 0.000 claims abstract description 32
- 229920005989 resin Polymers 0.000 claims abstract description 19
- 239000011347 resin Substances 0.000 claims abstract description 19
- 229920001400 block copolymer Polymers 0.000 claims abstract description 18
- 238000005227 gel permeation chromatography Methods 0.000 claims abstract description 8
- 229920000642 polymer Polymers 0.000 claims description 80
- 239000004831 Hot glue Substances 0.000 claims 2
- 238000009472 formulation Methods 0.000 abstract description 13
- -1 diene compound Chemical class 0.000 description 14
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 12
- 239000003999 initiator Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 239000000178 monomer Substances 0.000 description 10
- 229920002799 BoPET Polymers 0.000 description 8
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 8
- 239000005041 Mylar™ Substances 0.000 description 8
- 239000007822 coupling agent Substances 0.000 description 8
- 239000003921 oil Substances 0.000 description 8
- BKOOMYPCSUNDGP-UHFFFAOYSA-N 2-methylbut-2-ene Chemical compound CC=C(C)C BKOOMYPCSUNDGP-UHFFFAOYSA-N 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 6
- 229920001971 elastomer Polymers 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 150000001993 dienes Chemical class 0.000 description 5
- 239000003381 stabilizer Substances 0.000 description 5
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical group C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 230000000379 polymerizing effect Effects 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 238000000611 regression analysis Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 101000990915 Homo sapiens Stromelysin-1 Proteins 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 102100030416 Stromelysin-1 Human genes 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000010539 anionic addition polymerization reaction Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229920001195 polyisoprene Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000010058 rubber compounding Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- APQIUTYORBAGEZ-UHFFFAOYSA-N 1,1-dibromoethane Chemical compound CC(Br)Br APQIUTYORBAGEZ-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical class C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- ROGIWVXWXZRRMZ-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical compound CC(=C)C=C.C=CC1=CC=CC=C1 ROGIWVXWXZRRMZ-UHFFFAOYSA-N 0.000 description 1
- AQWSFUIGRSMCST-UHFFFAOYSA-N 3-pyridin-3-ylsulfonyl-5-(trifluoromethyl)chromen-2-one Chemical compound N1=CC(=CC=C1)S(=O)(=O)C=1C(OC2=CC=CC(=C2C=1)C(F)(F)F)=O AQWSFUIGRSMCST-UHFFFAOYSA-N 0.000 description 1
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- 241001120493 Arene Species 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000013032 Hydrocarbon resin Substances 0.000 description 1
- 239000004609 Impact Modifier Substances 0.000 description 1
- XOBKSJJDNFUZPF-UHFFFAOYSA-N Methoxyethane Chemical compound CCOC XOBKSJJDNFUZPF-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229920001744 Polyaldehyde Polymers 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000005110 aryl thio group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229920005601 base polymer Polymers 0.000 description 1
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000010538 cationic polymerization reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229920000359 diblock copolymer Polymers 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 229920003247 engineering thermoplastic Polymers 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 150000004820 halides Chemical group 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 229920006270 hydrocarbon resin Polymers 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- WGOPGODQLGJZGL-UHFFFAOYSA-N lithium;butane Chemical compound [Li+].CC[CH-]C WGOPGODQLGJZGL-UHFFFAOYSA-N 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 150000002900 organolithium compounds Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920001470 polyketone Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 150000003097 polyterpenes Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 239000004636 vulcanized rubber Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J193/00—Adhesives based on natural resins; Adhesives based on derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L53/02—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J153/00—Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
- C09J153/02—Vinyl aromatic monomers and conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J193/00—Adhesives based on natural resins; Adhesives based on derivatives thereof
- C09J193/04—Rosin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2666/00—Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
- C08L2666/02—Organic macromolecular compounds, natural resins, waxes or and bituminous materials
Definitions
- This invention relates to a novel block copolymer composition for use in adhesives. More particularly, it relates to linear styrene-isoprenestyrene block copolymer compositions comprised of linear polymeric blocks and adhesives made using such compositions.
- Block copolymer can be obtained by an anionic copolymerization of a conjugated diene compound and an alkenyl arene compound by using an organic alkali metal initiator.
- Block copolymers have been produced which comprise primarily those having a general structure
- polymer blocks A comprise thermoplastic polymer blocks of alkenyl arenes such as polystyrene
- block B is a polymer block of a conjugated diene such as polyisoprene.
- the proportion of the thermoplastic blocks to the elastomeric polymer block and the relative molecular weights of each of these blocks is balanced to obtain a rubber having unique performance characteristics.
- the produced block copolymer is a so-called thermoplastic rubber.
- the blocks A are thermodynamically incompatible with the blocks B resulting in a rubber consisting of two phases--a continuous elastomeric phase (blocks B) and a basically discontinuous hard, glass-like plastic phase (blocks A) called domains. Since the A--B--A block copolymers have two A blocks separated by a B block, domain formation results in effectively locking the B blocks and their inherent entanglements in place by the A blocks and forming a network structure.
- These domains act as physical crosslinks anchoring the ends of many block copolymer chains.
- Such a phenomena allows the A--B--A rubber to behave like a conventional vulcanized rubber in the unvulcanized state and is applicable for various uses.
- these network forming polymers are applicable for uses such as in adhesive formulations; as moldings of shoe soles, etc.; impact modifier for polystyrene resins and engineering thermoplastics; modification of asphalt; etc.
- the polymer or the adhesive formulation containing it have the following characteristics: the viscosity of the neat polymer should range from 5,000 to 15,000 poise; the viscosity of the adhesive should be less than 20,000 poise at 43% wt. polymer content in the adhesive; the 180° peel of the adhesive formulation should be greater than 6.8 pli; the holding power to steel of the adhesive formulation should be at least 500 min., and the shear adhesion failure temperature (SAFT) to Mylar should be at least 70° C.
- SAFT shear adhesion failure temperature
- the polymers which provide the above advantages and fall within the scope of the present invention are linear styrene-isoprene-styrene block copolymers.
- the polymers generally have a polystyrene content of from 19 to 27% by weight, a polystyrene block molecular weight of from 12,000 to 18,000, an overall molecular weight of from 170,000 to 280,000 and a coupling efficiency of 25 to 82%.
- the polymer must also satisfy the five performance requirements discussed above.
- the polymer performance requirements are neat polymer melt viscosity of from 6000 to 15,000 poise, an adhesive melt viscosity of less than 6000 poise, a 180° peel of greater than 6.8 pli, a holding power to steel of greater than 500 min. and an SAFT to Mylar of at least 70° C.
- the polymers which will satisfy these criterion have a polystyrene content of from 19 to 26% by weight, a polystyrene block molecular weight of from 12,000 to 17,000, an overall molecular weight of from 170,000 to 240,000 and a coupling efficiency of from 25 to 82.
- polymers containing both aromatic and ethylenic unsaturation can be prepared by copolymerizing one or more polyolefins, particularly a diolefin, in this case isoprene, with one or more alkenyl aromatic hydrocarbon monomers, in this case styrene.
- the copolymers may, of course, be random, tapered, block or a combination of these, in this case block.
- the blocks in the copolymers of this invention are linear.
- Polymers containing ethylenic unsaturation or both aromatic and ethylenic unsaturation may be prepared using free-radical, cationic and anionic initiators or polymerization catalysts. Such polymers may be prepared using bulk, solution or emulsion techniques. In any case, the polymer containing at least ethylenic unsaturation will, generally, be recovered as a solid such as a crumb, a powder, a pellet or the like. Polymers containing ethylenic unsaturation and polymers containing both aromatic and ethylenic unsaturation are, of course, available commercially from several suppliers.
