USH1047H - Fragmenting notched warhead rod - Google Patents

Fragmenting notched warhead rod Download PDF

Info

Publication number
USH1047H
USH1047H US07/740,524 US74052491A USH1047H US H1047 H USH1047 H US H1047H US 74052491 A US74052491 A US 74052491A US H1047 H USH1047 H US H1047H
Authority
US
United States
Prior art keywords
rod
warhead
scored
rods
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US07/740,524
Inventor
William M. Henderson
Leonard T. Wilson
Charles R. Garnett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Navy
Original Assignee
US Department of Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Navy filed Critical US Department of Navy
Priority to US07/740,524 priority Critical patent/USH1047H/en
Assigned to UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE NAVY reassignment UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE NAVY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: GARNETT, CHARLES R., HENDERSON, WILLIAM M., WILSON, LEONARD T.
Application granted granted Critical
Publication of USH1047H publication Critical patent/USH1047H/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/20Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type
    • F42B12/22Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type with fragmentation-hull construction
    • F42B12/32Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type with fragmentation-hull construction the hull or case comprising a plurality of discrete bodies, e.g. steel balls, embedded therein or disposed around the explosive charge

Definitions

  • the field of the invention is that of ordnance and warhead construction.
  • the present invention relates to fragmentary warhead construction and, in particular, to the construction of warheads using notched fragmenting rods.
  • the present invention provides a fragmenting notched rod to replace the discrete fragments used in the discrete fragment type warheads.
  • Each rod replaces a column of fragments constituting up to 100 discrete pieces, thus reducing the labor required for constructing as much as an order of magnitude.
  • the present invention consists of a notched rod that may be inserted as a unit into a warhead case to form the fragment matrix.
  • the rod is notched so that when it is subjected to an explosive load it will break into individual fragments.
  • the fragment size can be adjusted by varying the distances between notches, the thickness of the rod, and the rod width. Various materials can be selected to form this notched rod without concern for the strength of the warhead case.
  • an object of the present invention is to teach a device that can form a customized fragment pattern that is easy to manufacture.
  • FIG. 1 is a pictorial view of a discrete fragment warhead containing the fragmenting rods of the present invention.
  • FIG. 2 is an illustration of one of the fragmenting rods of the warhead of FIG. 1
  • FIG. 3 is an end view of the fragmenting rod of FIG. 2 demonstrating one of many possible geometries.
  • FIG. 3B is an end view of another possible geometry of the fragmenting rod of FIG. 2.
  • FIG. 3C is still another end view of yet another possible geometry of the fragmenting rod of FIG. 2.
  • FIG. 4 is a table of possible materials which might be used in the construction of the rods illustrated in FIG. 2.
  • FIG. 5A is an illustration of one of the possible shot train arrangements possible using the rods of FIG. 2.
  • FIG. 5B is another illustration of another possible shot train arrangements possible using the rods of FIG. 2.
  • FIG. 5C is still another illustration of yet another possible shot train arrangements possible using the rods of FIG. 2.
  • Warhead 5 is shown comprised of an inner case 14 and outer case 16 sandwiching the fragmenting rods 10 of the present invention.
  • the rods 10 illustrated in FIG. 1 are most simply notched with grooves 12 to form individual fragments 13.
