USH1074H - Bacterio-electric leaching of metals - Google Patents

Bacterio-electric leaching of metals Download PDF

Info

Publication number
USH1074H
USH1074H US07/486,039 US48603990A USH1074H US H1074 H USH1074 H US H1074H US 48603990 A US48603990 A US 48603990A US H1074 H USH1074 H US H1074H
Authority
US
United States
Prior art keywords
iron
metals
slurry
coal
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US07/486,039
Inventor
Norman Lazaroff
Patrick R. Dugan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Energy
Original Assignee
US Department of Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Energy filed Critical US Department of Energy
Priority to US07/486,039 priority Critical patent/USH1074H/en
Assigned to UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF THE DEPARTMENT OF ENERGY reassignment UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF THE DEPARTMENT OF ENERGY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: LAZAROFF, NORMAN, DUGAN, PATRICK R.
Application granted granted Critical
Publication of USH1074H publication Critical patent/USH1074H/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/18Extraction of metal compounds from ores or concentrates by wet processes with the aid of microorganisms or enzymes, e.g. bacteria or algae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to the biological beneficiation of an ore body or fossil fuel utilizing an applied electrical field in conjunction with living microorganisms and/or their metabolic by-products to effect the release of metallic ions or mineral components from the ore body.
  • Coal desulfurization is highly desirable in that it is believed that combustion of coal, and specifically high-sulphur content coals, is a contributing factor to acid rain and other environmental problems. Numerous methods for desulfurizing coal have been attempted. Physical separation, bacterial oxidation and chemical processes can all be demonstrated to produce the desired effect in laboratory or pilot plant scale tests. However, each of these processes suffers because they are either too expensive or too difficult to accomplish on the massive scale involved. Physical separation processes are difficult because of the small particle size necessary. Bacterial oxidation suffers because of the long exposure times required (on the order of 5-15 days). Chemical processes suffer from the expense of the large quantity of chemicals required.
  • U.S. Pat. No. 4,775,627 discloses a process whereby pyrite particles and high-sulphur content coal are modified so as to be more hydrophyllic, and more easily separated by conventional means, such as froth flotation. Ground coal particles are preconditioned by subjecting the pyrite to thiophilic bacteria adapted to the process, permitting the bacteria to alter the hydrophobicity of the pyrite particles.
  • U.S. Pat. No. 4,822,413 discloses a process to extract metals from an ore containing one or more metallic sulphides using a leach liquor containing bacterially-generated ferric ions in order to effect metal sulfide dissolution.
  • the metals removed are capable of dissolution in an acidic ferric sulfate solution (such as copper) or are more easily removed by subsequent processing (such as gold) as a result of exposure to the acidic ferric sulfate solution.
  • Suitable bacteria such as Thiobacillus ferrooxidans may be used to increase dissolution of metals in certain circumstances.
  • the phenomenon of bacterio-electric leaching of metals from minerals combines two processes having a common feature--the bacterial oxidation of Fe +2 in an acid solution.
  • the first process is the oxidative leaching of pyritic minerals by iron-oxidizing bacteria (most commonly thiobacilli)--the so-called "pyrite cycle”.
  • the second process is the acceleration of the oxidation of reduced iron by iron-oxidizing thiobacilli by subjecting the process to an applied electric potential and the resulting current.
  • the pyrite cycle is a chain reaction in which ferric ions produced by bacterial oxidation react with the sulphur of a pyritic mineral in order to oxidize the pyrite. This oxidation releases ferrous ions, enabling the chemo-lithotrophic oxidation of the pyrite, and sustains the pyrite decomposition by regenerating Fe +3 as the oxidizing agent. Pyrite oxidation and solubilization are limited by the concentration of ferric ions, and their accessibility to the mineral substrate. Both the concentration and accessibility of Fe +3 ions are affected by the precipitation of bacterially-oxidized iron from solution as an Fe +3 sulfato complex.
  • Precipitation usually occurs initially in the form of a metastable amorphous hydrated ferric sulfate. As illustrated in FIG. 1, the presence of jarosite directing cations and excess sulfate causes the Fe +3 sulfato complex to be converted to a stable crystalline jarosite. Under more alkaline conditions the deposits comprise iron oxides and oxyhydroxides that are distinguishable from bacterial oxidation products.
  • Iron oxidizing bacteria are essential to the pyrite cycle by regenerating the soluble Fe +3 lixiviant under acid conditions permitting extraction of metals from sulfide minerals and coal--conditions under which abiotic auto-oxidation of iron occurs slowly.
  • the acceleration of electro-oxidation of reduced iron by iron oxidizing thiobacilli occurs when an electro-oxidizable metal mineral liberates Fe +2 under the influence of an electric potential.
  • FIG. 2 in the presence of iron-oxidizing thiobacilli and in an acid environment, the flow of electric current and solubilization of iron is accelerated through depolarization of cathodic sites by bacterially oxidized iron in solution.
  • Fe 0 corrodes in an acidic aqueous environment
  • Fe +2 passes into solution as electrons are transferred from Fe 0 at anodic sites to cathodic sites on the metal.
  • the cathodic sites must be depolarized by a loss of electrons to an oxidizing agent in order for the process to continue.
  • hydrogen ions may serve as the oxidizing agent, however when Fe +3 is present in such environment, it competes at the cathodes with H + for available electrons. If the Fe +2 produced is oxidized by the thiobacillus, a chain reaction of iron oxidation and reduction occurs analogous to that of the pyrite cycle.
  • Pyrite is electrically conductive, therefore by subjecting pyritic materials to an applied potential in a galvanic cell containing an iron oxidizing microorganism, under acid conditions, solubilization of the pyritic component and liberation of associated cations from the mineral matrix will be enhanced by the combination of electro- and bacterial-oxidation. Electrophoretic migration of cations to the cathode in a galvanic cell may be utilized as a mechanism to separate and recover the cations.
  • the process of the present invention may be utilized to separate valuable metals from low-grade ores or to remove ash metals and sulphur from pyrite coals.
  • the method of the present invention comprises adding iron-oxidizing bacteria and/or sulphur oxidizing bacteria to a slurry containing an ore body, inducing a voltage between a pair of electrodes across the slurry, and recovering metals from the ore body at one of the cathodes.
  • comminuted ores are mixed in a vessel with a lixiviant, such as pH 2.5 H 2 SO 4 , and a pair of platinum electrodes are suspended within the vessel. While the voltage required to produce the desired effect may depend upon various process conditions, application of a voltage of between about 1 and about 25 volts has been found to produce the electrophoretic separation of metals desired.
  • FIG. 1 is a diagramatic representation of the relationship of sulfate to pyrite leaching and the formation of oxidized iron sediments;