- polymers of conjugated diolefins and copolymers of one or more conjugated diolefins and one or more alkenyl aromatic hydrocarbon monomers such as the present linear S-I-S block copolymer comprised of linear polymeric blocks are frequently prepared in solution using anionic polymerization techniques.
- these S-I-S block copolymers are prepared by contacting the monomers to be polymerized simultaneously or sequentially with an organoalkali metal compound in a suitable solvent at a temperature within the range from about 150° C. to about 300° C., preferably at a temperature within the range from about -0° C. to 100° C.
- Particularly effective anionic polymerization initiators are organolithium compounds having the general formula:
- R is an aliphatic, cycloaliphatic, aromatic or alkyl-substituted aromatic hydrocarbon radical having from 1 to about 20 carbon atoms; and n is an integer of 1 to 4.
- the concentration of the initiator can be regulated to control the molecular weight of the overall composition and of the polystyrene blocks. Generally, the initiator concentration is in the range of about 0.25 to about 50 millimoles per 100 grams of monomer. The required initiator level frequently depends upon the solubility of the initiator in the hydrocarbon diluent. The ratio of the initiator to the monomer determines the block size, i.e. the higher the ratio of initiator to monomer the smaller the molecular weight of the block.
- any of the solvents known in the prior art to be useful in the preparation of such polymers may be used.
- Suitable solvents include straight- and branched-chain hydrocarbons such as pentane, hexane, heptane, octane and the like, as well as, alkyl-substituted derivatives thereof; cycloaliphatic hydrocarbons such as cyclopentane, cyclohexane, cycloheptane and the like, as well as, alkyl-substituted derivatives thereof; aromatic and alkyl-substituted aromatic hydrocarbons such as benzene, naphthalene, toluene, xylene and the like; hydrogenated aromatic hydrocarbons such as tetralin, decalin and the like; halogenated hydrocarbons, particularly halogenated aromatic hydrocarbons, such as chlorobenzene, chlorotoluene and the like; linear and cyclic ethers
- the styrene is contacted with the initiator.
- the living polymer in solution is contacted with isoprene.
- the resulting living polymer has a simplified structure A-B-Li. It is at this point that the living polymer is coupled.
- any polyfunctional coupling agent which contains at least two reactive sites can be employed.
- Examples of the types of compounds which can be used include the polyepoxides, polyisocyanates, polyimines, polyaldehydes, polyketones, polyanhydrides, polyesters, polyhalides, and the like. These compounds can contain two or more types of functional groups such as the combination of epoxy and aldehyde groups, isocyanate and halide groups, and the like.
- substituents which are inert in the treating reaction can be present such as hydrocarbon radicals as exemplified by the alkyl, cycloalkyl, aryl, aralkyl and alkaryl groups and the alkoxy, aryloxy, alkythio, arylthio, and tertiary amino groups.
- hydrocarbon radicals as exemplified by the alkyl, cycloalkyl, aryl, aralkyl and alkaryl groups and the alkoxy, aryloxy, alkythio, arylthio, and tertiary amino groups.
- Many suitable types of these polyfunctional compounds have been described in U.S. Pat. Nos. 3,595,941; 3,468,972, 3,135,716; 3,078,254, and 3,594,452, the disclosures of which are herein incorporated by reference.
- the coupling agent has two reactive sites such as dibromoethane, the polymer will have a linear ABA structure.
- the polymer When the coupling agent has three or more reactive sites, such as silicon tetrachloride, the polymer will have a branched structure, such as (AB) n BA. Since the present block copolymers are linear, a coupling agent with two reactive sites must be used.
- Coupling efficiency can be determined theoretically from the stoichiometric quantity of coupling agent required for complete coupling or coupling efficiency can be determined by an analytical method such as gel permeation chromotography. Typical prior art coupling efficiency is from about 80% to almost 100%. In U.S. Pat. No. 4,096,203, coupling efficiency is controlled from about 20% to about 80%, preferably about 30% to about 70%. It is also within the scope of the present invention to blend polymers from processes of differing coupling efficiency. For example, if a 60% efficiency is desired, then polymers from processes having an 80% efficiency and a 40% efficiency may be blended together or a 100% triblock may be blended with a 100% diblock in a 60:40 ratio.
- This coupling efficiency is controlled by an number of methods.
- One method to reduce coupling efficency is to add less than the stoichiometric amount of coupling agent required for complete coupling of the polymers.
- Another means of reducing coupling efficiency is by the premature addition of a terminator compound. These terminators, such as water or alcohol, respond very quickly and could easily be employed to cut short complete coupling of the polymers.
- thermal termination of many of the living polymer groups (A-B-Li) occurs prior to coupling.
- the typical coupling conditions include a temperature of between about 150° and about 170° F. and sufficient pressure to maintain the reactants in a liquid phase.
- the product is neutralized such as by the addition of terminators, e.g., hydrogen, water, alcohol or other reagents, for the purpose of removing the lithium radical forming the nucleus for the condensed polymer product.
- terminators e.g., hydrogen, water, alcohol or other reagents
- the produce is then recovered such as by coagulation utilizing hot water or steam or both.
- the polymer and adhesive must have the following performance characteristics: a neat polymer melt viscosity of 5,000 to 15,000 poise, an adhesive melt viscosity of less than 20,000 poise, a 180° peel of greater than 6.8 pli, a holding power to steel of at least 500 min. and an SAFT to Mylar of at least 70° C.
- the polymer In order to achieve these performance requirements, the polymer must have a polystyrene content of from 19-27% by weight because at lower styrene content the polymers are too soft to manufacture and at higher than 27% styrene content the polymers are too stiff to perform as base polymers for pressure sensitive adhesives.
- the polymer must have polystyrene block molecular weight of 12,000 to 18,000 because at less than 12,000 the adhesives have insufficient high temperature shear and at greater than 18,000 the adhesive melt viscosity is too high.
- the polymer must have an overall molecular weight of from 170,000 to 280,000 because at less than 170,000 the peel adhesion valves are low and at greater than 280,000 the adhesive melt viscosity is prohibitively high.
- the coupling efficiency of the polymer must be in the range from 25 to 82% because at less than 25% coupling efficiency the holding power of the adhesive is too low and at greater than 82% peel adhesion is low.
- the polymer characteristic ranges were determined as follows. First, it was known from past experience that in order to achieve the five performance requirements, the coupling efficiency of the polymer had to be no less than 25%, the polystyrene block molecular weight had to be greater than 11,000 and the overall molecular weight had to be at least 170,000. These limitations were necessary in order to have sufficient holding power, SAFT and peel adhesion. Then, as described in the example, a number of polymer samples were made at varying polystyrene contents, polystyrene block molecular weight, overall molecular weights and coupling efficiencies. These polymers were used to make adhesive formulations which were then tested to determine if they met the five performance requirements. This data is shown in the tables in the Example. The data from Table 2 was then analyzed using regression equations to determine the ranges shown in Table 3 and the actual polymer characteristics shown in Table 4.
- the molecular weights described herein are polystyrene equivalent molecular weights.
- Molecular weights of linear polymers or unassembled linear segments of polymers such as mono-, di-, triblock, and etc., arms of star polymers before coupling are conveniently measured by Gel Permeation Chromatography (GPC), where the GPC system has been appropriately calibrated.
- GPC Gel Permeation Chromatography
- Polymers of known molecular weight are used to calibrate and these must be of the same molecular structure and chemical composition as the unknown linear polymers or segments that are to be measured.