  • Warhead 5 is a conventional dual wall warhead containing high explosives (HE), 22, known to those skilled in the art.
  • HE high explosives
  • a novel type of dual wall warhead wherein the inner wall 14 and outer wall 16 are comprised of composite materials is the subject of a separate application entitled Filamentary Composite Dual Wall Discrete Fragment Warhead, Ser. No. 07/740,522, filed even date with this application.
  • the teachings of this related application while considered nonessential to the claims appended hereto, provide a description of one of the many possible uses of Applicants' fragmenting rods.
  • the rods 10 break into individual fragments 13 which have been designed to exhibit the desired mass, geometry and target kill mechanisms.
  • FIG. 2 illustrates an individual rod 10 which is the preferred embodiment for use in the most common type fragmenting warheads.
  • rod 10 is shaped to have an inner radius 24 which is machined to conform to the outside surface of the inner case wall 14 of a dual case warhead such as illustrated in FIG. 1.
  • rod 10 has an outer radius 26 conforming to the inner radius of the outer warhead case 16 so that the fragments 13 formed by many rods 10 fit sandwiched between the dual walls, 14 and 16, of a warhead.
  • the rods might be fixidly attached to either or both of the warhead's walls 14 and 16, and that a plurality of rods 10 might be affixed one to another to form a fragmentation panel or blanket.
  • FIG. 1 Another conventional type warhead would omit outer case 16 on the warhead illustrated in FIG. 1, to form a single walled ordnance case.
  • rods 10 would have inner radius 24 affixed to the outside surface of the single case of the warhead.
  • FIGS. 3A, 3B, and 3C illustrate only three 10a, 10b and 10c, of the infinite number of possible shapes which might be formed in rod 10. Shaping the fragments allows the warhead technician to vary infinitely the mass, lethality and kill mechanisms necessary to accurately tailor the warhead to the expected target.
  • Rod 10 may be machined, extruded, pultruded, or constructed with a powder metallurgy process such as is disclosed in Hellner, et al., U.S. Pat. No. 4,592,283 filed Jun. 3, 1986. fragment parameters may be obtained using rods 10 by selecting materials and changing geometric shape.
  • FIG. 4 is a table juxtaposing various conventional fragment materials with the desired fragment kill mechanism. For instance, if the kill mechanism desired is penetration, a steel or tungsten fragment would be appropriate. If an incendiary kill mechanism is needed, then one of the materials in the incendiary column would be chosen. Likewise, a material would be chosen from the vaporific column, which would be utilized to construct rods 10 if special terminal effects were desired.
  • rods 10 may be used to form panels with the various rods comprised of different materials.
  • FIG. 5A the variations possible may be best noted with a series of examples. Version 10d is illustrated on a standard warhead wherein HE, 22, is contained within a case 14 with Applicants' rods 10 affixed to the outside of case 14. The rods 10 would be chosen from a material listed in table 4 depending upon the kill mechanism desired.
  • FIG. 5B illustrates another version, 10e, depicting a more complex construction wherein rods 11a, 11b, and 11c are constructed of penetrating, incendiary and vaporific materials, respectively. This engenders a fragmentation panel on the warhead exhibiting all three kill mechanisms listed in table 4.
  • FIG. 5C in version 10f illustrates an embodiment wherein rods 11a through 11c are alternated and also stacked laterally normal to the longitudinal axis of the warhead case as shown with rods 11a formed of penetrating material, rods 11b of incendiary material and rods 11c of vaporific materials.

