USH1066H - Airborne infrared transmissometer - Google Patents

Airborne infrared transmissometer Download PDF

Info

Publication number
USH1066H
USH1066H US07/553,059 US55305990A USH1066H US H1066 H USH1066 H US H1066H US 55305990 A US55305990 A US 55305990A US H1066 H USH1066 H US H1066H
Authority
US
United States
Prior art keywords
transmitter
measuring
infrared
infrared radiation
shipborne
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US07/553,059
Inventor
Spyros K. Petropoulos
Abraham Hirschman, deceased
co-executor William J. Hirschman
co-executor Samuel Hirschman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Navy
Original Assignee
US Department of Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Navy filed Critical US Department of Navy
Priority to US07/553,059 priority Critical patent/USH1066H/en
Assigned to UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OFTHE NAVY reassignment UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OFTHE NAVY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: PETROPOULOS, SPYROS K.
Application granted granted Critical
Publication of USH1066H publication Critical patent/USH1066H/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/538Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke for determining atmospheric attenuation and visibility

Definitions

  • the invention relates to instruments for measuring the atmospheric transmission along a measurement path and, in particular for measuring the atmospheric transmission in the 3-5micrometer infrared spectral region between a flying aircraft and a ground-based, shipborne, or airborne infrared detection station.
  • Transmissometers are devices used to measure the transmissivity along a specific path.
  • the basic components of a transmissometer are a transmitter and a receiver.
  • the transmitter transmits a calibrated beam of electromagnetic radiation to the receiver and the output of the receiver is monitored to determine the degree of attenuation of the radiation beam.
  • Transmissometers have been used in various applications such as monitoring smoke stack emissions, calculating mass concentrations, determining the visibility at airports, and determining infrared transmissions along various paths, etc.
  • Infrared transmissometers were normally limited to performing such measurements along horizontal or slant paths, where the transmitter and receiver are stationary in position. They were incapable of accurately measuring the infrared atmospheric transmission along a path between a flying aircraft and a detection station, a measurement which is of paramount importance to the U.S. Government.
  • the system under test is an Infrared Search and Track (IRST) system, a Forward Looking Infrared (FLIR), or an infrared missile seeker.
  • IRST Infrared Search and Track
  • FLIR Forward Looking Infrared
  • infrared missile seeker The importance of the subject transmissometer derives from the fact that when newly developed infrared detection systems, such as IRSTs, FLIRs or infrared missile seekers, are being tested against moving targets, the infrared transmission of the atmospheric path between the system under test and the test targets must be accurately measured. Only then can the performance of the device being tested be fully quantified.
  • An object of the invention is to accurately measure the atmospheric transmission in a certain infrared spectral region in the same path between a test target aircraft and a ground-based, shipborne, or airborne detection station.
  • Another object of the invention is to perform such measurement simultaneously with other tests being conducted on the test target aircraft.
  • the Airborne Infrared Transmissometer measures the atmospheric attenuation between a test target aircraft and a detection system, a measurement which was previously incapable of being performed.
  • the AIRT comprises a transmitter which is attached to the pod station of an aircraft and a ground-based, shipborne, or airborne receiver. Additionally, data recording equipment can be attached to both the transmitter and the receiver to record the associated inputs and outputs.
  • the transmitter is housed in a modified Electromagnetic Support System (ESS) Navy pod which is attached to the pod station on the test target aircraft.
  • ESS Electromagnetic Support System
  • the transmitter source is a very accurately controlled and stable infrared lamp, which, in conjunction with focusing optics, produces a calibrated radiation beam.
  • the transmitted radiation beam is chopped and scanned azimuthally past the receiver.
  • a Ram Air Turbine Generator provides the electrical power for the transmitter.
  • the receiver is basically an infrared radiometer capable of measuring incident chopped radiation within a certain band of the electromagnetic spectrum.
  • FIG. 1 is a depiction of the AIRT transmitter/receiver geometry for a test target aircraft and a shipborne detection station.