- the polymer is essentially monodisperse and it is both convenient and adequately descriptive to report the "peak" molecular weight of the narrow molecular weight distribution observed.
- a typical block copolymer composition within the scope of the present invention having a coupling efficiency of 35%, polystyrene block molecular weight of 15,500, a polystyrene content of 22% and an overall molecular weight 200,000, was prepared by polymerizing styrene with sec-butyl lithium as initiator at a monomer to initiator molar ratio of 149, to 1 and then terminating the polymerization, polymerizing isoprene at a monomer to initiator molar ratio of 820 to 1 and then terminating the polymerization and finally polymerizing polystyrene again under the same conditions as before.
- Another typical block copolymer was made by blending a diblock polystyrene-polyisoprene polymer with a triblock polystyrene-polyisoprene-polystyrene copolymer.
- a common tackifying resin is a diene-olefin copolymer of piperylene and 2-methyl-2butene having a softening point of about 95° C. This resin is available commercially under the tradename Wingtack 95 and is prepared by the cationic polymerization of 60% piperylene, 10% isoprene, 5% cyclopentadiene, 15% 2-methyl-2-butene and about 10% dimer, as taught in U.S. Pat. No. 3,577,398.
- tackifying resins of the same general type may be employed in which the resinous copolymer comprises 20-80 weight percent of piperylene and 80-20 weight percent of 2-methyl-2-butene.
- the resins normally have softening points (ring and ball) between 80° C. and about 115° C.
- adhesions promoting resins whcih are also useful in the compositions of this invention include hydrogenated rosins, esters of ronsins, polyterpenes, terpenephenol resins and polymerized mixed olefins.
- the tackifying resin be a saturated resin, e.g., a hydrogenated dicyclopentadiene resin such as Escorez® 5000 series resin made by Exxon or a hydyrogenated polystyrene or polyalphamethylstyrene resin such as Regalrez® resin made by Hercules.
- the amount of adhesion promoting resin employed varies from about 20 to about 400 parts by weight per hundred parts rubber (phr), preferably between about 100 to about 350 phr.
- the selection of the particular tackifying agent is, in large part, dependent upon the specific block copolymer employed in the respective adhesive composition. In the manufacture of disposable articles such as diapers, sanitary napkins and bed pads, there is the additional consideration of having a substantially white or clear adhesive composition.
- the adhesive composition of the instant invention may contain plasticizers, such as rubber extending plasticizers, or compounding oils or liquid resins.
- Plasticizers are well-known in the art and include both high saturates content oils and high aromatics content oils.
- Preferred plasticizers are highly saturated oils, e.g. Tufflo® 6056 oil made by Arco.
- the amounts of rubber compounding oil employed in the invention composition can vary from 0 to about 100 phr, and preferably between about 0 to about 60 phr.
- Optional components of the present invention are stabilizers which inhibit or retard heat degradation, oxidation, skin formation and color formation.
- Stabilizers are typically added to the commercially available compounds in order to protect the polymers against heat degradation and oxidation during the preparation, use and high temperature storage of the adhesive composition.
- Addition stabilizers known in the art may also be incorporated into the adhesive composition. These may be for protection during the life of the disposable article against, for example, oxygen, ozone and ultraviolet radiation. However, these additional stabilizers should be compatible with the essential stabilizers mentioned herein-above and their intended function as taught herein.
- the adhesive compositions of the present invention are typically prepared by blending the components at an elevated temperature, preferably between about 130° C. and about 200° C., until a homogeneous blend is obtained, usually less than three (3) hours.
- elevated temperature preferably between about 130° C. and about 200° C.
- Various method of blending are known to the art and any method that produces a homogeneous blend is satisfactory.
- compositions are in pressure sensitive adhesives. However, it is useful in other applications such as diaper tab tape adhesives.
- polystyrene-isoprene-styrene triblock copolymers were styrene-isoprene-styrene triblock copolymers.
- Styrene isoprene diblock copolymers were made with the same characteristics and blended with the triblock to produce blends with varying coupling efficiencies.
- the polymers were then used in an adhesive formulation and the performance of the adhesive formulation was determined.
- the adhesive formulation used was: 39.8% wt. polymer, 54.2% wt. Escorez 1310LC tackifying resin (a hydrocarbon resin), 5.6% wt. SHELLFLEX® 371 oil and 0.4% wt. Irganox 1010 antioxidant.
- the performance of the various polymers in this adhesive formulation was determined and the results are shown in Table 2 below.
- the melt viscosity was measured in centipoise (cps) by using a Brookfield Thermocell viscometer at 350° F.
- the SAFT (M) Mylar was measured by 1" ⁇ 1" Mylar to Mylar lap joint with a 0.23 kg weight.
- SAFT measures the temperature at which the lap shear assembly fails under load.
- the molecular weights (styrene equivalent) were determined by gel permeation chromatography as the peak molecular weight of the main species.
- the polystyrene content was determined by nuclear magnetic resonance spectroscopy.
- Holding Power (HPST) is the time required to pull a standard area (1/2in. ⁇ 1/2 in.) of tape from a standard steel test surface under a standard load, in shear at 2° antipeel (Pressure Sensitive Tape Council Method No. 7). Peel was determined by PSTC Test No. 1.
- the polymer must have a coupling efficiency of at least 25, a polystyrene block molecular weight of 12,000 or greater, a polystyrene content of 19 to 27% and an overall molecular weight to greater than 170,000.
- a regression analysis reveals that in order to obtain the viscosity requirements and the adhesive test requirements, the coupling efficiences for polymers of A-F must fall within the ranges shown in Table 3 below:
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
A linear styrene-isoprene-styrene block copolymer composition comprised of linear polymeric blocks wherein the block copolymer composition has a coupling efficiency of 25 to 82 percent, a polystyrene content of from 19 to 27 percent by weight, a polystyrene block molecular weight (peak polystyrene equivalent molecular weight as determined by gel permeation chromatography) of 12,000 to 18,000, and an overall molecular weight (peak polystyrene equivalent molecular weight as determined by gel permeation chromatography) of from 170,000 to 280,000. The invention also contemplates adhesive formulations comprising these block copolymer compositions and a tackifying resin.
Description
This invention relates to a novel block copolymer composition for use in adhesives. More particularly, it relates to linear styrene-isoprenestyrene block copolymer compositions comprised of linear polymeric blocks and adhesives made using such compositions.
It is known that a block copolymer can be obtained by an anionic copolymerization of a conjugated diene compound and an alkenyl arene compound by using an organic alkali metal initiator. Block copolymers have been produced which comprise primarily those having a general structure
A--B and A--B--A
wherein the polymer blocks A comprise thermoplastic polymer blocks of alkenyl arenes such as polystyrene, while block B is a polymer block of a conjugated diene such as polyisoprene. The proportion of the thermoplastic blocks to the elastomeric polymer block and the relative molecular weights of each of these blocks is balanced to obtain a rubber having unique performance characteristics. When the content of the alkenyl arene is small, the produced block copolymer is a so-called thermoplastic rubber. In such a rubber, the blocks A are thermodynamically incompatible with the blocks B resulting in a rubber consisting of two phases--a continuous elastomeric phase (blocks B) and a basically discontinuous hard, glass-like plastic phase (blocks A) called domains. Since the A--B--A block copolymers have two A blocks separated by a B block, domain formation results in effectively locking the B blocks and their inherent entanglements in place by the A blocks and forming a network structure.
