US9981022B2 - Sustained release poloxamer containing pharmaceutical compositions - Google Patents

Sustained release poloxamer containing pharmaceutical compositions Download PDF

Info

Publication number
US9981022B2
US9981022B2 US15/058,824 US201615058824A US9981022B2 US 9981022 B2 US9981022 B2 US 9981022B2 US 201615058824 A US201615058824 A US 201615058824A US 9981022 B2 US9981022 B2 US 9981022B2
Authority
US
United States
Prior art keywords
botulinum toxin
poloxamer
pharmaceutical composition
thermoplastic
toxin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US15/058,824
Other versions
US20160175410A1 (en
Inventor
Terrence J. Hunt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allergan Inc
Original Assignee
Allergan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allergan Inc filed Critical Allergan Inc
Priority to US15/058,824 priority Critical patent/US9981022B2/en
Publication of US20160175410A1 publication Critical patent/US20160175410A1/en
Assigned to ALLERGAN, INC. reassignment ALLERGAN, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUNT, TERRENCE J.
Priority to US15/989,742 priority patent/US20180271959A1/en
Application granted granted Critical
Publication of US9981022B2 publication Critical patent/US9981022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/4886Metalloendopeptidases (3.4.24), e.g. collagenase
    • A61K38/4893Botulinum neurotoxin (3.4.24.69)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • A61K47/48215
    • A61K47/48284
    • A61K47/48784
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/643Albumins, e.g. HSA, BSA, ovalbumin or a Keyhole Limpet Hemocyanin [KHL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6903Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being semi-solid, e.g. an ointment, a gel, a hydrogel or a solidifying gel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/042Gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • A61K8/66Enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/90Block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/52Stabilizers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/56Compounds, absorbed onto or entrapped into a solid carrier, e.g. encapsulated perfumes, inclusion compounds, sustained release forms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/59Mixtures
    • A61K2800/594Mixtures of polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/91Injection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/95Involves in-situ formation or cross-linking of polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/24Metalloendopeptidases (3.4.24)
    • C12Y304/24069Bontoxilysin (3.4.24.69), i.e. botulinum neurotoxin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to thermosensitive, thermo-reversible pharmaceutical compositions.
  • the present invention relates to sustained release, gelable (thermosensitive) botulinum toxin pharmaceutical compositions formulated with a poloxamer.
  • a pharmaceutical composition is a formulation which contains at least one active ingredient (such as a botulinum toxin) as well as, for example, one or more excipients, buffers, carriers, stabilizers, preservatives and/or bulking agents, and is suitable for administration to a patient to achieve a desired diagnostic result or therapeutic effect.
  • active ingredient such as a botulinum toxin
  • excipients such as a botulinum toxin
  • excipients such as a botulinum toxin
  • buffers such as a botulinum toxin
  • carriers stabilizers, preservatives and/or bulking agents
  • a pharmaceutical composition can be formulated as a lyophilized (i.e. freeze dried) or vacuum dried powder which can be reconstituted with a suitable fluid, such as saline or water, prior to administration to a patient.
  • the pharmaceutical composition can be formulated as a ready to use aqueous solution or suspension.
  • a pharmaceutical composition can contain a proteinaceous active ingredient.
  • a protein active ingredient can be very difficult to stabilize (i.e. maintained in a state where loss of biological activity is minimized), resulting therefore in a loss of protein and/or loss of protein activity during the formulation, reconstitution (if required) and during the period of storage prior to use of a protein containing pharmaceutical composition.
  • Stability problems can occur because of protein denaturation, degradation, dimerization, and/or polymerization.
  • excipients such as albumin and gelatin have been used with differing degrees of success to try and stabilize a protein active ingredient present in a pharmaceutical composition.
  • cryoprotectants such as alcohols have been used to reduce protein denaturation under the freezing conditions of lyophilization.
  • Poloxamers are nontoxic block copolymers of poly(ethylene oxide), poly(propylene oxide) and poly(ethylene oxide) (PEO-PPO-PEO). Certain poloxamers exhibit reversible thermal gelation. Thus a solution of a protein and a poloxamer prepared at low temperatures and injected will form a gel as it warms to body temperature. Subsequently the protein is slowly released from the gel.
  • a gelable, thermo-reversible formulation comprising poloxamer 407 at a 22 wt % concentration has been prepared with the model protein drugs ⁇ -chymotrypsin and lactate dehydrogenase.
  • Stratton L., et al. Drug delivery matrix containing native protein precipitates suspended in a poloxamer gel , J Pharm Sci 86(9); 1006-1010, September 1996.
  • Formulations of certain adhesive proteins and poloxamer 127 have been made.
  • Huang K., et al. Synthesis and characterization of self - assembling block copolymers containing adhesive moieties , Polymer Preprints 2001, 42(2), 147-148.
  • poloxamer 188 and poloxamer 407 have been used an excipients in protein drug pharmaceutical compositions. Jeong B., et al., Thermosensitive sol - gel reversible hydrogels , Adv Drug Del Rev, 54(1); 37-51, Jan. 17, 2002. Published patent application WO 2007/041664 discloses use a pharmaceutical composition comprising a botulinum toxin and a poloxamer 188.
  • Botulinum toxins have been used for various therapeutic and cosmetic purposes including treating cervical dystonia, blepharospasm, strabismus, spasticity, headache, hyperhidrosis, overactive bladder, rhinitis, bruxism, enlarged prostate, achalasia, anismus, sphincter of Oddi malfunction, acne, tremors, juvenile cerebral palsy, and facial wrinkles.
  • botulinum toxin containing pharmaceutical compositions include BOTOX® (Botulinum toxin type A neurotoxin complex with human serum albumin and sodium chloride) available from Allergan, Inc., of Irvine, Calif. in 100 unit vials as a lyophilized powder to be reconstituted with 0.9% sodium chloride before use), DYSPORT® ( Clostridium botulinum type A toxin haemagglutinin complex with human serum albumin and lactose in the formulation), available from Ipsen Limited, Berkshire, U.K.
  • BOTOX® Botulinum toxin type A neurotoxin complex with human serum albumin and sodium chloride
  • DYSPORT® Clostridium botulinum type A toxin haemagglutinin complex with human serum albumin and lactose in the formulation
  • MYOBLOCTM an injectable solution comprising botulinum toxin type B, human serum albumin, sodium succinate, and sodium chloride at about pH 5.6, available from Solstice Neurosciences, Inc., South San Francisco, Calif.
  • Botulinum toxin is a large protein for incorporation into a pharmaceutical formulation (the molecular weight of the botulinum toxin type A complex is 900 kD) and is inherently fragile and labile.
  • the size of the toxin complex makes it much more friable and labile than smaller, less complex proteins, thereby compounding the formulation and handling difficulties if botulinum toxin stability is to be maintained.
  • a botulinum toxin stabilizer must be able to interact with the toxin in a manner which does not denature, fragment or otherwise detoxify the toxin molecule or cause disassociation of the non-toxin proteins present in the toxin complex.
  • botulinum toxin stabilizer should not itself be toxic or difficult to handle so as to not exacerbate the already extremely stringent botulinum toxin containing pharmaceutical composition formulation requirements.
  • botulinum toxin was the first microbial toxin to be approved (by the U.S. Food and Drug Administration in 1989) for injection for the treatment of human disease, specific protocols had to be developed and approved for the culturing, bulk production, formulation into a pharmaceutical and use of botulinum toxin.
  • Important considerations are toxin purity and dose for injection. The production by culturing and the purification must be carried out so that the toxin is not exposed to any substance that might contaminate the final product in even trace amounts and cause undue reactions in the patient. These restrictions require culturing in simplified medium without the use of animal meat products and purification by procedures not involving synthetic solvents or resins.
  • toxin using enzymes, various exchangers, such as those present in chromatography columns and synthetic solvents, can introduce contaminants and are therefore excluded from preferred formulation steps.
  • botulinum toxin type A is readily denatured at temperatures above 40 degrees Centigrade, loses toxicity when bubbles form at the air/liquid interface and denatures in the presence of nitrogen or carbon dioxide.
  • type A consists of a toxin molecule of about 150 kD in noncovalent association with nontoxin proteins weighing about 750 kD.
  • the nontoxin proteins are believed to preserve or help stabilize the secondary and tertiary structures upon which toxicity is dependant.
  • Procedures or protocols applicable to the stabilization of nonproteins or to relatively smaller proteins are not applicable to the problems inherent with stabilization of the botulinum toxin complexes, such as the 900 kD botulinum toxin type A complex.
  • XEOMINTM is the trade name for a neurotoxic component botulinum toxin type A pharmaceutical composition available from Merz Pharmaceuticals (Frankfurt, Germany).
  • botulinum toxins when used as therapeutic drugs, are known to migrate from the site of injection at various rates and distances, sometimes resulting in loss of effect at the desired muscle.
  • Solid botulinum toxin implants are known. See e.g., U.S. Pat. Nos. 6,306,423; 6,312,708, for a discussion of exemplary solid implants and applications. Additionally formulation of a botulinum toxin in a viscous carrier such as a hyaluronic acid is known; U.S. applications Ser. Nos. 11/954,629, and 11/954,602, filed Dec. 12, 2007.
  • biocompatible, gelable (thermoplastic) pharmaceutical composition comprising a stabilized botulinum toxin so that the composition can be administered as a liquid yet forms a sustained release gel upon administration; thereby localizing the effect and controlling release of the toxin to enhance the effect per dose.
  • the present invention fulfills this need and provides a gelable, thermoreversible, thermoplastic botulinum toxin pharmaceutical composition that can be administered as a liquid and form a gel from which the botulinum toxin exhibits a sustained release upon administration of the pharmaceutical composition. Additionally, the present invention provides the additional advantage in that the compound which provides the thermo-reversible characteristic to the composition can also stabilize the botulinum toxin present in the pharmaceutical composition.
  • the present invention provides a thermoplastic thermoreversible, botulinum toxin pharmaceutical composition formulated with a poloxamer.
  • a poloxamer can also act to stabilize the botulinum toxin.
  • administering means the step of giving (i.e. administering) a pharmaceutical composition to a subject.
  • the pharmaceutical compositions disclosed herein are “locally administered” by e.g. intramuscular (i.m.), intradermal, subcutaneous administration, intrathecal administration, intraperitoneal (i.p.) administration, topical (transdermal) and implantation (i.e. of a slow-release device) routes of administration.
  • Botulinum toxin means: (1) a neurotoxin produced by Clostridium botulinum, as well as a botulinum toxin (or the light chain or the heavy chain thereof) made recombinantly by a non-Clostridial species; (2) the botulinum toxin serotypes A, B, C, D, E, F and G; (3) a botulinum toxin complex (i.e. the 300, 600 and 900 kDa complexes) as well as the neurotoxic component of a purified botulinum toxin (i.e.
  • a modified botulinum toxin a pegylated (with a PEG), chimeric, recombinant, hybrid, wild-type botulinum toxins, botulinum toxin constructs, endopeptidases, chemically-modified botulinum toxins (pegylated botulinum toxin), and retargeted botulinum toxin, which retains the intracellular ability to inhibit acetylcholine release from a cell.
  • Essentially free means that only trace amounts of the substance can be detected.
  • Modified botulinum toxin means a botulinum toxin that has had at least one of its amino acids deleted, modified, or replaced, as compared to a native botulinum toxin. Additionally, the modified botulinum toxin can be a recombinantly produced neurotoxin, or a derivative or fragment of a recombinantly made neurotoxin. A modified botulinum toxin retains at least one biological activity of the native botulinum toxin, such as, the ability to bind to a botulinum toxin receptor, or the ability to inhibit neurotransmitter release from a neuron.
  • modified botulinum toxin is a botulinum toxin that has a light chain from one botulinum toxin serotype (such as serotype A), and a heavy chain from a different botulinum toxin serotype (such as serotype B).
  • a modified botulinum toxin is a botulinum toxin coupled to a neurotransmitter, such as substance P.
  • “Pharmaceutical composition” means a formulation in which an active ingredient can be a Clostridial neurotoxin, such as a botulinum toxin.
  • the word “formulation” means that there is at least one additional ingredient in the pharmaceutical composition besides a Clostridial neurotoxin active ingredient.
  • a pharmaceutical composition is therefore a formulation which is suitable for diagnostic, therapeutic or cosmetic use (i.e. by intramuscular or subcutaneous injection or by insertion of a depot or implant or topical application) to a subject, such as a human patient.
  • the pharmaceutical composition can be in a lyophilized or vacuum dried condition; a solution formed after reconstitution of the lyophilized or vacuum dried pharmaceutical composition with saline or water, or; as a solution which does not require reconstitution.
  • a pharmaceutical composition can be liquid or solid, for example vacuum-dried.
  • the constituent ingredients of a pharmaceutical composition can be included in a single composition (that is all the constituent ingredients, except for any required reconstitution fluid, are present at the time of initial compounding of the pharmaceutical composition) or as a two-component system, for example a vacuum-dried composition reconstituted with a diluent such as saline which diluent contains an ingredient not present in the initial compounding of the pharmaceutical composition.
  • a two-component system provides the benefit of allowing incorporation of ingredients which are not sufficiently compatible for long-term shelf storage with the first component of the two component system.
  • the reconstitution vehicle or diluent may include a preservative which provides sufficient protection against microbial growth for the use period, for example one-week of refrigerated storage, but is not present during the two-year freezer storage period during which time it might degrade the toxin.
  • a preservative which provides sufficient protection against microbial growth for the use period, for example one-week of refrigerated storage, but is not present during the two-year freezer storage period during which time it might degrade the toxin.
  • Other ingredients which may not be compatible with a Clostridial toxin or other ingredients for long periods of time, may be incorporated in this manner; that is, added in a second vehicle (i.e. in the reconstitution fluid) at the approximate time of use.
  • “Sustained release” means that the therapeutic agent (i.e. a botulinum toxin) contained by a pharmaceutical composition (such as a pharmaceutical composition comprising a poloxamer) is released from the pharmaceutical composition over a period of time between about 5 days and about 1 year.
  • a pharmaceutical composition such as a pharmaceutical composition comprising a poloxamer
  • Stabilizer is a compound that assists to preserve or maintain the biological structure (i.e. the three dimensional conformation) and/or biological activity of a protein (such as a botulinum toxin). More than one stabilizer can be included in a pharmaceutical composition.
  • stabilizers are surfactants, polymers, polyols, a poloxamer, albumin, gelatin, trehalose, proteins, sugars, polyvinylpyrrolidone, N-acetyl-tryptophan (“NAT”)), caprylate (i.e. sodium caprylate), a polysorbate (i.e. P80), amino acids, and divalent metal cations such as zinc.
  • a pharmaceutical composition can also include a preservative such as a benzyl alcohol, cresols, benzoic acid, phenol, parabens and sorbic acid.
  • “Stabilizing”, “stabilizes”, or “stabilization” mean that an active pharmaceutical ingredient (“API”) retains at least 20% and up to 100% of its biological activity (which can be assessed as potency or as toxicity by an in vivo LD 50 or ED 50 measure) in the presence of a compound which is stabilizing, stabilizes or which provides stabilization to the API. For example, upon (1) preparation of serial dilutions from a bulk or stock solution, or (2) upon reconstitution with saline or water of a lyophilized, or vacuum dried botulinum toxin containing pharmaceutical composition which has been stored at or below about -2 degrees C.
  • the botulinum toxin present in the reconstituted or aqueous solution pharmaceutical composition has (in the presence of a compound which is stabilizing, stabilizes or which provides stabilization to the API) greater than about 20% and up to about 100% of the potency or toxicity that the biologically active botulinum toxin had prior to being incorporated into the pharmaceutical composition.
  • substantially free means present at a level of less than one percent by weight of the pharmaceutical composition.
  • “Therapeutic agent” means an active pharmaceutical ingredient (API) which can have therapeutic, cosmetic, and/or research use or benefit when administered to a patient.
  • the therapeutic agent can be for example a steroid, antibiotic, or protein.
  • Thermoplastic is synonymous with “thermosensitive” and means a compound or composition which is a liquid or a low viscosity solution (i.e. viscosity less than 500 cps at 25° C. at a shear rate of about 0.1/second) at a low temperature (between about 0° C. to about 10° C.), but which is a higher viscosity ((i.e. viscosity less than 10,000 cps at 25° C. at a shear rate of about 0.1/second) gel at a higher temperature (between about 30° C. to about 40° C. such as at about 37° C.)
  • a thermoplastic, thermoreversible, pharmaceutical composition comprising a biologically active botulinum toxin, and a thermoplastic poloxamer, where the poloxamer stabilizes the botulinum toxin so that the botulinum toxin retains biological activity upon release of the botulinum toxin from the pharmaceutical composition in vivo.
  • the botulinum toxin is selected from the group consisting of the botulinum toxins types A, B, C 1 , D, E, F and G and is preferably a botulinum toxin type A, known for its long lasting effect.
  • An exemplary thermo-reversible poloxamer is a poloxamer 407, an example of which can be obtained from the BASF Corporation, Parsippany, N.J., under the name F-127.
  • the poloxamer can be present at a concentration of from about 15 wt % to about 25 wt % of the pharmaceutical composition.
  • the thermoreversible, thermoplastic, pharmaceutical composition comprises a biologically active botulinum toxin type A and a thermoplastic poloxamer 407 present at a concentration of about 15 wt % to about 25 wt % of the pharmaceutical composition, which stabilizes the botulinum toxin so that the botulinum toxin retains biological activity upon release of the botulinum toxin from the pharmaceutical composition in vivo.
  • a method for treating a medical or cosmetic condition comprising the step of administering to a patient a thermoplastic, thermo-reversible pharmaceutical composition comprising a biologically active botulinum toxin and a thermoplastic, thermoreversible, poloxamer such that the poloxamer stabilizes the botulinum toxin so that the botulinum toxin retains biological activity upon release of the botulinum toxin from the pharmaceutical composition in vivo and the pharmaceutical composition is administered as a liquid and becomes a gel after the administration, to provide therapeutic amounts of the botulinum toxin released from the composition in vivo for at least 1 week after the administration.