  • FIG. 2 shows the physical configuration of the transmitter attached to a pod station on the aircraft shown in FIG. 1.
  • FIG. 3 shows the AIRT receiver mounted on a pan-and-tilt tripod which can be used for the shipborne detection station in FIG. 1.
  • FIG. 4 shows the optical configuration of the AIRT receiver in FIG. 3.
  • FIG. I is a simple depiction of the use of the AIRT where a shipborne IRST system is undergoing test and evaluation using an aircraft as a test target.
  • the transmitter 1 is attached to a pod station on the aircraft.
  • the AIRT comprises a transmitter located on the test target aircraft and a ground-based, shipborne, or airborne receiver. Additionally, data recording equipment can be attached to the transmitter and receiver to record the transmitted signals of the transmitter or the signals received by the receiver, plus time signals.
  • the transmitter 1 comprises a modified ESS Navy pod 4, a Ram Air Turbine Generator 5, an accurately controlled and very stable infrared reference source 6, a scanning parabolic mirror 7, a silicon window 8, and associated electronics.
  • a rotating cylindrical chopper 9 of the infrared source is also shown in FIG. 2.
  • the cylindrical chopper 9 contains slots and rotates at a given frequency. The frequency and the number of slots can be varied so long as the rotating frequency multiplied by the number of slots equals 100 Hz.
  • the monitoring signal is produced by a thermoelectrically cooled lead selenide cell looking directly at the infrared reference source 6.
  • the infrared source 6 operates at a color temperature of 1650 degrees C.
  • the cylindrical chopper 9 chops the infrared beam at 100 Hz.
  • the Ram Air Turbine Generator 5 produces the required electrical power for the transmitter 1.
  • the total weight of the transmitter 1 is approximately 320 pounds.
  • the infrared receiver 2 in FIG. 3 is basically an infrared radiometer capable of measuring incident radiation within a certain spectral band, provided that the radiation intensity is amplitude modulated with a frequency of 100 ⁇ 5 Hz.
  • the receiver 2 is specially configured to operate in conjunction with the infrared transmitter 1.
  • the receiver 2 can be mounted on a pan-and-tilt tripod 24 since aiming at the target is manual. Target acquisition can be done visually, aided by a ten degree field-of-view telescope 11 which is mounted on the receiver 2.
  • the boresighting lens 17 is necessary to align the detector 15 in FIG. 4 with the telescope 11.
  • the entrance aperture 23 also serves as a protective window.
  • the receiver should be mounted in a suitable pod or turret attached to a wing of the host aircraft. Target acquisition in this case would have to be done with the help of radar or the infrared system under test.
  • a ten inch focal length, five inch diameter Newtonian telescope 12 is focused at infinity.
  • the secondary mirror 13 of the telescope is motor driven. When the secondary mirror 13 is in the position shown by the solid lines, it reflects the incoming radiation through a field stop and field lens 14 onto an infrared detector 15 which is cooled by a liquid nitrogen dewar 16. When the secondary mirror 13 is in the position shown by the dotted lines, it reflects the incoming radiation through an eyepiece lens 17 onto an observer. This arrangement is necessary for boresighting the infrared detector 15 and its associated optics with the telescope 11 shown in FIG. 3.
  • the output signal of the detector 15, after amplification and conditioning by electronics unit 18, is obtained from four signal (voltage) outputs 19 via BNC connectors. These four outputs have one of the following gains: 1; 10; 100; 1000. These four gains provide a greater signal dynamic range at all times. They ensure that the incoming infrared signals produced by the transmitter and processed by the receiver will appear with satisfactory strength for recording at, at the least, one of the four BNC connectors.
  • the only power required to operate the receiver is 110 V, 60 Hz.
  • the weight of the receiver is approximately 30 pounds.
  • a blackbody reference source 20, associated optics 21, and a chopper 22 for convertinq the AIRT into an absolute radiometer can be added to the receiver. Recording of the receiver output signals may be done with a four-channel magnetic tape recorder. Alternatively, the four output signals can be multiplexed and recorded on one channel.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The Airborne Infrared Transmissometer measures the infrared transmission between a test target aircraft and a detection system. A transmitter is attached to an aircraft and emits a calibrated infrared beam. A ground-based, shipborne, or airborne receiver measures the transmitted signals in the exact same path between the target aircraft and the detection system. Data recording equipment can be attached to both the transmitter and receiver to measure the associated outputs.