Abstract

A rod for use in fragmenting warheads is notched so that when it is subjed to an explosive load it will break into individual fragments of predetermined shape and size. Various materials can be used depending on the desired kill mechanism. The rods may be alternated and stacked to combine materials and kill mechanisms.

Description

The invention described herein may be manufactured and used by and for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.
BACKGROUND OF THE INVENTION
The field of the invention is that of ordnance and warhead construction. The present invention relates to fragmentary warhead construction and, in particular, to the construction of warheads using notched fragmenting rods.
In the prior art, most missile fragmentation warheads either use a solid steel case filled with explosive (which is the conventional design) or consist of explosive surrounded by a thin shell with "discrete" fragments glued to the shell which is generally called the discrete fragment design. In either case the warhead is then mounted into the ordnance section where structural loads are carried by a surrounding shroud.
An example of the conventional steel case design is LaRocca, U.S. Pat. No. 3,799,054 filed Mar. 26, 1974. This reference teaches a warhead for controlling the fragmentation of explosive devices having a cylindrical metallic fragmentation casing, wrapped with metallic strips of heavy density to cause fragments to form. This type of construction is limited to ordnance which has a single type of fragment, as the fragments are formed by the metal case. Because the fragmenting section is also load bearing and/or structurally supporting, some fragment materials are precluded. Only those materials which are structurally strong can be used for load bearing elements, thus eliminating many materials that could be used for fragments. In addition, the steel case design either employs heavy materials like LaRocca, or involves complex machining of the warhead case to form the fragments.
An example of discrete fragment design is represented by Brumfield et al., U.S. Pat. No. 3,977,327 filed Aug. 31, 1976. The Brumfield et al. reference is typical of many fragmentation schemes which precut fragments and then must sandwich them between steel or aluminum cylinders which form the case or missile airframe. Construction of this type of warhead is tedious and labor intensive. It is also extremely difficult to manually plane all the fragments in the required matrix pattern with each fragment aligned to precisely form the desired pattern. It is conventional to twist and shake the heavy warhead case to coax each fragment into its proprietary physical position, but gaps and spaces inexorably remain. These irregularities degrade performance and attenuate lethality.
To date, most missile fragmentation warheads use the conventional or discrete fragment design. Both designs have associated advantages and disadvantages. In the conventional design the case is notched or welded to produce the desired fragment break up. The advantages to this design are that it reliably produces uniform size fragments with high velocities, and it is easily produced. One disadvantage to this design is that fragmentation customization is not easily performed. It is inherently difficult (if not impossible) to use fragments of different materials without a performance penalty. Also, changing the fragment size and geometry is not easily accomplished. In contrast, the discrete fragment design allows for easy tailoring of the fragments as fragments of differing materials and geometries are easily utilized, however, this warhead is much more costly to produce as each fragment must be attached to the warhead.
The disadvantages of the conventional design and the discrete fragment design are overcome by the present invention which provides a fragmenting notched rod to replace the discrete fragments used in the discrete fragment type warheads. Each rod replaces a column of fragments constituting up to 100 discrete pieces, thus reducing the labor required for constructing as much as an order of magnitude.
SUMMARY OF THE INVENTION
The present invention consists of a notched rod that may be inserted as a unit into a warhead case to form the fragment matrix. The rod is notched so that when it is subjected to an explosive load it will break into individual fragments. The fragment size can be adjusted by varying the distances between notches, the thickness of the rod, and the rod width. Various materials can be selected to form this notched rod without concern for the strength of the warhead case.
Therefore, an object of the present invention is to teach a device that can form a customized fragment pattern that is easy to manufacture.
It is also an object to teach a method of forming a fragmenting warhead without regard for the load bearing strength or ductility of the material.
It is yet another object of the instant invention to provide a device for forming a discrete fragment warhead that minimizes irregularities in the fragment pattern.
Other objects, advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings which show an advantageous embodiment of the invention and wherein like numerals designate like parts in the several figures, and wherein:
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a pictorial view of a discrete fragment warhead containing the fragmenting rods of the present invention.
FIG. 2 is an illustration of one of the fragmenting rods of the warhead of FIG. 1
FIG. 3 is an end view of the fragmenting rod of FIG. 2 demonstrating one of many possible geometries.
