USH103H - Novel poly(vinylazide) - Google Patents
Novel poly(vinylazide) Download PDFInfo
- Publication number
- USH103H USH103H US06/711,892 US71189285A USH103H US H103 H USH103 H US H103H US 71189285 A US71189285 A US 71189285A US H103 H USH103 H US H103H
- Authority
- US
- United States
- Prior art keywords
- poly
- vinylazide
- sodium azide
- percent
- product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B45/00—Compositions or products which are defined by structure or arrangement of component of product
- C06B45/04—Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
- C06B45/06—Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
- C06B45/10—Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin
- C06B45/105—The resin being a polymer bearing energetic groups or containing a soluble organic explosive
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/30—Introducing nitrogen atoms or nitrogen-containing groups
Definitions
- This invention relates to an improved process of making poly(vinylazide), an energetic material for use as a propellant in large caliber weapons.
- poly(vinylazide) of the cited art is accompanied by a high degree of corrosion of the bore of a weapon from which it is fired, and also such energetic polymer produces the formation of a plume which indicates the position of the weapon from which it is fired.
- the latter telltale plume is produced by the reaction of the HLl present in the formulation with atmospheric moisture.
- Another object is to provide an improved process of producing poly(vinylazide) wherein the product contains less then about 1.5 percent chlorine by weight.
- a further object is to provide a process of making a highly energetic poly(vinylazide) product which is relatively non-corrosive, and acceptable for use in a weapon without the telltale plume of smoke.
- reaction mixture was poured into water producing a precipitate which was subsequently filtered out of the solution.
- the precipitate was washed with water, then with methanol, and finally dried.
- the yield of poly(vinylazide) obtained was 0.8 gm. Upon analysis, the product was found to have 0.14 percent chlorine and 47.0 percent nitrogen.
- a sample of the product was heated on a spatula, and found to detonate with an accompanying flame. Thus, the sample gave a positive match test.
- example 2 The procedure of example 2 was again followed. However, in this case, the reaction mixture was heated for 72 hours at 65° C. The final product was found to weigh 0.95 gm, and upon analysis, it was found to contain 0.3 percent chlorine and 52.3 percent nitrogen. The product gave a positive match test.
- the poly(vinylchloride) powders were obtained from Aldrich Chemical Co. in three molecular weights, with densities and inherent viscosities as follows: low molecular weight (1.40; 0.65); high molecular weight (1.40; 1.02); and very high molecular weight (1.385; 1.26).
- Dimethylformamide was routinely used as the reaction solvent for the poly(vinylchloride).
- the reaction was conducted by stirring and heating a solution of the polymer (1.0 g) in dimethylformamide with excess sodium or lithium azide (1.0 g) without the exclusion of air. The reaction times are noted on the table.
- the products were separated by pouring the reaction mixture into water with stirring and acidification with a small amount of 10 percent hydrochloric acid.
- the solid was separated and triturated with a large-ended stirring rod, first in water, then with two changes of methanol. Alternatively, the product can be filtered.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dispersion Chemistry (AREA)
- Molecular Biology (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Poly(vinylazide) having less then 1.5 percent chlorine. The product, i.e.,oly(vinylazide) being the reaction product of poly(vinylchloride) and sodium or lithium azide by heating the gel product for an extended period of time in the presence of the azide reactant.
Description
The invention described herein may be manufactured, used and licensed by or for the Government for Governmental purposes without payment to me of any royalties thereon.
This invention relates to an improved process of making poly(vinylazide), an energetic material for use as a propellant in large caliber weapons.
Poly(vinylchloride) has been reacted with dosium azide with the introduction of azide groups into the polymeric chain. See, M. Takeishi et al., Polymer Letters, 7201 (1969), and H. L. Cohen, Jour. Polymer Science 19, 3269, (1981). However, the product, produced in accordance with the teachings of these references contained 20 to 40 percent of the chlorine originally in the polymeric reactant and this rendered the product, i.e., poly(vinylazide) unacceptable for use in propellant and explosive formulations. The use of poly(vinylazide) of the cited art is accompanied by a high degree of corrosion of the bore of a weapon from which it is fired, and also such energetic polymer produces the formation of a plume which indicates the position of the weapon from which it is fired. The latter telltale plume is produced by the reaction of the HLl present in the formulation with atmospheric moisture.