  • thermoreversible, thermoplastic is a poloxamer 407 and is present at a concentration of about 15 wt % to about 25 wt % of the pharmaceutical composition.
  • a step of placing a cooling or heating element is placed over an area of administration, before or after the administration step, in order to warm or cool the area to decrease or increase the viscosity of the administered thermoplastic, thermoreversible, pharmaceutical composition in situ and after its administration to the patient.
  • Exemplary medical conditions that can be so treated include glabellar lines, crows feet, marionette lines, nasolabial lines, horizontal lines of the forehead or any combination thereof. Additional exemplary medical or cosmetic conditions include treating at least one of overactive bladder, hyperhidrosis, benign prostatic hyperplasia and a dystonia, where the botulinum toxin is selected from the group consisting of the botulinum toxins types A, B, C 1 , D, E, F and G. As above, the preferred botulinum toxin is botulinum toxin type A.
  • the botulinum toxin type A is present in the thermoreversible, thermoplastic, pharmaceutical composition in an amount from about 5 units to about 2750 units.
  • the total amount (units) of a botulinum toxin to be administered to a patient is determined by the attending medical professional.
  • thermoreversible, thermoplastic, gelable, pharmaceutical composition comprising the steps of dissolving a thermoplastic poloxamer in a solvent at a temperature below about 37 degrees Centigrade, adding and mixing a botulinum toxin to the thermoplastic poloxamer in the solvent to thoroughly disperse the botulinum toxin therein.
  • the poloxamer can be present in particular embodiments at a concentration from about 15 wt % to about 25 wt % of the pharmaceutical composition, thereby making the thermoplastic, gelable, pharmaceutical composition.
  • a botulinum toxin type A or B is utilized.
  • An exemplary amount added can be from about 1 to about 2000 units of the botulinum toxin type A or from about 50 to about 25,000 units of a botulinum toxin type B, to be administered to a patient in need thereof.
  • the process can also include adding an additive, for preservative or stabilizing purposes, for example, to form the final thermoplastic, gelable, pharmaceutical composition.
  • the solvent utilized in the method of making the thermoplastic, gelable, pharmaceutical composition is water or a saline solution and the process of making the thermoplastic, gelable, pharmaceutical composition is carried out within a cold room having an temperature of below about 37 degrees Centigrade, or between about 0 to about 8 degrees Centigrade, for example.
  • thermoreversible, thermoplastic, pharmaceutical composition that includes a biologically active botulinum toxin and a thermoreversible, thermoplastic poloxamer, wherein the poloxamer stabilizes the botulinum toxin and is a gel at room temperature (e.g the temperature of an enclosed space at which human beings are usually accustomed, e.g. from about 17° C. to about 25° C.
  • the pharmaceutical composition Before administration, the pharmaceutical composition is cooled below the room temperature to reduce its viscosity (liquefy) the pharmaceutical composition and is thereafter drawn into a syringe and injected into the patient, where the thermoplastic pharmaceutical composition gels to deliver therapeutic amounts of the botulinum toxin are released from the composition in vivo for at least 1 week after administration.
  • the thermoplastic poloxamer is a poloxamer 407 and is present at a concentration of about 15 wt % to about 25 wt % of the pharmaceutical composition.
  • thermoplastic, pharmaceutical composition is thermo-reversible, that is, its viscosity can be increased and/or decreased based on temperature, and is reversible.
  • the thermoreversible, thermoplastic poloxamer such as poloxamer 407 at about 20 wt % (and hence the thermoplastic, pharmaceutical composition) can have a first viscosity at a first temperature (e.g. from about 0 centipoise (cP) at about 0 to about 16 degrees Centigrade), have its temperature raised to increase its viscosity to a second viscosity that is higher relative to the first viscosity (e.g.
  • thermo-reversible depot pharmaceutical compositions for a botulinum toxin.
  • My invention is based on the discovery that certain thermo-reversible poloxamers show remarkable compatibility with botulinum toxins.
  • These depot systems can be thermally manipulated (pre & post injection) to control migration and distribution of the botulinum toxin.
  • No combinations of botulinum toxins and poloxamer 407 are known.
  • a formulation within the scope of my invention is administered as a liquid and the polymer gels (cures) in situ at the site of local administration.
  • An embodiment of my invention can comprise a triblock PEO-PPO-PEO copolymer compounds, also known as pluronics or poloxamers, which at certain concentrations can form thermo-reversible gels which can be administered (as by injection) as a low viscosity liquid that rapidly increases in viscosity after injection.
  • the resulting high viscosity matrix is adhesive, biodegradable and biocompatible and upon administration forms a depot from which the botulinum toxin can be released, thereby providing a sustained or extended release drug delivery system. In this manner a lower dose of the botulinum toxin can be used.
  • Such a pharmaceutical composition can be administered pre-mixed or as a simple reconstitution vehicle or its several compartments combined at the time of administration, as by use of a dual chamber syringe.
  • botulinum neurotoxins are very stable in poloxamers, such as poloxamer 407, for example. This is surprising because of the complex structural nature of these toxins. For example, three separate protein domains (binding, translocation, enzymatic) must be conserved in order to maintain biological activity of the naked 150 kD toxin. Surfactants are chaotropic and therefore generally disrupt protein conformations. It is therefore surprising to find compatibility between these molecules and surfactants.
  • the 900 kD toxins are protein complexes with neurotoxin associated proteins (NAPs), which stabilize the 150 kD portion. Surfactants would be expected to disrupt the protein complex, thereby destabilizing the complex and/or denaturing the 150 kD toxin portion.
  • NAPs neurotoxin associated proteins
  • thermo-reversible poloxamer used in the present invention can apparently impart stability to a neurotoxin active ingredient, such as a botulinum toxin, present in the pharmaceutical composition by: (1) reducing adhesion (commonly referred to as “stickiness”) of the botulinum toxin to surfaces, including the surfaces of laboratory glassware, vessels, the vial in which the pharmaceutical composition is reconstituted and the inside surface of the syringe used to inject the pharmaceutical composition.
  • reducing adhesion commonly referred to as “stickiness”
  • Adhesion of the botulinum toxin to surfaces can lead to loss of botulinum toxin and to denaturation of retained botulinum toxin, both of which reduce the toxicity of the botulinum toxin present in the pharmaceutical composition; (2) reducing the denaturation of the botulinum toxin and/or dissociation of the botulinum toxin from other non-toxin proteins present in the botulinum toxin complex, which denaturation and/or dissociation activities can occur because of the low dilution of the botulinum toxin present in the pharmaceutical composition (i.e. prior to lyophilization or vacuum drying) and in the reconstituted pharmaceutical composition; (3) reducing loss of botulinum toxin (i.e.
  • botulinum toxin stabilizations conserve and preserve the botulinum toxin and with it native toxicity of the toxin present in the pharmaceutical composition.
  • My invention also encompasses addition of a preservative, either in the diluent or formulation itself, to allow extended storage.
  • a preferred preservative is preserved saline containing benzyl alcohol.
  • thermo-reversible pharmaceutical compositions of the invention can be administered using conventional modes of administration.
  • the compositions are administered intradermally, intramuscularly or subcutaneously to the patient.
  • the compositions of the invention may be administered with one or more analgesic or anesthetic agents.
  • compositions of this invention depends upon the type, severity, and course of the condition being treated, the patient's health and response to treatment, and the judgment of the treating physician. Accordingly, the methods and dosages of the compositions can be tailored to the individual patient.
  • the well-known mouse lethal dose 50 assay (the “MLD50 assay”) was used to determine the potency of the botulinum toxin released from the poloxamer formulations made.
  • “potency” can mean the recovered potency of the botulinum toxin or the potency of the botulinum toxin prior to lyophilization. Recovered potency is synonymous with reconstitution potency, recovery potency and with potency upon reconstitution.
  • the MLD50 assay provides a determination of the potency of a botulinum toxin in terms of its mouse 50% lethal dose or “LD50”.
  • one unit (U) of a botulinum toxin is defined as the amount of botulinum toxin which upon intraperitoneal injection kills 50% (i.e. a LD 50 ) of a group of female Swiss Weber mice weighing 17-22 grams each at the start of the assay.
  • the MLD50 assay is a validated method for measuring the potency of a reconstituted botulinum toxin or of a reconstituted botulinum toxin formulation.
  • Each mouse is held in a supine position with its head tilted down and is injected intraperitoneally into the lower right abdomen at an angle of about 30 degrees using a 25 to 27 gauge 3 ⁇ 8′′ to 5 ⁇ 8′′ needle with one of several serial dilutions of the botulinum toxin in normal saline. The death rates over the ensuing 72 hours for each dilution are recorded. A minimum of six dilutions at 1.33 dose intervals are prepared and typically ten animals are used in each dosage group (60 mice employed therefore). Two reference standard assays are carried out concurrently (additional 60 mice employed).
  • the dilutions are prepared so that the most concentrated dilution produces a death rate of at least 80% of the mice injected, and the least concentration dilution produces a death rate no greater than 20% of the mice injected. There must be a minimum of four dilutions that fall within the monotone decreasing range of the death rates.
  • the monotone decreasing range commences with a death rate of no less than 80%. Within the four or more monotone decreasing rates, the two largest and the two smallest rates must be decreasing (i.e. not equivalent).
  • the dilution at which 50% of the mice die within the three day post injection observation period is defined as a dilution which comprises one unit (1 U) of the botulinum toxin.
  • a refined MLD50 assay has been developed which uses fewer (five instead of six) dilutions at 1.15 dose intervals and fewer mice (six instead of ten) per dilution tested.
  • Botulinum Toxin-Poloxamer 407 Formulations
  • botulinum toxin-poloxamer formulations were made and assessed.
  • the botulinum toxin used in each of the formulations made was lyophilized BOTOX®.
  • the poloxamer used in this example was poloxamer 407 obtained from BASF (Lutrol F-127). In each formulation, the poloxamer 407 was used in an amount that constituted 20 weight percent (wt %) of the final formulation.
  • Poloxamer 407 is supplied as dry powder and is a hydrophilic non-ionic surfactant and a triblock copolymer consisting of two hydrophilic blocks (polyethylene glycol) separated by a hydrophobic block (poly-propylene glycol). The lengths of the two PEG blocks is about 101 repeating units, while the length of the propylene glycol block is about 56 repeating units.
  • Poloxamer 407 Solutions of Poloxamer 407, at appropriate concentrations, are liquid under refrigeration, but gel at room temperature and above (e.g., is a gel at about 37° C.). Poloxamer 407 can therefore be reconstituted or stored as a low-viscosity liquid for easy passage through a needle but then gels into a depot after injection into a mammal as it is subjected to increasing temperature. Poloxamer 407 was chosen for the formulations made in this example because of these desirable physical properties combined with unusual toxin compatibility.
  • Each formulation was made by a process which combines the solids (recall that the Poloxamer 407 is supplied as dry powder) in large centrifuge tubes with water or saline (inside a cold room at about 2 to about 8 degrees Centigrade) and is mixed with a magnetic stir bar, until fully dissolved.
  • the solutions are stored at from about 4 to about 15 degrees Centigrade until injected/used.
  • the solutions were then used to reconstitute a botulinum toxin type A (BOTOX®) in vials containing 100 units (U), by introducing the cold solution into the vials with a syringe.
  • BOTOX® botulinum toxin type A
  • Samples were then heated to 37° C. until gelled to simulate injection into a warm body.
  • thermo-reversible formulations can be made with from 15-25 wt % poloxamer 407 (available from BASF as Lutrol F-127) without significant attenuation of the desired formulation characteristics of (1) thermoplasticity, and (2) sustained release of biologically active botulinum toxin from the formulations made.
  • thermo-reversible poloxamer formulations were made. Each of the 26 formulation made included 20 wt % poloxamer 407 and 100 units of botulinum toxin type A (BOTOX®):
  • thermo-reversible poloxamer formulations To determine that active botulinum toxin was released from each of the 26 thermo-reversible poloxamer formulations, light chain activity was measured using a fluorescent SNAP-25 substrate coupled with HPLC. Samples incubated with the substrate produce a cleavage product that is separated by RP-HPLC and detected via fluorescence. The amount of cleavage product is proportional to enzymatic activity.
  • Poloxamer 407 can be further manipulated pre and/or post-injection by applying heat or cold-packs to desired areas (injected and/or non-injected) achieve the desired effect. Additional ingredients can be added to the formulation to modify the attributes (causing increases/decreases in gelling temperatures, for example). Ingredients to alter osmolarity and pH (buffers) can be added. Administration can be topical rather than injectable; for example, in a transdermal delivery scheme, the formulation can contain permeation enhancers, and may be combined with a device such as a patch having additional permeation attributes, such as abrasives or microneedles, for example. Preservatives can also be included in the formulation. Colorants, such as pharmaceutically acceptable dyes, can be included to better visualize the material before and after application.
  • a 48 year old male is diagnosed with a spastic muscle condition, such as cervical dystonia.
  • a spastic muscle condition such as cervical dystonia.
  • botulinum toxin type A such as BOTOX®
  • formulation 2 20% Poloxamer 407 in 0.9% sodium chloride
  • the formulation releases therapeutic amounts of the botulinum toxin over a 1 month period.
  • the symptoms of the spastic muscle condition are alleviated and alleviation of the symptoms persists for at least about 6 months.
  • a 22 year old female sees her physician to report and treat her uncontrollable and excessive armpit, sweating or as its known in the medical arts, axillary sweating. After gravimetric measurement of her sweat production, she is diagnosed as suffering from hyperhidrosis.
  • botulinum toxin type A such as BOTOX®
  • formulation 12 (20% Poloxamer 407 with 10% polyethylene glycol) in Example 1, and is administered by intradermal injection into the axillary hyperhidrotic area (as determined by Minor's starch-iodine test).
  • an ice pack is placed over the injected area, cooling the area and making the injected thermo-reversible poloxamer-botulinum toxin pharmaceutical composition less viscous, allowing the attending physician to massage the injected area, allowing a more even spread of the injected composition.
  • the excessive axial sweating is reduced and alleviation is observed for about 8 months.
  • a 38 year old woman reports to her dermatologist that she can no longer withstand the sight of her glabellar lines (dynamic wrinkles between the brows caused by the contraction of corrugator and/or procerus muscles) and that they have become a source of great consternation.
  • the dermatologist determines to treat her with a poloxamer-botulinum toxin pharmaceutical composition.
  • a botulinum toxin type B is combined with formulation 25 (20% Poloxamer 407 with 2% hydroxypropyl methylcellulose) in Example 1, and is administered by intramuscular injection directly into the corrugator and procerus muscles. Areas outside the desired treatment area are pre-heated (utilizing a heating pad to gradually warm the areas not injected, for example, from about 37 to about 43 degrees Centigrade, to elevate the temperature relative to the areas of injection) to prevent drug migration into those regions. Within about 7 days, the patient reports that the glabellar lines have been reduced and the skin between her brows is smoother. The alleviation of the wrinkles lasts for about 4 months.
  • a botulinum toxin type A (BOTOX®) at about 2 units per 0.1 mL of added formulation can be injected at each of about 5 injection sites in corrugator and procerus muscles for a total dose of about 10 units per 0.5 mL of thermo-reversible poloxamer-botulinum toxin pharmaceutical composition.
  • a hot pad can be placed over the injection site to warm the area.
  • the pad can be between about 37 degrees and about 43 degrees Centigrade, for example.
  • the pad can be placed onto the area injected or to be injected and warmed up to between about 37 degrees and about 43 degrees Centigrade, for example.
  • a 78 year old man is brought to his urologist, complaining of an inability to withhold his urine for any significant amount of time.
  • the urologist determines that the patient is incontinent and has an overactive bladder (OAB) and that his detrusor muscle should be injected with a poloxamer-botulinum toxin pharmaceutical composition.
  • OAB overactive bladder
  • a botulinum toxin type A (BOTOX®) is combined with formulation 2 (20% Poloxamer 407 in 0.9% sodium chloride) of Example 1 (about 250 units of toxin in about 10 mL of formulation 2).
  • BOTOX® botulinum toxin type A
  • formulation 2 (20% Poloxamer 407 in 0.9% sodium chloride) of Example 1
  • the urologist proceeds to inject the patient's bladder wall at 10 sites (25 units/site) along the lateral walls, sparing the trigone and dome.
  • the patient reports that he is able to hold his urine for many hours at a time, and that his voiding volume per visit to the urinal has more than doubled.
  • a bladder wall can also be injected with any one of the formulations (1-26) in Example 1 containing other botulinum toxin types, such as from about 50 to about 15,000 units of a botulinum toxin type B, utilizing from about 5 mL to about 30 mL of the formulations in Example 1.
  • the thermo-reversible poloxamer-botulinum toxin pharmaceutical composition is injected into the bladder wall in about 5 to about 50 injection sites, as determined by an attending physician, and can include or exclude the trigone, if desired.
  • a 67 year old man suffers from chronic urinary retention due to enlargement of his prostate.
  • Upon presentation to his physician it is determined that the patient undergo administration of poloxamer-botulinum toxin pharmaceutical composition to the prostate in order to alleviate his urinary retention and treat the benign prostatic hyperplasia.
  • About 200 units of botulinum toxin type A (BOTOX®) is combined with 4 mL of formulation 2 (20% Poloxamer 407 in 0.9% sodium chloride) in Example 1 for transperineal injection into the bilateral lobes of the prostate (100 units per lobe).
  • a botulinum toxin type B (such as MYOBLOC) can also be utilized, for example, from about 250 units to about 1000 units per injection site.
  • a pharmaceutical composition according to the invention disclosed herein has many advantages, including the following:
  • the pharmaceutical composition can be prepared free of any blood product, such as albumin and therefore free of any blood product infectious element such as a prion.
  • the pharmaceutical composition has stability and high % recovery of toxin potency comparable to or superior to that achieved with currently available pharmaceutical compositions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Birds (AREA)
  • Dermatology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