These domains act as physical crosslinks anchoring the ends of many block copolymer chains. Such a phenomena allows the A--B--A rubber to behave like a conventional vulcanized rubber in the unvulcanized state and is applicable for various uses. For example, these network forming polymers are applicable for uses such as in adhesive formulations; as moldings of shoe soles, etc.; impact modifier for polystyrene resins and engineering thermoplastics; modification of asphalt; etc.
Different linear block copolymers exhibit different performances in adhesive formulations. Therefore, it requires some experimentation to determine the range of polymers which are useful for a particular adhesive application. For adhesive applications such as hot melt pressure sensitive adhesives, it is desirable that the polymer or the adhesive formulation containing it have the following characteristics: the viscosity of the neat polymer should range from 5,000 to 15,000 poise; the viscosity of the adhesive should be less than 20,000 poise at 43% wt. polymer content in the adhesive; the 180° peel of the adhesive formulation should be greater than 6.8 pli; the holding power to steel of the adhesive formulation should be at least 500 min., and the shear adhesion failure temperature (SAFT) to Mylar should be at least 70° C. The present invention provides polymers and adhesive formulations which will satisfy these performance requirements.
The polymers which provide the above advantages and fall within the scope of the present invention are linear styrene-isoprene-styrene block copolymers. The polymers generally have a polystyrene content of from 19 to 27% by weight, a polystyrene block molecular weight of from 12,000 to 18,000, an overall molecular weight of from 170,000 to 280,000 and a coupling efficiency of 25 to 82%. However, in addition to those four parameters, the polymer must also satisfy the five performance requirements discussed above.
In a preferred embodiment of the present invention, the polymer performance requirements are neat polymer melt viscosity of from 6000 to 15,000 poise, an adhesive melt viscosity of less than 6000 poise, a 180° peel of greater than 6.8 pli, a holding power to steel of greater than 500 min. and an SAFT to Mylar of at least 70° C. The polymers which will satisfy these criterion have a polystyrene content of from 19 to 26% by weight, a polystyrene block molecular weight of from 12,000 to 17,000, an overall molecular weight of from 170,000 to 240,000 and a coupling efficiency of from 25 to 82.
As is well known, polymers containing both aromatic and ethylenic unsaturation can be prepared by copolymerizing one or more polyolefins, particularly a diolefin, in this case isoprene, with one or more alkenyl aromatic hydrocarbon monomers, in this case styrene. The copolymers may, of course, be random, tapered, block or a combination of these, in this case block. The blocks in the copolymers of this invention are linear.
Polymers containing ethylenic unsaturation or both aromatic and ethylenic unsaturation may be prepared using free-radical, cationic and anionic initiators or polymerization catalysts. Such polymers may be prepared using bulk, solution or emulsion techniques. In any case, the polymer containing at least ethylenic unsaturation will, generally, be recovered as a solid such as a crumb, a powder, a pellet or the like. Polymers containing ethylenic unsaturation and polymers containing both aromatic and ethylenic unsaturation are, of course, available commercially from several suppliers.
Polymers of conjugated diolefins and copolymers of one or more conjugated diolefins and one or more alkenyl aromatic hydrocarbon monomers such as the present linear S-I-S block copolymer comprised of linear polymeric blocks are frequently prepared in solution using anionic polymerization techniques. In general, when solution anionic techniques are used, these S-I-S block copolymers are prepared by contacting the monomers to be polymerized simultaneously or sequentially with an organoalkali metal compound in a suitable solvent at a temperature within the range from about 150° C. to about 300° C., preferably at a temperature within the range from about -0° C. to 100° C. Particularly effective anionic polymerization initiators are organolithium compounds having the general formula:
RLi.sub.n
Wherein:
R is an aliphatic, cycloaliphatic, aromatic or alkyl-substituted aromatic hydrocarbon radical having from 1 to about 20 carbon atoms; and n is an integer of 1 to 4.
The concentration of the initiator can be regulated to control the molecular weight of the overall composition and of the polystyrene blocks. Generally, the initiator concentration is in the range of about 0.25 to about 50 millimoles per 100 grams of monomer. The required initiator level frequently depends upon the solubility of the initiator in the hydrocarbon diluent. The ratio of the initiator to the monomer determines the block size, i.e. the higher the ratio of initiator to monomer the smaller the molecular weight of the block.
In general, any of the solvents known in the prior art to be useful in the preparation of such polymers may be used. Suitable solvents, then, include straight- and branched-chain hydrocarbons such as pentane, hexane, heptane, octane and the like, as well as, alkyl-substituted derivatives thereof; cycloaliphatic hydrocarbons such as cyclopentane, cyclohexane, cycloheptane and the like, as well as, alkyl-substituted derivatives thereof; aromatic and alkyl-substituted aromatic hydrocarbons such as benzene, naphthalene, toluene, xylene and the like; hydrogenated aromatic hydrocarbons such as tetralin, decalin and the like; halogenated hydrocarbons, particularly halogenated aromatic hydrocarbons, such as chlorobenzene, chlorotoluene and the like; linear and cyclic ethers such as methyl ether, methyl ethyl ether, tetrahydrofuran and the like; ketones such as methyl ketone (acetone), methyl ethyl ketone, ethyl ketone (e-pentanone) and the like.
As described in U.S. Pat. No. 4,096,203 the disclosure of which is herein incorporated by reference, usually the styrene is contacted with the initiator. Next, the living polymer in solution is contacted with isoprene. The resulting living polymer has a simplified structure A-B-Li. It is at this point that the living polymer is coupled.
There are a wide variety of coupling agents that can be employed. Any polyfunctional coupling agent which contains at least two reactive sites can be employed. Examples of the types of compounds which can be used include the polyepoxides, polyisocyanates, polyimines, polyaldehydes, polyketones, polyanhydrides, polyesters, polyhalides, and the like. These compounds can contain two or more types of functional groups such as the combination of epoxy and aldehyde groups, isocyanate and halide groups, and the like. Various other substituents which are inert in the treating reaction can be present such as hydrocarbon radicals as exemplified by the alkyl, cycloalkyl, aryl, aralkyl and alkaryl groups and the alkoxy, aryloxy, alkythio, arylthio, and tertiary amino groups. Many suitable types of these polyfunctional compounds have been described in U.S. Pat. Nos. 3,595,941; 3,468,972, 3,135,716; 3,078,254, and 3,594,452, the disclosures of which are herein incorporated by reference. When the coupling agent has two reactive sites such as dibromoethane, the polymer will have a linear ABA structure. When the coupling agent has three or more reactive sites, such as silicon tetrachloride, the polymer will have a branched structure, such as (AB)n BA. Since the present block copolymers are linear, a coupling agent with two reactive sites must be used.
In the prior art, such as that exemplified by U.S. Pat. Nos. 3,595,941 and 3,468,972, the disclosures of which are herein incorporated by reference, the effort was always made to select the particular coupling agent or reaction conditions that resulted in the highest coupling efficiency. Lower coupling efficiencies are desired herein in order to produce adhesive compositions which adhere strongly to difficult to adhere substances such as polyolefins, e.g. polyethylene. Coupling efficiency is defined as the number of molecules of coupled polymer divided by the number of molecules of coupled polymer plus the number of molecules of uncoupled polymer. Thus, when producing an SIS linear polymer, the coupling efficiency is shown by the following relationship: ##EQU1## Coupling efficiency can be determined theoretically from the stoichiometric quantity of coupling agent required for complete coupling or coupling efficiency can be determined by an analytical method such as gel permeation chromotography. Typical prior art coupling efficiency is from about 80% to almost 100%. In U.S. Pat. No. 4,096,203, coupling efficiency is controlled from about 20% to about 80%, preferably about 30% to about 70%. It is also within the scope of the present invention to blend polymers from processes of differing coupling efficiency. For example, if a 60% efficiency is desired, then polymers from processes having an 80% efficiency and a 40% efficiency may be blended together or a 100% triblock may be blended with a 100% diblock in a 60:40 ratio.