FIG. 3B is an end view of another possible geometry of the fragmenting rod of FIG. 2.
FIG. 3C is still another end view of yet another possible geometry of the fragmenting rod of FIG. 2.
FIG. 4 is a table of possible materials which might be used in the construction of the rods illustrated in FIG. 2.
FIG. 5A is an illustration of one of the possible shot train arrangements possible using the rods of FIG. 2.
FIG. 5B is another illustration of another possible shot train arrangements possible using the rods of FIG. 2.
FIG. 5C is still another illustration of yet another possible shot train arrangements possible using the rods of FIG. 2.
DETAILED DESCRIPTION
Turning now to FIG. 1, a warhead 5 is shown comprised of an inner case 14 and outer case 16 sandwiching the fragmenting rods 10 of the present invention. The rods 10 illustrated in FIG. 1 are most simply notched with grooves 12 to form individual fragments 13. Warhead 5 is a conventional dual wall warhead containing high explosives (HE), 22, known to those skilled in the art. A novel type of dual wall warhead wherein the inner wall 14 and outer wall 16 are comprised of composite materials is the subject of a separate application entitled Filamentary Composite Dual Wall Discrete Fragment Warhead, Ser. No. 07/740,522, filed even date with this application. The teachings of this related application, while considered nonessential to the claims appended hereto, provide a description of one of the many possible uses of Applicants' fragmenting rods.
On detonation of HE, 22, the rods 10 break into individual fragments 13 which have been designed to exhibit the desired mass, geometry and target kill mechanisms.
FIG. 2 illustrates an individual rod 10 which is the preferred embodiment for use in the most common type fragmenting warheads. Therein, rod 10 is shaped to have an inner radius 24 which is machined to conform to the outside surface of the inner case wall 14 of a dual case warhead such as illustrated in FIG. 1. Likewise, rod 10 has an outer radius 26 conforming to the inner radius of the outer warhead case 16 so that the fragments 13 formed by many rods 10 fit sandwiched between the dual walls, 14 and 16, of a warhead. It is intuitive to one skilled in the art of warhead technology that the rods might be fixidly attached to either or both of the warhead's walls 14 and 16, and that a plurality of rods 10 might be affixed one to another to form a fragmentation panel or blanket.
Another conventional type warhead would omit outer case 16 on the warhead illustrated in FIG. 1, to form a single walled ordnance case. In this embodiment, rods 10 would have inner radius 24 affixed to the outside surface of the single case of the warhead.
While the rod chosen for illustration in FIG. 2 is notched with grooves 12 to form simple fragment patterns, it is important to note that more complex and/or irregular shaped grooves may be used to form any shape fragments desired.
FIGS. 3A, 3B, and 3C illustrate only three 10a, 10b and 10c, of the infinite number of possible shapes which might be formed in rod 10. Shaping the fragments allows the warhead technician to vary infinitely the mass, lethality and kill mechanisms necessary to accurately tailor the warhead to the expected target.
Rod 10 may be machined, extruded, pultruded, or constructed with a powder metallurgy process such as is disclosed in Hellner, et al., U.S. Pat. No. 4,592,283 filed Jun. 3, 1986. fragment parameters may be obtained using rods 10 by selecting materials and changing geometric shape.
FIG. 4 is a table juxtaposing various conventional fragment materials with the desired fragment kill mechanism. For instance, if the kill mechanism desired is penetration, a steel or tungsten fragment would be appropriate. If an incendiary kill mechanism is needed, then one of the materials in the incendiary column would be chosen. Likewise, a material would be chosen from the vaporific column, which would be utilized to construct rods 10 if special terminal effects were desired.
It is important to note that the materials in table 4 may be metals or metal alloys which the design of fragment parameters would require.
If a combination of kill mechanisms is desired, rods 10 may be used to form panels with the various rods comprised of different materials. Turning to FIG. 5A, the variations possible may be best noted with a series of examples. Version 10d is illustrated on a standard warhead wherein HE, 22, is contained within a case 14 with Applicants' rods 10 affixed to the outside of case 14. The rods 10 would be chosen from a material listed in table 4 depending upon the kill mechanism desired. FIG. 5B illustrates another version, 10e, depicting a more complex construction wherein rods 11a, 11b, and 11c are constructed of penetrating, incendiary and vaporific materials, respectively. This engenders a fragmentation panel on the warhead exhibiting all three kill mechanisms listed in table 4. FIG. 5C, in version 10f illustrates an embodiment wherein rods 11a through 11c are alternated and also stacked laterally normal to the longitudinal axis of the warhead case as shown with rods 11a formed of penetrating material, rods 11b of incendiary material and rods 11c of vaporific materials.
Obviously, any permutation of materials and geometric positioning may be employed to obtain the precise design and kill mechanism desired and many modifications and variations of the present invention are possible in the light of the above teachings without going outside the scope of Applicants' invention.