A thermo-reversible thermoplastic pharmaceutical composition, comprising a botulinum toxin and a biocompatible poloxamer which provides thermoreversibility to the composition and additionally stabilizes the botulinum toxin, is described. The pharmaceutical composition can be administered to a patient as a liquid, and gels after administration into a sustained release drug delivery system from which the biologically active botulinum toxin is released over a multi-day period thereby localizing the drug as a depot and controlling release to enhance the therapeutic effect per dose.

Description

CROSS REFERENCE
This application is a continuation of U.S. patent application Ser. No. 14/827,665, filed Aug. 17, 2015, which is a divisional of U.S. application Ser. No. 12/036,139, filed Feb. 22, 2008, which are hereby incorporated by reference in their entirety.
BACKGROUND
The present invention relates to thermosensitive, thermo-reversible pharmaceutical compositions. In particular, the present invention relates to sustained release, gelable (thermosensitive) botulinum toxin pharmaceutical compositions formulated with a poloxamer.
A pharmaceutical composition is a formulation which contains at least one active ingredient (such as a botulinum toxin) as well as, for example, one or more excipients, buffers, carriers, stabilizers, preservatives and/or bulking agents, and is suitable for administration to a patient to achieve a desired diagnostic result or therapeutic effect. The pharmaceutical compositions disclosed herein have diagnostic, therapeutic, cosmetic and/or research utility.
For storage stability and convenience of handling, a pharmaceutical composition can be formulated as a lyophilized (i.e. freeze dried) or vacuum dried powder which can be reconstituted with a suitable fluid, such as saline or water, prior to administration to a patient. Alternately, the pharmaceutical composition can be formulated as a ready to use aqueous solution or suspension. A pharmaceutical composition can contain a proteinaceous active ingredient. Unfortunately, a protein active ingredient can be very difficult to stabilize (i.e. maintained in a state where loss of biological activity is minimized), resulting therefore in a loss of protein and/or loss of protein activity during the formulation, reconstitution (if required) and during the period of storage prior to use of a protein containing pharmaceutical composition. Stability problems can occur because of protein denaturation, degradation, dimerization, and/or polymerization. Various excipients, such as albumin and gelatin have been used with differing degrees of success to try and stabilize a protein active ingredient present in a pharmaceutical composition. Additionally, cryoprotectants such as alcohols have been used to reduce protein denaturation under the freezing conditions of lyophilization.
Thermosensitive pharmaceutical compositions, which form in-situ gels, are known. See eg U.S. Pat. No. 5,278,201. Poloxamers are nontoxic block copolymers of poly(ethylene oxide), poly(propylene oxide) and poly(ethylene oxide) (PEO-PPO-PEO). Certain poloxamers exhibit reversible thermal gelation. Thus a solution of a protein and a poloxamer prepared at low temperatures and injected will form a gel as it warms to body temperature. Subsequently the protein is slowly released from the gel. A gelable, thermo-reversible formulation comprising poloxamer 407 at a 22 wt % concentration has been prepared with the model protein drugs α-chymotrypsin and lactate dehydrogenase. Stratton L., et al., Drug delivery matrix containing native protein precipitates suspended in a poloxamer gel, J Pharm Sci 86(9); 1006-1010, September 1996. Formulations of certain adhesive proteins and poloxamer 127 have been made. Huang K., et al., Synthesis and characterization of self-assembling block copolymers containing adhesive moieties, Polymer Preprints 2001, 42(2), 147-148. Additionally, poloxamer 188 and poloxamer 407 have been used an excipients in protein drug pharmaceutical compositions. Jeong B., et al., Thermosensitive sol-gel reversible hydrogels, Adv Drug Del Rev, 54(1); 37-51, Jan. 17, 2002. Published patent application WO 2007/041664 discloses use a pharmaceutical composition comprising a botulinum toxin and a poloxamer 188.
Botulinum toxins have been used for various therapeutic and cosmetic purposes including treating cervical dystonia, blepharospasm, strabismus, spasticity, headache, hyperhidrosis, overactive bladder, rhinitis, bruxism, enlarged prostate, achalasia, anismus, sphincter of Oddi malfunction, acne, tremors, juvenile cerebral palsy, and facial wrinkles.
Commercially available botulinum toxin containing pharmaceutical compositions include BOTOX® (Botulinum toxin type A neurotoxin complex with human serum albumin and sodium chloride) available from Allergan, Inc., of Irvine, Calif. in 100 unit vials as a lyophilized powder to be reconstituted with 0.9% sodium chloride before use), DYSPORT® (Clostridium botulinum type A toxin haemagglutinin complex with human serum albumin and lactose in the formulation), available from Ipsen Limited, Berkshire, U.K. as a powder to be reconstituted with 0.9% sodium chloride before use), and MYOBLOC™ (an injectable solution comprising botulinum toxin type B, human serum albumin, sodium succinate, and sodium chloride at about pH 5.6, available from Solstice Neurosciences, Inc., South San Francisco, Calif.).
Botulinum toxin is a large protein for incorporation into a pharmaceutical formulation (the molecular weight of the botulinum toxin type A complex is 900 kD) and is inherently fragile and labile. The size of the toxin complex makes it much more friable and labile than smaller, less complex proteins, thereby compounding the formulation and handling difficulties if botulinum toxin stability is to be maintained. Hence, a botulinum toxin stabilizer must be able to interact with the toxin in a manner which does not denature, fragment or otherwise detoxify the toxin molecule or cause disassociation of the non-toxin proteins present in the toxin complex.
As the most lethal known biological product, exceptional safety, precision, and accuracy are called for at all steps of the formulation of a botulinum toxin containing pharmaceutical composition. Thus, a botulinum toxin stabilizer should not itself be toxic or difficult to handle so as to not exacerbate the already extremely stringent botulinum toxin containing pharmaceutical composition formulation requirements.
Since botulinum toxin was the first microbial toxin to be approved (by the U.S. Food and Drug Administration in 1989) for injection for the treatment of human disease, specific protocols had to be developed and approved for the culturing, bulk production, formulation into a pharmaceutical and use of botulinum toxin. Important considerations are toxin purity and dose for injection. The production by culturing and the purification must be carried out so that the toxin is not exposed to any substance that might contaminate the final product in even trace amounts and cause undue reactions in the patient. These restrictions require culturing in simplified medium without the use of animal meat products and purification by procedures not involving synthetic solvents or resins. Preparation of toxin using enzymes, various exchangers, such as those present in chromatography columns and synthetic solvents, can introduce contaminants and are therefore excluded from preferred formulation steps. Furthermore, botulinum toxin type A is readily denatured at temperatures above 40 degrees Centigrade, loses toxicity when bubbles form at the air/liquid interface and denatures in the presence of nitrogen or carbon dioxide.
Particular difficulties exist to stabilize botulinum toxin type A, because type A consists of a toxin molecule of about 150 kD in noncovalent association with nontoxin proteins weighing about 750 kD. The nontoxin proteins are believed to preserve or help stabilize the secondary and tertiary structures upon which toxicity is dependant. Procedures or protocols applicable to the stabilization of nonproteins or to relatively smaller proteins are not applicable to the problems inherent with stabilization of the botulinum toxin complexes, such as the 900 kD botulinum toxin type A complex. Thus while from pH 3.5 to 6.8 the type A toxin and non toxin proteins are bound together noncovalently, under slightly alkaline conditions (pH >7.1) the very labile about 150 kD neurotoxic component of a botulinum toxin is released from the botulinum toxin complex. XEOMIN™ is the trade name for a neurotoxic component botulinum toxin type A pharmaceutical composition available from Merz Pharmaceuticals (Frankfurt, Germany).
In some instances botulinum toxins, when used as therapeutic drugs, are known to migrate from the site of injection at various rates and distances, sometimes resulting in loss of effect at the desired muscle.
Solid botulinum toxin implants are known. See e.g., U.S. Pat. Nos. 6,306,423; 6,312,708, for a discussion of exemplary solid implants and applications. Additionally formulation of a botulinum toxin in a viscous carrier such as a hyaluronic acid is known; U.S. applications Ser. Nos. 11/954,629, and 11/954,602, filed Dec. 12, 2007.
What is needed is a biocompatible, gelable (thermoplastic) pharmaceutical composition comprising a stabilized botulinum toxin so that the composition can be administered as a liquid yet forms a sustained release gel upon administration; thereby localizing the effect and controlling release of the toxin to enhance the effect per dose.
SUMMARY
The present invention fulfills this need and provides a gelable, thermoreversible, thermoplastic botulinum toxin pharmaceutical composition that can be administered as a liquid and form a gel from which the botulinum toxin exhibits a sustained release upon administration of the pharmaceutical composition. Additionally, the present invention provides the additional advantage in that the compound which provides the thermo-reversible characteristic to the composition can also stabilize the botulinum toxin present in the pharmaceutical composition.
In one embodiment the present invention provides a thermoplastic thermoreversible, botulinum toxin pharmaceutical composition formulated with a poloxamer. Importantly, besides providing the thermoreversible, thermoplastic characteristics of the pharmaceutical composition the poloxamer can also act to stabilize the botulinum toxin.
DEFINITIONS
As used herein the words or terms set forth below have the following meaning.
“About” means that the item, parameter or term so qualified encompasses a range of plus or minus ten percent above and below the value of the stated item, parameter or term.
“Administration”, or “to administer” means the step of giving (i.e. administering) a pharmaceutical composition to a subject. The pharmaceutical compositions disclosed herein are “locally administered” by e.g. intramuscular (i.m.), intradermal, subcutaneous administration, intrathecal administration, intraperitoneal (i.p.) administration, topical (transdermal) and implantation (i.e. of a slow-release device) routes of administration.
“Botulinum toxin” means: (1) a neurotoxin produced by Clostridium botulinum, as well as a botulinum toxin (or the light chain or the heavy chain thereof) made recombinantly by a non-Clostridial species; (2) the botulinum toxin serotypes A, B, C, D, E, F and G; (3) a botulinum toxin complex (i.e. the 300, 600 and 900 kDa complexes) as well as the neurotoxic component of a purified botulinum toxin (i.e. about 150 kDa), or; (4) a modified botulinum toxin, a pegylated (with a PEG), chimeric, recombinant, hybrid, wild-type botulinum toxins, botulinum toxin constructs, endopeptidases, chemically-modified botulinum toxins (pegylated botulinum toxin), and retargeted botulinum toxin, which retains the intracellular ability to inhibit acetylcholine release from a cell.
“Entirely free” (i.e. “consisting of” terminology) means that within the detection range of the instrument or process being used, the substance cannot be detected or its presence cannot be confirmed.
“Essentially free” (or “consisting essentially of”) means that only trace amounts of the substance can be detected.
“Modified botulinum toxin” means a botulinum toxin that has had at least one of its amino acids deleted, modified, or replaced, as compared to a native botulinum toxin. Additionally, the modified botulinum toxin can be a recombinantly produced neurotoxin, or a derivative or fragment of a recombinantly made neurotoxin. A modified botulinum toxin retains at least one biological activity of the native botulinum toxin, such as, the ability to bind to a botulinum toxin receptor, or the ability to inhibit neurotransmitter release from a neuron. One example of a modified botulinum toxin is a botulinum toxin that has a light chain from one botulinum toxin serotype (such as serotype A), and a heavy chain from a different botulinum toxin serotype (such as serotype B). Another example of a modified botulinum toxin is a botulinum toxin coupled to a neurotransmitter, such as substance P.
“Pharmaceutical composition” means a formulation in which an active ingredient can be a Clostridial neurotoxin, such as a botulinum toxin. The word “formulation” means that there is at least one additional ingredient in the pharmaceutical composition besides a Clostridial neurotoxin active ingredient. A pharmaceutical composition is therefore a formulation which is suitable for diagnostic, therapeutic or cosmetic use (i.e. by intramuscular or subcutaneous injection or by insertion of a depot or implant or topical application) to a subject, such as a human patient. The pharmaceutical composition can be in a lyophilized or vacuum dried condition; a solution formed after reconstitution of the lyophilized or vacuum dried pharmaceutical composition with saline or water, or; as a solution which does not require reconstitution. As stated, a pharmaceutical composition can be liquid or solid, for example vacuum-dried. The constituent ingredients of a pharmaceutical composition can be included in a single composition (that is all the constituent ingredients, except for any required reconstitution fluid, are present at the time of initial compounding of the pharmaceutical composition) or as a two-component system, for example a vacuum-dried composition reconstituted with a diluent such as saline which diluent contains an ingredient not present in the initial compounding of the pharmaceutical composition. A two-component system provides the benefit of allowing incorporation of ingredients which are not sufficiently compatible for long-term shelf storage with the first component of the two component system. For example, the reconstitution vehicle or diluent may include a preservative which provides sufficient protection against microbial growth for the use period, for example one-week of refrigerated storage, but is not present during the two-year freezer storage period during which time it might degrade the toxin. Other ingredients, which may not be compatible with a Clostridial toxin or other ingredients for long periods of time, may be incorporated in this manner; that is, added in a second vehicle (i.e. in the reconstitution fluid) at the approximate time of use.
“Sustained release” means that the therapeutic agent (i.e. a botulinum toxin) contained by a pharmaceutical composition (such as a pharmaceutical composition comprising a poloxamer) is released from the pharmaceutical composition over a period of time between about 5 days and about 1 year.
“Stabilizer” (or “primary stabilizer”) is a compound that assists to preserve or maintain the biological structure (i.e. the three dimensional conformation) and/or biological activity of a protein (such as a botulinum toxin). More than one stabilizer can be included in a pharmaceutical composition. Examples of stabilizers are surfactants, polymers, polyols, a poloxamer, albumin, gelatin, trehalose, proteins, sugars, polyvinylpyrrolidone, N-acetyl-tryptophan (“NAT”)), caprylate (i.e. sodium caprylate), a polysorbate (i.e. P80), amino acids, and divalent metal cations such as zinc. A pharmaceutical composition can also include a preservative such as a benzyl alcohol, cresols, benzoic acid, phenol, parabens and sorbic acid.
“Stabilizing”, “stabilizes”, or “stabilization” mean that an active pharmaceutical ingredient (“API”) retains at least 20% and up to 100% of its biological activity (which can be assessed as potency or as toxicity by an in vivo LD50 or ED50 measure) in the presence of a compound which is stabilizing, stabilizes or which provides stabilization to the API. For example, upon (1) preparation of serial dilutions from a bulk or stock solution, or (2) upon reconstitution with saline or water of a lyophilized, or vacuum dried botulinum toxin containing pharmaceutical composition which has been stored at or below about -2 degrees C. for between six months and four years, or (3) for an aqueous solution botulinum toxin containing pharmaceutical composition which has been stored at between about 2 degrees and about 8 degrees C. for from six months to four years, the botulinum toxin present in the reconstituted or aqueous solution pharmaceutical composition has (in the presence of a compound which is stabilizing, stabilizes or which provides stabilization to the API) greater than about 20% and up to about 100% of the potency or toxicity that the biologically active botulinum toxin had prior to being incorporated into the pharmaceutical composition.
“Substantially free” means present at a level of less than one percent by weight of the pharmaceutical composition.
“Therapeutic agent” means an active pharmaceutical ingredient (API) which can have therapeutic, cosmetic, and/or research use or benefit when administered to a patient. The therapeutic agent can be for example a steroid, antibiotic, or protein.
“Thermoplastic” is synonymous with “thermosensitive” and means a compound or composition which is a liquid or a low viscosity solution (i.e. viscosity less than 500 cps at 25° C. at a shear rate of about 0.1/second) at a low temperature (between about 0° C. to about 10° C.), but which is a higher viscosity ((i.e. viscosity less than 10,000 cps at 25° C. at a shear rate of about 0.1/second) gel at a higher temperature (between about 30° C. to about 40° C. such as at about 37° C.)
In particular embodiments, a thermoplastic, thermoreversible, pharmaceutical composition is disclosed comprising a biologically active botulinum toxin, and a thermoplastic poloxamer, where the poloxamer stabilizes the botulinum toxin so that the botulinum toxin retains biological activity upon release of the botulinum toxin from the pharmaceutical composition in vivo. The botulinum toxin is selected from the group consisting of the botulinum toxins types A, B, C1, D, E, F and G and is preferably a botulinum toxin type A, known for its long lasting effect. An exemplary thermo-reversible poloxamer is a poloxamer 407, an example of which can be obtained from the BASF Corporation, Parsippany, N.J., under the name F-127.
In some embodiments, the poloxamer can be present at a concentration of from about 15 wt % to about 25 wt % of the pharmaceutical composition.
In one specific embodiment, the thermoreversible, thermoplastic, pharmaceutical composition comprises a biologically active botulinum toxin type A and a thermoplastic poloxamer 407 present at a concentration of about 15 wt % to about 25 wt % of the pharmaceutical composition, which stabilizes the botulinum toxin so that the botulinum toxin retains biological activity upon release of the botulinum toxin from the pharmaceutical composition in vivo.
A method for treating a medical or cosmetic condition is also disclosed herein, the method comprising the step of administering to a patient a thermoplastic, thermo-reversible pharmaceutical composition comprising a biologically active botulinum toxin and a thermoplastic, thermoreversible, poloxamer such that the poloxamer stabilizes the botulinum toxin so that the botulinum toxin retains biological activity upon release of the botulinum toxin from the pharmaceutical composition in vivo and the pharmaceutical composition is administered as a liquid and becomes a gel after the administration, to provide therapeutic amounts of the botulinum toxin released from the composition in vivo for at least 1 week after the administration. The thermoreversible, thermoplastic is a poloxamer 407 and is present at a concentration of about 15 wt % to about 25 wt % of the pharmaceutical composition. In some methods, a step of placing a cooling or heating element (such as, for example, a hot or cold pad, bottle, packet of ice or warm water and the like) is placed over an area of administration, before or after the administration step, in order to warm or cool the area to decrease or increase the viscosity of the administered thermoplastic, thermoreversible, pharmaceutical composition in situ and after its administration to the patient.
Exemplary medical conditions that can be so treated include glabellar lines, crows feet, marionette lines, nasolabial lines, horizontal lines of the forehead or any combination thereof. Additional exemplary medical or cosmetic conditions include treating at least one of overactive bladder, hyperhidrosis, benign prostatic hyperplasia and a dystonia, where the botulinum toxin is selected from the group consisting of the botulinum toxins types A, B, C1, D, E, F and G. As above, the preferred botulinum toxin is botulinum toxin type A.
In particular embodiments, the botulinum toxin type A is present in the thermoreversible, thermoplastic, pharmaceutical composition in an amount from about 5 units to about 2750 units. The total amount (units) of a botulinum toxin to be administered to a patient is determined by the attending medical professional.
Also herein disclosed is a process for making a thermoreversible, thermoplastic, gelable, pharmaceutical composition, comprising the steps of dissolving a thermoplastic poloxamer in a solvent at a temperature below about 37 degrees Centigrade, adding and mixing a botulinum toxin to the thermoplastic poloxamer in the solvent to thoroughly disperse the botulinum toxin therein. The poloxamer can be present in particular embodiments at a concentration from about 15 wt % to about 25 wt % of the pharmaceutical composition, thereby making the thermoplastic, gelable, pharmaceutical composition.
In a particular process for making the thermoreversible, thermoplastic, gelable pharmaceutical composition, a botulinum toxin type A or B is utilized. An exemplary amount added can be from about 1 to about 2000 units of the botulinum toxin type A or from about 50 to about 25,000 units of a botulinum toxin type B, to be administered to a patient in need thereof. The process can also include adding an additive, for preservative or stabilizing purposes, for example, to form the final thermoplastic, gelable, pharmaceutical composition. In specific examples, the solvent utilized in the method of making the thermoplastic, gelable, pharmaceutical composition is water or a saline solution and the process of making the thermoplastic, gelable, pharmaceutical composition is carried out within a cold room having an temperature of below about 37 degrees Centigrade, or between about 0 to about 8 degrees Centigrade, for example.