This coupling efficiency is controlled by an number of methods. One method to reduce coupling efficency is to add less than the stoichiometric amount of coupling agent required for complete coupling of the polymers. Another means of reducing coupling efficiency is by the premature addition of a terminator compound. These terminators, such as water or alcohol, respond very quickly and could easily be employed to cut short complete coupling of the polymers. In addition, by performing the coupling reaction at elevated temperatures, such as above about 190° F., thermal termination of many of the living polymer groups (A-B-Li) occurs prior to coupling. The typical coupling conditions include a temperature of between about 150° and about 170° F. and sufficient pressure to maintain the reactants in a liquid phase.
Following the coupling reaction or when the desired coupling efficiency has been obtained, the product is neutralized such as by the addition of terminators, e.g., hydrogen, water, alcohol or other reagents, for the purpose of removing the lithium radical forming the nucleus for the condensed polymer product. The produce is then recovered such as by coagulation utilizing hot water or steam or both.
As discussed above, in order to achieve the desired advantages in ahesive formulations one of which is to make an excellent pressure sensitive adhesive, the polymer and adhesive must have the following performance characteristics: a neat polymer melt viscosity of 5,000 to 15,000 poise, an adhesive melt viscosity of less than 20,000 poise, a 180° peel of greater than 6.8 pli, a holding power to steel of at least 500 min. and an SAFT to Mylar of at least 70° C. In order to achieve these performance requirements, the polymer must have a polystyrene content of from 19-27% by weight because at lower styrene content the polymers are too soft to manufacture and at higher than 27% styrene content the polymers are too stiff to perform as base polymers for pressure sensitive adhesives. The polymer must have polystyrene block molecular weight of 12,000 to 18,000 because at less than 12,000 the adhesives have insufficient high temperature shear and at greater than 18,000 the adhesive melt viscosity is too high. The polymer must have an overall molecular weight of from 170,000 to 280,000 because at less than 170,000 the peel adhesion valves are low and at greater than 280,000 the adhesive melt viscosity is prohibitively high. The coupling efficiency of the polymer must be in the range from 25 to 82% because at less than 25% coupling efficiency the holding power of the adhesive is too low and at greater than 82% peel adhesion is low.
The polymer characteristic ranges were determined as follows. First, it was known from past experience that in order to achieve the five performance requirements, the coupling efficiency of the polymer had to be no less than 25%, the polystyrene block molecular weight had to be greater than 11,000 and the overall molecular weight had to be at least 170,000. These limitations were necessary in order to have sufficient holding power, SAFT and peel adhesion. Then, as described in the example, a number of polymer samples were made at varying polystyrene contents, polystyrene block molecular weight, overall molecular weights and coupling efficiencies. These polymers were used to make adhesive formulations which were then tested to determine if they met the five performance requirements. This data is shown in the tables in the Example. The data from Table 2 was then analyzed using regression equations to determine the ranges shown in Table 3 and the actual polymer characteristics shown in Table 4.
In order to achieve more stringent performance requirements, i.e. a neat polymer melt viscosity of less than 600 poise, an adhesive melt viscosity of 6000 to 15,000 poise, a 180° peel of greater than 6.8 pli, a holding power to steel of greater than 500 min. and an SAFT to Mylar of at least 70° C., it is necessary to operate within the area generally defined by a polystyrene content range of 19 to 26% by weight, a polystyrene block molecular weight of from 12,000 to 17,000, an overall molecular weight range of from 170,000 to 240,000 and a coupling efficiency range of from 25 to 82%.
The molecular weights described herein are polystyrene equivalent molecular weights. Molecular weights of linear polymers or unassembled linear segments of polymers such as mono-, di-, triblock, and etc., arms of star polymers before coupling are conveniently measured by Gel Permeation Chromatography (GPC), where the GPC system has been appropriately calibrated. Polymers of known molecular weight are used to calibrate and these must be of the same molecular structure and chemical composition as the unknown linear polymers or segments that are to be measured. For anionically polymerized linear polymers, the polymer is essentially monodisperse and it is both convenient and adequately descriptive to report the "peak" molecular weight of the narrow molecular weight distribution observed.
Methods of controlling the molecular weights of the blocks and the overall polymer are quite well known. For instance, such are disclosed in U.S. Pat. Nos. 3,149,182, which states that the amount of monomer can be kept constant and different molecular weights can be achieved by changing the amount of catalyst or the amount of catalyst can be kept constant and different molecular weights can be achieved by varying the amount of the monomer, and in U.S. No. 3,231,635, the disclosures of which are herein incorporated by reference, and many others. A typical block copolymer composition within the scope of the present invention, having a coupling efficiency of 35%, polystyrene block molecular weight of 15,500, a polystyrene content of 22% and an overall molecular weight 200,000, was prepared by polymerizing styrene with sec-butyl lithium as initiator at a monomer to initiator molar ratio of 149, to 1 and then terminating the polymerization, polymerizing isoprene at a monomer to initiator molar ratio of 820 to 1 and then terminating the polymerization and finally polymerizing polystyrene again under the same conditions as before. Another typical block copolymer was made by blending a diblock polystyrene-polyisoprene polymer with a triblock polystyrene-polyisoprene-polystyrene copolymer.
It is necessary to add an adhesion promoting or tackifying resin that is compatible with the elastomeric conjugated diene block. A common tackifying resin is a diene-olefin copolymer of piperylene and 2-methyl-2butene having a softening point of about 95° C. This resin is available commercially under the tradename Wingtack 95 and is prepared by the cationic polymerization of 60% piperylene, 10% isoprene, 5% cyclopentadiene, 15% 2-methyl-2-butene and about 10% dimer, as taught in U.S. Pat. No. 3,577,398. Other tackifying resins of the same general type may be employed in which the resinous copolymer comprises 20-80 weight percent of piperylene and 80-20 weight percent of 2-methyl-2-butene. The resins normally have softening points (ring and ball) between 80° C. and about 115° C.
Other adhesions promoting resins whcih are also useful in the compositions of this invention include hydrogenated rosins, esters of ronsins, polyterpenes, terpenephenol resins and polymerized mixed olefins. To obtain good thermo-oxidative and color stability, it is preferred that the tackifying resin be a saturated resin, e.g., a hydrogenated dicyclopentadiene resin such as Escorez® 5000 series resin made by Exxon or a hydyrogenated polystyrene or polyalphamethylstyrene resin such as Regalrez® resin made by Hercules.
The amount of adhesion promoting resin employed varies from about 20 to about 400 parts by weight per hundred parts rubber (phr), preferably between about 100 to about 350 phr.
The selection of the particular tackifying agent is, in large part, dependent upon the specific block copolymer employed in the respective adhesive composition. In the manufacture of disposable articles such as diapers, sanitary napkins and bed pads, there is the additional consideration of having a substantially white or clear adhesive composition.
The adhesive composition of the instant invention may contain plasticizers, such as rubber extending plasticizers, or compounding oils or liquid resins. Rubber compounding oils are well-known in the art and include both high saturates content oils and high aromatics content oils. Preferred plasticizers are highly saturated oils, e.g. Tufflo® 6056 oil made by Arco. The amounts of rubber compounding oil employed in the invention composition can vary from 0 to about 100 phr, and preferably between about 0 to about 60 phr.