Description

BACKGROUND OF THE INVENTION
The invention relates to instruments for measuring the atmospheric transmission along a measurement path and, in particular for measuring the atmospheric transmission in the 3-5micrometer infrared spectral region between a flying aircraft and a ground-based, shipborne, or airborne infrared detection station.
Transmissometers are devices used to measure the transmissivity along a specific path. The basic components of a transmissometer are a transmitter and a receiver. The transmitter transmits a calibrated beam of electromagnetic radiation to the receiver and the output of the receiver is monitored to determine the degree of attenuation of the radiation beam.
Transmissometers have been used in various applications such as monitoring smoke stack emissions, calculating mass concentrations, determining the visibility at airports, and determining infrared transmissions along various paths, etc. Infrared transmissometers were normally limited to performing such measurements along horizontal or slant paths, where the transmitter and receiver are stationary in position. They were incapable of accurately measuring the infrared atmospheric transmission along a path between a flying aircraft and a detection station, a measurement which is of paramount importance to the U.S. Government.
It is also very important to perform such measurements simultaneously with other tests being conducted on the test target aircraft where the system under test is an Infrared Search and Track (IRST) system, a Forward Looking Infrared (FLIR), or an infrared missile seeker. The importance of the subject transmissometer derives from the fact that when newly developed infrared detection systems, such as IRSTs, FLIRs or infrared missile seekers, are being tested against moving targets, the infrared transmission of the atmospheric path between the system under test and the test targets must be accurately measured. Only then can the performance of the device being tested be fully quantified.
OBJECTS OF THE INVENTION
An object of the invention is to accurately measure the atmospheric transmission in a certain infrared spectral region in the same path between a test target aircraft and a ground-based, shipborne, or airborne detection station.
Another object of the invention is to perform such measurement simultaneously with other tests being conducted on the test target aircraft.
SUMMARY OF THE INVENTION
The Airborne Infrared Transmissometer (AIRT) measures the atmospheric attenuation between a test target aircraft and a detection system, a measurement which was previously incapable of being performed. The AIRT comprises a transmitter which is attached to the pod station of an aircraft and a ground-based, shipborne, or airborne receiver. Additionally, data recording equipment can be attached to both the transmitter and the receiver to record the associated inputs and outputs. The transmitter is housed in a modified Electromagnetic Support System (ESS) Navy pod which is attached to the pod station on the test target aircraft. The transmitter source is a very accurately controlled and stable infrared lamp, which, in conjunction with focusing optics, produces a calibrated radiation beam. The transmitted radiation beam is chopped and scanned azimuthally past the receiver. A Ram Air Turbine Generator provides the electrical power for the transmitter.
The receiver is basically an infrared radiometer capable of measuring incident chopped radiation within a certain band of the electromagnetic spectrum.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a depiction of the AIRT transmitter/receiver geometry for a test target aircraft and a shipborne detection station.
FIG. 2 shows the physical configuration of the transmitter attached to a pod station on the aircraft shown in FIG. 1.
FIG. 3 shows the AIRT receiver mounted on a pan-and-tilt tripod which can be used for the shipborne detection station in FIG. 1.
FIG. 4 shows the optical configuration of the AIRT receiver in FIG. 3.
DETAILED DESCRIPTION OF THE INVENTION
FIG. I is a simple depiction of the use of the AIRT where a shipborne IRST system is undergoing test and evaluation using an aircraft as a test target. The transmitter 1 is attached to a pod station on the aircraft. The receiver 2, located on the ship, measures the transmitted signals in the exact same path between the aircraft and the ship. Since the magnitude of the transmitted signals is accurately known and the receiver is calibrated, the transmission of the atmospheric path between the aircraft and the ship can be measured. The measurement can be performed simultaneously with other tests being conducted on the object under test, such as the IRST 3 system, for which the aircraft serves as a target to be detected.
The AIRT comprises a transmitter located on the test target aircraft and a ground-based, shipborne, or airborne receiver. Additionally, data recording equipment can be attached to the transmitter and receiver to record the transmitted signals of the transmitter or the signals received by the receiver, plus time signals. Referring to FIG. 2, the transmitter 1 comprises a modified ESS Navy pod 4, a Ram Air Turbine Generator 5, an accurately controlled and very stable infrared reference source 6, a scanning parabolic mirror 7, a silicon window 8, and associated electronics. A rotating cylindrical chopper 9 of the infrared source is also shown in FIG. 2. The cylindrical chopper 9 contains slots and rotates at a given frequency. The frequency and the number of slots can be varied so long as the rotating frequency multiplied by the number of slots equals 100 Hz. Additionally, there can be a suitable magnetic tape recorder 10 for recording the output signal of the monitoring sensor, shown in block diagram form in FIG. 2.
The monitoring signal is produced by a thermoelectrically cooled lead selenide cell looking directly at the infrared reference source 6. The infrared source 6 operates at a color temperature of 1650 degrees C. The infrared source 6, together with the associated optics, produces a calibrated radiation beam which is scanned along the azimuthal direction with a unidirectional period of 0.7 seconds. The cylindrical chopper 9 chops the infrared beam at 100 Hz.
Once the transmitter 1 is mechanically attached to the pod station on the aircraft, no other interfacing between the pod and aircraft is necessary. The Ram Air Turbine Generator 5 produces the required electrical power for the transmitter 1. The total weight of the transmitter 1 is approximately 320 pounds.
The infrared receiver 2 in FIG. 3 is basically an infrared radiometer capable of measuring incident radiation within a certain spectral band, provided that the radiation intensity is amplitude modulated with a frequency of 100±5 Hz. The receiver 2 is specially configured to operate in conjunction with the infrared transmitter 1. For a ground-based or shipborne operation the receiver 2 can be mounted on a pan-and-tilt tripod 24 since aiming at the target is manual. Target acquisition can be done visually, aided by a ten degree field-of-view telescope 11 which is mounted on the receiver 2. The boresighting lens 17 is necessary to align the detector 15 in FIG. 4 with the telescope 11. The entrance aperture 23 also serves as a protective window. For an airborne operation, the receiver should be mounted in a suitable pod or turret attached to a wing of the host aircraft. Target acquisition in this case would have to be done with the help of radar or the infrared system under test.
Referring to FIG. 4, the operation of the receiver can be described in the following manner. A ten inch focal length, five inch diameter Newtonian telescope 12 is focused at infinity. The secondary mirror 13 of the telescope is motor driven. When the secondary mirror 13 is in the position shown by the solid lines, it reflects the incoming radiation through a field stop and field lens 14 onto an infrared detector 15 which is cooled by a liquid nitrogen dewar 16. When the secondary mirror 13 is in the position shown by the dotted lines, it reflects the incoming radiation through an eyepiece lens 17 onto an observer. This arrangement is necessary for boresighting the infrared detector 15 and its associated optics with the telescope 11 shown in FIG. 3. The output signal of the detector 15, after amplification and conditioning by electronics unit 18, is obtained from four signal (voltage) outputs 19 via BNC connectors. These four outputs have one of the following gains: 1; 10; 100; 1000. These four gains provide a greater signal dynamic range at all times. They ensure that the incoming infrared signals produced by the transmitter and processed by the receiver will appear with satisfactory strength for recording at, at the least, one of the four BNC connectors.
The only power required to operate the receiver is 110 V, 60 Hz. The weight of the receiver is approximately 30 pounds. Additionally, a blackbody reference source 20, associated optics 21, and a chopper 22 for convertinq the AIRT into an absolute radiometer can be added to the receiver. Recording of the receiver output signals may be done with a four-channel magnetic tape recorder. Alternatively, the four output signals can be multiplexed and recorded on one channel.