Surprisingly, we have found that the amount of chlorine in the reaction product of poly(vinylchloride) and sodium azide may be drastically reduced by heating the gel produced in the presence of a metallic azide for an extended period of time. The final product, poly(vinylazide), was found to be highly energetic as indicated by a positive match test.
It is therefore an object of this invention to provide an improved process of making poly(vinylazide).
Another object is to provide an improved process of producing poly(vinylazide) wherein the product contains less then about 1.5 percent chlorine by weight.
A further object is to provide a process of making a highly energetic poly(vinylazide) product which is relatively non-corrosive, and acceptable for use in a weapon without the telltale plume of smoke.
Other objects and many of the attendant advantages of this invention will become more apparent from a reading of the following specification wherein the preferred embodiment is described.
Example 1
1.0 gm of poly(vinylchloride), 1.5 gm of lithium azide, and 25 ml. of dimethylformamide were heated together at 60° C. with stirring for 24 hours. The temperature of the reaction solution was then raised to 85° C., and maintained at that temperature with stirring for an additional 96 hours.
At the end of the heating stage of the process, the reaction mixture was poured into water producing a precipitate which was subsequently filtered out of the solution. The precipitate was washed with water, then with methanol, and finally dried.
The yield of poly(vinylazide) obtained was 0.8 gm. Upon analysis, the product was found to have 0.14 percent chlorine and 47.0 percent nitrogen.
The infra-red spectrum confirmed the presence of azide groups in the final product.
A sample of the product was heated on a spatula, and found to detonate with an accompanying flame. Thus, the sample gave a positive match test.
Example 2
The procedure of example 1 was followed, however, in this case 2.0 gm of sodium azide was used instead of lithium azide. The yield of product was 0.9 gm. It was found to contain 1.35 percent chlorine and 47.9 percent nitrogen. The precipitate gave a positive match test.
Example 3
The procedure of example 2 was followed but, in this case, dimethyl sulfoxide was utilized as the reaction medium. The yield produced was 0.8 gm, and it was found to contain 1.24 percent chlorine and 44.8 percent nitrogen. Again, the product gave a positive match test.
Example 4
The procedure of example 2 was again followed. However, in this case, the reaction mixture was heated for 72 hours at 65° C. The final product was found to weigh 0.95 gm, and upon analysis, it was found to contain 0.3 percent chlorine and 52.3 percent nitrogen. The product gave a positive match test.
Example 5
The procedure and ingredients of the method of example 2 was repeated. However, in this case, the reaction mixture was heated at 65° C. for 96 hours. The product yield weighed 0.95 gm, and was found by analysis to contain less than 0.38 percent of chlorine and 51.9 percent nitrogen. The product gave a positive match test.
In the art, the reactions of poly(vinylchloride) with sodium azide was stopped before the gelation point which corresponded to the removal of 60 to 80 percent of the chlorine. Using low molecular weight poly(vinylchloride), the effect of continuing the reaction beyond the gelation point was studied as set forth in the foregoing examples. The product of the extended process was analyzed, and the results were set forth in Table 1 which follows:
TABLE 1 ______________________________________ Reaction of Gelled Low Molecular Weight PVC with Sodium Azide Run Hours.sup.(a) % N % Cl Total C,H,N,Cl ______________________________________ 1.sup.(b) 10 37.8 18.8 99.9.sup.(c) 2 48 48.1 6.5 96.8 3 72 52.3 0.3 95.9 4 96 51.9 0.4 95.5 5 120.sup.(d) 47.9 1.4 92.5 6.sup.(e) 120.sup.(d) 44.8 1.2 91.5 7.sup.(f) 120.sup.(d) 47.0 0.1 94.7 ______________________________________ .sup.(a) At 65° C., except as indicated. .sup.(b) This run concluded before gelation. .sup.(c) PVC of high and very high molecular weights also gave 99-100% total under the same conditions. .sup.(d) Run at 65° C. for 24 h, and at 85° C. thereafter. .sup.(e) DMSO used as solvent in this run. .sup.(f) Lithium azide used in this run.