Also disclosed are methods for treating a medical or cosmetic condition, that comprise the steps of administering to a patient a thermoreversible, thermoplastic, pharmaceutical composition that includes a biologically active botulinum toxin and a thermoreversible, thermoplastic poloxamer, wherein the poloxamer stabilizes the botulinum toxin and is a gel at room temperature (e.g the temperature of an enclosed space at which human beings are usually accustomed, e.g. from about 17° C. to about 25° C. Before administration, the pharmaceutical composition is cooled below the room temperature to reduce its viscosity (liquefy) the pharmaceutical composition and is thereafter drawn into a syringe and injected into the patient, where the thermoplastic pharmaceutical composition gels to deliver therapeutic amounts of the botulinum toxin are released from the composition in vivo for at least 1 week after administration. In particular embodiments, the thermoplastic poloxamer is a poloxamer 407 and is present at a concentration of about 15 wt % to about 25 wt % of the pharmaceutical composition.
The thermoplastic, pharmaceutical composition is thermo-reversible, that is, its viscosity can be increased and/or decreased based on temperature, and is reversible. For example, the thermoreversible, thermoplastic poloxamer such as poloxamer 407 at about 20 wt % (and hence the thermoplastic, pharmaceutical composition) can have a first viscosity at a first temperature (e.g. from about 0 centipoise (cP) at about 0 to about 16 degrees Centigrade), have its temperature raised to increase its viscosity to a second viscosity that is higher relative to the first viscosity (e.g. from about 50 cP to about 6000 cP at about 18 to about 22 degrees Centigrade), and then is reversible, e.g. lowering its temperature, decreasing its viscosity relative to the second viscosity, for example. A change in weight % of poloxamer 407 in a composition will alter its viscosity/temperature profile.
Each and every feature described herein, and each and every combination of two or more of such features, is included within the scope of the present invention, provided that the features included in such a combination are not mutually inconsistent.
Description
I have discovered new thermo-reversible depot pharmaceutical compositions (formulations) for a botulinum toxin. My invention is based on the discovery that certain thermo-reversible poloxamers show remarkable compatibility with botulinum toxins. These depot systems can be thermally manipulated (pre & post injection) to control migration and distribution of the botulinum toxin. No combinations of botulinum toxins and poloxamer 407 are known.
A formulation within the scope of my invention is administered as a liquid and the polymer gels (cures) in situ at the site of local administration.
An embodiment of my invention can comprise a triblock PEO-PPO-PEO copolymer compounds, also known as pluronics or poloxamers, which at certain concentrations can form thermo-reversible gels which can be administered (as by injection) as a low viscosity liquid that rapidly increases in viscosity after injection. The resulting high viscosity matrix is adhesive, biodegradable and biocompatible and upon administration forms a depot from which the botulinum toxin can be released, thereby providing a sustained or extended release drug delivery system. In this manner a lower dose of the botulinum toxin can be used. Such a pharmaceutical composition can be administered pre-mixed or as a simple reconstitution vehicle or its several compartments combined at the time of administration, as by use of a dual chamber syringe.
I have found that botulinum neurotoxins are very stable in poloxamers, such as poloxamer 407, for example. This is surprising because of the complex structural nature of these toxins. For example, three separate protein domains (binding, translocation, enzymatic) must be conserved in order to maintain biological activity of the naked 150 kD toxin. Surfactants are chaotropic and therefore generally disrupt protein conformations. It is therefore surprising to find compatibility between these molecules and surfactants. The 900 kD toxins are protein complexes with neurotoxin associated proteins (NAPs), which stabilize the 150 kD portion. Surfactants would be expected to disrupt the protein complex, thereby destabilizing the complex and/or denaturing the 150 kD toxin portion.
The thermo-reversible poloxamer used in the present invention can apparently impart stability to a neurotoxin active ingredient, such as a botulinum toxin, present in the pharmaceutical composition by: (1) reducing adhesion (commonly referred to as “stickiness”) of the botulinum toxin to surfaces, including the surfaces of laboratory glassware, vessels, the vial in which the pharmaceutical composition is reconstituted and the inside surface of the syringe used to inject the pharmaceutical composition. Adhesion of the botulinum toxin to surfaces can lead to loss of botulinum toxin and to denaturation of retained botulinum toxin, both of which reduce the toxicity of the botulinum toxin present in the pharmaceutical composition; (2) reducing the denaturation of the botulinum toxin and/or dissociation of the botulinum toxin from other non-toxin proteins present in the botulinum toxin complex, which denaturation and/or dissociation activities can occur because of the low dilution of the botulinum toxin present in the pharmaceutical composition (i.e. prior to lyophilization or vacuum drying) and in the reconstituted pharmaceutical composition; (3) reducing loss of botulinum toxin (i.e. due to denaturation or dissociation from non-toxin proteins in the complex) during the considerable pH and concentration changes which take place during preparation, processing and reconstitution of the pharmaceutical composition; (4) immobilizing the toxin in a high-viscosity vehicle; and (5) protecting the toxin from deleterious effects of elevated physiologic temperature (about 37° C.) and pH by providing a beneficial micro-environment.
The five types of botulinum toxin stabilizations provided by the poloxamers disclosed herein conserve and preserve the botulinum toxin and with it native toxicity of the toxin present in the pharmaceutical composition.
My invention also encompasses addition of a preservative, either in the diluent or formulation itself, to allow extended storage. A preferred preservative is preserved saline containing benzyl alcohol.
The thermo-reversible pharmaceutical compositions of the invention can be administered using conventional modes of administration. In particular embodiments of the invention, the compositions are administered intradermally, intramuscularly or subcutaneously to the patient. In addition, the compositions of the invention may be administered with one or more analgesic or anesthetic agents.
The most effective mode of administration and dosage regimen for the compositions of this invention depends upon the type, severity, and course of the condition being treated, the patient's health and response to treatment, and the judgment of the treating physician. Accordingly, the methods and dosages of the compositions can be tailored to the individual patient.
Compositions containing other serotypes of botulinum toxin may contain different doses (unit amounts) of the botulinum toxin. For example, botulinum toxin type B can be provided in a composition at a greater dose (about 50×) than a composition containing botulinum toxin type A. In one embodiment of the invention, botulinum toxin type B may be administered in an amount between about 1 U/kg and 150 U/kg. Botulinum toxin type B may also be administered in amounts of up to 20,000 U (mouse units, as described above). In another embodiment of the invention, botulinum toxin types E or F may be administered at concentrations between about 0.1 U/kg and 150 U/kg. In addition, in compositions containing more than one type of botulinum toxin, each type of botulinum toxin can be provided in a relatively smaller dose than the dose typically used for a single botulinum toxin serotype.
EXAMPLES
The following examples set forth specific embodiments of the present invention and are not intended to limit the scope of the invention.
In the Examples below the well-known mouse lethal dose50 assay (the “MLD50 assay”) was used to determine the potency of the botulinum toxin released from the poloxamer formulations made. Depending on the circumstances, “potency” can mean the recovered potency of the botulinum toxin or the potency of the botulinum toxin prior to lyophilization. Recovered potency is synonymous with reconstitution potency, recovery potency and with potency upon reconstitution. The MLD50 assay provides a determination of the potency of a botulinum toxin in terms of its mouse 50% lethal dose or “LD50”. Thus, one unit (U) of a botulinum toxin is defined as the amount of botulinum toxin which upon intraperitoneal injection kills 50% (i.e. a LD50) of a group of female Swiss Weber mice weighing 17-22 grams each at the start of the assay. The MLD50 assay is a validated method for measuring the potency of a reconstituted botulinum toxin or of a reconstituted botulinum toxin formulation. Each mouse is held in a supine position with its head tilted down and is injected intraperitoneally into the lower right abdomen at an angle of about 30 degrees using a 25 to 27 gauge ⅜″ to ⅝″ needle with one of several serial dilutions of the botulinum toxin in normal saline. The death rates over the ensuing 72 hours for each dilution are recorded. A minimum of six dilutions at 1.33 dose intervals are prepared and typically ten animals are used in each dosage group (60 mice employed therefore). Two reference standard assays are carried out concurrently (additional 60 mice employed). The dilutions are prepared so that the most concentrated dilution produces a death rate of at least 80% of the mice injected, and the least concentration dilution produces a death rate no greater than 20% of the mice injected. There must be a minimum of four dilutions that fall within the monotone decreasing range of the death rates. The monotone decreasing range commences with a death rate of no less than 80%. Within the four or more monotone decreasing rates, the two largest and the two smallest rates must be decreasing (i.e. not equivalent). The dilution at which 50% of the mice die within the three day post injection observation period is defined as a dilution which comprises one unit (1 U) of the botulinum toxin. A refined MLD50 assay has been developed which uses fewer (five instead of six) dilutions at 1.15 dose intervals and fewer mice (six instead of ten) per dilution tested.
Example 1 Botulinum Toxin-Poloxamer 407 Formulations
Experiments were carried out in which a number of botulinum toxin-poloxamer formulations were made and assessed. The botulinum toxin used in each of the formulations made was lyophilized BOTOX®. The amount of the botulinum toxin used in each of the formulations made in 100 units of botulinum toxin type A (BOTOX®).
The poloxamer used in this example was poloxamer 407 obtained from BASF (Lutrol F-127). In each formulation, the poloxamer 407 was used in an amount that constituted 20 weight percent (wt %) of the final formulation. Poloxamer 407 is supplied as dry powder and is a hydrophilic non-ionic surfactant and a triblock copolymer consisting of two hydrophilic blocks (polyethylene glycol) separated by a hydrophobic block (poly-propylene glycol). The lengths of the two PEG blocks is about 101 repeating units, while the length of the propylene glycol block is about 56 repeating units. Solutions of Poloxamer 407, at appropriate concentrations, are liquid under refrigeration, but gel at room temperature and above (e.g., is a gel at about 37° C.). Poloxamer 407 can therefore be reconstituted or stored as a low-viscosity liquid for easy passage through a needle but then gels into a depot after injection into a mammal as it is subjected to increasing temperature. Poloxamer 407 was chosen for the formulations made in this example because of these desirable physical properties combined with unusual toxin compatibility.
Each formulation was made by a process which combines the solids (recall that the Poloxamer 407 is supplied as dry powder) in large centrifuge tubes with water or saline (inside a cold room at about 2 to about 8 degrees Centigrade) and is mixed with a magnetic stir bar, until fully dissolved.
The solutions are stored at from about 4 to about 15 degrees Centigrade until injected/used. The solutions were then used to reconstitute a botulinum toxin type A (BOTOX®) in vials containing 100 units (U), by introducing the cold solution into the vials with a syringe.
Samples were then heated to 37° C. until gelled to simulate injection into a warm body.
Significantly I determined that the thermo-reversible formulations can be made with from 15-25 wt % poloxamer 407 (available from BASF as Lutrol F-127) without significant attenuation of the desired formulation characteristics of (1) thermoplasticity, and (2) sustained release of biologically active botulinum toxin from the formulations made.
As set forth below, 26 different thermo-reversible poloxamer formulations were made. Each of the 26 formulation made included 20 wt % poloxamer 407 and 100 units of botulinum toxin type A (BOTOX®):
  • 1. 20% Poloxamer 407 in SWFI (sterile water for injection)
  • 2. 20% Poloxamer 407 in 0.9% sodium chloride
  • 3. 20% Poloxamer 407 in preserved (benzyl alcohol) 0.9% sodium chloride
  • 4. 20% Poloxamer 407 with 5% Poloxamer 188
  • 5. 20% Poloxamer 407 with 3% Tween
  • 6. 20% Poloxamer 407 with 5% sucrose
  • 7. 20% Poloxamer 407 with 5% dextran
  • 8. 20% Poloxamer 407 in 10 mM histidine pH 7
  • 9. 20% Poloxamer 407 in 20 mM citrate buffer pH 6
  • 10. 20% Poloxamer 407 in phosphate buffered saline pH 7
  • 11. 20% Poloxamer 407 with 20% propylene glycol
  • 12. 20% Poloxamer 407 with 10% polyethylene glycol
  • 13. 20% Poloxamer 407 with 20 mM Tris buffer pH 7
  • 14. 20% Poloxamer 407 with 3% isopropyl myristate
  • 15. 20% Poloxamer 407 with 5% povidone
  • 16. 20% Poloxamer 407 with 3% lactose
  • 17. 20% Poloxamer 407 with 3% trehalose
  • 18. 20% Poloxamer 407 with 0.5% human serum albumin
  • 19. 20% Poloxamer 407 with 0.5% human serum albumin 900 ug NaCl
  • 20. 20% Poloxamer 407 with 0.5% recombinant human serum albumin
  • 21. 20% Poloxamer 407 with 0.5% gelatin
  • 22. 20% Poloxamer 407 with 0.5% recombinant gelatin
  • 23. 20% Poloxamer 407 with 0.5% hyaluronic acid
  • 24. 20% Poloxamer 407 with 0.5% collagen
  • 25. 20% Poloxamer 407 with 2% hydroxypropyl methylcellulose
  • 26. 20% Poloxamer 407 with 2% lecithin
To determine that active botulinum toxin was released from each of the 26 thermo-reversible poloxamer formulations, light chain activity was measured using a fluorescent SNAP-25 substrate coupled with HPLC. Samples incubated with the substrate produce a cleavage product that is separated by RP-HPLC and detected via fluorescence. The amount of cleavage product is proportional to enzymatic activity.
Poloxamer 407 can be further manipulated pre and/or post-injection by applying heat or cold-packs to desired areas (injected and/or non-injected) achieve the desired effect. Additional ingredients can be added to the formulation to modify the attributes (causing increases/decreases in gelling temperatures, for example). Ingredients to alter osmolarity and pH (buffers) can be added. Administration can be topical rather than injectable; for example, in a transdermal delivery scheme, the formulation can contain permeation enhancers, and may be combined with a device such as a patch having additional permeation attributes, such as abrasives or microneedles, for example. Preservatives can also be included in the formulation. Colorants, such as pharmaceutically acceptable dyes, can be included to better visualize the material before and after application.
Example 2 Use of a Poloxamer-Botulinum Toxin Pharmaceutical Composition
A 48 year old male is diagnosed with a spastic muscle condition, such as cervical dystonia. Between about 50 to about 500 units of botulinum toxin type A (such as BOTOX®) combined with formulation 2 (20% Poloxamer 407 in 0.9% sodium chloride) in Example 1, and is administered by intramuscular injection. The formulation releases therapeutic amounts of the botulinum toxin over a 1 month period. Within 1-7 days the symptoms of the spastic muscle condition are alleviated and alleviation of the symptoms persists for at least about 6 months.
Example 3 Use of a Poloxamer-Botulinum Toxin Pharmaceutical Composition
A 22 year old female sees her physician to report and treat her uncontrollable and excessive armpit, sweating or as its known in the medical arts, axillary sweating. After gravimetric measurement of her sweat production, she is diagnosed as suffering from hyperhidrosis.
About 100 units of botulinum toxin type A (such as BOTOX®) is combined with formulation 12 (20% Poloxamer 407 with 10% polyethylene glycol) in Example 1, and is administered by intradermal injection into the axillary hyperhidrotic area (as determined by Minor's starch-iodine test). After injection, an ice pack is placed over the injected area, cooling the area and making the injected thermo-reversible poloxamer-botulinum toxin pharmaceutical composition less viscous, allowing the attending physician to massage the injected area, allowing a more even spread of the injected composition. Within 7 days, the excessive axial sweating is reduced and alleviation is observed for about 8 months.
Example 4 Use of a Poloxamer-Botulinum Toxin Pharmaceutical Composition
A 38 year old woman reports to her dermatologist that she can no longer withstand the sight of her glabellar lines (dynamic wrinkles between the brows caused by the contraction of corrugator and/or procerus muscles) and that they have become a source of great consternation. The dermatologist determines to treat her with a poloxamer-botulinum toxin pharmaceutical composition.
About 500 units of a botulinum toxin type B is combined with formulation 25 (20% Poloxamer 407 with 2% hydroxypropyl methylcellulose) in Example 1, and is administered by intramuscular injection directly into the corrugator and procerus muscles. Areas outside the desired treatment area are pre-heated (utilizing a heating pad to gradually warm the areas not injected, for example, from about 37 to about 43 degrees Centigrade, to elevate the temperature relative to the areas of injection) to prevent drug migration into those regions. Within about 7 days, the patient reports that the glabellar lines have been reduced and the skin between her brows is smoother. The alleviation of the wrinkles lasts for about 4 months.
Similarly, a botulinum toxin type A (BOTOX®) at about 2 units per 0.1 mL of added formulation can be injected at each of about 5 injection sites in corrugator and procerus muscles for a total dose of about 10 units per 0.5 mL of thermo-reversible poloxamer-botulinum toxin pharmaceutical composition. As an additional step, after or before injection into the muscles, a hot pad can be placed over the injection site to warm the area. Thus, if a hot pad is so placed, the injected poloxamer-botulinum toxin pharmaceutical composition can gel faster than if injected at just body temperature. The pad can be between about 37 degrees and about 43 degrees Centigrade, for example. The pad can be placed onto the area injected or to be injected and warmed up to between about 37 degrees and about 43 degrees Centigrade, for example.
Example 5 Use of a Poloxamer-Botulinum Toxin Pharmaceutical Composition
A 78 year old man is brought to his urologist, complaining of an inability to withhold his urine for any significant amount of time. The urologist determines that the patient is incontinent and has an overactive bladder (OAB) and that his detrusor muscle should be injected with a poloxamer-botulinum toxin pharmaceutical composition.
About 250 units of a botulinum toxin type A (BOTOX®) is combined with formulation 2 (20% Poloxamer 407 in 0.9% sodium chloride) of Example 1 (about 250 units of toxin in about 10 mL of formulation 2). Utilizing a flexible cystoscope and standard bladder wall injection equipment (local anesthetic, lubricants, etc. . .), the urologist proceeds to inject the patient's bladder wall at 10 sites (25 units/site) along the lateral walls, sparing the trigone and dome. Within about 7 days, the patient reports that he is able to hold his urine for many hours at a time, and that his voiding volume per visit to the urinal has more than doubled. The patient reports relief from his incontinence for approximately 7 months.
A bladder wall can also be injected with any one of the formulations (1-26) in Example 1 containing other botulinum toxin types, such as from about 50 to about 15,000 units of a botulinum toxin type B, utilizing from about 5 mL to about 30 mL of the formulations in Example 1. The thermo-reversible poloxamer-botulinum toxin pharmaceutical composition is injected into the bladder wall in about 5 to about 50 injection sites, as determined by an attending physician, and can include or exclude the trigone, if desired.
Example 6 Use of a Poloxamer-Botulinum Toxin Pharmaceutical Composition
A 67 year old man suffers from chronic urinary retention due to enlargement of his prostate. Upon presentation to his physician it is determined that the patient undergo administration of poloxamer-botulinum toxin pharmaceutical composition to the prostate in order to alleviate his urinary retention and treat the benign prostatic hyperplasia. About 200 units of botulinum toxin type A (BOTOX®) is combined with 4 mL of formulation 2 (20% Poloxamer 407 in 0.9% sodium chloride) in Example 1 for transperineal injection into the bilateral lobes of the prostate (100 units per lobe).
After about 7 days, the patient reports an improvement in voiding of urine. His physician notes that after this treatment the patient has a decrease in post voiding residual volume and bladder pressure. These beneficial effects last for about 6 months and the physician notes that the patient's prostate has decreased in size and reports no adverse effects. A botulinum toxin type B (such as MYOBLOC) can also be utilized, for example, from about 250 units to about 1000 units per injection site.
A pharmaceutical composition according to the invention disclosed herein has many advantages, including the following:
1. the pharmaceutical composition can be prepared free of any blood product, such as albumin and therefore free of any blood product infectious element such as a prion.
2. the pharmaceutical composition has stability and high % recovery of toxin potency comparable to or superior to that achieved with currently available pharmaceutical compositions.
3. reduced toxicity, as assessed by either intramuscular or intravenous administration.
4. reduced antigenicity.
Various publications, patents and/or references have been cited herein, the contents of which are herein incorporated by reference in their entireties.
Although the present invention has been described in detail with regard to certain preferred methods, other embodiments, versions, and modifications within the scope of the present invention are possible. For example, a wide variety of stabilizing polysaccharides and amino acids are within the scope of the present invention.
Accordingly, the spirit and scope of the following claims should not be limited to the descriptions of the preferred embodiments set forth above.