  • FIG. 2 is a diagramatic representation of the corrosion of steel by iron oxidizing bacteria
  • FIG. 3 is a schematic representation of the bacterioelectric leaching apparatus of the present invention.
  • FIG. 4 is a graphic representation of metal deposits on the cathode of the apparatus of FIG. 3;
  • FIG. 5 is a graphic representation of galvanic separation of metals from a copper ore
  • FIG. 6 is a schematic representation of a galvanic sandwich
  • FIG. 7 is a schematic representation of metal deposition in concentric zones about the cathode of the device of FIG. 6;
  • FIGS. 8(a and b) are graphic representation of metal recovery from coal in a galvanic sandwich of FIG. 6.
  • FIGS. 1 and 2 illustrate schematically separate processes involved in the present invention.
  • FIG. 1 represents the relationship of sulfate to pyrite leaching and the formation of oxidized iron sediments by iron oxidizing bacteria such as Thiobacillus ferrooxidans.
  • Ferric ions produced by bacterial oxidation in the pyrite cycle 12 react with the sulphur of a pyritic mineral to oxidize it, releasing Fe +2 for the chemo-lithotrophic oxidation and maintains pyrite composition by regenerating the Fe +3 oxidant.
  • Pyrite oxidation and solubilization are limited by the concentration of the ferric oxidizing agent and its accessibility to the mineral substrate.
  • Precipitation usually occurs as an amorphous-hydrated ferric sulfate 14, however the presence of jarosite-directing cations and excess sulfate causes the Fe +3 sulfato complex to be converted into a stable jarosite 16. Under alkaline conditions iron oxides and oxyhydroxide 18 are formed. Iron oxidizing bacteria 20 are essential to the process by regenerating the soluble Fe +3 leaching agent which permit extraction of metals from sulfide minerals and coal. Without such bacteria the Fe +3 sulfato complex is converted into magnetite or goethite,
  • FIG. 2 illustrates the electro-oxidation of a metal (iron) under the influence of an electric potential.
  • the flow of electric current and solubilization of iron is accelerated through depolarization of cathodic sites 22 by bacterially-oxidized iron in an acid environment.
  • Fe +2 26 passes into solution. If the Fe +2 is oxidized by the bacteria, a chain reaction of iron oxidation and reduction occurs and is self-sustaining, modulated by the precipitation of the typical sediments of chemo-lithotrophic iron oxidation.
  • the reaction is driven by applying an external voltage to the system, thereby accelerating dissolution of the metal, and forming more Fe +2 for bacterial oxidation, which in turn causes an increased accumulation of the Fe +3 sediment.
  • an apparatus illustrated in FIG. 2 involves, for instance, a metal (iron) coupon 28 to conduct the electric potential
  • the process can be driven if an electrically-conductive ore body is suspended in an appropriate galvanic cell.
  • the pyritic component of a mineral contained within a galvanic cell having an iron-oxidizing microorganism therein, under acid conditions may be solubilized by a combination of electro- and bacterial-oxidation, with a concurrent liberation of cations retained within the mineral matrix.
  • Electrophoretic migration of cations to the cathode of the galvanic cell assists collection of the separated cationic metals. While the metallic cations of interest migrate to the cathode, their associated anion (usually sulfate) will likewise migrate.
  • the metals may be separated by conventional means after being liberated from the ore body.
  • the apparatus of FIG. 3 demonstrates the bacterioelectric extraction of metals from ore bodies.
  • An appropriate container 30, such as a glass beaker, is filled with a leaching agent 40, in this case sulfuric acid at a pH of from about 0.8 to about 4.5. It has been found that in the apparatus of FIG. 3 a pH of about 2.5 is preferable.
  • An anode 42 and cathode 44 are suspended within the lixiviant, with the electrodes retained within chambers 46, 48 respectively. Both electrodes in the examples set forth herein are constructed of platinum (the source of the platinum recovered and illustrated in FIG. 4. Powdered mineral specimens are compacted against the anode within chamber 46 and then wrapped in ashless filter paper 50.
  • the liberated metals from the ore are collected on the cathode 44 or in the surrounding cathode chamber 48. It should be understood that the metals collected may be removed from solution at any point in their migration between the anode and cathode, as with filters.
  • the leaching agent 40 is preferably agitated, as by an air-driven magnetic stirrer 52.
  • the metals recovered on the cathode are illustrated in FIG. 4--the ordinant of this Figure is not delineated in definitive units of measure, as the graphic representation illustrates merely the relative quantities of the various metals recovered.
  • FIG. 5 illustrates the quantities of five metals recovered in the apparatus of FIG. 3 with and without the addition of iron oxidizing thiobacilli and soluble iron.
  • the apparatus was operated for 72 hours at 10 volts.
  • One gram of powdered ore was pretreated by shaking for 2 days in 50 mls of pH 2.5 H 2 SO 4 , containing 5 ⁇ 10 10 T. ferrooxidans cells and 10 mg FeSO 4 7H 2 O solution. In each case, the amount recovered with such additions was greater than that without.
  • PSOC 667 an Iowa subbituminous coal with approximately 13% total sulphur and 4.5% pyritic sulphur, was analyzed in the apparatus of FIG. 3. 0.75 grams of powdered coal was added to the anode chamber, with or without added microorganisms. The container was filled with 200 ml of pH 2.5 H 2 SO 4 and the apparatus operated at 10 volts for 64 hours. Sediments were collected separately from the cathode and main chambers. Solutes were obtained by evaporation of the filtered lixiviant.
  • a galvanic sandwich illustrated in FIG. 6, comprises a container or dish 54, having a membrane filter 56 atop a cellulose pad 58.
  • the pad 58 is soaked with a dilute sulfuric acid solution and either overlies or surrounds a stainless steel anode 60.
  • the anode 60 is maintained in contact with the ore specimen 70 within the pad.
  • approximately 0.3-0.4 gm of powdered ore was utilized.
  • a platinum cathode 72 rests on the surface of the membrane filter 56 below a layer of paraffin 74 held in place by a lid 76 of container 54.
  • the membrane filter is preferably comprised of cellulose acetate.
  • the sulfuric acid is provided at a pH of from about 0.8 to about 4.5, preferably about 2.5, and electric current was provided for 20 hours at 10 volts.
  • Electrophoretic separation of the metals present in the ore specimen are deposited in zones 78 concentric to the cathode 72 (FIG. 7).
  • the various zones 78 may be cut from the membrane filter 56 and analyzed by appropriate techniques to determine relative amount of the various metals.
  • the process of the present invention is useful to recover sulphur from high-sulphur coals, such as the PSOC 667 sample of Table 1.
  • This coal contains approximately 13% total sulphur and 4-5% pyritic sulphur.
  • the total amount of sulphur recovered using the bacterio-electric process of the present invention is approximately 20% greater than by the use of the galvanic process only.
  • areas experiencing soil contamination from metals resulting from dumping may be cleansed by the process of the present invention.
  • radionuclides and hazardous organics preferentially complexed with metals subject to removal by this process may be removed from contaminated areas.
  • products of combustion such as fly ash and bag-house dust removed from industrial processes may be cleansed of specific metals by this process.