Claims (8)

What is claimed is:
1. A device for measuring infrared radiation transmission in the changing path between a moving test target aircraft and a ground based, shipborne, or airborne detection station, comprising:
means for transmitting a calibrated infrared beam from the test target aircraft; means for measuring infrared radiation from said means for transmitting, said means for measuring infrared radiation located on the ground-based, shipborne, or aircraft detection station.
2. The device of claim 1, wherein said transmitting means comprises an infrared source which produces an infrared radiation beam, a scanning parabolic mirror which scans said infrared radiation beam along the azimuthal direction with a period of 0.7 seconds, and a cylindrical chopper which chops said infrared radiation beam at 100 Hz.
3. The device of claim 1 wherein said means for measuring comprises an infrared radiometer capable of measuring incident radiation amplitude modulated with a frequency of 100± Hz within a certain spectral band.
4. A device for measuring infrared radiation transmission in the moving path between a moving test target aircraft and a ground based, shipborne, or airborne detection station, comprising:
a transmitter which produces a calibrated infrared radiation beam which is scanned azimuthally;
means for providing electrical power to said transmitter;
means for receiving and measuring incident radiation from said transmitter located on the ground-based, shipborne, or airborne detection station;
means for aligning said means for receiving and measuring with said transmitter while the path between said transmitter and said means for receiving and measuring is changing;
means for recording signals from said transmitter and said means for receiving and measuring.
5. The device of claim 4 wherein said transmitter is encased in a modified Electromagnetic Support System Navy pod.
6. The device of claim 4 wherein said transmitter power providing means is a ram air turbine generator.
7. The device of claim 4 wherein said receiving aligning means is a pan and tilt tripod which houses said receive.
8. The device of claim 4 wherein said recording means is a magnetic tape recorder.
US07/553,059 1990-07-16 1990-07-16 Airborne infrared transmissometer Abandoned USH1066H (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/553,059 USH1066H (en) 1990-07-16 1990-07-16 Airborne infrared transmissometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/553,059 USH1066H (en) 1990-07-16 1990-07-16 Airborne infrared transmissometer

Publications (1)

Publication Number Publication Date
USH1066H true USH1066H (en) 1992-06-02

Family

ID=24207965

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/553,059 Abandoned USH1066H (en) 1990-07-16 1990-07-16 Airborne infrared transmissometer