Claims (2)

I claim:
1. A thermoreversible, thermoplastic, gelable, pharmaceutical composition comprising a thermo-reversible thermoplastic poloxamer, a botulinum toxin and an additional ingredient made by a process consisting of the steps of: a) dissolving the thermo-reversible thermoplastic poloxamer in a solvent at a temperature below about 37 degrees Centigrade until dissolved; and b) adding and mixing the botulinum toxin and the additional ingredient, wherein the additional ingredient is selected from the group consisting of polysorbate, a second poloxamer, dextran, histidine, citrate buffer, isopropyl myristate, povidone, lactose, trehalose, hyaluronic acid, hydroxypropyl methylcellulose, and lecithin, to the thermo-reversible thermoplastic poloxamer in the solvent to thoroughly disperse the botulinum toxin and the additional ingredient therein; and wherein the thermoreversible, thermoplastic, gelable, pharmaceutical composition is transitionable from a low viscosity liquid solution for easy passage through a needle prior to administration by injection to a patient to a gel after administration.
2. The pharmaceutical composition of claim 1, wherein the solvent is water or a saline solution.
US15/058,824 2008-02-22 2016-03-02 Sustained release poloxamer containing pharmaceutical compositions Active US9981022B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/058,824 US9981022B2 (en) 2008-02-22 2016-03-02 Sustained release poloxamer containing pharmaceutical compositions
US15/989,742 US20180271959A1 (en) 2008-02-22 2018-05-25 Sustained release poloxamer containing pharmaceutical compositions

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/036,139 US9107815B2 (en) 2008-02-22 2008-02-22 Sustained release poloxamer containing pharmaceutical compositions
US14/827,665 US9278140B2 (en) 2008-02-22 2015-08-17 Sustained release poloxamer containing pharmaceutical compositions
US15/058,824 US9981022B2 (en) 2008-02-22 2016-03-02 Sustained release poloxamer containing pharmaceutical compositions

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/827,665 Continuation US9278140B2 (en) 2008-02-22 2015-08-17 Sustained release poloxamer containing pharmaceutical compositions

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/989,742 Division US20180271959A1 (en) 2008-02-22 2018-05-25 Sustained release poloxamer containing pharmaceutical compositions

Publications (2)

Publication Number Publication Date
US20160175410A1 US20160175410A1 (en) 2016-06-23
US9981022B2 true US9981022B2 (en) 2018-05-29

Family

ID=40640698

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/036,139 Active 2028-04-23 US9107815B2 (en) 2008-02-22 2008-02-22 Sustained release poloxamer containing pharmaceutical compositions
US14/827,665 Active US9278140B2 (en) 2008-02-22 2015-08-17 Sustained release poloxamer containing pharmaceutical compositions
US15/058,824 Active US9981022B2 (en) 2008-02-22 2016-03-02 Sustained release poloxamer containing pharmaceutical compositions
US15/989,742 Abandoned US20180271959A1 (en) 2008-02-22 2018-05-25 Sustained release poloxamer containing pharmaceutical compositions

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US12/036,139 Active 2028-04-23 US9107815B2 (en) 2008-02-22 2008-02-22 Sustained release poloxamer containing pharmaceutical compositions
US14/827,665 Active US9278140B2 (en) 2008-02-22 2015-08-17 Sustained release poloxamer containing pharmaceutical compositions

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/989,742 Abandoned US20180271959A1 (en) 2008-02-22 2018-05-25 Sustained release poloxamer containing pharmaceutical compositions

Country Status (12)

Country Link
US (4) US9107815B2 (en)
EP (2) EP2257304B1 (en)
KR (1) KR101675168B1 (en)
CN (1) CN102014951A (en)
AU (1) AU2009215664B2 (en)
CA (1) CA2715626C (en)
DK (1) DK2257304T3 (en)
ES (1) ES2759372T3 (en)
HU (1) HUE047394T2 (en)
PL (1) PL2257304T3 (en)
RU (1) RU2482874C2 (en)
WO (1) WO2009105369A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180015225A1 (en) * 2015-02-03 2018-01-18 Merz Pharma Gmbh & Co. Kg Botulinum toxin prefilled container
US20190290740A1 (en) * 2009-06-25 2019-09-26 Revance Therapeutics, Inc. Albumin-Free Botulinum Toxin Formulations
US10973890B2 (en) 2016-09-13 2021-04-13 Allergan, Inc. Non-protein clostridial toxin compositions
US11033625B2 (en) * 2005-10-06 2021-06-15 Allergan, Inc. Method for stabilizing a toxin
US11596673B2 (en) * 2013-12-12 2023-03-07 Medy-Tox Inc. Long lasting effect of new botulinum toxin formulations

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7780967B2 (en) * 2000-02-08 2010-08-24 Allergan, Inc. Reduced toxicity Clostridial toxin pharmaceutical compositions
US8323666B2 (en) * 2005-08-01 2012-12-04 Allergan, Inc. Botulinum toxin compositions
US9107815B2 (en) * 2008-02-22 2015-08-18 Allergan, Inc. Sustained release poloxamer containing pharmaceutical compositions
PL2379104T3 (en) 2008-12-31 2018-07-31 Revance Therapeutics, Inc. Injectable botulinum toxin formulations
US20110106021A1 (en) * 2009-10-30 2011-05-05 Revance Therapeutics, Inc. Device and Method for Topical Application of Therapeutics or Cosmetic Compositions
EP2512507A4 (en) * 2009-12-15 2013-04-17 Ira Sanders Treatment of nasal and sinus disorders
US8454975B1 (en) * 2010-01-11 2013-06-04 Elizabeth VanderVeer Method for enhancing skin appearance
US10471150B2 (en) * 2010-01-20 2019-11-12 Urogen Pharma Ltd. Material and method for treating internal cavities
ES2732150T3 (en) 2010-01-20 2019-11-20 Urogen Pharma Ltd Material and method to treat internal cavities
ES2634669T3 (en) 2011-02-08 2017-09-28 Halozyme, Inc. Composition and lipid formulation of a hyaluronan degradation enzyme and use thereof for the treatment of benign prostatic hyperplasia
AU2012235634B2 (en) * 2011-03-28 2017-05-25 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Sustained-release injectable formulation
AU2015271940B2 (en) * 2011-07-05 2018-02-08 The Research Foundation For The State University Of New York Compositions and methods for spinal disc repair and other surgical and non-surgical indications
AU2012279001A1 (en) 2011-07-05 2014-01-23 The Research Foundation For The State University Of New York Compositions and methods for spinal disc repair and other surgical and non-surgical indications
RU2635466C2 (en) * 2012-04-08 2017-11-13 Теракоат Лтд Preparations of thermo-abrasive hydrogel for application in treatment of utertal disorders
US20140120077A1 (en) * 2012-10-28 2014-05-01 Revance Therapeutics, Inc. Compositions and Methods for Safe Treatment of Rhinitis
DK3137053T3 (en) * 2014-04-30 2020-09-07 Allergan Inc FORMULATIONS OF BIOLOGICAL MEDICINES FOR INTRAVESICAL INSTALLATION
EP3747448A1 (en) 2014-07-07 2020-12-09 LifeRaft Biosciences, Inc. A poloxamer composition free of long circulating material and methods for production and uses thereof
US11484580B2 (en) 2014-07-18 2022-11-01 Revance Therapeutics, Inc. Topical ocular preparation of botulinum toxin for use in ocular surface disease
RU2641570C2 (en) * 2015-01-21 2018-01-18 ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "НоваМедика" Gel including nifedipine and lidocaine hydrochloride (versions), application of gel including nifedipine and idocaine hydrochloride (versions), method for preparation of gel including nifedipine and idocaine hydrochloride, using nanotechnology
WO2016118040A1 (en) * 2015-01-21 2016-07-28 ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "НоваМедика" A gel containing nifedipine and lidocaine hydrochloride, use of same and a method for preparing same using nanotechnology
ITUB20155342A1 (en) * 2015-11-06 2017-05-06 Emenem Srl COMPOSITION OF REVERSIBLE THERMOSENSITIVE SOLUTIONS-GEL MUCOADESIVE BASED ON COLLAGEN AND HYALURONIC ACID SALTS
RS62832B1 (en) * 2016-05-27 2022-02-28 Ipsen Biopharm Ltd Liquid neurotoxin formulation stabilized with tryptophan or tyrosine
WO2018039318A1 (en) * 2016-08-26 2018-03-01 Akina, Inc. Biodegradable polymer formulations for extended efficacy of botulinum toxin
WO2019046311A1 (en) 2017-08-28 2019-03-07 Revance Therapeutics, Inc. Transmucosal botulinum toxin compositions, kits, and methods for treating bladder disorders
EP3470054B1 (en) * 2017-10-11 2023-09-20 Hugel Inc. Microstructure formulation techniques for botulinum toxin
US10525111B2 (en) 2017-10-12 2020-01-07 Hugel, Inc. Microstructure formulation techniques for botulinum toxin
US10792400B2 (en) 2017-10-12 2020-10-06 Hugel Inc. Microstructure formulation techniques for botulinum toxin
JP2021506899A (en) 2017-12-20 2021-02-22 アラーガン、インコーポレイテッドAllergan,Incorporated Botulinum toxin cell-binding domain polypeptide and usage for the treatment of fibrosis-related disorders
WO2019123332A1 (en) * 2017-12-20 2019-06-27 Alpha Strumenti S.R.L. Pharmaceutical preparation comprising a topically released active ingredient and a heat-sensitive carrier, method of obtaining same, and use of same in the treatment of skin or mucosal infections
US10607931B2 (en) 2018-07-03 2020-03-31 Texas Instruments Incorporated Semiconductor device with electroplated die attach
PE20211334A1 (en) 2018-09-06 2021-07-22 Yissum Research Development Company Of The Hebrew Univ Of Jerusalen Ltd SUSTAINED RELEASE INJECTABLE ANTIBIOTIC FORMULA
MX2021002992A (en) * 2018-09-13 2021-11-12 Allergan Inc Clostridial toxin-hyaluronic acid compositions.
CN114269365A (en) * 2019-06-06 2022-04-01 埃克索运营公司 Thermally gelled cannabinoid compositions and methods of making and using same
WO2021113926A1 (en) * 2019-12-13 2021-06-17 Francesco Barbagallo Botulinum toxin formulations and methods for intranasal delivery thereof for the treatment of allergic rhinitis
KR102626199B1 (en) * 2021-07-01 2024-01-16 순천대학교 산학협력단 Composition of solid dispersion using temperature-sensitive gel and method for producing the same