Abstract

The separation of cationic materials from an ore body is assisted by the application of an electric potential, and resulting current, to the ore body, in association with iron or sulphur oxidizing bacteria. The combined process induces migration of cationic metals to a cathode suspended within the ore body so that the cationic metal can be preferentially separated from the ore body.

Description

CONTRACTUAL ORIGIN OF THE INVENTION
The United States Government has rights in this invention pursuant to Contract No. DE-AC07-76ID01570 between the United States Department of Energy and EG&G Idaho, Inc.
FIELD OF THE INVENTION
The present invention relates to the biological beneficiation of an ore body or fossil fuel utilizing an applied electrical field in conjunction with living microorganisms and/or their metabolic by-products to effect the release of metallic ions or mineral components from the ore body.
BACKGROUND OF THE INVENTION
Processes for removing sulphur from coal, or for extracting desirable metals from an ore body, are well-known. Coal desulfurization is highly desirable in that it is believed that combustion of coal, and specifically high-sulphur content coals, is a contributing factor to acid rain and other environmental problems. Numerous methods for desulfurizing coal have been attempted. Physical separation, bacterial oxidation and chemical processes can all be demonstrated to produce the desired effect in laboratory or pilot plant scale tests. However, each of these processes suffers because they are either too expensive or too difficult to accomplish on the massive scale involved. Physical separation processes are difficult because of the small particle size necessary. Bacterial oxidation suffers because of the long exposure times required (on the order of 5-15 days). Chemical processes suffer from the expense of the large quantity of chemicals required.
For example, U.S. Pat. No. 4,775,627 discloses a process whereby pyrite particles and high-sulphur content coal are modified so as to be more hydrophyllic, and more easily separated by conventional means, such as froth flotation. Ground coal particles are preconditioned by subjecting the pyrite to thiophilic bacteria adapted to the process, permitting the bacteria to alter the hydrophobicity of the pyrite particles. U.S. Pat. No. 4,822,413 discloses a process to extract metals from an ore containing one or more metallic sulphides using a leach liquor containing bacterially-generated ferric ions in order to effect metal sulfide dissolution. The metals removed are capable of dissolution in an acidic ferric sulfate solution (such as copper) or are more easily removed by subsequent processing (such as gold) as a result of exposure to the acidic ferric sulfate solution. Suitable bacteria, such as Thiobacillus ferrooxidans may be used to increase dissolution of metals in certain circumstances.
It has been proposed in U.S. Pat. No. 4,043,884 to upgrade the kerogen components of oil shale by leaching carbonate materials from the oil shale to produce a porous residue, forming a slurry of the residue with a reductive electrolytically active solution, and then subjecting the slurry to reductive electrolysis. The reduced residue is then more easily separated from the electrolyzed slurry.
The phenomenon of bacterio-electric leaching of metals from minerals combines two processes having a common feature--the bacterial oxidation of Fe+2 in an acid solution. The first process is the oxidative leaching of pyritic minerals by iron-oxidizing bacteria (most commonly thiobacilli)--the so-called "pyrite cycle". The second process is the acceleration of the oxidation of reduced iron by iron-oxidizing thiobacilli by subjecting the process to an applied electric potential and the resulting current.
The pyrite cycle is a chain reaction in which ferric ions produced by bacterial oxidation react with the sulphur of a pyritic mineral in order to oxidize the pyrite. This oxidation releases ferrous ions, enabling the chemo-lithotrophic oxidation of the pyrite, and sustains the pyrite decomposition by regenerating Fe+3 as the oxidizing agent. Pyrite oxidation and solubilization are limited by the concentration of ferric ions, and their accessibility to the mineral substrate. Both the concentration and accessibility of Fe+3 ions are affected by the precipitation of bacterially-oxidized iron from solution as an Fe+3 sulfato complex.
Precipitation usually occurs initially in the form of a metastable amorphous hydrated ferric sulfate. As illustrated in FIG. 1, the presence of jarosite directing cations and excess sulfate causes the Fe+3 sulfato complex to be converted to a stable crystalline jarosite. Under more alkaline conditions the deposits comprise iron oxides and oxyhydroxides that are distinguishable from bacterial oxidation products.
Iron oxidizing bacteria are essential to the pyrite cycle by regenerating the soluble Fe+3 lixiviant under acid conditions permitting extraction of metals from sulfide minerals and coal--conditions under which abiotic auto-oxidation of iron occurs slowly.
The acceleration of electro-oxidation of reduced iron by iron oxidizing thiobacilli occurs when an electro-oxidizable metal mineral liberates Fe+2 under the influence of an electric potential. As illustrated in FIG. 2, in the presence of iron-oxidizing thiobacilli and in an acid environment, the flow of electric current and solubilization of iron is accelerated through depolarization of cathodic sites by bacterially oxidized iron in solution. When Fe0 corrodes in an acidic aqueous environment, Fe+2 passes into solution as electrons are transferred from Fe0 at anodic sites to cathodic sites on the metal. The cathodic sites must be depolarized by a loss of electrons to an oxidizing agent in order for the process to continue. In an acid environment, hydrogen ions may serve as the oxidizing agent, however when Fe+3 is present in such environment, it competes at the cathodes with H+ for available electrons. If the Fe+2 produced is oxidized by the thiobacillus, a chain reaction of iron oxidation and reduction occurs analogous to that of the pyrite cycle.
SUMMARY OF THE INVENTION
Pyrite is electrically conductive, therefore by subjecting pyritic materials to an applied potential in a galvanic cell containing an iron oxidizing microorganism, under acid conditions, solubilization of the pyritic component and liberation of associated cations from the mineral matrix will be enhanced by the combination of electro- and bacterial-oxidation. Electrophoretic migration of cations to the cathode in a galvanic cell may be utilized as a mechanism to separate and recover the cations. The process of the present invention may be utilized to separate valuable metals from low-grade ores or to remove ash metals and sulphur from pyrite coals.