Claims (6)

What we claim:
1. A fragmenting rod for use in a discrete fragment warhead comprising; a scored rod of preselected material adapted to reside in a fragmenting warhead case.
2. A scored rod according to claim 1 wherein said rod is comprised of alloyed materials selected from the group consisting of steel, tungsten and depleted uranium alloys whereby penetrating fragments are formed.
3. A scored rod according to claim 1 wherein said rod is comprised of alloyed materials selected from the group consisting of zirconium, titanium, misch metal, magnesium and depleted uranium alloys.
4. A scored rod according to claim 1 wherein said rod is comprised of alloyed material selected from the group consisting of aluminum titanium and magnesium alloys.
5. A scored rod according to claim 1 wherein said rod is adapted to be fixedly attached to an outside surface of an inner wall of the warhead.
6. A rodded fragmentation panel for use in a discrete fragment warhead having at least one wall comprised of alternating scored rods of preselected materials wherein said alternating scored rod are comprised of different materials so that the resulting fragment pattern exhibits a plurality of characteristics corresponding to the materials in alternating scored rods.
US07/740,524 1991-08-05 1991-08-05 Fragmenting notched warhead rod Abandoned USH1047H (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/740,524 USH1047H (en) 1991-08-05 1991-08-05 Fragmenting notched warhead rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/740,524 USH1047H (en) 1991-08-05 1991-08-05 Fragmenting notched warhead rod

Publications (1)

Publication Number Publication Date
USH1047H true USH1047H (en) 1992-05-05

Family

ID=24976865

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/740,524 Abandoned USH1047H (en) 1991-08-05 1991-08-05 Fragmenting notched warhead rod

Country Status (1)

Country Link
US (1) USH1047H (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030029347A1 (en) * 2001-06-04 2003-02-13 Lloyd Richard M. Kinetic energy rod warhead with optimal penetrators
WO2003058049A2 (en) * 2002-01-11 2003-07-17 Aerojet-General Corporation Apparatus and method for passive venting of rocket motor or ordnance case
US20040055500A1 (en) * 2001-06-04 2004-03-25 Lloyd Richard M. Warhead with aligned projectiles
US20040200380A1 (en) * 2001-08-23 2004-10-14 Lloyd Richard M. Kinetic energy rod warhead with lower deployment angles
US20050066839A1 (en) * 2002-07-01 2005-03-31 Stevenson Robert Andrew Incendiary
US20050109234A1 (en) * 2001-08-23 2005-05-26 Lloyd Richard M. Kinetic energy rod warhead with lower deployment angles
US20050115450A1 (en) * 2003-10-31 2005-06-02 Lloyd Richard M. Vehicle-borne system and method for countering an incoming threat
US20050126421A1 (en) * 2002-08-29 2005-06-16 Lloyd Richard M. Tandem warhead
US20050132923A1 (en) * 2002-08-29 2005-06-23 Lloyd Richard M. Fixed deployed net for hit-to-kill vehicle
US20060021538A1 (en) * 2002-08-29 2006-02-02 Lloyd Richard M Kinetic energy rod warhead deployment system
US7017496B2 (en) 2002-08-29 2006-03-28 Raytheon Company Kinetic energy rod warhead with imploding charge for isotropic firing of the penetrators
US20060086279A1 (en) * 2001-08-23 2006-04-27 Lloyd Richard M Kinetic energy rod warhead with lower deployment angles
US7040235B1 (en) 2002-08-29 2006-05-09 Raytheon Company Kinetic energy rod warhead with isotropic firing of the projectiles
US20060112847A1 (en) * 2004-11-29 2006-06-01 Lloyd Richard M Wide area dispersal warhead
US20060283348A1 (en) * 2001-08-23 2006-12-21 Lloyd Richard M Kinetic energy rod warhead with self-aligning penetrators
US20070084376A1 (en) * 2001-08-23 2007-04-19 Lloyd Richard M Kinetic energy rod warhead with aiming mechanism
US20070272112A1 (en) * 2000-02-23 2007-11-29 Alliant Techsystems Inc. Reactive material compositions, shot shells including reactive materials, and a method of producing same
US20080035007A1 (en) * 2005-10-04 2008-02-14 Nielson Daniel B Reactive material enhanced projectiles and related methods
US20080229963A1 (en) * 2004-03-15 2008-09-25 Alliant Techsystems Inc. Reactive material enhanced munition compositions and projectiles containing same
US20090205529A1 (en) * 2001-08-23 2009-08-20 Lloyd Richard M Kinetic energy rod warhead with lower deployment angles
US7624683B2 (en) 2001-08-23 2009-12-01 Raytheon Company Kinetic energy rod warhead with projectile spacing
US7726244B1 (en) 2003-10-14 2010-06-01 Raytheon Company Mine counter measure system
US20100276042A1 (en) * 2004-03-15 2010-11-04 Alliant Techsystems Inc. Reactive compositions including metal
US8061275B1 (en) * 2010-01-08 2011-11-22 The United States Of America As Represented By The Secretary Of The Army Warhead selectively releasing fragments of varied sizes and shapes
US8418623B2 (en) 2010-04-02 2013-04-16 Raytheon Company Multi-point time spacing kinetic energy rod warhead and system
EP2410284A3 (en) * 2010-07-19 2014-09-24 Diehl BGT Defence GmbH & Co.KG Warhead
USRE45899E1 (en) 2000-02-23 2016-02-23 Orbital Atk, Inc. Low temperature, extrudable, high density reactive materials
US9528801B1 (en) * 2015-09-14 2016-12-27 The United States Of America As Represented By The Secretary Of The Army Low collateral damage tunable directional-lethality explosive fragmentation ammunition
CN115055686A (en) * 2022-08-17 2022-09-16 北京煜鼎增材制造研究院有限公司 Tungsten particle reinforced high-entropy alloy warhead and additive manufacturing method thereof