Citations (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4806337A (en) 1984-07-23 1989-02-21 Zetachron, Inc. Erodible matrix for sustained release bioactive composition
US5252318A (en) 1990-06-15 1993-10-12 Allergan, Inc. Reversible gelation compositions and methods of use
US5278201A (en) 1988-10-03 1994-01-11 Atrix Laboratories, Inc. Biodegradable in-situ forming implants and methods of producing the same
US5512547A (en) 1994-10-13 1996-04-30 Wisconsin Alumni Research Foundation Pharmaceutical composition of botulinum neurotoxin and method of preparation
US5516703A (en) 1993-08-20 1996-05-14 The University Of Utah Coating of hydrophobic surfaces to render them protein resistant while permitting covalent attachment of specific ligands
US5667808A (en) 1992-12-02 1997-09-16 Alkermes, Inc. Composition for sustained release of human growth hormone
US5696077A (en) 1992-06-23 1997-12-09 Associated Synapse Biologics Pharmaceutical composition containing botulinum B complex
US5756468A (en) 1994-10-13 1998-05-26 Wisconsin Alumni Research Foundation Pharmaceutical compositions of botulinum toxin or botulinum neurotoxin and methods of preparation
CN1215084A (en) 1997-10-18 1999-04-28 卫生部兰州生物制品研究所 Productive technology for A type botulism crystalline toxin and frozen-dried protective liquid needed for producing said toxin
US5914334A (en) 1994-06-07 1999-06-22 Allergan, Inc. Stable gel formulation for topical treatment of skin conditions
US5980945A (en) 1996-01-16 1999-11-09 Societe De Conseils De Recherches Et D'applications Scientifique S.A. Sustained release drug formulations
US6007843A (en) 1995-09-29 1999-12-28 Lam Pharmaceuticals Corp. Sustained release delivery system
US6011011A (en) 1992-09-21 2000-01-04 Pharmacia & Upjohn Company Sustained-release protein formulations
US6022554A (en) 1997-12-15 2000-02-08 American Home Products Corporation Polymeric microporous film coated subcutaneous implant
US6087327A (en) 1995-06-06 2000-07-11 Pearce; L. Bruce Compositions and methods for chemodenervation using neurotoxins
US6306423B1 (en) 2000-06-02 2001-10-23 Allergan Sales, Inc. Neurotoxin implant
US6316011B1 (en) 1998-08-04 2001-11-13 Madash, Llc End modified thermal responsive hydrogels
EP1112082B1 (en) 1998-09-11 2002-07-31 Elan Pharmaceuticals, Inc. Stable liquid formulations of botulinum toxin
US6465425B1 (en) 2000-02-10 2002-10-15 Alkermes Controlled Therapeutics, Inc. Microencapsulation and sustained release of biologically active acid-stable or free sulfhydryl-containing proteins
US6565888B1 (en) 2000-08-23 2003-05-20 Alkermes Controlled Therapeutics, Inc. Methods and compositions for the targeted delivery of biologically active agents
US20030118598A1 (en) 2000-02-08 2003-06-26 Allergan, Inc. Clostridial toxin pharmaceutical compositions
US20030133980A1 (en) 2001-11-12 2003-07-17 Alkermes Controlled Therapeutics, Inc. Biocompatible polymer blends and uses thereof
US6649702B1 (en) 1999-05-19 2003-11-18 University Of Utah Research Foundation Stabilization and acoustic activation of polymeric micelles for drug delivery
US20040009180A1 (en) 2002-07-11 2004-01-15 Allergan, Inc. Transdermal botulinum toxin compositions
WO2004060384A2 (en) 2002-12-20 2004-07-22 Botulinum Toxin Research Associates, Inc. Pharmaceutical botulinum toxin compositions
US6773711B2 (en) 2000-02-15 2004-08-10 Allergan, Inc. Botulinum toxin therapy for Hashimoto's thyroiditis
US20040156906A1 (en) 2003-02-08 2004-08-12 Jiandong Ding Thermosensitive and biodegradable microgel and a method for the preparation thereof
WO2004084839A2 (en) 2003-03-24 2004-10-07 Cady Roger K Method and article for treatment of sensory neuron related disorders through transdermal application of botulinum toxin
US20050025778A1 (en) 2003-07-02 2005-02-03 Cormier Michel J.N. Microprojection array immunization patch and method
US20050025830A1 (en) 2003-06-23 2005-02-03 Technische Universiteit Eindhoven Drug delivery device comprising an active compound and method for releasing an active compound from a drug delivery device
EP1253932B1 (en) 2000-02-08 2005-04-27 Allergan, Inc. Botulinum toxin pharmaceutical compositions
US20050123550A1 (en) 2003-05-12 2005-06-09 Laurent Philippe E. Molecules enhancing dermal delivery of influenza vaccines
US20050238668A1 (en) 2003-09-25 2005-10-27 Allergan, Inc. Media for clostridium bacterium and processes for obtaining a clostridial toxin
US20060013883A1 (en) 2000-03-03 2006-01-19 Francois Nicol Poloxamer and poloxamine compositions for nucleic acid delivery
WO2006020208A2 (en) 2004-07-26 2006-02-23 Merz Pharma Gmbh & Co. Kgaa Therapeutic composition whit a botulinum neurotoxin
US20060040894A1 (en) 2004-08-13 2006-02-23 Angiotech International Ag Compositions and methods using hyaluronic acid
US20060078616A1 (en) 2004-08-30 2006-04-13 Georgewill Dawaye A Thermoreversible pharmaceutical formulation for anti-microbial agents comprising poloxamer polymers and hydroxy fatty acid ester of polyethylene glycol
US20060104994A1 (en) 2000-02-08 2006-05-18 Hunt Terrence J Clostridial toxin pharmaceutical composition containing a gelatin fragment
US20060127429A1 (en) 2004-12-13 2006-06-15 Mccartt Mary D Topical numbing composition for laser therapy
WO2006094263A2 (en) 2005-03-03 2006-09-08 Revance Therapeutics, Inc. Compositions and methods for topical application and transdermal delivery of botulinum toxins
WO2006094623A1 (en) * 2005-03-10 2006-09-14 Gkss-Forschungszentrum Geesthacht Gmbh Process for producing a polymer membrane, and polymer membrane
US20060251724A1 (en) 2003-05-06 2006-11-09 Farrell Thomas P Method for preparing thermoformed compositions containing acrylic polymer binders, pharmaceutical dosage forms and methods of preparing the same
US7140371B2 (en) 2002-03-14 2006-11-28 Allergan, Inc. Surface topography method for determining effects of a botulinum toxin upon a muscle and for comparing botulinum toxins
WO2007041664A1 (en) 2005-10-06 2007-04-12 Allergan, Inc. Non-protein stabilized clostridial toxin pharmaceutical compositions
US20070134199A1 (en) 2003-07-22 2007-06-14 Biotecon Therapeutics Gmbh Formulation for a protein pharmaceutical without added human serum albumin (HSA)
US20070237740A1 (en) 2004-09-27 2007-10-11 Vical, Inc. Formulations and Methods for Treatment of Inflammatory Diseases
US20070253960A1 (en) 2006-04-28 2007-11-01 Josee Roy Pharmaceutical removal of vascular extensions from a degenerating disc
US20080045553A1 (en) 2004-05-07 2008-02-21 Phytotox Limited Transdermal Administration of Phycotoxins
WO2008045107A2 (en) * 2005-12-01 2008-04-17 University Of Massachusetts Lowell Botulinum nanoemulsions
US20080097229A1 (en) 2006-08-29 2008-04-24 Josee Roy Hygroscopic treatment for degenerating discs
US20080274194A1 (en) 2004-11-09 2008-11-06 Board Of Regents, The University Of Texas System Stabilized Hme Composition With Small Drug Particles
US20090053290A1 (en) 2006-03-08 2009-02-26 Sand Bruce J Transdermal drug delivery compositions and topical compositions for application on the skin
US20090131889A1 (en) 2007-11-19 2009-05-21 Oronsky Bryan Todd Topical composition for treating pain
US20090155314A1 (en) * 2007-12-12 2009-06-18 Ahmet Tezel Dermal filler
US20090186081A1 (en) 2006-01-05 2009-07-23 Lifecycle Pharma A/S Disintegrating Loadable Tablets
WO2009105369A1 (en) * 2008-02-22 2009-08-27 Allergan, Inc. Sustained release poloxamer containing pharmaceutical compositions
US20090258924A1 (en) 2008-04-15 2009-10-15 Allergan, Inc. METHODS, COMPOSITIONS AND DRUG DELIVERY SYSTEMS FOR INTRAOCULAR DELIVERY OF siRNA MOLECULES
US20090264385A1 (en) 2006-03-24 2009-10-22 Crowley Michael M Stabilized compositions containing alkaline labile drugs
US20100150994A1 (en) 2006-12-01 2010-06-17 Anterios, Inc. Amphiphilic entity nanoparticles
US7758873B2 (en) 2000-02-08 2010-07-20 Allergan, Inc. Polysaccharide containing botulinum toxin pharmaceutical compositions and uses thereof
WO2010090677A1 (en) * 2008-12-10 2010-08-12 Allergan, Inc. Clostridial toxin pharmaceutical compositions
US20100291226A1 (en) 2007-03-30 2010-11-18 Sifi S.P.A. Pharmaceutical Formulations Based on Apolar and Polar Lipids for Ophthalmic Use
US20110106021A1 (en) 2009-10-30 2011-05-05 Revance Therapeutics, Inc. Device and Method for Topical Application of Therapeutics or Cosmetic Compositions
US20120082717A1 (en) 2009-06-05 2012-04-05 Snu R&Db Foundation Complex, multilayer using the same, and device coated with the multilayer
US8168206B1 (en) * 2005-10-06 2012-05-01 Allergan, Inc. Animal protein-free pharmaceutical compositions
US20120141532A1 (en) * 2007-12-12 2012-06-07 Blanda Wendy M Botulinum Toxin Formulation
US20120156244A1 (en) 2008-08-01 2012-06-21 Alpha Synergy Development Inc. Nasal Compositions and Uses Thereof
US20120238504A1 (en) 1998-09-11 2012-09-20 Solstice Neurosciences, Llc Stable Formulations of Botulinum Toxin in Hydrogels
US20140099342A1 (en) * 2005-12-01 2014-04-10 University Of Massachusetts Lowell Botulinum nanoemulsions
US8877208B2 (en) 2008-05-23 2014-11-04 The Regents Of The University Of Michigan Multivalent nanoemulsion vaccines
US9226959B2 (en) * 2008-01-31 2016-01-05 Curevac Ag Nucleic acids comprising formula (NuGlXmGnNv)a and derivatives thereof as immunostimulating agent/adjuvant
US20160175445A1 (en) * 2011-03-21 2016-06-23 Broda International LLC Reversely thermo-reversible hydrogel compositions
US20170224786A1 (en) * 2005-08-01 2017-08-10 Allergan, Inc. Botulinum toxin compositions
US9808467B2 (en) * 2012-12-24 2017-11-07 Neurogastrx, Inc. Methods for treating GI tract disorders
US20170367978A1 (en) * 2014-12-11 2017-12-28 Phosphorex, Inc. Aqueous topical drug formulation with controlled release and increased stability

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2123837C1 (en) * 1998-05-27 1998-12-27 Бритун Юлия Анатольевна Method of reducing wrinkles
DE19925739A1 (en) * 1999-06-07 2000-12-21 Biotecon Ges Fuer Biotechnologische Entwicklung & Consulting Mbh Therapeutic with a botulinum neurotoxin
SE0300877D0 (en) * 2003-03-26 2003-03-26 Sca Hygiene Prod Ab Absorbent article comprising an absorbent structure
US8816591B2 (en) 2012-05-26 2014-08-26 Vastview Technology Inc. Methods and apparatus for segmenting and driving LED-based lighting units

Patent Citations (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4806337A (en) 1984-07-23 1989-02-21 Zetachron, Inc. Erodible matrix for sustained release bioactive composition
US5278201A (en) 1988-10-03 1994-01-11 Atrix Laboratories, Inc. Biodegradable in-situ forming implants and methods of producing the same
US5252318A (en) 1990-06-15 1993-10-12 Allergan, Inc. Reversible gelation compositions and methods of use
US5696077A (en) 1992-06-23 1997-12-09 Associated Synapse Biologics Pharmaceutical composition containing botulinum B complex
US6011011A (en) 1992-09-21 2000-01-04 Pharmacia & Upjohn Company Sustained-release protein formulations
US5667808A (en) 1992-12-02 1997-09-16 Alkermes, Inc. Composition for sustained release of human growth hormone
US5516703A (en) 1993-08-20 1996-05-14 The University Of Utah Coating of hydrophobic surfaces to render them protein resistant while permitting covalent attachment of specific ligands
US5914334A (en) 1994-06-07 1999-06-22 Allergan, Inc. Stable gel formulation for topical treatment of skin conditions
US5756468A (en) 1994-10-13 1998-05-26 Wisconsin Alumni Research Foundation Pharmaceutical compositions of botulinum toxin or botulinum neurotoxin and methods of preparation
US5512547A (en) 1994-10-13 1996-04-30 Wisconsin Alumni Research Foundation Pharmaceutical composition of botulinum neurotoxin and method of preparation
US6087327A (en) 1995-06-06 2000-07-11 Pearce; L. Bruce Compositions and methods for chemodenervation using neurotoxins
US6007843A (en) 1995-09-29 1999-12-28 Lam Pharmaceuticals Corp. Sustained release delivery system
US5980945A (en) 1996-01-16 1999-11-09 Societe De Conseils De Recherches Et D'applications Scientifique S.A. Sustained release drug formulations
CN1215084A (en) 1997-10-18 1999-04-28 卫生部兰州生物制品研究所 Productive technology for A type botulism crystalline toxin and frozen-dried protective liquid needed for producing said toxin
US6022554A (en) 1997-12-15 2000-02-08 American Home Products Corporation Polymeric microporous film coated subcutaneous implant
US6316011B1 (en) 1998-08-04 2001-11-13 Madash, Llc End modified thermal responsive hydrogels