The method of the present invention comprises adding iron-oxidizing bacteria and/or sulphur oxidizing bacteria to a slurry containing an ore body, inducing a voltage between a pair of electrodes across the slurry, and recovering metals from the ore body at one of the cathodes. Specifically, comminuted ores are mixed in a vessel with a lixiviant, such as pH 2.5 H2 SO4, and a pair of platinum electrodes are suspended within the vessel. While the voltage required to produce the desired effect may depend upon various process conditions, application of a voltage of between about 1 and about 25 volts has been found to produce the electrophoretic separation of metals desired. While there is no process limitation for a maximum voltage applied, cost considerations will limit the maximum voltage to a reasonably low level e.g., less than 100 volts. It has been found that the addition of various salts to the reaction components can substantially increase conductivity of the reaction matrix, and thereby increase the metal recovery. For example, the addition of sulfates of lithium, magnesium and aluminum will increase the conductivity.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagramatic representation of the relationship of sulfate to pyrite leaching and the formation of oxidized iron sediments;
FIG. 2 is a diagramatic representation of the corrosion of steel by iron oxidizing bacteria;
FIG. 3 is a schematic representation of the bacterioelectric leaching apparatus of the present invention;
FIG. 4 is a graphic representation of metal deposits on the cathode of the apparatus of FIG. 3;
FIG. 5 is a graphic representation of galvanic separation of metals from a copper ore;
FIG. 6 is a schematic representation of a galvanic sandwich;
FIG. 7 is a schematic representation of metal deposition in concentric zones about the cathode of the device of FIG. 6; and
FIGS. 8(a and b) are graphic representation of metal recovery from coal in a galvanic sandwich of FIG. 6.
DETAILED DESCRIPTION OF THE INVENTION
FIGS. 1 and 2 illustrate schematically separate processes involved in the present invention. FIG. 1 represents the relationship of sulfate to pyrite leaching and the formation of oxidized iron sediments by iron oxidizing bacteria such as Thiobacillus ferrooxidans. Ferric ions produced by bacterial oxidation in the pyrite cycle 12 react with the sulphur of a pyritic mineral to oxidize it, releasing Fe+2 for the chemo-lithotrophic oxidation and maintains pyrite composition by regenerating the Fe+3 oxidant. Pyrite oxidation and solubilization are limited by the concentration of the ferric oxidizing agent and its accessibility to the mineral substrate. Precipitation usually occurs as an amorphous-hydrated ferric sulfate 14, however the presence of jarosite-directing cations and excess sulfate causes the Fe+3 sulfato complex to be converted into a stable jarosite 16. Under alkaline conditions iron oxides and oxyhydroxide 18 are formed. Iron oxidizing bacteria 20 are essential to the process by regenerating the soluble Fe+3 leaching agent which permit extraction of metals from sulfide minerals and coal. Without such bacteria the Fe+3 sulfato complex is converted into magnetite or goethite,
FIG. 2 illustrates the electro-oxidation of a metal (iron) under the influence of an electric potential. The flow of electric current and solubilization of iron is accelerated through depolarization of cathodic sites 22 by bacterially-oxidized iron in an acid environment. As electrons are transferred from Fe0 at an anode 24 to a cathode 22, Fe +2 26 passes into solution. If the Fe+2 is oxidized by the bacteria, a chain reaction of iron oxidation and reduction occurs and is self-sustaining, modulated by the precipitation of the typical sediments of chemo-lithotrophic iron oxidation. The reaction is driven by applying an external voltage to the system, thereby accelerating dissolution of the metal, and forming more Fe+2 for bacterial oxidation, which in turn causes an increased accumulation of the Fe+3 sediment. While an apparatus illustrated in FIG. 2 involves, for instance, a metal (iron) coupon 28 to conduct the electric potential, the process can be driven if an electrically-conductive ore body is suspended in an appropriate galvanic cell. For example, because pyrite is electrically conductive, the pyritic component of a mineral contained within a galvanic cell having an iron-oxidizing microorganism therein, under acid conditions, may be solubilized by a combination of electro- and bacterial-oxidation, with a concurrent liberation of cations retained within the mineral matrix. Electrophoretic migration of cations to the cathode of the galvanic cell assists collection of the separated cationic metals. While the metallic cations of interest migrate to the cathode, their associated anion (usually sulfate) will likewise migrate. The metals may be separated by conventional means after being liberated from the ore body.
EXAMPLE 1
The apparatus of FIG. 3 demonstrates the bacterioelectric extraction of metals from ore bodies. An appropriate container 30, such as a glass beaker, is filled with a leaching agent 40, in this case sulfuric acid at a pH of from about 0.8 to about 4.5. It has been found that in the apparatus of FIG. 3 a pH of about 2.5 is preferable. An anode 42 and cathode 44 are suspended within the lixiviant, with the electrodes retained within chambers 46, 48 respectively. Both electrodes in the examples set forth herein are constructed of platinum (the source of the platinum recovered and illustrated in FIG. 4. Powdered mineral specimens are compacted against the anode within chamber 46 and then wrapped in ashless filter paper 50. The liberated metals from the ore are collected on the cathode 44 or in the surrounding cathode chamber 48. It should be understood that the metals collected may be removed from solution at any point in their migration between the anode and cathode, as with filters. The leaching agent 40 is preferably agitated, as by an air-driven magnetic stirrer 52. The metals recovered on the cathode are illustrated in FIG. 4--the ordinant of this Figure is not delineated in definitive units of measure, as the graphic representation illustrates merely the relative quantities of the various metals recovered.
The addition of soluble iron and iron oxidizing microorganisms (Thiobacillus ferrooxidans) to the ore prior to extraction of cationic metals results in enhanced recovery of copper and other cations in the iron sediment collected in the cathode chamber. The results illustrated in FIG. 4 are obtained by analyzing for metals on the surface of the platinum electrode. In FIG. 5, the metals were collected with filters, dried and weighed. The apparatus of FIG. 3 was operated for 24 hours under the following process parameters:
1 gm powdered ore
350 mls H2 SO4
pH 2.5
5×1010 cells Thiobacillus ferrooxidans
10 volts applied
10 mg FeSO4 7H2 O
FIG. 5 illustrates the quantities of five metals recovered in the apparatus of FIG. 3 with and without the addition of iron oxidizing thiobacilli and soluble iron. The apparatus was operated for 72 hours at 10 volts. One gram of powdered ore was pretreated by shaking for 2 days in 50 mls of pH 2.5 H2 SO4, containing 5×1010 T. ferrooxidans cells and 10 mg FeSO4 7H2 O solution. In each case, the amount recovered with such additions was greater than that without.
Galvanic metal recovery from all coals using the process of FIG. 3 is not uniformly enhanced by the presence of iron oxidizing microorganisms. However, these results indicate that metal recovery from certain coals is consistently enhanced with the bacterio-electric process disclosed above.