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9982981B2 (en) 2000-02-23 2018-05-29 Orbital Atk, Inc. Articles of ordnance including reactive material enhanced projectiles, and related methods
US20070272112A1 (en) * 2000-02-23 2007-11-29 Alliant Techsystems Inc. Reactive material compositions, shot shells including reactive materials, and a method of producing same
US7977420B2 (en) 2000-02-23 2011-07-12 Alliant Techsystems Inc. Reactive material compositions, shot shells including reactive materials, and a method of producing same
US9103641B2 (en) 2000-02-23 2015-08-11 Orbital Atk, Inc. Reactive material enhanced projectiles and related methods
USRE45899E1 (en) 2000-02-23 2016-02-23 Orbital Atk, Inc. Low temperature, extrudable, high density reactive materials
US20040055500A1 (en) * 2001-06-04 2004-03-25 Lloyd Richard M. Warhead with aligned projectiles
US6779462B2 (en) 2001-06-04 2004-08-24 Raytheon Company Kinetic energy rod warhead with optimal penetrators
US6973878B2 (en) * 2001-06-04 2005-12-13 Raytheon Company Warhead with aligned projectiles
US20030029347A1 (en) * 2001-06-04 2003-02-13 Lloyd Richard M. Kinetic energy rod warhead with optimal penetrators
US7624683B2 (en) 2001-08-23 2009-12-01 Raytheon Company Kinetic energy rod warhead with projectile spacing
US20040200380A1 (en) * 2001-08-23 2004-10-14 Lloyd Richard M. Kinetic energy rod warhead with lower deployment angles
US20070084376A1 (en) * 2001-08-23 2007-04-19 Lloyd Richard M Kinetic energy rod warhead with aiming mechanism
US6910423B2 (en) 2001-08-23 2005-06-28 Raytheon Company Kinetic energy rod warhead with lower deployment angles
US8127686B2 (en) 2001-08-23 2012-03-06 Raytheon Company Kinetic energy rod warhead with aiming mechanism
US20090205529A1 (en) * 2001-08-23 2009-08-20 Lloyd Richard M Kinetic energy rod warhead with lower deployment angles
US7621222B2 (en) 2001-08-23 2009-11-24 Raytheon Company Kinetic energy rod warhead with lower deployment angles
US20050109234A1 (en) * 2001-08-23 2005-05-26 Lloyd Richard M. Kinetic energy rod warhead with lower deployment angles
US7624682B2 (en) 2001-08-23 2009-12-01 Raytheon Company Kinetic energy rod warhead with lower deployment angles
US20060283348A1 (en) * 2001-08-23 2006-12-21 Lloyd Richard M Kinetic energy rod warhead with self-aligning penetrators
US20060086279A1 (en) * 2001-08-23 2006-04-27 Lloyd Richard M Kinetic energy rod warhead with lower deployment angles
WO2003058049A3 (en) * 2002-01-11 2004-01-15 Atlantic Res Corp Apparatus and method for passive venting of rocket motor or ordnance case
US6952995B2 (en) * 2002-01-11 2005-10-11 Aerojet-General Corporation Apparatus and method for passive venting of rocket motor or ordnance case
WO2003058049A2 (en) * 2002-01-11 2003-07-17 Aerojet-General Corporation Apparatus and method for passive venting of rocket motor or ordnance case
US20050066839A1 (en) * 2002-07-01 2005-03-31 Stevenson Robert Andrew Incendiary
US6877433B1 (en) * 2002-07-01 2005-04-12 Raindance Systems Pty Ltd. Incendiary
US6931994B2 (en) 2002-08-29 2005-08-23 Raytheon Company Tandem warhead
US20060021538A1 (en) * 2002-08-29 2006-02-02 Lloyd Richard M Kinetic energy rod warhead deployment system