Optional components of the present invention are stabilizers which inhibit or retard heat degradation, oxidation, skin formation and color formation. Stabilizers are typically added to the commercially available compounds in order to protect the polymers against heat degradation and oxidation during the preparation, use and high temperature storage of the adhesive composition.
Addition stabilizers known in the art may also be incorporated into the adhesive composition. These may be for protection during the life of the disposable article against, for example, oxygen, ozone and ultraviolet radiation. However, these additional stabilizers should be compatible with the essential stabilizers mentioned herein-above and their intended function as taught herein.
The adhesive compositions of the present invention are typically prepared by blending the components at an elevated temperature, preferably between about 130° C. and about 200° C., until a homogeneous blend is obtained, usually less than three (3) hours. Various method of blending are known to the art and any method that produces a homogeneous blend is satisfactory.
The preferred use for these compositions is in pressure sensitive adhesives. However, it is useful in other applications such as diaper tab tape adhesives.
A number of polymers were prepared for use in the following experiments. These polymers and their characteristics are identified in Table 1 below.
TABLE 1
______________________________________
Polymer Identification
Sample ID
PSC (wt. %) PS Block Molecular Weight
______________________________________
A 22.5 16,500 210,400
B 19.6 14,600 216,100
C 25.5 17,300 192,500
D 25.3 15,200 170,600
E 22.0 15,500 202,500
F 25.0 16,800 191,000
G 22.0 15,500 202,500
______________________________________
These polymers were styrene-isoprene-styrene triblock copolymers. Styrene isoprene diblock copolymers were made with the same characteristics and blended with the triblock to produce blends with varying coupling efficiencies.
The polymers were then used in an adhesive formulation and the performance of the adhesive formulation was determined. The adhesive formulation used was: 39.8% wt. polymer, 54.2% wt. Escorez 1310LC tackifying resin (a hydrocarbon resin), 5.6% wt. SHELLFLEX® 371 oil and 0.4% wt. Irganox 1010 antioxidant. The performance of the various polymers in this adhesive formulation was determined and the results are shown in Table 2 below. The melt viscosity was measured in centipoise (cps) by using a Brookfield Thermocell viscometer at 350° F. The SAFT (M) Mylar was measured by 1"×1" Mylar to Mylar lap joint with a 0.23 kg weight. SAFT measures the temperature at which the lap shear assembly fails under load. The molecular weights (styrene equivalent) were determined by gel permeation chromatography as the peak molecular weight of the main species. The polystyrene content was determined by nuclear magnetic resonance spectroscopy. Holding Power (HPST) is the time required to pull a standard area (1/2in. ×1/2 in.) of tape from a standard steel test surface under a standard load, in shear at 2° antipeel (Pressure Sensitive Tape Council Method No. 7). Peel was determined by PSTC Test No. 1.
TABLE 2
__________________________________________________________________________
Polymer Performance
REQUIREMENTS
MV MV
(Polymer)
(Adhesive)
PEEL
HPST SAFT(M)
(Poise)
(Poise)
(pli)
(min)
(°C.)
Sample
C.E.
5000-15000
<20,000
>6 50 65 REQ. MET
__________________________________________________________________________
A 10 3717x
3490 5.5x
18x
60x No
A 30 6526 8930 8.2 3891 78 Yes
A 50 11460 22860x
10.0
7000+
86 No
B 10 3804x
840 5.8x
15x
65x No
B 30 6397 2160 8.1 1259 82 Yes
B 50 10760 5530 10.1
7000+
88 Yes
C 10 3283x
5990 5.6x
42x
68 No
C 30 5870 15330 7.7 7000+
84 Yes
C 50 10496 39240x
8.8 7000+
89 No
D 10 2770x
1310 5.4x
30x
60x No
D 30 4722x
3360 7.6 4634 77 No
D 50 8051 8590 8.8 7000+
84 Yes
E 10 3461x
1680 5.6x
22x
63x No
E 30 5942 4300 8.2 2718 82 Yes
E 50 10199 11000 8.5 5696 86 Yes
F 10 3231x
4760 -- -- -- No
F 30 5712 10890 -- -- -- Yes
G 35 6801 5440 8.8 5905 84 Yes
__________________________________________________________________________
x denotes failure to meet requirements
As described previously, past experience shows that in order to meet the five polymer performance characteristics, the polymer must have a coupling efficiency of at least 25, a polystyrene block molecular weight of 12,000 or greater, a polystyrene content of 19 to 27% and an overall molecular weight to greater than 170,000. Using this information and the data from Table 2, a regression analysis reveals that in order to obtain the viscosity requirements and the adhesive test requirements, the coupling efficiences for polymers of A-F must fall within the ranges shown in Table 3 below:
TABLE 3
__________________________________________________________________________
Summary of Polymer Parameter Limits
Viscosity Requirements
MV1 MV2 Adhesive Test Reguirements
(poise) (poise)
CE >/= 25
PS > 11M
Mw > 170M
Sample
5-15M <20000
Overall CE Range
__________________________________________________________________________
A 21 </= CE </= 59
CE < 47
25 </= CE < 47
B 21 </= CE </= 62
CE < 77
25 </= CE < 77
C 25 </= CE </= 62
CE < 35
25 </= CE < 35
D 33 </= CE </= 73
CE < 67
33 </= CE < 67
E 24 </= CE </= 64
CE < 62
25 </= CE < 62
F 25 </= CE </= 63
CE < 42
25 </= CE < 42
__________________________________________________________________________
Further work with this regression analysis yields the data shown ion Table 4 below.
TABLE 4 ______________________________________ PSC PS Block Mw Mol. Wt. (wt. %) (M) (Ms) C.E. Range (%) ______________________________________ 1 19.5 12 178.6 35-82 2 19.5 13 193.5 30-74 3 19.5 14 208.3 25-67 4 19.5 15 223.2 25-59 5 19.5 16 238.1 25-52 6 19.5 17 253.0 25-39 7 19.5 18 267.9 25-25 8 20.5 13 183.3 33-77 9 20.5 14 197.4 27-70 10 20.5 15 211.5 25-63 11 20.5 16 225.6 25-54 12 20.5 15 239.7 25-39 13 20.5 17 253.8 25-25 14 21.5 18 174.1 35-79 15 21.5 13 187.5 30-73 16 21.5 14 200.9 25-66 17 21.5 16 214.3 25-54 18 21.5 17 227.7 25-39 19 21.5 18 241.1 25-25 20 22.5 14 178.5 32-75 21 22.5 15 191.5 28-68 22 22.5 16 204.0 25-54 23 22.5 17 216.8 25-39 24 22.5 18 229.5 25-25 25 23.5 14 170.3 34-77 26 23.5 15 182.4 30-71 27 23.5 16 194.6 26-54 28 23.5 17 206.8 25-39 29 23.5 18 218.9 25-25 30 24.5 15 174.3 32-71 31 24.5 16 186.0 28-55 32 24.5 17 197.6 25-39 33 24.5 18 209.2 25-25 34 25.5 16 178.0 30-55 35 25.5 17 189.1 26-40 36 25.5 18 200.2 25-25 ______________________________________
Table 5 and these more stringent performance requirements. This regression analysis yields the coupling efficiency ranges shown in Table 6 and the polymer data points shown in Table. 7.