EXAMPLE 2
PSOC 667, an Iowa subbituminous coal with approximately 13% total sulphur and 4.5% pyritic sulphur, was analyzed in the apparatus of FIG. 3. 0.75 grams of powdered coal was added to the anode chamber, with or without added microorganisms. The container was filled with 200 ml of pH 2.5 H2 SO4 and the apparatus operated at 10 volts for 64 hours. Sediments were collected separately from the cathode and main chambers. Solutes were obtained by evaporation of the filtered lixiviant. 190.5 mg of solids were recovered from the cathode and main chambers in both soluble and suspended form (which does not include materials plated on the cathode, consisting primarily of iron, copper, nickel and sulphur). The 190.5 mg of recovered solids contained approximately 66 mg of metals, distributed as indicated in Table 1.
                                  TABLE 1                                 
__________________________________________________________________________
Distribution of Metals Leached from PSOC Coal (Mg)                        
Total                         Atom                                        
                                  Atom                                    
Solids   Fe Ca Al K  Si Cu S  Fe  S                                       
__________________________________________________________________________
Galvanic                                                                  
     190.5                                                                
         54.02                                                            
            11.03                                                         
               0.71                                                       
                  0.15                                                    
                     0.43                                                 
                        0.07                                              
                           40.51                                          
                              0.967                                       
                                  1.24                                    
Process                                                                   
Bacterio-                                                                 
     239.9                                                                
         91.00                                                            
             1.53                                                         
               0.72                                                       
                  -- 0.04                                                 
                        0.04                                              
                           48.60                                          
                              1.592                                       
                                  1.489                                   
electric                                                                  
process                                                                   
__________________________________________________________________________
By comparison, leaching of the PSOC 667 coal with combined bacterial (5×1010 cells T. ferrooxidans added) and electric leaching separated approximately 239 mg of recovered solids, with approximately 93.3 mg of metals contained therein. While the combined bacterial and electric treatment results in enhanced metal extraction from PSOC 667 coal, the accompanying increased precipitation of iron is not an indicator of increased recovery of sulphur, which would be expected if bacterial oxidation had released iron from pyrite. While not attempted herein, Applicants believe that removal of sulphur as well as metals from such coal samples would be enhanced by providing mixed bacterial populations having the ability to readily oxidize elemental sulphur as well as reduced iron. Such mixed bacterial populations may include other species of Thiobacillus, such as T. thiooxidans, and other microbes capable of metabolism in an acidic environment, such as Acidophillium sp. and Leptospirillium sp. Also, bacteria capable of stimulating iron and sulphur oxidixing bacteria may be added.
In order to determine the nature of the cationic metals extracted from coal by the inventive process, the apparatus of FIG. 3 was modified to better determine the results of the process.
EXAMPLE 3
A galvanic sandwich, illustrated in FIG. 6, comprises a container or dish 54, having a membrane filter 56 atop a cellulose pad 58. The pad 58 is soaked with a dilute sulfuric acid solution and either overlies or surrounds a stainless steel anode 60. The anode 60 is maintained in contact with the ore specimen 70 within the pad. In the apparatus of FIG. 6, approximately 0.3-0.4 gm of powdered ore was utilized. A platinum cathode 72 rests on the surface of the membrane filter 56 below a layer of paraffin 74 held in place by a lid 76 of container 54. The membrane filter is preferably comprised of cellulose acetate. The sulfuric acid is provided at a pH of from about 0.8 to about 4.5, preferably about 2.5, and electric current was provided for 20 hours at 10 volts. Electrophoretic separation of the metals present in the ore specimen are deposited in zones 78 concentric to the cathode 72 (FIG. 7). The various zones 78 may be cut from the membrane filter 56 and analyzed by appropriate techniques to determine relative amount of the various metals.
It was determined that the zone closest to the cathode contained mostly nickel, while the next closest zone contained mostly nickel and chromium, the next contained primarily iron and sulphur and the farthest from the cathode contained copper and chromium. While the technique of FIGS. 6 and 7 does not permit complete separation of the metals recovered from a coal specimen, it does provide for partial separation and permits a means to better appreciate the metal complexes that are formed.
Significant amounts of copper and zinc are present in the sediment from the bacterio-electric treatment of FIG. 3, but these elements are not collected on the cathode port membrane of a corresponding leaching system without iron oxidizing bacteria added thereto.
EXAMPLE 4
An Illinois #6 coal (PSOC 1322) having about 1.28% pyritic sulphur was subjected to bacterio-electric leaching in the vessel of FIG. 3. It was determined that the cellulose or cellulose acetate filters placed across the cathode port 80 were the site of sediment deposition for some coals. Although the sediment obtained by galvanic leaching with addition of the iron-oxidizing microorganisms differs from the abiotic galvanic sediment having more of the amorphous hydrated Fe+3 SO4, both appear to be inorganic polymers (polyelectrolytes) based on their retention by the filter. Sediments were easily separated by scraping from the cellulose acetate or ashless filter paper and analyzed for metal content.
                                  TABLE 2                                 
__________________________________________________________________________
Distribution of Metals Leache from PSOC 1322                              