US20030092776A1 (en) 1998-08-04 2003-05-15 Ron Eyal S. End modified thermal responsive hydrogels
US8173138B2 (en) 1998-09-11 2012-05-08 Solstice Neurosciences, Llc Stable liquid formulations of botulinum toxin
US7211261B1 (en) 1998-09-11 2007-05-01 Solstice Neurosciences, Inc. Stable liquid formulations of botulinum toxin
EP1112082B1 (en) 1998-09-11 2002-07-31 Elan Pharmaceuticals, Inc. Stable liquid formulations of botulinum toxin
US20120238504A1 (en) 1998-09-11 2012-09-20 Solstice Neurosciences, Llc Stable Formulations of Botulinum Toxin in Hydrogels
US6649702B1 (en) 1999-05-19 2003-11-18 University Of Utah Research Foundation Stabilization and acoustic activation of polymeric micelles for drug delivery
US7758873B2 (en) 2000-02-08 2010-07-20 Allergan, Inc. Polysaccharide containing botulinum toxin pharmaceutical compositions and uses thereof
US7780967B2 (en) 2000-02-08 2010-08-24 Allergan, Inc. Reduced toxicity Clostridial toxin pharmaceutical compositions
US20060104994A1 (en) 2000-02-08 2006-05-18 Hunt Terrence J Clostridial toxin pharmaceutical composition containing a gelatin fragment
EP1253932B1 (en) 2000-02-08 2005-04-27 Allergan, Inc. Botulinum toxin pharmaceutical compositions
US8632785B2 (en) 2000-02-08 2014-01-21 Allergan, Inc. Clostridial toxin pharmaceutical composition containing a gelatin fragment
US8216591B2 (en) 2000-02-08 2012-07-10 Allergan, Inc. Pharmaceutical compositions containing botulinum toxin
US7579010B2 (en) 2000-02-08 2009-08-25 Allergan, Inc. Botulinum toxin pharmaceutical compositions with a recombinant human serum albumin
US20030118598A1 (en) 2000-02-08 2003-06-26 Allergan, Inc. Clostridial toxin pharmaceutical compositions
US6465425B1 (en) 2000-02-10 2002-10-15 Alkermes Controlled Therapeutics, Inc. Microencapsulation and sustained release of biologically active acid-stable or free sulfhydryl-containing proteins
US6773711B2 (en) 2000-02-15 2004-08-10 Allergan, Inc. Botulinum toxin therapy for Hashimoto's thyroiditis
US20060013883A1 (en) 2000-03-03 2006-01-19 Francois Nicol Poloxamer and poloxamine compositions for nucleic acid delivery
WO2001093827A2 (en) 2000-06-02 2001-12-13 Allergan, Inc. Neurotoxin implant
US6306423B1 (en) 2000-06-02 2001-10-23 Allergan Sales, Inc. Neurotoxin implant
US6312708B1 (en) 2000-06-02 2001-11-06 Allergan Sales, Inc. Botulinum toxin implant
US7097857B2 (en) 2000-08-23 2006-08-29 Alkermes Controlled Therapeutics, Inc. Methods and compositions for the targeted delivery of biologically active agents
US6565888B1 (en) 2000-08-23 2003-05-20 Alkermes Controlled Therapeutics, Inc. Methods and compositions for the targeted delivery of biologically active agents
US20030133980A1 (en) 2001-11-12 2003-07-17 Alkermes Controlled Therapeutics, Inc. Biocompatible polymer blends and uses thereof
US7140371B2 (en) 2002-03-14 2006-11-28 Allergan, Inc. Surface topography method for determining effects of a botulinum toxin upon a muscle and for comparing botulinum toxins
US20040009180A1 (en) 2002-07-11 2004-01-15 Allergan, Inc. Transdermal botulinum toxin compositions
WO2004060384A2 (en) 2002-12-20 2004-07-22 Botulinum Toxin Research Associates, Inc. Pharmaceutical botulinum toxin compositions
US20070196425A1 (en) 2003-02-08 2007-08-23 Jiandong Ding Thermosensitive and biodegradable microgel and a method for the preparation thereof
US20040156906A1 (en) 2003-02-08 2004-08-12 Jiandong Ding Thermosensitive and biodegradable microgel and a method for the preparation thereof
WO2004084839A2 (en) 2003-03-24 2004-10-07 Cady Roger K Method and article for treatment of sensory neuron related disorders through transdermal application of botulinum toxin
US20040247623A1 (en) 2003-03-24 2004-12-09 Roger Cady Method and article for treatment of sensory neuron related disorders through transdermal application of botulinum toxin
US20060251724A1 (en) 2003-05-06 2006-11-09 Farrell Thomas P Method for preparing thermoformed compositions containing acrylic polymer binders, pharmaceutical dosage forms and methods of preparing the same
US20050123550A1 (en) 2003-05-12 2005-06-09 Laurent Philippe E. Molecules enhancing dermal delivery of influenza vaccines
US20050025830A1 (en) 2003-06-23 2005-02-03 Technische Universiteit Eindhoven Drug delivery device comprising an active compound and method for releasing an active compound from a drug delivery device
US20050025778A1 (en) 2003-07-02 2005-02-03 Cormier Michel J.N. Microprojection array immunization patch and method
US7829525B2 (en) 2003-07-22 2010-11-09 Merz Pharma Gmbh & Co. Kgaa Formulation for a protein pharmaceutical without added human serum albumin (HSA)
US20070134199A1 (en) 2003-07-22 2007-06-14 Biotecon Therapeutics Gmbh Formulation for a protein pharmaceutical without added human serum albumin (HSA)
US20050238668A1 (en) 2003-09-25 2005-10-27 Allergan, Inc. Media for clostridium bacterium and processes for obtaining a clostridial toxin
US20080045553A1 (en) 2004-05-07 2008-02-21 Phytotox Limited Transdermal Administration of Phycotoxins
WO2006020208A2 (en) 2004-07-26 2006-02-23 Merz Pharma Gmbh & Co. Kgaa Therapeutic composition whit a botulinum neurotoxin
US20060040894A1 (en) 2004-08-13 2006-02-23 Angiotech International Ag Compositions and methods using hyaluronic acid
US20060078616A1 (en) 2004-08-30 2006-04-13 Georgewill Dawaye A Thermoreversible pharmaceutical formulation for anti-microbial agents comprising poloxamer polymers and hydroxy fatty acid ester of polyethylene glycol
US20070237740A1 (en) 2004-09-27 2007-10-11 Vical, Inc. Formulations and Methods for Treatment of Inflammatory Diseases
US20080274194A1 (en) 2004-11-09 2008-11-06 Board Of Regents, The University Of Texas System Stabilized Hme Composition With Small Drug Particles
US20060127429A1 (en) 2004-12-13 2006-06-15 Mccartt Mary D Topical numbing composition for laser therapy
US20090087457A1 (en) 2005-03-03 2009-04-02 Revance Therapeutics, Inc. Compositions and Methods for Topical Application and Transdermal Delivery of Botulinum Toxins
US9314416B2 (en) * 2005-03-03 2016-04-19 Revance Therapeutics, Inc. Compositions and methods for topical application and transdermal delivery of botulinum toxins
US9180081B2 (en) * 2005-03-03 2015-11-10 Revance Therapeutics, Inc. Compositions and methods for topical application and transdermal delivery of botulinum toxins
US20070077259A1 (en) * 2005-03-03 2007-04-05 Revance Therapeutics, Inc. Compositions and methods for topical application and transdermal delivery of botulinum toxins
US20160051646A1 (en) * 2005-03-03 2016-02-25 Revance Therapeutics, Inc. Compositions and methods for topical application and transdermal delivery of botulinum toxins
WO2006094263A2 (en) 2005-03-03 2006-09-08 Revance Therapeutics, Inc. Compositions and methods for topical application and transdermal delivery of botulinum toxins
WO2006094623A1 (en) * 2005-03-10 2006-09-14 Gkss-Forschungszentrum Geesthacht Gmbh Process for producing a polymer membrane, and polymer membrane
US20170224786A1 (en) * 2005-08-01 2017-08-10 Allergan, Inc. Botulinum toxin compositions
US20120141619A1 (en) 2005-10-06 2012-06-07 Allergan, Inc. Non-protein stabilized clostridial toxin pharmaceutical compositions
US8137677B2 (en) * 2005-10-06 2012-03-20 Allergan, Inc. Non-protein stabilized clostridial toxin pharmaceutical compositions
WO2007041664A1 (en) 2005-10-06 2007-04-12 Allergan, Inc. Non-protein stabilized clostridial toxin pharmaceutical compositions
US20140112908A1 (en) * 2005-10-06 2014-04-24 Allergan, Inc. Non-protein stabilized clostridial toxin pharmaceutical compositions
US8642047B2 (en) * 2005-10-06 2014-02-04 Allergan, Inc. Non-protein stabilized Clostridial toxin pharmaceutical compositions
US20100279953A1 (en) * 2005-10-06 2010-11-04 Allergan, Inc. Non-protein stabilized clostridial toxin pharmaceutical compositions
US20120207787A1 (en) * 2005-10-06 2012-08-16 Allergan, Inc. Animal Protein-Free Pharmaceutical Compositions
US20120122802A1 (en) * 2005-10-06 2012-05-17 Allergan, Inc. Animal protein-free pharmaceutical compositions
US8168206B1 (en) * 2005-10-06 2012-05-01 Allergan, Inc. Animal protein-free pharmaceutical compositions
WO2008045107A2 (en) * 2005-12-01 2008-04-17 University Of Massachusetts Lowell Botulinum nanoemulsions
US9486408B2 (en) * 2005-12-01 2016-11-08 University Of Massachusetts Lowell Botulinum nanoemulsions
US20140099342A1 (en) * 2005-12-01 2014-04-10 University Of Massachusetts Lowell Botulinum nanoemulsions
US20090186081A1 (en) 2006-01-05 2009-07-23 Lifecycle Pharma A/S Disintegrating Loadable Tablets
US20090053290A1 (en) 2006-03-08 2009-02-26 Sand Bruce J Transdermal drug delivery compositions and topical compositions for application on the skin
US20090264385A1 (en) 2006-03-24 2009-10-22 Crowley Michael M Stabilized compositions containing alkaline labile drugs
US20070253960A1 (en) 2006-04-28 2007-11-01 Josee Roy Pharmaceutical removal of vascular extensions from a degenerating disc
US20080097229A1 (en) 2006-08-29 2008-04-24 Josee Roy Hygroscopic treatment for degenerating discs
US20100150994A1 (en) 2006-12-01 2010-06-17 Anterios, Inc. Amphiphilic entity nanoparticles
US20100291226A1 (en) 2007-03-30 2010-11-18 Sifi S.P.A. Pharmaceutical Formulations Based on Apolar and Polar Lipids for Ophthalmic Use
US20090131889A1 (en) 2007-11-19 2009-05-21 Oronsky Bryan Todd Topical composition for treating pain
US20120141532A1 (en) * 2007-12-12 2012-06-07 Blanda Wendy M Botulinum Toxin Formulation
US20090155314A1 (en) * 2007-12-12 2009-06-18 Ahmet Tezel Dermal filler
US9050336B2 (en) * 2007-12-12 2015-06-09 Allergan, Inc. Botulinum toxin formulation
US20140302007A1 (en) * 2007-12-12 2014-10-09 Allergan, Inc. Botulinum toxin formulation
US9161970B2 (en) * 2007-12-12 2015-10-20 Allergan, Inc. Dermal filler
US9044477B2 (en) * 2007-12-12 2015-06-02 Allergan, Inc. Botulinum toxin formulation
US9226959B2 (en) * 2008-01-31 2016-01-05 Curevac Ag Nucleic acids comprising formula (NuGlXmGnNv)a and derivatives thereof as immunostimulating agent/adjuvant
US20160250321A1 (en) * 2008-01-31 2016-09-01 Curevac Ag NUCLEIC ACIDS COMPRISING FORMULA (NuGlXmGnNv)a AND DERIVATIVES THEREOF AS IMMUNOSTIMULATING AGENT/ADJUVANT
US20090214685A1 (en) * 2008-02-22 2009-08-27 Hunt Terrence J Sustained release poloxamer containing pharmaceutical compositions
US20150352226A1 (en) * 2008-02-22 2015-12-10 Allergan, Inc. Sustained release poloxamer containing pharmaceutical compositions
US9278140B2 (en) * 2008-02-22 2016-03-08 Allergan, Inc. Sustained release poloxamer containing pharmaceutical compositions
US9107815B2 (en) * 2008-02-22 2015-08-18 Allergan, Inc. Sustained release poloxamer containing pharmaceutical compositions
US20160175410A1 (en) * 2008-02-22 2016-06-23 Allergan, Inc. Sustained release poloxamer containing pharmaceutical compositions
WO2009105369A1 (en) * 2008-02-22 2009-08-27 Allergan, Inc. Sustained release poloxamer containing pharmaceutical compositions
US20090258924A1 (en) 2008-04-15 2009-10-15 Allergan, Inc. METHODS, COMPOSITIONS AND DRUG DELIVERY SYSTEMS FOR INTRAOCULAR DELIVERY OF siRNA MOLECULES
US8877208B2 (en) 2008-05-23 2014-11-04 The Regents Of The University Of Michigan Multivalent nanoemulsion vaccines
US20120156244A1 (en) 2008-08-01 2012-06-21 Alpha Synergy Development Inc. Nasal Compositions and Uses Thereof
WO2010090677A1 (en) * 2008-12-10 2010-08-12 Allergan, Inc. Clostridial toxin pharmaceutical compositions
US20120082717A1 (en) 2009-06-05 2012-04-05 Snu R&Db Foundation Complex, multilayer using the same, and device coated with the multilayer
US20110106021A1 (en) 2009-10-30 2011-05-05 Revance Therapeutics, Inc. Device and Method for Topical Application of Therapeutics or Cosmetic Compositions
US20120238969A1 (en) 2009-10-30 2012-09-20 Revance Therapeutics, Inc Device and Method for Topical Application of Therapeutics or Cosmetic Compositions
US20160175445A1 (en) * 2011-03-21 2016-06-23 Broda International LLC Reversely thermo-reversible hydrogel compositions
US9592295B2 (en) * 2011-03-21 2017-03-14 Broda Technologies Co., Ltd. Reversely thermo-reversible hydrogel compositions
US9808467B2 (en) * 2012-12-24 2017-11-07 Neurogastrx, Inc. Methods for treating GI tract disorders
US20170367978A1 (en) * 2014-12-11 2017-12-28 Phosphorex, Inc. Aqueous topical drug formulation with controlled release and increased stability