US20060162604A1 (en) * 2002-08-29 2006-07-27 Lloyd Richard M Tandem warhead
US20050126421A1 (en) * 2002-08-29 2005-06-16 Lloyd Richard M. Tandem warhead
US7412916B2 (en) 2002-08-29 2008-08-19 Raytheon Company Fixed deployed net for hit-to-kill vehicle
US7415917B2 (en) 2002-08-29 2008-08-26 Raytheon Company Fixed deployed net for hit-to-kill vehicle
US20050132923A1 (en) * 2002-08-29 2005-06-23 Lloyd Richard M. Fixed deployed net for hit-to-kill vehicle
US7143698B2 (en) 2002-08-29 2006-12-05 Raytheon Company Tandem warhead
US20090223404A1 (en) * 2002-08-29 2009-09-10 Lloyd Richard M Fixed deployed net for hit-to-kill vehicle
US20060112817A1 (en) * 2002-08-29 2006-06-01 Lloyd Richard M Fixed deployed net for hit-to-kill vehicle
US7040235B1 (en) 2002-08-29 2006-05-09 Raytheon Company Kinetic energy rod warhead with isotropic firing of the projectiles
US7017496B2 (en) 2002-08-29 2006-03-28 Raytheon Company Kinetic energy rod warhead with imploding charge for isotropic firing of the penetrators
US7726244B1 (en) 2003-10-14 2010-06-01 Raytheon Company Mine counter measure system
US6920827B2 (en) 2003-10-31 2005-07-26 Raytheon Company Vehicle-borne system and method for countering an incoming threat
US20050115450A1 (en) * 2003-10-31 2005-06-02 Lloyd Richard M. Vehicle-borne system and method for countering an incoming threat
US20080229963A1 (en) * 2004-03-15 2008-09-25 Alliant Techsystems Inc. Reactive material enhanced munition compositions and projectiles containing same
US8361258B2 (en) 2004-03-15 2013-01-29 Alliant Techsystems Inc. Reactive compositions including metal
US8075715B2 (en) 2004-03-15 2011-12-13 Alliant Techsystems Inc. Reactive compositions including metal
US20100276042A1 (en) * 2004-03-15 2010-11-04 Alliant Techsystems Inc. Reactive compositions including metal
US8568541B2 (en) 2004-03-15 2013-10-29 Alliant Techsystems Inc. Reactive material compositions and projectiles containing same
US20060112847A1 (en) * 2004-11-29 2006-06-01 Lloyd Richard M Wide area dispersal warhead
US7717042B2 (en) 2004-11-29 2010-05-18 Raytheon Company Wide area dispersal warhead
US20080035007A1 (en) * 2005-10-04 2008-02-14 Nielson Daniel B Reactive material enhanced projectiles and related methods
US8122833B2 (en) 2005-10-04 2012-02-28 Alliant Techsystems Inc. Reactive material enhanced projectiles and related methods
US8061275B1 (en) * 2010-01-08 2011-11-22 The United States Of America As Represented By The Secretary Of The Army Warhead selectively releasing fragments of varied sizes and shapes
US8418623B2 (en) 2010-04-02 2013-04-16 Raytheon Company Multi-point time spacing kinetic energy rod warhead and system
EP2410284A3 (en) * 2010-07-19 2014-09-24 Diehl BGT Defence GmbH & Co.KG Warhead
US9528801B1 (en) * 2015-09-14 2016-12-27 The United States Of America As Represented By The Secretary Of The Army Low collateral damage tunable directional-lethality explosive fragmentation ammunition
CN115055686A (en) * 2022-08-17 2022-09-16 北京煜鼎增材制造研究院有限公司 Tungsten particle reinforced high-entropy alloy warhead and additive manufacturing method thereof
CN115055686B (en) * 2022-08-17 2022-11-08 北京煜鼎增材制造研究院有限公司 Tungsten particle reinforced high-entropy alloy warhead and additive manufacturing method thereof