Illinois #6 Coal (Mg)                                                     
          Al Si S  Ca Mn Fe Cu Zn K  Br TOTAL                             
__________________________________________________________________________
Bac- wt % 1.04                                                            
             0.25                                                         
                4.53                                                      
                   0.19                                                   
                      0.89                                                
                         92.69                                            
                            0.16                                          
                               0.25                                       
                                  -- -- 100                               
terized                                                                   
     atomic %                                                             
          2.06                                                            
             0.47                                                         
                7.54                                                      
                   0.25                                                   
                      0.86                                                
                         88.48                                            
                            0.13                                          
                               0.21                                       
                                  -- -- --                                
No Bac-                                                                   
     wt % -- 1.16                                                         
                1.01                                                      
                   0.24                                                   
                      1.60                                                
                         92.07                                            
                            -- -- 0.44                                    
                                     3.48                                 
                                        100                               
teria                                                                     
     atomic                                                               
          -- 2.78                                                         
                1.75                                                      
                   0.33                                                   
                      1.60                                                
                         91.01                                            
                            -- -- 0.62                                    
                                     2.41                                 
                                        --                                
__________________________________________________________________________
The elemental analysis set forth in Table 2 indicates that significant amounts of copper and zinc are present in the sediment from the bacterio-electric process but are not collected on the cathode port membrane when the process is run without iron-oxidizing bacteria. Applicants believe that either the additional Fe+3 provided by way of bacterial action or by direct bacterial action on copper and zinc minerals, results in greater release of copper and zinc from the bound mineral form.
Because of the concern for sulphur emissions resulting from the burning of coal, it is highly desireable to remove a significant portion of the sulphur in high-sulphur coals prior to burning.
EXAMPLE 5
Powdered PSOC 667 Iowa subbituminous coal containing about 4.5% pyritic sulphur was placed at the anode of a galvanic sandwich of FIG. 6. The system was operated at 10 volts for 48 hours. Analysis of the bacterially-sedimented iron (FIG. 8A) is distinguishable from iron oxidized abiotically (FIG. 8B) by the relative amounts of sulphur recovered. The bacterially oxidized Fe+3 complex migrates toward the cathode where it forms a distinct zone that differs from the zone containing Fe+3 complexes formed by abiotic oxidation, as set forth above. A larger proportion of sulphur is found in deposits formed on cellulose acetate filters from iron oxidized by Thiobacillus ferrooxidans then that oxidized abiotically. The data in Table 2 above indicate that the bacterized leach treatment yields a sediment with a significantly greater amount of sulphur than an abiotic treatment. Presumably, recovery of nonmetallic constituents such as sulphur, silicon and phosphorous are complexed with heavier cations recovered by the process.
The process of the present invention is useful to recover sulphur from high-sulphur coals, such as the PSOC 667 sample of Table 1. This coal contains approximately 13% total sulphur and 4-5% pyritic sulphur. As illustrated in Table 1, the total amount of sulphur recovered using the bacterio-electric process of the present invention is approximately 20% greater than by the use of the galvanic process only.
While the process of the present invention has been disclosed herein in a relatively small laboratory apparatus, such processes are intended merely to demonstrate the feasibility of the inventive process. It is contemplated that the process can be most economically carried out in one of three environments: (1) an in situ process wherein the bacteria and electric potential are introduced directly into a subterranean ore body; (2) after an ore body is mined, precious metals or non-precious metals (including hazardous metals) may be recovered from a slurry either prior to refining or as a component of a refining process; or (3) prior to burning, sulphur may be removed from a slurry of coal particles.
It is believed that areas experiencing soil contamination from metals resulting from dumping may be cleansed by the process of the present invention. For example, radionuclides and hazardous organics preferentially complexed with metals subject to removal by this process may be removed from contaminated areas. Also, products of combustion such as fly ash and bag-house dust removed from industrial processes may be cleansed of specific metals by this process.
It is to be understood that while the process of the present invention has been described with reference to an acidic environment, the process is equally susceptible to operation in neutral and basic environments. The limiting factor is the isolation of suitable bacteria having the capability to complex with the desired metals. Applicants have noted galvanic metal extraction in lixiviants having a pH as high as 13.0.
While a preferred embodiment of the invention has been disclosed, various modes of carrying out the principles disclosed herein are contemplated as being within the scope of the following claims. Therefore, it is understood that the scope of the invention is not to be limited except as otherwise set forth in the claims.