Non-Patent Citations (22)

* Cited by examiner, † Cited by third party
Title
Carpenter, et al.; Interactions of Stabilizing Additives With Proteins During Freeze-Thawing and Freeze-Dying, International Symposium on BIological Product Freeze-Drying and Formulation, Oct. 24-26, 1990; Karger (1992), 225-239.
Dumortler, Gilles; et al.: A Review of Poloxamer 407 Pharmaceutical and Pharmacological Characteristics. Pharmaceutical Research, vol. 23, No. 12, Dec. 2006. pp. 2709-2728.
Garry, Mary; et al.: Evaluation of the Efficacy of a Bioerodible Bupivacaine Polymer System on Antinociception and Inflammatory Mediator Release. Pain 82(1999), pp. 49-55.
Goodnough M.C., et al.; Recovery of Type-A Botulinum Toxin Following Lyophilization, Acs Symposium Series 1994;567(−):193-203.
Goodnough M.C., et al.; Stabilization of Botulinum Toxin Type A During Lyophilization, App & Envir. Micro. 58 (10) 3426-3428 (1992).
Huang K., et al.; Synthesis and Characterization of Self Assembling Block Copolymers Containing Adhesive Moieties, Polymer Preprints 2001, 42(2), 147-148.
Jeong B., et al.; Thermosensitive Sol-Gel Reversible Hydrogels, Adv. Drug Del. Rev., 54(1); 37-51, Jan. 17, 2002.
Kohl A., et al.; Comparison of the Effect of Botulinum Toxin A (Botox®) With the Highly-Purified Neurotoxin (NT 201) in the Extensor Digitorm Brevis Muscle Test, Mov Disord 2000;15(Suppl 3):165.
Naumann, et al.; Botulinum Toxin Type A in the Treatment of Focal, Axiliary, and Palmar Hyperhidrosis and Other Hyperhidrotic Conditions, European J. Neurology 6 (Supp 4):S111-S115:1999.
Powell, Elizabeth, et al.: Controlled Release of Nerve Growth Factor From a Polymeric Implant. Braun Research, 515 (1990) pp. 309-311.
Ragona, et al.; Management of Parotid Sialocele With Botulinum Toxin, The Laryngoscope 109:1344-1346:1999.
Rao, Jyoti; et al.: Implantable Controlled Delivery Systems for Proteins Based on Collagen-pHEMA Hydrogels. Biomaterials 1994, vol. 15 No. 5. pp. 383-389.
Rohrich et al, Plastic and Reconstructive Surgery, Dec. 2003, 112/7:1899-1902. *
Schantz E.J., et al.; Preparation and Characterization of Botulinum Toxin Type A for Human Treatment, Chapter 3 of Jankovic, J., et al., Therapy with Botulinum Toxin, Marcel Dekker, Inc (1994).
Schantz E.J., et al.; Properties and Use of Botulinum Toxin and Other Microbial Neurotoxins in Medicine, Microbiol Rev Mar. 1992;56(1):80-99.
Singh, Critical Aspects of Bacterial Protein toxins, pp. 63-84 (Chapter 4) of Natural Toxins II, edited by B.R. Singh et al., Plenum Press, New York.
Stratton at al (Journal of Pharmaceutical Sciences, vol. 86, No. 9, Sep. 1997, p. 1006-1010).
Stratton L., et al.; Drug Delivery Matrix Containing native Protein Precipitates Suspended in a Poloxamer Gel, J. Pharm. Sci. 86(9); 1006-1010, Sep. 1996.
Stratton, L.; et al.: Drug Delivery Matrix Containing Native Protein Precipitates Suspended in a Poloxamer Gel, Journal of Pharmaceutical Science, American Pharmaceutical Association. Washington.; US, vol. 86, No. 9, Sep. 1, 1997, pp. 1006-1010.
U.S. Appl. No. 11/524,683, filed Nov. 21, 2006, Hunt.
U.S. Appl. No. 11/954,602, filed Dec. 12, 2007, Tezel et al.
U.S. Appl. No. 11/954,629, filed Dec. 12, 2007, Blanda et al.

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11033625B2 (en) * 2005-10-06 2021-06-15 Allergan, Inc. Method for stabilizing a toxin
US11285216B2 (en) 2005-10-06 2022-03-29 Allergan, Inc. Animal protein-free pharmaceutical compositions
US11446382B2 (en) * 2005-10-06 2022-09-20 Allergan, Inc. Animal protein-free pharmaceutical compositions
US11524075B2 (en) 2005-10-06 2022-12-13 Allergan, Inc. Animal protein-free pharmaceutical compositions
US20190290740A1 (en) * 2009-06-25 2019-09-26 Revance Therapeutics, Inc. Albumin-Free Botulinum Toxin Formulations
US11351232B2 (en) * 2009-06-25 2022-06-07 Revance Therapeutics, Inc. Albumin-free botulinum toxin formulations
US11911449B2 (en) 2009-06-25 2024-02-27 Revance Therapeutics, Inc. Albumin-free botulinum toxin formulations
US11596673B2 (en) * 2013-12-12 2023-03-07 Medy-Tox Inc. Long lasting effect of new botulinum toxin formulations
US20180015225A1 (en) * 2015-02-03 2018-01-18 Merz Pharma Gmbh & Co. Kg Botulinum toxin prefilled container
US10406290B2 (en) * 2015-02-03 2019-09-10 Merz Pharma Gmbh & Co. Kgaa Botulinum toxin prefilled plastic syringe
US11219717B2 (en) 2015-02-03 2022-01-11 Merz Pharma Gmbh & Co. Kgaa Botulinum toxin prefilled plastic syringe
US10973890B2 (en) 2016-09-13 2021-04-13 Allergan, Inc. Non-protein clostridial toxin compositions

Also Published As

Publication number Publication date
AU2009215664B2 (en) 2014-07-03
EP2257304A1 (en) 2010-12-08
US20090214685A1 (en) 2009-08-27
CA2715626C (en) 2016-10-11
DK2257304T3 (en) 2019-12-02
RU2482874C2 (en) 2013-05-27
EP3632470A1 (en) 2020-04-08
WO2009105369A1 (en) 2009-08-27
PL2257304T3 (en) 2020-06-15
US20150352226A1 (en) 2015-12-10
US9278140B2 (en) 2016-03-08
ES2759372T3 (en) 2020-05-08
AU2009215664A1 (en) 2009-08-27
CN102014951A (en) 2011-04-13
HUE047394T2 (en) 2020-04-28
US20180271959A1 (en) 2018-09-27
US9107815B2 (en) 2015-08-18
EP2257304B1 (en) 2019-09-04
CA2715626A1 (en) 2009-08-27
US20160175410A1 (en) 2016-06-23
KR20100135237A (en) 2010-12-24
RU2010138700A (en) 2012-03-27
KR101675168B1 (en) 2016-11-10

Similar Documents

Publication Publication Date Title
US9981022B2 (en) Sustained release poloxamer containing pharmaceutical compositions
JP6235176B2 (en) Non-protein stabilized clostridial toxin pharmaceutical composition
JP5690785B2 (en) Improved botulinum toxin composition
US10105421B2 (en) Therapeutic composition with a botulinum neurotoxin
AU2013202329B2 (en) Non-protein stabilized clostridial toxin pharmaceutical compositions
BRPI0613001A2 (en) non-protein stabilized clostridial toxin pharmaceutical compositions

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALLERGAN, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HUNT, TERRENCE J.;REEL/FRAME:045624/0375

Effective date: 20080411

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4