Similar Documents

Publication Publication Date Title
USH1047H (en) Fragmenting notched warhead rod
USH1048H (en) Composite fragmenting rod for a warhead case
EP1893935B1 (en) Projectile or warhead
EP0433544B1 (en) Fragmentation missile
US3566794A (en) Controlled fragmentation of multi-walled warheads
US4498367A (en) Energy transfer through a multi-layer liner for shaped charges
US5814758A (en) Apparatus for discharging a high speed jet to penetrate a target
GB2036934A (en) Armour - penetrating projectile
DE2129196A1 (en) METHOD OF MANUFACTURING SPLITTER CASES AND SPLITTER BULLETS AND BATTLE HEADS MANUFACTURED BY THIS PROCESS
US8176849B1 (en) Warhead comprised of encapsulated green fragments of varied size and shape
US5040464A (en) Controlled fragmentation with fragment mix
US5095821A (en) Fragmentation casing and method of making
EP0101795A1 (en) Fragmentation projectile with splinter effect
US4703696A (en) Penetrator for a subcaliber impact projectile
EP3721165A1 (en) Warhead
US4858531A (en) Warhead with metal coating for controlled fragmentation
USH238H (en) Warhead casing of novel fragmentation design
EP2024706B1 (en) Projectile, active body or warhead for fighting massive, structured and planar targets
DE2557676A1 (en) Projectile contg. fragments of depleted uranium alloy - giving high penetrating power esp. armour piercing and incendiary action
Holland et al. Hydrocode results for the penetration of continuous, segmented and hybrid rods compared with ballistic experiments
WO2007022838A1 (en) Bullet, in particular for medium-calibre munitions
DE3540021C2 (en)
DE4011243C1 (en) Warhead with shrapnel effect
DE102016007976A1 (en) Vorfragmentierung a warhead
US4513666A (en) Confinement fabrication technique for asymmetrically confined shaped-charge warheads

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNITED STATES OF AMERICA, THE, AS REPRESENTED BY T

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:HENDERSON, WILLIAM M.;WILSON, LEONARD T.;GARNETT, CHARLES R.;REEL/FRAME:005808/0818

Effective date: 19910729

STCF Information on status: patent grant

Free format text: PATENTED CASE