Claims (4)

We claim:
1. A method of removing metals from fossil fuels, comprising:
a. forming and agitating a fossil fuel slurry containing the fossil fuel and sulfuric acid at a Ph of about 2.5 in a vessel;
b. treating the slurry with the iron-oxidizing microorganism, Thiobacillus Ferrooxidans;
c. inserting a pair of electrodes comprising an anode and a cathode into the vessel;
d. applying a voltage of about 10 volts between the electrodes across at least a portion of the vessel to electrolytically dissolve and redeposit the metals; and
e. recovering the electro-deposited metals between the anode and the cathode.
2. The method of claim 1, further comprising increasing the conductivity of the slurry by adding a sulfate salt to the slurry, wherein the sulfate salt is selected from the group consisting of lithium magnesium or aluminum.
3. A method of removing metals from coal prior to combustion of the coal, comprising:
a. forming an acidic slurry of the coal and sulfuric acid at a Ph of about 2.5;
b. adding the iron-oxidating bacteria, Thiobacillus ferrooxidans to the slurry;
c. inducing a voltage of about 10 volts across the slurry between a pair of electrodes; and
d. recovering the metals adjacent one of the electrodes.
4. A method of removing iron pyrite from fossil fuels, comprising:
a. forming a fossil fuel slurry containing the iron pyrite in mixture with sulfuric acid solution at a Ph of about 2.5 and an iron-oxidizing microorganism including Thiobacillus ferrooxidans;
b. electrolytically dissolving the iron pyrite at anodic potential in the presence of the iron-oxidizing microorganism to form Fe+2 in sulfate solution. The Fe+2 being oxidized to Fe+3 by the action of the iron-oxidizing microorganism;
c. electrolytically converting Fe+3 at cathodic potential to Fe+2 and to iron metal; and
d. recovering the iron metal from the slurry.
US07/486,039 1990-02-27 1990-02-27 Bacterio-electric leaching of metals Abandoned USH1074H (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/486,039 USH1074H (en) 1990-02-27 1990-02-27 Bacterio-electric leaching of metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/486,039 USH1074H (en) 1990-02-27 1990-02-27 Bacterio-electric leaching of metals

Publications (1)

Publication Number Publication Date
USH1074H true USH1074H (en) 1992-07-07

Family

ID=23930367

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/486,039 Abandoned USH1074H (en) 1990-02-27 1990-02-27 Bacterio-electric leaching of metals

Country Status (1)

Country Link
US (1) USH1074H (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5766930A (en) * 1995-06-02 1998-06-16 Geobiotics, Inc. Method of biotreatment for solid materials in a nonstirred surface bioreactor
US5885825A (en) * 1990-08-24 1999-03-23 Brookhaven Science Associates Biochemical transformation of coals
US6083730A (en) * 1993-12-03 2000-07-04 Geobiotics, Inc. Nonstirred bioreactor for processing refractory sulfide concentrates and method for operating same
US6107065A (en) * 1995-06-02 2000-08-22 Geobiotics, Inc. Nonstirred bioreactor for processing refractory sulfide concentrates and method for operating same
US6387239B1 (en) * 1999-11-17 2002-05-14 Bhp Minerals International, Inc. Recovery of metals from ore

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982995A (en) 1975-05-07 1976-09-28 The University Of Southern California Method of converting oil shale into a fuel
US4043884A (en) 1976-08-23 1977-08-23 University Of Southern California Electrolytic hydrogenation of leached oil shale components
US4193854A (en) 1977-12-23 1980-03-18 Union Carbide Corporation Heavy metal removal from wastewater sludge
US4206288A (en) 1978-05-05 1980-06-03 Union Carbide Corporation Microbial desulfurization of coal
US4392402A (en) 1979-05-31 1983-07-12 E.C.H. Will (Gmbh & Co.) Apparatus for severing running paper webs or the like
US4711849A (en) 1983-08-29 1987-12-08 General Mining Union Corporation, Limited Construction of selectable shuttle cloning vectors for Thiobacillus ferrooxidans
US4748118A (en) 1983-09-09 1988-05-31 General Mining Union Corporation Limited Construction of arsenic resistance vectors for Thiobacillus ferrooxidans
US4775627A (en) 1986-04-22 1988-10-04 The Ohio State University, A Branch Of The State Government Coal desulfurization using bacteria adaptation and bacterial modification of pyrite surfaces
US4822413A (en) 1986-03-13 1989-04-18 Davy Mckee (Stockton) Limited Extraction of metal values from ores or concentrates
US4845034A (en) 1985-01-22 1989-07-04 Houston Industries Incorporated Biochemically reacting substrates in subterranean cavities

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982995A (en) 1975-05-07 1976-09-28 The University Of Southern California Method of converting oil shale into a fuel
US4043884A (en) 1976-08-23 1977-08-23 University Of Southern California Electrolytic hydrogenation of leached oil shale components
US4193854A (en) 1977-12-23 1980-03-18 Union Carbide Corporation Heavy metal removal from wastewater sludge
US4206288A (en) 1978-05-05 1980-06-03 Union Carbide Corporation Microbial desulfurization of coal
US4392402A (en) 1979-05-31 1983-07-12 E.C.H. Will (Gmbh & Co.) Apparatus for severing running paper webs or the like
US4711849A (en) 1983-08-29 1987-12-08 General Mining Union Corporation, Limited Construction of selectable shuttle cloning vectors for Thiobacillus ferrooxidans
US4748118A (en) 1983-09-09 1988-05-31 General Mining Union Corporation Limited Construction of arsenic resistance vectors for Thiobacillus ferrooxidans
US4845034A (en) 1985-01-22 1989-07-04 Houston Industries Incorporated Biochemically reacting substrates in subterranean cavities
US4822413A (en) 1986-03-13 1989-04-18 Davy Mckee (Stockton) Limited Extraction of metal values from ores or concentrates
US4775627A (en) 1986-04-22 1988-10-04 The Ohio State University, A Branch Of The State Government Coal desulfurization using bacteria adaptation and bacterial modification of pyrite surfaces