It is to be noted that the chlorine content of the products declines to a fairly low level (<1.5 percent) in 72 hours. Lithium azide is especially effective in dechlorination, possibly because of its much higher solubility in dimethylformamide.
Although the total C, H, N, Cl figures are 99-100 percent for short periods of reaction, the total steadily declines with increasing time and temperature to 91.5 percent. This is presumably the result of atmospheric oxidation which occurs easily with dehydrochlorinated poly(vinylazide). The IR spectrum supports this conclusion, showing hydroxyl peaks at 3400 and 1110 cm-1.
The poly(vinylchloride) powders were obtained from Aldrich Chemical Co. in three molecular weights, with densities and inherent viscosities as follows: low molecular weight (1.40; 0.65); high molecular weight (1.40; 1.02); and very high molecular weight (1.385; 1.26).
Dimethylformamide was routinely used as the reaction solvent for the poly(vinylchloride).
The reaction was conducted by stirring and heating a solution of the polymer (1.0 g) in dimethylformamide with excess sodium or lithium azide (1.0 g) without the exclusion of air. The reaction times are noted on the table.
The products were separated by pouring the reaction mixture into water with stirring and acidification with a small amount of 10 percent hydrochloric acid. The solid was separated and triturated with a large-ended stirring rod, first in water, then with two changes of methanol. Alternatively, the product can be filtered.
Previous studies in the art have indicated the poly(vinylchloride)-sodium azide reaction product to have the composition--(CH2 CHN3)x (CH2 CHCl)y --. However, the individual percentages do not agree with that formula. Reasonable agreement is obtained by assuming the formation of some unsaturation by dehydrochlorination. Thus, analysis of a product prepared at 65° C. for 10 hours corresponds to--(CH2 CHN3)6 (CH2 CHCl)4 (CH═CH)1 --. Double bond formation is also consistent with the appearance of a broad IR peak at 1600-1650 cm-1.
The foregoing disclosure is merely illustrative of the principles of this invention and are not to be interpreted in a limiting sense. I wish it to be understood that I do not desire to be limited to the exact details described because obvious modifications will occur to a person skilled in the art.
Claims (6)
1. In an improved process of making poly(vinylazide) from poly(vinylchloride) and sodium azide, the improvement consisting of making said poly(vinylazide) acceptable for use in large caliber weapon systems by heating said poly(vinylazide) having the form of a gel in the presence of an excess of sodium azide with stirring at 60° C. for 24 hours, and then heating at 85° C. for 96 hours producing a poly(vinylazide) product containing between about 0.1 and 1.4 percent chlorine by weight.
2. In an improved process of making poly(vinylazide) from poly)vinylchloride) and sodium azide, the improvement consisting of making said poly(vinylazide) acceptable for use in large caliber weapon systems by heating said poly(vinylazide) having the form of a gel in the presence of an excess of sodium azide with stirring at 65° C. for 72 hours producing a poly(vinylazide) product containing 0.3 percent chlorine by weight.
3. In an improved process of making poly(vinylazide) from poly(vinylchloride) and sodium azide, the improvement consisting of making said poly(vinylazide) acceptable for use in large caliber weapon systems by heating said poly(vinylazide) having the form of a gel in the presence of an excess of sodium azide with stirring at 65° C. for 96 hours producing a poly(vinylazide) product containing 0.4 percent chlorine by weight.