TABLE 5
______________________________________
Polymer Performance
REQUIREMENTS
MV1
(Poise) MV2 PEEL HPST STMY
Sam- 6M- (Poise)
(pli) (min) (°C.)
REQ.
ple C.E. 15M <6000 >6.8 >500 70 MET
______________________________________
A 10 3717x 3490 5.5x 18x 60x No
A 30 6526 8930 8.2 3891 78 Yes
A 50 11460 22860x
10.0 7000+ 86 No
B 10 3804x 840 5.8x 15x 65x No
B 30 6397 2160 8.1 1257 82 Yes
B 50 10760 5530 10.1 7000+ 88 Yes
C 10 3283x 5990 5.6x 42x 68 No
C 30 5870x 15330x
7.7 7000+ 84 No
C 50 10496 39240x
8.8 7000+ 89 No
D 10 2770x 1310 5.4x 30x 60x No
D 30 4722x 3360 7.6 4634 77 No
D 50 8051 8590 8.8 7000+ 84 Yes
E 10 3461x 1680 5.6x 22x 63x No
E 30 5942x 4300 8.2 2718 82 No
E 50 10199 11000x
8.5 5696 86 No
F 10 3231x 4760 -- -- -- No
F 30 5712x 10890x
-- -- -- No
G 35 6801 5440 8.8 5905 84 Yes
______________________________________
M: thousands
x denotes failure to meet requirements
MV1: Neat polymer viscosity at 350° F.
MV2: Adhesive viscosity at 350° F.
HPST: Holding Power to Steel
STMY: SAFT to MYLAR
PEEL: 180° peel adhesion
TABLE 6
__________________________________________________________________________
Summary of Preferred Polymer Parameter Limits
Melt Viscosity
MV1 MV2 Adhesive Requirements
Preferred
(Poise) (Poise)
Mw > 170M
CE >/= 25
PS > 12M
Sample
6-15M <6000
Preferred CE Range
__________________________________________________________________________
A 28 </= CE </= 59
CE < 22
None
B 28 </= CE </= 62
CE < 51
33 </= CE < 51
C 31 </= CE </= 62
CE < 10
None
D 39 </= CE </= 73
CE < 42
39 </= CE < 42
E 31 </= CE </= 64
CE < 37
31 </= CE < 37
F 31 </= CE </= 63
CE < 17
None
__________________________________________________________________________
TABLE 7 ______________________________________ PSC PS Block Mw Mol. Wt. C.E. Range (%) (wt. %) (M) (Ms) Preferred ______________________________________ 1 19.5 12 178.6 43-82 2 19.5 13 193.5 37-74 3 19.5 14 208.3 31-62 4 19.5 15 223.2 25-45 5 19.5 16 238.1 25-28 6 19.5 17 253.0 None 7 19.5 18 267.9 None 8 20.5 13 183.3 40-77 9 20.5 14 197.4 34-62 10 20.5 15 211.5 29-45 11 20.5 16 225.6 25-28 12 20.5 17 239.7 None 13 20.5 18 253.8 None 14 21.5 13 174.1 43-79 15 21.5 14 187.5 37-62 16 21.5 15 200.9 32-45 17 21.5 16 214.3 27-29 18 21.5 17 227.7 None 19 21.5 18 241.1 None 20 22.5 14 178.5 40-62 21 22.5 15 191.5 35-45 22 22.5 16 204.0 None 23 22.5 17 216.8 None 24 22.5 16 229.5 None 25 23.5 14 170.3 42-62 26 23.5 15 182.4 37-45 27 23.5 16 194.6 None 28 23.5 17 206.8 None 29 23.5 18 218.9 None 30 24.5 15 174.3 39-45 31 24.5 16 186.0 None 32 24.5 17 197.6 None 33 24.5 18 209.2 None 34 25.5 16 178.0 None 35 25.5 17 189.1 None 36 25.5 18 200.2 None ______________________________________
Claims (4)
1. A linear styrene-isoprene-styrene block copolymer composition comprised of linear polymeric blocks, said block polymer composition characterized in that it has a coupling efficiency from 25 to 82%, a polystyrene content of from 19 to 17% by weight, a polystyrene block molecular weight of from 12,000 to 18,000 and an overall molecular weight of from 170,000 to 280,000, both molecular weights being peak polystyrene equivalent molecular weights as determined by gel permeation chromatography.
2. A hot melt adhesive comprising the block copolymer composition of claim 1 and a tackifying resin.
3. The block copolymer composition of claim 1 wherein the polystyrene content ranges from 19 to 26% by weight, the polystyrene block molecular weight ranges from 12,000 to 17,000 and the overall molecular weight ranges from 170,000 to 240,000, both molecular weights being peak polystyrene equivalent molecular weights as determined by gel permeation chromatography.
4. A hot melt adhesive comprising the block copolymer composition of claim 3 and a tackifying resin.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US07/950,617 USH1402H (en) | 1992-09-24 | 1992-09-24 | Styrene-isoprene-styrene block copolymer composition and adhesives made therefrom |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US07/950,617 USH1402H (en) | 1992-09-24 | 1992-09-24 | Styrene-isoprene-styrene block copolymer composition and adhesives made therefrom |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| USH1402H true USH1402H (en) | 1995-01-03 |
Family
ID=25490672
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US07/950,617 Abandoned USH1402H (en) | 1992-09-24 | 1992-09-24 | Styrene-isoprene-styrene block copolymer composition and adhesives made therefrom |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | USH1402H (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6025071A (en) * | 1997-10-23 | 2000-02-15 | H.B.Fuller Licensing & Financing Inc. | Removable grade hot melt pressure sensitive adhesive |
| US6433069B1 (en) * | 1997-10-23 | 2002-08-13 | H. B. Fuller Licensing & Financing Inc. | Hot melt pressure sensitive adhesive which exhibits minimal staining |
| US6730737B1 (en) * | 1993-12-27 | 2004-05-04 | Kraton Polymers U.S. Llc | Releasable pressure sensitive adhesive composition |
| US12305095B2 (en) | 2018-12-14 | 2025-05-20 | 3M Innovative Properties Company | Adhesive articles and methods |
Citations (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB888624A (en) * | 1958-03-13 | 1962-01-31 | Phillips Petroleum Co | Block polymers and process for preparation thereof |
| CA686721A (en) * | 1964-05-19 | Phillips Petroleum Company | Shoe sole compositions | |
| US3519585A (en) * | 1966-04-13 | 1970-07-07 | Morgan Adhesives Co | Pressure sensitive adhesive composition |
| US3681190A (en) * | 1970-05-07 | 1972-08-01 | Minnesota Mining & Mfg | Pressure-sensitive adhesive tape |
| US3783072A (en) * | 1971-11-02 | 1974-01-01 | Johnson & Johnson | Extrusion process for pressure-sensitive adhesive sheets and tapes |
| US3784587A (en) * | 1972-07-31 | 1974-01-08 | Goodyear Tire & Rubber | Adhesive composition containing an a-b-a block copolymer,poly alpha-methyl styrene and a tackifying resin |
| US3787531A (en) * | 1969-04-04 | 1974-01-22 | Minnesota Mining & Mfg | Pressure-sensitive adhesives comprising a block copolymer and a tackifier |
| US3932328A (en) * | 1971-11-02 | 1976-01-13 | Johnson & Johnson | Hot melt adhesive composition and tape |
| DE2432496A1 (en) * | 1974-07-04 | 1976-01-22 | Bostik Gmbh | BUTYL RUBBER-BASED MELT ADHESIVE |
| US3984509A (en) * | 1975-06-30 | 1976-10-05 | Johnson & Johnson | Extrusion process for mixtures of elastomer particles and resin particles |