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Lararoff and Dugan, "Bacterio-Electric Separation of Leached Metals from Coals and Sulfide Minerals", 197th American Chemical Society Mtg., Apr. 9-14, 1989.
Lazaroff and Dugan, "Bacterio-Electric Removal of Metals from Coal", Bioprocessing of Coals, Tyson's Corner, Va., Aug. 13-18, 1989.
Lazaroff, Dugan, and Wey, "Review of Biological Processing and Interactions with Coal", Annual Program Review, Jan. 30, 1990.
Srivastava et al., "Coal Bioprocessing: A Research Needs Assessment", Chemical Engineering Progress (after Mar. 27, 1989).

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5885825A (en) * 1990-08-24 1999-03-23 Brookhaven Science Associates Biochemical transformation of coals
US6083730A (en) * 1993-12-03 2000-07-04 Geobiotics, Inc. Nonstirred bioreactor for processing refractory sulfide concentrates and method for operating same
US6410304B2 (en) 1995-06-02 2002-06-25 Geobiotics, Llc Method of biotreatment for solid materials in a nonstirred surface bioreactor
US6107065A (en) * 1995-06-02 2000-08-22 Geobiotics, Inc. Nonstirred bioreactor for processing refractory sulfide concentrates and method for operating same
US6159726A (en) * 1995-06-02 2000-12-12 Geobiotics, Inc. Method of biotreatment for solid materials in a nonstirred surface bioreactor
US5766930A (en) * 1995-06-02 1998-06-16 Geobiotics, Inc. Method of biotreatment for solid materials in a nonstirred surface bioreactor
US20030013166A1 (en) * 1995-06-02 2003-01-16 Geobiotics, Inc., A California Corporation Method of biotreatment for solid materials in a nonstirred surface bioreactor
US6855527B2 (en) 1995-06-02 2005-02-15 Geobiotics Llc Method of biotreatment for solid materials in a nonstirred surface bioreactor
US20050112741A1 (en) * 1995-06-02 2005-05-26 Geobiotics, Inc., A California Corporation Method of biotreatment for solid materials in a nonstirred surface bioreactor
US7416882B2 (en) 1995-06-02 2008-08-26 Geobiotics, Llc Method of biotreatment for solid materials in a nonstirred surface bioreactor
US20080311647A1 (en) * 1995-06-02 2008-12-18 Kohr William J Method of Biotreating a Solid Material Comprising an Organic Compound
US8021870B2 (en) 1995-06-02 2011-09-20 Geobiotics, Llc Method of biotreating a solid material comprising an organic compound
US8030055B2 (en) 1995-06-02 2011-10-04 Geobiotics, Llc Method of biotreatment for solid materials in a nonstirred surface bioreactor
US6387239B1 (en) * 1999-11-17 2002-05-14 Bhp Minerals International, Inc. Recovery of metals from ore

Similar Documents

Publication Publication Date Title
Brombacher et al. Biohydrometallurgical processing of solids: a patent review
RU2086682C1 (en) Hydrometallurgical method of extracting precious metals from persistent sulfide ore
Yuehua et al. The effect of silver-bearing catalysts on bioleaching of chalcopyrite
Zhang et al. Bioleaching of dewatered electroplating sludge for the extraction of base metals using an adapted microbial consortium: Process optimization and kinetics
Mulligan et al. Bioleaching of copper and other metals from low‐grade oxidized mining ores by Aspergillus niger
Miller et al. The low-potential hydrophobic state of pyrite in amyl xanthate flotation with nitrogen
Hiskey Thiourea leaching of gold and silver—technology update and additional applications
Nakazawa et al. Effect of activated carbon on the bioleaching of chalcopyrite concentrate
Ubaldini et al. Biooxidation of arsenopyrite to improve gold cyanidation: study of some parameters and comparison with grinding
Sato et al. Effect of silver chloride on the bioleaching of chalcopyrite concentrate
Smith et al. TREATMENT OPTIONS
Natarajan et al. Role of galvanic interactions in the bioleaching of Duluth gabbro copper-nickel sulfides
Langhans et al. Biooxidation of an arsenic-bearing refractory gold ore
Peng et al. Enrichment of ferric iron on mineral surface during bioleaching of chalcopyrite
USH1074H (en) Bacterio-electric leaching of metals
Kölle et al. Reduced sulphur compounds in sandy aquifers and their interactions with groundwater
Torma Impact of biotechnology on metal extractions
Pradhan et al. Microbial leaching process to recover valuable metals from spent petroleum catalyst using iron oxidizing bacteria
Tripathy et al. Effect of chemical pretreatment on bacterial desulphurisation of Assam coal
Twidwell et al. Removal of selenium oxyanions from mine waters utilizing elemental iron and galvanically coupled metals
Abbruzzese et al. Preparatory bioleaching to the conventional cyanidation of arsenical gold ores
Pesic et al. Electrochemistry of Thiobacillus ferrooxidans interactions with pyrite
Kumari et al. Electrochemical aspects of leaching of ocean nodules in the presence and absence of microorganisms
Mirajkar et al. Growth and attachment of Thiobacillus ferrooxidans during sulfide mineral leaching
McCready et al. Beneficiation of coal by bacterial leaching

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNITED STATES OF AMERICA, AS REPRESENTED BY THE SE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:LAZAROFF, NORMAN;DUGAN, PATRICK R.;REEL/FRAME:005307/0873;SIGNING DATES FROM 19900213 TO 19900219

STCF Information on status: patent grant

Free format text: PATENTED CASE