Country Status (1)

Country Link
US (1) USH1066H (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0737869A2 (en) * 1995-04-12 1996-10-16 Matsushita Electric Industrial Co., Ltd. Thermal object measuring apparatus, viewer survey system, distance detector, thermal object detecting method and apparatus
US5745285A (en) * 1995-10-31 1998-04-28 Raytheon Ti Systems, Inc. Passive scene base calibration system
US6226125B1 (en) * 1999-08-19 2001-05-01 Raytheon Company Electro-optical system having a ball turret and an exterior thermal reference source
GB2561258A (en) * 2017-04-03 2018-10-10 Dubai Electricity And Water Authority System and method for measuring atmospheric attenuation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ludwig et al., "Air Pollution Measurements from Satellites", NASA CR-2324,ov. 1973.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0737869A2 (en) * 1995-04-12 1996-10-16 Matsushita Electric Industrial Co., Ltd. Thermal object measuring apparatus, viewer survey system, distance detector, thermal object detecting method and apparatus
EP0737869A3 (en) * 1995-04-12 1997-08-20 Matsushita Electric Ind Co Ltd Thermal object measuring apparatus, viewer survey system, distance detector, thermal object detecting method and apparatus
US5877688A (en) * 1995-04-12 1999-03-02 Matsushita Electric Industrial Co., Ltd. Thermal object measuring apparatus
US5995206A (en) * 1995-04-12 1999-11-30 Matsushita Electric Industrial Co., Ltd. Thermal object measuring apparatus
US5745285A (en) * 1995-10-31 1998-04-28 Raytheon Ti Systems, Inc. Passive scene base calibration system
US5956176A (en) * 1995-10-31 1999-09-21 Raytheon Ti Systems, Inc. Passive scene base calibration system
US6226125B1 (en) * 1999-08-19 2001-05-01 Raytheon Company Electro-optical system having a ball turret and an exterior thermal reference source
GB2561258A (en) * 2017-04-03 2018-10-10 Dubai Electricity And Water Authority System and method for measuring atmospheric attenuation
GB2561258B (en) * 2017-04-03 2019-08-07 Dubai Electricity And Water Authority System and method for measuring atmospheric attenuation

Similar Documents

Publication Publication Date Title
US20060262324A1 (en) Optical air data system
CN110146259A (en) A kind of reflective multi-light axis consistency quantitative test of large-caliber off-axis and calibrating installation
Cousins et al. National polar-orbiting operational environmental satellite system (NPOESS) airborne sounder testbed-interferometer (NAST-I)
CN111707449B (en) Multi-spectral optical axis parallelism testing device and testing method
US6275283B1 (en) Passive ranging to source of known spectral emission to cue active radar system
US5710722A (en) Automated minimum resolvable temperature difference test for imaging infrared systems
USH1066H (en) Airborne infrared transmissometer
US3204101A (en) Infrared spectrometer for target detection and tracking
US8169597B2 (en) Method and apparatus for laser return characterization in a countermeasures system
CN114088351B (en) Multispectral automatic calibration system
US5734466A (en) Alignment, code and power test of airborne laser designators
AU779584B2 (en) In-action boresight
Li et al. Research on test method of airborne electro-optical warning system
JP2615904B2 (en) Electro-optical equipment
Hall et al. Infrared satellite radiometry
Highland et al. EO3: Tester for emerging electro-optical systems
JPH05209838A (en) Image pickup system for comprehensive measurement of abrasion loss of optical element operating intransmission mode and optronic camera apparatus equipped with the same
James et al. Electro-optical test collimators for real world systems
CN110926515B (en) Equivalent action distance conversion method for photoelectric sensors under different atmospheric visibility conditions
Higdon et al. Development and testing of a long-range airborne CO2 DIAL chemical detection system
Kates Jr OMEW Field Measurement Capabilities For EW Signature Measurements
Cernius et al. Remote active spectrometer
Bryant et al. Advanced test and calibration systems for integrated multisensor platforms with IR, visible, and laser range finder/designator capabilities
Moulton et al. Atmospheric Transmissometer And Radiometer For EO Sensors Field Evaluation And Model Validation
Chmiel et al. Thermovision and spectroradiometry in stand-off detection of chemical contamination

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNITED STATES OF AMERICA, THE, AS REPRESENTED BY T

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:PETROPOULOS, SPYROS K.;REEL/FRAME:005388/0215

Effective date: 19900711

STCF Information on status: patent grant

Free format text: PATENTED CASE