4. The improved process of claim 1 wherein sodium azide is replaced by lithium azide.
5. Poly(vinylazide) having the formula--(CH2 CHN3)6 (CH2 CHCl)4 (CH═CH)1 --.
6. Poly(vinylazide) having a chlorine content of less than about 1.5 percent by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/711,892 USH103H (en) | 1985-03-14 | 1985-03-14 | Novel poly(vinylazide) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/711,892 USH103H (en) | 1985-03-14 | 1985-03-14 | Novel poly(vinylazide) |
Publications (1)
Publication Number | Publication Date |
---|---|
USH103H true USH103H (en) | 1986-08-05 |
Family
ID=24859945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/711,892 Abandoned USH103H (en) | 1985-03-14 | 1985-03-14 | Novel poly(vinylazide) |
Country Status (1)
Country | Link |
---|---|
US (1) | USH103H (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4839420A (en) | 1984-04-16 | 1989-06-13 | The United States Of America As Represented By The Secretary Of The Army | Preparation of polyvinylazides from polyvinylnitrate |
US4843121A (en) | 1984-04-16 | 1989-06-27 | The United States Of America As Represented By The Secretary Of The Army | Polyvinylazidonitrate |
-
1985
- 1985-03-14 US US06/711,892 patent/USH103H/en not_active Abandoned
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4839420A (en) | 1984-04-16 | 1989-06-13 | The United States Of America As Represented By The Secretary Of The Army | Preparation of polyvinylazides from polyvinylnitrate |
US4843121A (en) | 1984-04-16 | 1989-06-27 | The United States Of America As Represented By The Secretary Of The Army | Polyvinylazidonitrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3096312A (en) | Polymers and copolymers of 5-vinyltetrazole | |
US5587553A (en) | High performance pressable explosive compositions | |
DE2945383A1 (en) | ENERGY FULL AZIDO POLYMER WITH FINAL HYDROXY GROUPS | |
Eroǧlu et al. | Thermal decomposition of poly (glycidyl azide) as studied by high‐temperature FTIR and thermogravimetry | |
US4450110A (en) | Azido nitramine | |
USH103H (en) | Novel poly(vinylazide) | |
US3004959A (en) | Polymers of substituted tetrazoles | |
US6657059B2 (en) | 3,6BIS(1H-1,2,3,4-tetrazol-5-ylamino)-1,2,4,5-tetrazine or salt thereof | |
US3055780A (en) | Binder for explosive compositions | |
US4329522A (en) | 1,3,5,7-Tetranitroadamantane and process for preparing same | |
JPH0770314A (en) | Azide polymer guided by dipolarophile | |
USH272H (en) | Poly(allyl azido nitrates) | |
Sikder et al. | Cost-effective synthesis of 5, 7-diamino-4, 6-dinitrobenzofuroxan (CL-14) and its evaluation in plastic bonded explosives | |
US4535193A (en) | 1,4,6,9-Tetranitrodiamantane | |
US4881993A (en) | Explosive and propellant composition and method of preparation | |
US4568399A (en) | Propellant compositions | |
Fine et al. | Explosive decomposition of solid benzoyl peroxide | |
US4013596A (en) | Adhesive tetrazole polymers and process of making therefor | |
US4849514A (en) | Process for making azidodeoxycellulose | |
EP0203061A4 (en) | Explosive composition and method. | |
AU663679B1 (en) | Glycidal azide polymer azide | |
US3969167A (en) | Nitrocellulose explosive process involving a ketone | |
Agrawal et al. | A comparative account of properties of novel unsaturated polyesters synthesized by different polyesterification processes | |
US3221055A (en) | Nitrate and perchlorate salts of polyethylenimine | |
US3634283A (en) | Smoke generating compositions and methods of use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: UNITED STATES OF AMERICA, AS REPRESENTED BY THE SE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.; ASSIGNOR:GILBERT, EVERETT E.;REEL/FRAME:004635/0286 Effective date: 19850308 |