| US4028292A (en) * | 1974-05-23 | 1977-06-07 | Johnson & Johnson | Hot melt adhesive |
| US4080348A (en) * | 1976-05-18 | 1978-03-21 | Johnson & Johnson | Tacky adhesive |
| US4096203A (en) * | 1976-07-30 | 1978-06-20 | Shell Oil Company | Process to control cohesive strength of block copolymer composition |
| US4136071A (en) * | 1976-05-18 | 1979-01-23 | Johnson & Johnson | Mixed block polymer adhesive |
| EP0027606A1 (en) * | 1979-10-18 | 1981-04-29 | BASF Aktiengesellschaft | Hot-melt adhesive based on non hydrogenated, linear ABC block polymers |
| US4622357A (en) * | 1983-07-13 | 1986-11-11 | Arakawa Kagaku Kogyo Kabushiki Kaisha | Pressure-sensitive adhesive compositions |
| US4734447A (en) * | 1985-09-24 | 1988-03-29 | Sunstar Giken Kabushiki Kaisha | Hot-melt adhesive |
| US4785043A (en) * | 1985-06-14 | 1988-11-15 | Nippon Oil Co., Ltd. | Pressure-sensitive adhesive composition produced from a base block copolymer, a resinous tackifier, a naphthenic or parffinic mineral oil, and an aromatic synthetic oil |
| US5093406A (en) * | 1987-06-03 | 1992-03-03 | Avery Dennison Corporation | Curable hot melt adhesives |
| US5118762A (en) * | 1990-04-11 | 1992-06-02 | Shell Oil Company | Styrene-isoprene-styrene block copolymer composition for low viscosity low temperature hot melt adhesives |
| US5149741A (en) * | 1989-07-21 | 1992-09-22 | Findley Adhesives, Inc. | Hot melt construction adhesives for disposable soft goods |
-
1992
- 1992-09-24 US US07/950,617 patent/USH1402H/en not_active Abandoned
Patent Citations (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA686721A (en) * | 1964-05-19 | Phillips Petroleum Company | Shoe sole compositions | |
| GB888624A (en) * | 1958-03-13 | 1962-01-31 | Phillips Petroleum Co | Block polymers and process for preparation thereof |
| US3519585A (en) * | 1966-04-13 | 1970-07-07 | Morgan Adhesives Co | Pressure sensitive adhesive composition |
| US3787531A (en) * | 1969-04-04 | 1974-01-22 | Minnesota Mining & Mfg | Pressure-sensitive adhesives comprising a block copolymer and a tackifier |
| US3681190A (en) * | 1970-05-07 | 1972-08-01 | Minnesota Mining & Mfg | Pressure-sensitive adhesive tape |
| US3783072A (en) * | 1971-11-02 | 1974-01-01 | Johnson & Johnson | Extrusion process for pressure-sensitive adhesive sheets and tapes |
| US3932328A (en) * | 1971-11-02 | 1976-01-13 | Johnson & Johnson | Hot melt adhesive composition and tape |
| US3784587A (en) * | 1972-07-31 | 1974-01-08 | Goodyear Tire & Rubber | Adhesive composition containing an a-b-a block copolymer,poly alpha-methyl styrene and a tackifying resin |
| US4028292A (en) * | 1974-05-23 | 1977-06-07 | Johnson & Johnson | Hot melt adhesive |
| DE2432496A1 (en) * | 1974-07-04 | 1976-01-22 | Bostik Gmbh | BUTYL RUBBER-BASED MELT ADHESIVE |
| US3984509A (en) * | 1975-06-30 | 1976-10-05 | Johnson & Johnson | Extrusion process for mixtures of elastomer particles and resin particles |
| US4080348A (en) * | 1976-05-18 | 1978-03-21 | Johnson & Johnson | Tacky adhesive |
| US4136071A (en) * | 1976-05-18 | 1979-01-23 | Johnson & Johnson | Mixed block polymer adhesive |
| US4096203A (en) * | 1976-07-30 | 1978-06-20 | Shell Oil Company | Process to control cohesive strength of block copolymer composition |
| EP0027606A1 (en) * | 1979-10-18 | 1981-04-29 | BASF Aktiengesellschaft | Hot-melt adhesive based on non hydrogenated, linear ABC block polymers |
| US4622357A (en) * | 1983-07-13 | 1986-11-11 | Arakawa Kagaku Kogyo Kabushiki Kaisha | Pressure-sensitive adhesive compositions |
| US4785043A (en) * | 1985-06-14 | 1988-11-15 | Nippon Oil Co., Ltd. | Pressure-sensitive adhesive composition produced from a base block copolymer, a resinous tackifier, a naphthenic or parffinic mineral oil, and an aromatic synthetic oil |
| US4734447A (en) * | 1985-09-24 | 1988-03-29 | Sunstar Giken Kabushiki Kaisha | Hot-melt adhesive |
| US5093406A (en) * | 1987-06-03 | 1992-03-03 | Avery Dennison Corporation | Curable hot melt adhesives |
| US5149741A (en) * | 1989-07-21 | 1992-09-22 | Findley Adhesives, Inc. | Hot melt construction adhesives for disposable soft goods |
| US5118762A (en) * | 1990-04-11 | 1992-06-02 | Shell Oil Company | Styrene-isoprene-styrene block copolymer composition for low viscosity low temperature hot melt adhesives |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6730737B1 (en) * | 1993-12-27 | 2004-05-04 | Kraton Polymers U.S. Llc | Releasable pressure sensitive adhesive composition |
| US6025071A (en) * | 1997-10-23 | 2000-02-15 | H.B.Fuller Licensing & Financing Inc. | Removable grade hot melt pressure sensitive adhesive |
| US6433069B1 (en) * | 1997-10-23 | 2002-08-13 | H. B. Fuller Licensing & Financing Inc. | Hot melt pressure sensitive adhesive which exhibits minimal staining |
| US12305095B2 (en) | 2018-12-14 | 2025-05-20 | 3M Innovative Properties Company | Adhesive articles and methods |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5118762A (en) | Styrene-isoprene-styrene block copolymer composition for low viscosity low temperature hot melt adhesives | |
| US5891957A (en) | Adhesive composition for skin adhesion and bandage applications | |
| US5242984A (en) | Sequentially polymerized styrene-isoprene-styrene block copolymer adhesive composition | |
| AU687131B2 (en) | Multiblock hydrogenated polymers for adhesives | |
| EP0451919B1 (en) | Styrene-isoprene-styrene block copolymer composition for low viscosity low application temperature hot melt adhesives | |
| EP0628061B1 (en) | Styrene-isoprene three-armed high load bearing capacity block copolymer composition for adhesives | |
| EP0683187B1 (en) | Hot melt adhesive composition for labels | |
| US5412032A (en) | High molecular weight low coupled linear styrene-isoprene-styrene block copolymer composition and adhesives made therefrom | |
| US5210147A (en) | 100% Triblock hydrogenated styrene-isoprene-styrene block copolymer adhesive composition | |
| USH1402H (en) | Styrene-isoprene-styrene block copolymer composition and adhesives made therefrom | |
| US6576686B1 (en) | Road marking compound comprising linear tetrablock copolymers | |
| US20020132922A1 (en) | Tetrablock copolymers |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SHELL OIL COMPANY, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHIN, STEVEN S.;MILLER, JOHN A.;GROBRAN, RAMSIS;REEL/FRAME:006969/0069 Effective date: 19920921 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |